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Dynamics analysis of octonion-valued stochastic shunting

inhibitory cellular neural networks with varying delays

LI Bing! LV Wen! LI Yong-kun?*

Abstract. In this paper, we use a direct method to study the almost periodic dynamics of an
octonion-valued stochastic shunting inhibitory cellular neural network with variable delays. By
using the fixed point method and inequality technique, the existence, uniqueness and stability of
almost periodic solutions in the sense of distribution of the neural network under consideration

are obtained. Our results are brand new.

81 Introduction

Octonion algebra is a nonassociative generalization of quaternion algebra and is not cov-
ered by Clifford algebra [1,2]. Quaternion-valued neural networks [3-13] and Clifford-valued
neural networks [14-25] have gradually become a hotspot in the field of neural network re-
search because of their importance in theory and practical application as neural networks
with multi-dimensional values. Octonion-valued neural networks were first proposed by C.A.
Popa [26]. Due to their important potential application value, at present, the qualitative re-
search of mathematical models of octonion-valued neural networks has begun to attract the
attention of scholars [27-31]. However, because the multiplication of octonion algebra does not
satisfy the commutative law and associative law, it brings great difficulties to the dynamics
research of octonion-valued neural networks. Because of this difficulty, the current results on
the dynamics of octonion-valued neural networks are obtained by decomposing them into real-
valued neural networks, and then studying them as real-valued neural networks. Such results
are not suitable for direct application to octonion-valued neural networks. Therefore, it is of
great theoretical and practical value to study the dynamics of octonion-valued neural networks

by direct methods.
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On the one hand, the dynamics of real-valued shunting inhibitory cellular networks has been
the focus of many researchers due to their important applications in psychophysics, adaptive
pattern recognition, and image processing [32-39]. However, since their mathematical mod-
els include the multiplication of three terms, namely, connection weight function, activation
function and state variable, and the multiplication of octonion algebra does not meet the asso-
ciative law, there is no report on the dynamics of octonion-valued shunting inhibitory cellular
neural networks. Therefore, it is an interesting and challenging work to study the dynamics of
octonion-valued shunting inhibitory cellular neural networks.

On the other hand, in the real world, a neural network system is always disturbed by many
random factors, so considering the neural network with random disturbances is more consistent
with the real situation. Indeed, stochastic neural networks including fractional-order stochastic
neural networks have been widely studied [40-48]. However, the research on the dynamics of
octonion-valued stochastic neural networks has not been reported yet.

In addition, almost periodic oscillation is one of the important qualitative properties of
neural networks, and time delays often occur in real systems.

Based on the above observations, the main purpose of this paper is to study the existence
and global exponential stability of almost periodic solutions in the distribution sense for a class
of octonion-valued stochastic shunting inhibitory cellular neural networks with time-varying
delays. To the best of the author’s knowledge, this is the first article to study the almost
periodic solutions of octonion-valued stochastic neural networks.

The rest of the paper is organized as follows. In the second section, we introduce some
preliminary knowledge and give a description of the model. In Section 3, we study the existence
and global exponential stability of almost periodic solutions in the distribution sense of the
considered neural networks. In Section 4, we give an example to illustrate the validity of our

results.

82 Model description and preliminaries

The algebra of octonions is defined as

0= {a- S elyey

(2o, o)1, -+ ol € R},

p=0
where e,,p = 0,1,2,...,7 represent the octonion units, which satisfy the following multiplica-
tion table [1].
7
The addition of octonions is defined by = +y = >_ ([z], + [y]p)ep, and the scalar multipli-
p=0

7
cation is given by ax = > (afz],)ep.
p=0
Equipped with the above operations, O is a real algebra. Based on the table, one can find

7
that @ is neither commutative nor associative. Moreover, ¢g = 1 and for z = Y [z],e, € O,
p=0
we denote z¢ = Y [z],e, and 2" =z — z°.
p#0
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Table 1. Multiplication table of octonions.

X €0 €1 €9 €3 €4 €5 €g ey
€0 | €o €1 €2 €3 €4 €5 €6 €7
€1 €1 —€0 €3 —€9 €5 —€4 —e7 €g
€2 | €2 | €3 | —€0 €1 €6 €7 —€4 | —65
€3 €3 €9 —e1 —€p (&rd —€g €5 —€4
€4 | €4 | €5 | —€6 | —€7 | —€0 €1 €2 €3
€5 €5 €4 —er €g —€1 —€p —E€3 €9
€6 | €6 €7 €4 —€5 | —€2 €3 —€ | —€1
(rd (&rd —€g €5 €4 —E€3 —€2 €1 —€p

7 [ 7
For y = > [ylpe, € O, we define |ly[lo = /> ]2, Let = = {ij,i = 1,2,...,m,j =
p=0 p=0
,2,...,n} and for z = (211,212, Zmn)? € O™, we define ||z||gmxn = max{||zi;||o}, then
IHIS=S)

both (O, ] - |lo) and (Q™*™,|| - ||gmx~») are Banach spaces.

Throughout this paper, we stipulate that for any z,y,z € O, zyz = (2y)z.

The model we focus on in this work is the following Octonion-valued stochastic shunting
inhibitory cellular neural network with varying delays

iy (1) =( Cagrg) - Y RO f(ealt — v () (6) + I <t>> it

Cri€Ny(i,5)
+ > B (t)oij(aig (b)) dwi (1), (2.1)
Cri€N,(4,5)
where ij € 2, C;; denotes the cell at the (7, j) position of the lattice, the g-neighborhood N,.(4, 5)
of Cjyj is
N (i,5) = {Cri : max(|k — i, |l = j]) < ¢, 1 <k <m,1 <1< nj,

and N, (4, ) is similarly defined; z;;(t) € O represents the activity of the cell Cy; at time ¢;
I;;(t) € O stands for the external input to C;; at time ¢; a;;(t) € O is the passive decay rate
of the cell activity at time t; ijl € O and ijl € O are the connection or coupling strength
of postsynaptic activity of the cell transmitted to the cell Cj; at time ¢; the activity function
f is a continuous function representing the output or firing rate of the cell Cy; w;;(t) is the
m x n-dimentional Brownian motion defined on a complete probability space; o5 is the diffusion
coefficient; and v;;(t) > 0 represent the transmission delay.

Denote by (Q, F, {F:}i>0, P) a complete probability space with a natural filtration {F;};>0
meeting the usual conditions. Denote by CBg,([—7, 0], 0™*"™) the family of all bounded, Fo-
measurable, C([—, 0], O™*™)-valued random variables.

System (2.1) is supplemented with the initial values
ij(s) = @ij(s),s € [-7,0], ij € &,
where ¢;; € CBz,([—7,0],0™*™), v = max{sup v;;(t)}.
1JEE teR



LI Bing, et al. Dynamics analysis of octonion-valued stochastic shunting inhibitory... 993

Definition 2.1. [/9] A continuous function f : R — Q™*"™ is said to be almost periodic, if
for every € > 0 there exists a positive number | such that every interval of length | contains a
number T such that

lf(t+7)—= f(t)||gmxn <e,t €R.
Denote by AP(R,Q™*™) the set of all such functions.

Let B(O™*™) be the o-algebra of Borel sets of O™*™ and P(OQ™*™) be the set of all probabil-
ity measures defined on B(QO™*"™). We denote by Cg(Q™*"™) the set of all Lipschitz continuous
functions f: Q™*"™ — R with ||f|lcc = sup |f(z)| < oo.

zeQmxn
For f € Cg(Q™*™), p,v € P(Q™*"), we define
dBL(,u, = Sup /fd - I/
llfller <1

a b
where ||f||z = sup HS 0L ) 1l = max{]|f oo, 1112}

mXmn

For a random Varlable X (Q,F,P) — O™ we will use u(X) := Po X! and E(X) to
represent its distribution and its expectation, respectively.

Let £2(Q,0™*™) be the space of all 0™ "-value random variables such that E||X|2,..,. =
Jo I X1 ndP < 0.

Definition 2.2. [50] For a stochastic process X : R — L2(Q,Q™*™), if for any to € R,
Jim EIIX (1) = X (to) |2

Qmxn — 0

we call it L2-continuous. If sup E|| X (t)[|3mx. < 00, we call it L?-bounded.
teR

Definition 2.3. [50] A stochastic process X : R — Q™™ is said to be almost periodic in the
sense of distribution, if for every e > 0, there exists a positive number | such that every interval

of length | contains a number T such that

dpr(Po[X(t+7) " Po[X(t)] ™)) <&, teR.

In the rest of this paper, we will use the following notations:

ay; = Inf|af; (1)), a5 =supllaf;(t)llo,  &}; = sup |aj; (1)}, Cf = sup [ CF Do,
Bfj =sup||Bf (o, v =supvi(t), I =sup|L;()]o, a" = min{aj}.
teR teR teR (@.4)

The assumptions used in this paper are as follows:

(A1) Forij € E, aj; € AP(R,R") with aj; > 0, a”,ij,Bff,I € AP(R,0), v;; € AP(R,RT)N

Cl(R,R) and there exist positive constants u - such that for t € R, 7;;(t) < V;; <1

(Az) Forij € E, f,04; € C(0,0), there exist constants My, M7 > 0 such that for all 7,y € O,
1f(@) = fWllo < Myllz = yllo, loij(2) = 03 (¥)llo < M|z —yllo,
Ly = iuﬂg || f(z(t)|lo and £(0) = 04;(0) = 0.
€
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83 Main results

Let B = UBC(R, £%(Q, 0™*")) be the space of all £2-bounded and uniformly £2-continuous
Then, (B,| - ||lg) is a Banach space, where |z||p =

functions from R to £2(Q,0™*").

(supE||x(t)||(%>mxn)% for z € B.
teR

“Tpy), Where z7;(t) = fioo e Je aij(Wdur (s)ds,t € R and take a

Set z* = (z7,,27,, -
constant k such that ||z*||p < k.

For ij € E, we denote

Fijt,x) = —a$;(Dai(t) — Y CE@) f(wrt — vij (1)) (£) + L (1),

Cri€N,(i,5)
Gij(t,x)= > BE()oi(wi;(1)). (3.2)
Cri€N(i,5)
is a solution of the following system:

It is easy to check that if z = (211,212, * Tmn)
t
(3.3)

t
x5 (t) = / e~ Js e (Wdu (s 1) ds +/
— 0 —00

then z is a solution of system (2.1).

Let By, = {z € Bl||lx — 2*||p < k}, then
lzlls < llz — 2"l + [l«"|| B < 2k

e LAl dug (s, 2)dwi; (s), ij € E,

Theorem 3.1. Assume that (A1)-(A4) are fulfilled, suppose further that the following condi-

tions are satisfied:

(A3)
3(a¢.)? _
Pl 2y @ ¥ wr
) CklENQ(i’j) CkleNq(ivj)
6 Akl 2 2 2
v CleNq(i,j) Ckz,GNq(i,j)
3 — N2 - 1
SRS DA

2ay; . .
J Cri€N(i,5) Cri€Ny(3,5)

(Aq)
12, 12 =kIN2 2
{Fariyr ¥ @ ¥ @
i Y O €N (,5) Cri€Ng(i,5)

+12 Y B Y ()

Cri€ENL(i,5) Cri€N,(i,5)
—r 4+
24 ~ €%y .
PEOY @ Y e ) <a
Cr1€N,(4,5) K

a’.
v C}ClGNq(’L',j)

Then there exists a unique almost periodic solution in the sense of distribution to system (2.1),

which lies in By, = {x € B|||z — z*||p < k}.
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Proof. Consider the mapping ¥ : By — B, ¥z = (U112, U197, -+ , ¥, 2)T, where 2 € By, and
t t
(@Mxxw::/“ L“wwdyﬂﬂ&zﬁk%:/ e~ JoaiWdnG, (s, x)dwg;(s), t € R,ij € B
Step 1, we need to verify that ¥ is a self-mapping. Indeed, for x € By, we have

Wz — ™%
2
)

t
< Jsupmax {EH / e I ai-?'(")d"afj(S)xz‘j(S)ds
t
+ 3 sup max {EH / e~ Jo alj(wdu Z C’fjl(S)f(xkz(s — vij(s)))wi;(s)ds

teR ijEE

J

teR WEE Cri€N,(i,5)
t , 2
+ 3 sup max {EH / e Joande R T B ()01 (wis () duwiy (5) }
teR GEE —o0 CriEN, (i]) 0

¢ 2
<33upmax{E(/ e I “?f(“)d“éfjllx||3d8> }
teR 1JEE — 00

t 2
raspma ([ o S o jaa) )

teR JEE

Cri€Ng(i,5)
t , 2
+3supmax{E(/ e—2 [ ai;(w)du Z B ( 5)oij(2i5(s)) d8>}
teR HEE > Cri€ENL(i,5) o

<mx{?’(()+ Y @ Y Wy

EASS a:j) (a;j) Cri€Ng(i,5) Cri€Na(1,)
3 — 2 o\2
T e T o
1 ChiEN, (i) Cri €N (i,7)
<II(2k)% = k2.

Moreover, let © € By and t1,ts € R satisfying t; > to, we infer that
E|[(Vx)(t1) — (V) (t2) | Gmxn

t2 ty 7 to T
_mali{ H/ ( — it ai () uefs2aij(“)d“>
1jED

x ( S ay(s) = S CES) [ (uls — vis(s)ass(s) + Iij<s>)ds

Cri€Ng(i,5)

+/t e Jatal (“)d“(—afj(S)xij(S)— > ijl(s)f(évkz(s—Vz‘j(S)))iEij(S)+Iij(8)>d8

Cri€Ng(i,5)
t2 t ™ t 7‘
—|—/ <e Jotai;(wdu _ o= [[2 afj(u) “) Z B (s)0ij(wi5(5))dwg;(s)

> Cri€N(1,5)
2
@}

t t1 T
b [ et S sy g s)duis ()

t2 Cri€N(i,5)
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e~ f:l azj(u)du e f:Q afj(u)du

to
SmaX{EU
IS —o0
ty t v S
s [T (G, s Y Ol + 15 )as
to Cri€Ng(i,5)
ta
|/

t t1 T
b [ et S sy a(s)duis (5)

t2 Cri€Ny(i,5)

(afj||a:||3+ 3 cf;qua:nBH;)ds
Cri€Ng(i,5)

e j:l a:j (u)du __ e jst? a:j (u)du

> BH(s)oj(wij(s))dwij(s)

Cri€N(1,5)
2
J

<max& {(EL%Q!{:)Q + Z (C’ikjl)Z Z (Lf)2(2k)2 + (UJ_)Q]

ijER
Cri€Ng(1,5) Cri€Ny(1,5)
2 t1 . ‘ 2
ds) + (/ e_fslazj(“)d“ds> }
ta

ty to t1
x[(/ e_afj(trs)/ afj(u)du—/ a;;(u)du

ta
fmaxs 3 (B Y (ugrene| [ emie

VIS -
Cri€Nr(4,5) CriEN,(4,5)
to t1 2 t1 . B
/ aqiﬂj (U)d’u, - / a’;j (u)du ds + / 672 e a4 (“)dud3:|

gmaX{S{(&ijk)2+ (Y (Lf)Q(Qk)2+(I§)2]

1JEE . .
Cri€Ny(i,7) Cri€Ng(i,5)

X[(?){Z* 1%4(?)2 > B Y (M;;)2<2k>2}|t1—t2|2

i i Cri€N.(1,5) Cri€N.(1,7)

+max{8 > (Bgl)2 > (M{’j)z(Qk)2}|t1—t2

ijEE o .
Cri€N,.(i,]) Cri€ENr(i,5)

X

<Kty — to]* + Koty — ta],
which implies that Tz is uniformly £2-continuous. Consequently, ¥ is well defined.

Step 2, we will prove that U is a contraction mapping. For any z,y € By, we deduce that

[ — Wyl
2
)

t
<3 sup max {EH / e 1L Mg (5) (2 (5) — g3y (9))ds

teER 1jEE

¢
-+ 3sup max{EH/ o= Ji ali(w)du

teR tJEE

XY CH ) (farls = vij())ais(s) — fyr(s — vij(5)))yis (s))ds

2 }
Cri€N,(ir]) 0

+ 3sup max {EH /_; e Jeab i N BE(s) (04 (245 (5)) — 03 (91 () dwiy (5)

teR JEE o
€ Cri€ENL(i,5)
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¢ 2
<3sup max {E(/ A 1J(“)d“afj||a: - y||Bds> }
teR JEE -

t
+ 6 sup max {EH / e~ [ aij(u)du
teR 11ES oo

x Y Ck-l( )(f(ra(s = vij(s))) = fyri(s = vij(s))))wij(s)ds

2}
Cri€Ng (1,5 0

Sup max e~ Ji afy(Wdu k(g s —vii(s))(wii(s) —yi(s))ds
+6teﬂ€ ’JGH{ H/ CmezN;(i,j) CZJ( ) (yra( i5(8)))(@ij(s) — yij(s))d
2
> Bl () - o) as) |
O

+35upmax{E(/ e=2JS af;(w)du
tek €S - Cri €N (i,5)

3(ac.)? B o

J

Wes i) CreN,(i,)) Cri€Ng (i) Cr1€Nq(i-5)
2 3 — 2 on2

Y W Y B Y el

Cri€Ng(1,5) Y Cri€N,(i,5) Cri€Ny(1,7)

<l — I < gl — i

which implies that ¥ is a contraction mapping. Hence, system (2.1) has a unique solution x in
By..

Step 3, we will show that this x is almost periodic in the sense of distribution.

Due to z € UC,(R, £2(Q,Q™*™)), for any € > 0, there exists § € (0,¢) such that El|jz(t;) —
z(t2)||Zmxn < € for [t; —ta| < 4. In virtue of (A;), for the 6 above, we can infer that there
exists 7(J) such that for ¢t € R,

it +7) vyl <6, af(t+7) —al;(t)] <8, laf;(t +7) —af;(O)IF <9,
ICH (t+7) = CHOIE <06, Byt +7)=BFOg <6, |yt +7)—L;®)I5 <6,

and as a consequent, E|z(t — vy;(t + 7)) — 2(t — v (1)) |Zmxn <&

Invoking (3.3), we can gain

t
xii(t+7) :/ e T afj(u)du[_agj(s+7)xij(5+7)
— Y CH(s+ ) f(anl(s + 7 —vij(s +7))zij(s +7) + Lij(s + 7) |ds

Cri€Ng(i,j)

t
+ / ~Jer el de NT B (s oy (i (s + 7)d(wig (s +7) — wi (7)),

CriEN(1,5)
where w; (s + T) — w;;(7) is a Brownian motion with the same law as w;;(s). Hence,

Blla(t + ) = 2(t) G
2

<12 mgzcEH / - @ (TG (s 4+ 7) (i (s + 7) — i(s))ds
iJEE

0
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t 2
+12max E / —JL et (g2 (5 4+ 1) — a8, (5))ss(5)ds
ijEE — oo [0}
t . 2
+ 12 mgl(E / (e s llm (u+r)du e Js @ij (u)du> agj (s)xij(s)ds
IJEE o o

t
+12max E / e~ J aij(utm)du

FISS — 00
2
XY CH s+ 1) fwrls + 7 — vig(s + 7)) (@ij (s + 7) — @35(s))ds
Cri€Ng(i,5) 0
+12maXEH/ e~ J aij(utm)du
ijES
2
X Z (CH(s+7) = CF () f(wr(s + 7 — vij(s + 7)))wij(s)ds
Cri€Ny(i,5) 0
+12maxEH / = J¢ afj(utr)du
ijER
2
x Y CH)(flamls +7 = vij(s + 7)) = fl@rls — vij(s)))zi(s)ds
Cri€Ng(1,5) 0
+12max F / —Jiali(utm)du _ o= [ al; (w)du
IJES
2
XY CH ) f(wrls — vig(s)))aij(s)ds
Cri€Ng(1,5) o
+12£§12§EH/ e~ JEal; (utT)du Z ijl(s—f—T)
Cri€Ny(i,5)
2
X (04 (wi5(s + 7)) — 035(wi5(5)) ) dwi; (s)
@)
t . 2
+12max B / e~ Joailutnde N (BE (s + 1) — BN ()01 (@i (5))dwg (s)
- Cri€N,(i,7) 0
! ta u+7)du — [tal. (u)du ?
+12max & / ( Joais (et _ o= J iy >d> > B ()i (wi(s))dwi;(s)
e Cri€N,(i,) 0
t 2
+12max F / e e i (ukndu ([ (s + 1) — Lij(s))ds
NISS) — o 0
t t t _r 2
+12ma§E/ ( Joaij(utn)du _ o= [ a ww)d“)Izj(s)ds
NISS) — o0 10)

= Z Sq(t)
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Noticing the fact that

t t t
/ le” JSai;tutn)de _ o= J7 aij(Wdu|gs < / e~ i (t=s) / lai;(u+7) — a;;(u)|duds

S o (2
<e e—ai](t—s) (t N s)ds _ & e~ Y wdw— ( )5 _ € ’
oo (a;)* Jo (@)’ (ay)’
ij
t . 2
/ |€ :afj(u—&-T)du —e -/ Z](u)o‘lu|2d8 S/ 6—2(1 (t—s ( U+T) fj(u)du) ds
_ ( 2

2 ! 2a;.(t s)( )2 e oo 2 €
<e / e i T8t — 5 ds:f/ e “Ywdw = —
—o0 (2aij)3 0 ( ) 4(%]‘)3

and invoking Cauchy-Schwarz’s inequality and 1td’s isometry, we infer

2

Ellz(t+ 1) — z(t)|gmxn
12(as;)?

t
< max {T) [ et Bas +1) - w(s)lI%ds}
ij

Qi —00

+ max { 1352(%)2} + max {Sa‘i(agj)?(zk)?}

(a’ij) ) L (af;)

12 _ ¢
+ma§{-r SO Y [ e Bk ol >||@ds}
€= UG N ) Cri€N, (i) —o0
12
+ma§{ nme g <Lf>2<2k>2}
1ye=S (aij) Crie Ny (i)
ar vt
2 — e%ijVij
S I DI DAL
Y Cri€NG(4,5) Cri€Ng(i,5) v

t
y / e W B|a(s + 1) — x(S)H%)dS}

24¢ _
max | 2 @y <Mf>2<2k>2}
1JEE Cl”) .
CleN (4,7) Cr1€Ny(i,5)
1 2 = 2 2 2
+ max P (CED Z (Lf)"(2K)
= U4 ckleNq(m) Crl€Ng(4,5)
t
+ max ¢ 12 B Y (g / e 2 Ea(s + 7) —x(s)ll%»ds}
e CMGN (4,9) Cri€Ny(1,5) e

+m€ax ( {})2(21@)2}
== " CrieN.(4,5)
3e? _ 2 o2 72
+glgx a )3 (ijl) Z (Mm) (Qk)
- i CszN (4,9 Cri €N (i,5)

+ max
ijEE

l
e
{
fome 5
l
&

) s )
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Hence, we can conclude that
Ellz(t +7) — 2(t)||3mxn <Ac+© /t eV E|x(s +7) — 2(8)||Zmxnds,  (3.4)
where © is defined in (A4) and -
A= max{ 13 (2k)% + 172((35-)2(%)25 + mﬂ > (Lp)*(2k)
(aij) (a’ij)4 ! (

2
1JEE a -
/ ”) Cri€Ny(i,5)

+_(gf32 . (@ Y (Mp)*(k)

Cri€Ng(i,7) Cri€NG(i.5)

12 =l 2 2 6nm -
by 2 O Y @R IR N (pen?

v CkLGNq(i,j) CkZENq(i,j) v CMENT(’L',]')

3 . 12 12

v Cri €N, (3,5) Cri€N(3,5) U v
Define

W, = sup Ella(t + 1) — 2()|Br-
teT
Then, from (3.4), we deduce that
Bzt +7) — 2(t)[3men < W, < Agaf_ 5 (3.5)
Noting that
dpr(Pofa(t+7)]7", Polz(t)] ™)
= sw_| [ [7(alt+7) = flal)lap|
llfllsL<1
S/ lz(t +7) — z(t)||gmxndP
Q
<(Blla(t +7) = 2(0)l|mxn)?,
which combined with (3.5) yields that
dpr(Pofa(t+7)] ™ Pola(®)]™) < | [Ae—"—.
ar —

that is, z(t) is almost periodic solution in the sense of distribution. This ends the proof. O

Remark 3.1. Since the set of all almost periodic random processes in the sense of distribution
does not constitute a complete normed linear space, but space (B, | - ||g) is a Banach space, we
first prove that system (2.1) has a unique solution in B, and then use the definition to prove

that this solution is an almost periodic solution in the sense of distribution.

Similar to the proof of Theorem 3.2 in [51], one can readily show the following global
exponential stability result about the almost periodic solution of (2.1).

Theorem 3.2. Let (A1)-(A4) and the following condition
(As)

:=max LEﬁQ o k2 2
Comm{ a2 Y@ Y

Cri€NG(i.5) Cri€Ng(i,5)
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L2 Y @Y (MR

(ZLZJ) CklENq(i,j) CMENq(i,j)
3 Rkl 2 o\2
RS Z (B3) Z (M) } <1,
Y Cri €N (3,5) Cri €N (4,5)

be satisfied. Let x be the almost periodic solution in the sense of distribution to system (2.1)
with initial value ¢ and y an arbitrary solution of system (2.1) with initial value . Then there
exist constants A >0 and M > 1 such that
2
Ella(t) = y(O)l|gmsn < ME|p —vllge™", t >0,

where E||¢ — 1Z)||(2) = sup Ellp(s) —¥(s)|

SE[—"“O]

2
Qmxn -+

84 Example

Example 4.1. In system (2.1), forn =2 and i,j = 1,2, take
xij =[zijloeo + [Tijlie1 + [®ijlaea + [xij]ses + [xijlaea + [Tij]ses + [Tijlees + [Ti5]7e7,
f(xij) =0.01eq sin[x;;]o + 0.03eq sinz;;]1 + 0.02e5 sinfz;5]2 + 0.05e3 sinfx;;]3
+ 0.02e4 sinfz;j]4 + 0.03e5 sin[z;;]5 + 0.01eg sinfz;;]6 + 0.01le7 sinfz;;]7,
a1 (t) =(1.2 4 0.2sint)eg + 0.015e; sin v/3t + 0.01ey cos V2t + 0.01es sin V5t
+ 0.02e4 cos VTt + 0.03e5 sin VTt + 0.0leg cos V5t + 0.02e7 sin \/gt,
a12(t) =(1.3 4 0.3sint)eg + 0.02e; sin V2t + 0.015e5 cos V3t + 0.01es sin V7t
+ 0.03e4 cos V2t + 0.02e5 cost + 0.04eg sin V3t + 0.03e7 sin \/gt,
ag1(t) =(1.1 4 0.1sint)eg + 0.015¢; sin v/3t 4 0.02e5 sin v/2t + 0.015¢3 sin v/5¢
+0.02e4 sin V7t 4 0.01e5 cos V2t 4 0.03eg cos V3t + 0.01e7 cos t,
ags(t) =(1.4 4 0.4sint)eg + 0.015e; sin V2t 4 0.01eq cos v/5t + 0.01es sin v/3t
+ 0.03e4 cos V3t + 0.02e5 sin VTt + 0.015eg cost + 0.03e7 cos \/ﬁt,
C11(t) =0.01eq sint 4 0.02e5 cos V2t, C12(t) = 0.02¢; sin V3t 4+ 0.01es cost,
Cy1(t) =0.03e4 cost 4 0.01eg sin v/2t, Coa(t) = 0.01es cos V3t + 0.03e7 sint,
Bi1(t) =0.02¢ sin V2t + 0.01e cos V/5t, Bia(t) = 0.03eq cos V2t + 0.0les sint,
Bo1(t) =0.01ey sint + 0.02eg sin V/3t, Bas (t) = 0.02e5sint 4 0.01er cos V3t,
0i;(xi;) =0.01eq sin[z;;]o + 0.02eq sinfz,;]1 + 0.01es sinfx;;]o + 0.03es(z45]3
+ 0.02e4 sinfz;j]4 + 0.01es sinfz;;]5 + 0.03eg sin[z; ;] + 0.02e7 sin[z;;]7,
I11(t) =0.01eq sin v/3t 4 0.03e; sin v/2t + 0.02e5 cos t + 0.01es sin V6t
+ 0.02e4 cos V2t + 0.01es sin VTt + 0.03eg sint + 0.01e7 cos \/5t,
T2(t) =0.01eg sin v/3t 4 0.03e; sint 4 0.01eg cos v/2t + 0.01e15 sin v/3t
+ 0.03e4 sin VTt + 0.02e5 cos V3t + 0.01eg sin V2t + 0.03e7 cost,
Ir1(t) =0.03eq cost + 0.01ey sin V3t + 0.01eg sin V2t 4 0.05e3 cos v/2t
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+ 0.02e4 sin V5t + 0.03e5 sint 4 0.02e¢ cos V3t + 0.01e7 cos \/gt,
L5 (t) =0.02eq sin v/2t + 0.01e; cos /3t 4 0.03e; sin v/3t + 0.02e5 sin v/5¢
+0.01ey sint + 0.03es sin v/7t + 0.02eq cos V2t + 0.01e7 cost,
v;;(t) =0.03sint.
Take k = 0.0548, then, we have
I~ 0.012182 < i, O ~ 0.04873 < 1,C ~ 0.020304 < 1.

Therefore, system(2.1) has a unique almost periodic solution in the sense of distribution that is

global exponentially stable (see Figures [1-8]).
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Figure 3. Stability of states [2;;]4, [z4j]5, [zij]6, [2i;]7 of (2.1) with different initial values.



LI Bing, et al. Dynamics analysis of octonion-valued stochastic shunting inhibitory... 1003

Remark 4.1. The conclusion of Example 1 cannot be deduced from [12, 34], nor from any
known results.

85 Conclusion

In this paper, we have established the existence and stability of almost periodic solutions
in the sense of distribution for a class of octonion-valued stochastic shunting inhibitory neural
networks by using the direct method. This is the first time to consider the dynamics of octonion-
valued stochastic neural networks, so the results of this paper are completely new. The method
presented in this paper can be used to study the existence of almost automorphic solutions in
the sense of distribution of octonion-valued stochastic neural networks, and the existence and
stability of almost periodic solutions in the sense of distribution of fractional octonion-valued

stochastic neural networks.
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