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Dynamics analysis of octonion-valued stochastic shunting

inhibitory cellular neural networks with varying delays

LI Bing1 LV Wen1 LI Yong-kun2,∗

Abstract. In this paper, we use a direct method to study the almost periodic dynamics of an

octonion-valued stochastic shunting inhibitory cellular neural network with variable delays. By

using the fixed point method and inequality technique, the existence, uniqueness and stability of

almost periodic solutions in the sense of distribution of the neural network under consideration

are obtained. Our results are brand new.

§1 Introduction

Octonion algebra is a nonassociative generalization of quaternion algebra and is not cov-

ered by Clifford algebra [1, 2]. Quaternion-valued neural networks [3–13] and Clifford-valued

neural networks [14–25] have gradually become a hotspot in the field of neural network re-

search because of their importance in theory and practical application as neural networks

with multi-dimensional values. Octonion-valued neural networks were first proposed by C.A.

Popa [26]. Due to their important potential application value, at present, the qualitative re-

search of mathematical models of octonion-valued neural networks has begun to attract the

attention of scholars [27–31]. However, because the multiplication of octonion algebra does not

satisfy the commutative law and associative law, it brings great difficulties to the dynamics

research of octonion-valued neural networks. Because of this difficulty, the current results on

the dynamics of octonion-valued neural networks are obtained by decomposing them into real-

valued neural networks, and then studying them as real-valued neural networks. Such results

are not suitable for direct application to octonion-valued neural networks. Therefore, it is of

great theoretical and practical value to study the dynamics of octonion-valued neural networks

by direct methods.
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On the one hand, the dynamics of real-valued shunting inhibitory cellular networks has been

the focus of many researchers due to their important applications in psychophysics, adaptive

pattern recognition, and image processing [32–39]. However, since their mathematical mod-

els include the multiplication of three terms, namely, connection weight function, activation

function and state variable, and the multiplication of octonion algebra does not meet the asso-

ciative law, there is no report on the dynamics of octonion-valued shunting inhibitory cellular

neural networks. Therefore, it is an interesting and challenging work to study the dynamics of

octonion-valued shunting inhibitory cellular neural networks.

On the other hand, in the real world, a neural network system is always disturbed by many

random factors, so considering the neural network with random disturbances is more consistent

with the real situation. Indeed, stochastic neural networks including fractional-order stochastic

neural networks have been widely studied [40–48]. However, the research on the dynamics of

octonion-valued stochastic neural networks has not been reported yet.

In addition, almost periodic oscillation is one of the important qualitative properties of

neural networks, and time delays often occur in real systems.

Based on the above observations, the main purpose of this paper is to study the existence

and global exponential stability of almost periodic solutions in the distribution sense for a class

of octonion-valued stochastic shunting inhibitory cellular neural networks with time-varying

delays. To the best of the author’s knowledge, this is the first article to study the almost

periodic solutions of octonion-valued stochastic neural networks.

The rest of the paper is organized as follows. In the second section, we introduce some

preliminary knowledge and give a description of the model. In Section 3, we study the existence

and global exponential stability of almost periodic solutions in the distribution sense of the

considered neural networks. In Section 4, we give an example to illustrate the validity of our

results.

§2 Model description and preliminaries

The algebra of octonions is defined as

O :=

{
x =

7∑
p=0

[x]pep

∣∣∣∣[x]0, [x]1, · · · [x]7 ∈ R
}
,

where ep, p = 0, 1, 2, . . . , 7 represent the octonion units, which satisfy the following multiplica-

tion table [1].

The addition of octonions is defined by x + y =
7∑

p=0
([x]p + [y]p)ep, and the scalar multipli-

cation is given by αx =
7∑

p=0
(α[x]p)ep.

Equipped with the above operations, O is a real algebra. Based on the table, one can find

that O is neither commutative nor associative. Moreover, e0 = 1 and for x =
7∑

p=0
[x]pep ∈ O,

we denote xc =
∑
p ̸=0

[x]pep and xr = x− xc.
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Table 1. Multiplication table of octonions.

× e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

For y =
7∑

p=0
[y]pep ∈ O, we define ∥y∥O =

√
7∑

p=0
[y]2p. Let Ξ = {ij, i = 1, 2, . . . ,m, j =

, 2, . . . , n} and for z = (z11, z12, · · · zmn)
T ∈ Om×n, we define ∥z∥Om×n = max

ij∈Ξ
{∥zij∥O}, then

both (O, ∥ · ∥O) and (Om×n, ∥ · ∥Om×n) are Banach spaces.

Throughout this paper, we stipulate that for any x, y, z ∈ O, xyz = (xy)z.

The model we focus on in this work is the following Octonion-valued stochastic shunting

inhibitory cellular neural network with varying delays

dxij(t) =

(
− aij(t)xij(t)−

∑
Ckl∈Nq(i,j)

Ckl
ij (t)f(xkl(t− νij(t)))xij(t) + Iij(t)

)
dt

+
∑

Ckl∈Nr(i,j)

Bkl
ij (t)σij(xij(t))dwij(t), (2.1)

where ij ∈ Ξ, Cij denotes the cell at the (i, j) position of the lattice, the q-neighborhood Nr(i, j)

of Cij is

Nr(i, j) = {Ckl : max(|k − i|, |l − j|) ≤ q, 1 ≤ k ≤ m, 1 ≤ l ≤ n},
and Nr(i, j) is similarly defined; xij(t) ∈ O represents the activity of the cell Cij at time t;

Iij(t) ∈ O stands for the external input to Cij at time t; aij(t) ∈ O is the passive decay rate

of the cell activity at time t; Ckl
ij ∈ O and Bkl

ij ∈ O are the connection or coupling strength

of postsynaptic activity of the cell transmitted to the cell Cij at time t; the activity function

f is a continuous function representing the output or firing rate of the cell Ckl; wij(t) is the

m×n-dimentional Brownian motion defined on a complete probability space; σij is the diffusion

coefficient; and νij(t) ≥ 0 represent the transmission delay.

Denote by (Ω,F , {Ft}t≥0, P ) a complete probability space with a natural filtration {Ft}t≥0

meeting the usual conditions. Denote by CBF0([−γ, 0],Om×n) the family of all bounded, F0-

measurable, C([−γ, 0],Om×n)-valued random variables.

System (2.1) is supplemented with the initial values

xij(s) = φij(s), s ∈ [−γ, 0], ij ∈ Ξ,

where φij ∈ CBF0
([−γ, 0],Om×n), γ = max

ij∈Ξ
{sup
t∈R

νij(t)}.
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Definition 2.1. [49] A continuous function f : R → Om×n is said to be almost periodic, if

for every ε > 0 there exists a positive number l such that every interval of length l contains a

number τ such that

∥f(t+ τ)− f(t)∥Om×n < ε, t ∈ R.
Denote by AP (R,Om×n) the set of all such functions.

Let B(Om×n) be the σ-algebra of Borel sets of Om×n and P(Om×n) be the set of all probabil-

ity measures defined on B(Om×n). We denote by CB(Om×n) the set of all Lipschitz continuous

functions f : Om×n → R with ∥f∥∞ = sup
x∈Om×n

|f(x)| <∞.

For f ∈ CB(Om×n), µ, ν ∈ P(Om×n), we define

dBL(µ, ν) := sup
∥f∥BL≤1

∫
E
fd(µ− ν),

where ∥f∥L = sup
a̸=b

|f(a)−f(b)|
∥a,b∥Om×n

, ∥f∥BL = max{∥f∥∞, ∥f∥L}.

For a random variable X : (Ω,F , P ) → Om×n, we will use µ(X) := P ◦X−1 and E(X) to

represent its distribution and its expectation, respectively.

Let L2(Ω,Om×n) be the space of all Om×n-value random variables such that E∥X∥2Om×n =∫
Ω
∥X∥2Om×ndP <∞.

Definition 2.2. [50] For a stochastic process X : R → L2(Ω,Om×n), if for any t0 ∈ R,

lim
t→t0

E∥X(t)−X(t0)∥2Om×n = 0,

we call it L2-continuous. If sup
t∈R

E∥X(t)∥2Om×n <∞, we call it L2-bounded.

Definition 2.3. [50] A stochastic process X : R → Om×n is said to be almost periodic in the

sense of distribution, if for every ε > 0, there exists a positive number l such that every interval

of length l contains a number τ such that

dBL(P ◦ [X(t+ τ)]−1, P ◦ [X(t)]−1) < ε, t ∈ R.

In the rest of this paper, we will use the following notations:

ārij = inf
t∈R

|arij(t)|, ācij = sup
t∈R

∥acij(t)∥O, ãrij = sup
t∈R

|arij(t)|, C̄kl
ij = sup

t∈R
∥Ckl

ij (t)∥O,

B̄kl
ij = sup

t∈R
∥Bkl

ij (t)∥O, ν+ij = sup
t∈R

νij(t), I+ij = sup
t∈R

∥Iij(t)∥O, ār = min
(i,j)

{ārij}.

The assumptions used in this paper are as follows:

(A1) For ij ∈ Ξ, arij ∈ AP (R,R+) with ārij > 0, acij , C
kl
ij , B

kl
ij , Iij ∈ AP (R,O), νij ∈ AP (R,R+)∩

C1(R,R) and there exist positive constants ν̇+ij such that for t ∈ R, ν̇ij(t) ≤ ν̇+ij < 1;

(A2) For ij ∈ Ξ, f, σij ∈ C(O,O), there exist constants Mf ,M
σ
ij > 0 such that for all x, y ∈ O,

∥f(x)− f(y)∥O ≤Mf∥x− y∥O, ∥σij(x)− σij(y)∥O ≤Mσ
ij∥x− y∥O,

Lf = sup
t∈R

∥f(x(t))∥O and f(0) = σij(0) = 0.
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§3 Main results

LetB = UBC(R,L2(Ω,Om×n)) be the space of all L2-bounded and uniformly L2-continuous

functions from R to L2(Ω,Om×n). Then, (B, ∥ · ∥B) is a Banach space, where ∥x∥B =(
sup
t∈R

E∥x(t)∥2Om×n

) 1
2 for x ∈ B.

Set x∗ = (x∗11, x
∗
12, · · ·x∗mn), where x∗ij(t) =

∫ t

−∞ e−
∫ t
s
ar
ij(u)duIij(s)ds, t ∈ R and take a

constant k such that ∥x∗∥B ≤ k.

For ij ∈ Ξ, we denote

Fij(t, x) = −acij(t)xij(t)−
∑

Ckl∈Nq(i,j)

Ckl
ij (t)f(xkl(t− νij(t)))xij(t) + Iij(t),

Gij(t, x) =
∑

Ckl∈Nr(i,j)

Bkl
ij (t)σij(xij(t)). (3.2)

It is easy to check that if x = (x11, x12, · · ·xmn)
T is a solution of the following system:

xij(t) =

∫ t

−∞
e−

∫ t
s
ar
ij(u)duFij(s, x)ds+

∫ t

−∞
e−

∫ t
s
ar
ij(u)duGij(s, x)dwij(s), ij ∈ Ξ, (3.3)

then x is a solution of system (2.1).

Let Bk = {x ∈ B|∥x− x∗∥B < k}, then
∥x∥B ≤ ∥x− x∗∥B + ∥x∗∥B ≤ 2k.

Theorem 3.1. Assume that (A1)-(A4) are fulfilled, suppose further that the following condi-

tions are satisfied:

(A3)

Π :=max
ij∈Ξ

{
3(ācij)

2

(ārij)
2 +

3

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2

+
6

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2
∑

Ckl∈Nq(i,j)

(Mf )
2(2k)2

+
3

2ārij

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2

}
<

1

4
.

(A4)

Θ :=max
ij∈Ξ

{
12

ārij
(ācij)

2 +
12

ārij

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2

+ 12
∑

Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2

+
24

ārij

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2
∑

Ckl∈Nq(i,j)

(Mf )
2(2k)2

eā
r
ijν

+
ij

1− ν̇+ij

}
< ār.

Then there exists a unique almost periodic solution in the sense of distribution to system (2.1),

which lies in Bk = {x ∈ B|∥x− x∗∥B < k}.
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Proof. Consider the mapping Ψ : Bk → B, Ψx = (Ψ11x,Ψ12x, · · · ,Ψmnx)
T , where x ∈ Bk and

(Ψijx)(t) =

∫ t

−∞
e−

∫ t
s
ar
ij(u)duFij(s, x)ds+

∫ t

−∞
e−

∫ t
s
ar
ij(u)duGij(s, x)dwij(s), t ∈ R, ij ∈ Ξ.

Step 1, we need to verify that Ψ is a self-mapping. Indeed, for x ∈ Bk, we have

∥Ψx− x∗∥2B

≤ 3 sup
t∈R

max
ij∈Ξ

{
E

∥∥∥∥∫ t

−∞
e−

∫ t
s
ar
ij(u)duacij(s)xij(s)ds

∥∥∥∥2
O

}
+ 3 sup

t∈R
max
ij∈Ξ

{
E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u)du

∑
Ckl∈Nq(i,j)

Ckl
ij (s)f(xkl(s− νij(s)))xij(s)ds

∥∥∥∥2
O

}

+ 3 sup
t∈R

max
ij∈Ξ

{
E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u)du

∑
Ckl∈Nr(i,j)

Bkl
ij (s)σij(xij(s))dwij(s)

∥∥∥∥2
O

}

≤3 sup
t∈R

max
ij∈Ξ

{
E

(∫ t

−∞
e−

∫ t
s
ar
ij(u)duācij∥x∥Bds

)2}
+ 3 sup

t∈R
max
ij∈Ξ

{
E

(∫ t

−∞
e−

∫ t
s
ar
ij(u)du

∑
Ckl∈Nq(i,j)

C̄kl
ij Lf∥x∥Bds

)2}

+ 3 sup
t∈R

max
ij∈Ξ

{
E

(∫ t

−∞
e−2

∫ t
s
ar
ij(u)du

∥∥∥∥ ∑
Ckl∈Nr(i,j)

Bkl
ij (s)σij(xij(s))

∥∥∥∥2
O
ds

)}

≤max
ij∈Ξ

{
3(ācij)

2

(ārij)
2 +

3

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2

+
3

2ārij

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2

}
∥x∥2B

<Π(2k)2 = k2.

Moreover, let x ∈ Bk and t1, t2 ∈ R satisfying t1 > t2, we infer that

E∥(Ψx)(t1)− (Ψx)(t2)∥2Om×n

=max
ij∈Ξ

{
E

∥∥∥∥ ∫ t2

−∞

(
e−

∫ t1
s

ar
ij(u)du − e−

∫ t2
s

ar
ij(u)du

)
×
(
− acij(s)xij(s)−

∑
Ckl∈Nq(i,j)

Ckl
ij (s)f(xkl(s− νij(s)))xij(s) + Iij(s)

)
ds

+

∫ t1

t2

e−
∫ t1
s

ar
ij(u)du

(
− acij(s)xij(s)−

∑
Ckl∈Nq(i,j)

Ckl
ij (s)f(xkl(s− νij(s)))xij(s) + Iij(s)

)
ds

+

∫ t2

−∞

(
e−

∫ t1
s

ar
ij(u)du − e−

∫ t2
s

ar
ij(u)du

) ∑
Ckl∈Nr(i,j)

Bkl
ij (s)σij(xij(s))dwij(s)

+

∫ t1

t2

e−
∫ t1
s

ar
ij(u)du

∑
Ckl∈Nr(i,j)

Bkl
ij (s)σij(xij(s))dwij(s)

∥∥∥∥2
O

}
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≤max
ij∈Ξ

{
E

[ ∫ t2

−∞

∣∣∣∣e− ∫ t1
s

ar
ij(u)du − e−

∫ t2
s

ar
ij(u)du

∣∣∣∣(ācij∥x∥B +
∑

Ckl∈Nq(i,j)

C̄kl
ij Lf∥x∥B + I+ij

)
ds

+

∫ t1

t2

e−
∫ t1
s

ar
ij(u)du

(
ācij∥x∥B +

∑
Ckl∈Nq(i,j)

C̄kl
ij Lf∥x∥B + I+ij

)
ds

+

∥∥∥∥∫ t2

−∞

∣∣∣∣e− ∫ t1
s

ar
ij(u)du − e−

∫ t2
s

ar
ij(u)du

∣∣∣∣ ∑
Ckl∈Nr(i,j)

Bkl
ij (s)σij(xij(s))dwij(s)

+

∫ t1

t2

e−
∫ t1
s

ar
ij(u)du

∑
Ckl∈Nr(i,j)

Bkl
ij (s)σij(xij(s))dwij(s)

∥∥∥∥
O

]2}

≤max
ij∈Ξ

8

[
(ācij2k)

2 +
∑

Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2
(2k)2 + (I+ij )

2

]

×
[(∫ t2

−∞
e−ār

ij(t2−s)

∣∣∣∣ ∫ t2

s

arij(u)du−
∫ t1

s

arij(u)du

∣∣∣∣ds)2

+

(∫ t1

t2

e−
∫ t1
s

ar
ij(u)duds

)2]
+max

ij∈Ξ
8

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2
(2k)2

[ ∫ t2

−∞
e−2ār

ij(t2−s)

×
∣∣∣∣ ∫ t2

s

arij(u)du−
∫ t1

s

arij(u)du

∣∣∣∣2ds+ ∫ t1

t2

e−2
∫ t1
s

ar
ij(u)duds

]
≤max

ij∈Ξ

{
8

[
(ācij2k)

2 +
∑

Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2
(2k)2 + (I+ij )

2

]

×
[(

ãrij
ārij

)2

+ 1

]
+

4(ãrij)
2

ārij

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2
(2k)2

}
|t1 − t2|2

+max
ij∈Ξ

{
8

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2
(2k)2

}
|t1 − t2|

≤K1|t1 − t2|2 +K2|t1 − t2|,
which implies that Tx is uniformly L2-continuous. Consequently, Ψ is well defined.

Step 2, we will prove that Ψ is a contraction mapping. For any x, y ∈ Bk, we deduce that

∥Ψx−Ψy∥2B

≤3 sup
t∈R

max
ij∈Ξ

{
E

∥∥∥∥∫ t

−∞
e−

∫ t
s
ar
ij(u)duacij(s)(xij(s)− yij(s))ds

∥∥∥∥2
O

}
+ 3 sup

t∈R
max
ij∈Ξ

{
E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u)du

×
∑

Ckl∈Nq(i,j)

Ckl
ij (s)(f(xkl(s− νij(s)))xij(s)− f(ykl(s− νij(s)))yij(s))ds

∥∥∥∥2
O

}

+ 3 sup
t∈R

max
ij∈Ξ

{
E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u)du

∑
Ckl∈Nr(i,j)

Bkl
ij (s)(σij(xij(s))− σij(yij(s)))dwij(s)

∥∥∥∥2
O

}
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≤3 sup
t∈R

max
ij∈Ξ

{
E

(∫ t

−∞
e−

∫ t
s
ar
ij(u)duācij∥x− y∥Bds

)2}
+ 6 sup

t∈R
max
ij∈Ξ

{
E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u)du

×
∑

Ckl∈Nq(i,j)

Ckl
ij (s)(f(xkl(s− νij(s)))− f(ykl(s− νij(s))))xij(s)ds

∥∥∥∥2
O

}

+ 6 sup
t∈R

max
ij∈Ξ

{
E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u)du

∑
Ckl∈Nq(i,j)

Ckl
ij (s)f(ykl(s− νij(s)))(xij(s)− yij(s))ds

∥∥∥∥2
O

}

+ 3 sup
t∈R

max
ij∈Ξ

{
E

(∫ t

−∞
e−2

∫ t
s
ar
ij(u)du

∥∥∥∥ ∑
Ckl∈Nr(i,j)

Bkl
ij (s)(σij(xij(s))− σij(yij(s)))

∥∥∥∥2
O
ds

)}

≤max
ij∈Ξ

{
3(ācij)

2

(ārij)
2

+
6

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2
∑

Ckl∈Nq(i,j)

(Mf )
2(2k)2 +

6

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2

×
∑

Ckl∈Nq(i,j)

(Lf )
2
+

3

2ārij

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2

}
∥x− y∥2B

<Π∥x− y∥2B <
1

4
∥x− y∥2B ,

which implies that Ψ is a contraction mapping. Hence, system (2.1) has a unique solution x in

Bk.

Step 3, we will show that this x is almost periodic in the sense of distribution.

Due to x ∈ UCb(R,L2(Ω,Om×n)), for any ε > 0, there exists δ ∈ (0, ε) such that E∥x(t1)−
x(t2)∥2Om×n < ε for |t1 − t2| < δ. In virtue of (A1), for the δ above, we can infer that there

exists τ(δ) such that for t ∈ R,

|νij(t+ τ)− νij(t)| < δ, |arij(t+ τ)− arij(t)| < δ, ∥acij(t+ τ)− acij(t)∥2O < δ,

∥Ckl
ij (t+ τ)− Ckl

ij (t)∥2O < δ, ∥Bkl
ij (t+ τ)−Bkl

ij (t)∥2O < δ, ∥Iij(t+ τ)− Iij(t)∥2O < δ,

and as a consequent, E∥x(t− νij(t+ τ))− x(t− νij(t))∥2Om×n < ε.

Invoking (3.3), we can gain

xij(t+ τ) =

∫ t

−∞
e−

∫ t+τ
s+τ

ar
ij(u)du

[
− acij(s+ τ)xij(s+ τ)

−
∑

Ckl∈Nq(i,j)

Ckl
ij (s+ τ)f(xkl(s+ τ − νij(s+ τ)))xij(s+ τ) + Iij(s+ τ)

]
ds

+

∫ t

−∞
e−

∫ t+τ
s+τ

ar
ij(u)du

∑
Ckl∈Nr(i,j)

Bkl
ij (s+ τ)σij(xij(s+ τ))d(wij(s+ τ)− wij(τ)),

where wij(s+ τ)− wij(τ) is a Brownian motion with the same law as wij(s). Hence,

E∥x(t+ τ)− x(t)∥2Om×n

≤12max
ij∈Ξ

E

∥∥∥∥∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)duacij(s+ τ)(xij(s+ τ)− xij(s))ds

∥∥∥∥2
O
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+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)du(acij(s+ τ)− acij(s))xij(s)ds

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞

(
e−

∫ t
s
ar
ij(u+τ)du − e−

∫ t
s
ar
ij(u)du

)
acij(s)xij(s)ds

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)du

×
∑

Ckl∈Nq(i,j)

Ckl
ij (s+ τ)f(xkl(s+ τ − νij(s+ τ)))(xij(s+ τ)− xij(s))ds

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)du

×
∑

Ckl∈Nq(i,j)

(Ckl
ij (s+ τ)− Ckl

ij (s))f(xkl(s+ τ − νij(s+ τ)))xij(s)ds

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)du

×
∑

Ckl∈Nq(i,j)

Ckl
ij (s)(f(xkl(s+ τ − νij(s+ τ)))− f(xkl(s− νij(s))))xij(s)ds

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞

(
e−

∫ t
s
ar
ij(u+τ)du − e−

∫ t
s
ar
ij(u)du

)
×

∑
Ckl∈Nq(i,j)

Ckl
ij (s)f(xkl(s− νij(s)))xij(s)ds

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)du

∑
Ckl∈Nr(i,j)

Bkl
ij (s+ τ)

× (σij(xij(s+ τ))− σij(xij(s)))dwij(s)

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)du

∑
Ckl∈Nr(i,j)

(Bkl
ij (s+ τ)−Bkl

ij (s))σij(xij(s))dwij(s)

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞

(
e−

∫ t
s
ar
ij(u+τ)du − e−

∫ t
s
ar
ij(u)du

) ∑
Ckl∈Nr(i,j)

Bkl
ij (s)σij(xij(s))dwij(s)

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞
e−

∫ t
s
ar
ij(u+τ)du(Iij(s+ τ)− Iij(s))ds

∥∥∥∥2
O

+ 12max
ij∈Ξ

E

∥∥∥∥ ∫ t

−∞

(
e−

∫ t
s
ar
ij(u+τ)du − e−

∫ t
s
ar
ij(u)du

)
Iij(s)ds

∥∥∥∥2
O

:=

12∑
q=1

Sq(t).
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Noticing the fact that∫ t

−∞
|e−

∫ t
s
ar
ij(u+τ)du − e−

∫ t
s
ar
ij(u)du|ds ≤

∫ t

−∞
e−ār

ij(t−s)

∫ t

s

|arij(u+ τ)− arij(u)|duds

≤ε
∫ t

−∞
e−ār

ij(t−s)(t− s)ds =
ε(
ārij

)2 ∫ +∞

0

e−ωωdω=
Γ(2)ε(
ārij

)2 =
ε(
ārij

)2 ,∫ t

−∞
|e−

∫ t
s
ar
ij(u+τ)du − e−

∫ t
s
ar
ij(u)du|2ds ≤

∫ t

−∞
e−2ār

ij(t−s)

(∫ t

s

|arij(u+ τ)− arij(u)|du
)2

ds

≤ε2
∫ t

−∞
e−2ār

ij(t−s)(t− s)2ds =
ε2

(2ārij)
3

∫ +∞

0

e−ωω2dω =
Γ(3)ε2

(2ārij)
3
=

ε2

4(ārij)
3

and invoking Cauchy-Schwarz’s inequality and Itô’s isometry, we infer

E∥x(t+ τ)− x(t)∥2Om×n

≤max
ij∈Ξ

{
12(ācij)

2

ārij

∫ t

−∞
e−ār

ij(t−s)E∥x(s+ τ)− x(s)∥2Ods
}

+max
ij∈Ξ

{
12ε

(ārij)
2
(2k)2

}
+max

(i,j)

{
12ε2

(ārij)
4
(ācij)

2(2k)2
}

+max
ij∈Ξ

{
12

ārij

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2
∫ t

−∞
e−ār

ij(t−s)E∥x(s+ τ)− x(s)∥2Ods
}

+max
ij∈Ξ

{
12nmε

(ārij)
2

∑
Ckl∈Nq(i,j)

(Lf )
2(2k)2

}

+max
ij∈Ξ

{
24

ārij

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2
∑

Ckl∈Nq(i,j)

(Mf )
2(2k)2

eā
r
ijν

+
ij

1− ν̇+ij

×
∫ t

−∞
e−ār

ij(t−s)E∥x(s+ τ)− x(s)∥2Ods
}

+max
ij∈Ξ

{
24ε

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2
∑

Ckl∈Nq(i,j)

(Mf )
2(2k)2

}

+max
ij∈Ξ

{
12ε2

(ārij)
4

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2
(2k)

2

}

+max
ij∈Ξ

{
12

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2
∫ t

−∞
e−2ār

ij(t−s)E∥x(s+ τ)− x(s)∥2Ods
}

+max
ij∈Ξ

{
6nmε

ārij

∑
Ckl∈Nr(i,j)

(Mσ
ij)

2(2k)2
}

+max
ij∈Ξ

{
3ε2

(ārij)
3

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2
(2k)

2

}

+max
ij∈Ξ

{
12ε

(ārij)
2

}
+max

(i,j)

{
12ε2

(ārij)
4
(I+ij )

2

}
.
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Hence, we can conclude that

E∥x(t+ τ)− x(t)∥2Om×n ≤Λε+Θ

∫ t

−∞
e−ār(t−s)E∥x(s+ τ)− x(s)∥2Om×nds, (3.4)

where Θ is defined in (A4) and

Λ =max
ij∈Ξ

{
12

(ārij)
2
(2k)2 +

12

(ārij)
4
(ācij)

2(2k)2ε+
12nm

(ārij)
2

∑
Ckl∈Nq(i,j)

(Lf )
2(2k)2

+
24

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2
∑

Ckl∈Nq(i,j)

(Mf )
2(2k)2

+
12

(ārij)
4

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2
(2k)2ε+

6nm

ārij

∑
Ckl∈Nr(i,j)

(Mσ
ij)

2(2k)2

+
3

(ārij)
3

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2
(2k)2ε+

12

(ārij)
2
+

12

(ārij)
4
(I+ij )

2ε

}
.

Define

Wτ = sup
t∈T

E∥x(t+ τ)− x(t)∥2Om×n .

Then, from (3.4), we deduce that

E∥x(t+ τ)− x(t)∥2Om×n ≤Wτ ≤ Λε
ār

ār −Θ
. (3.5)

Noting that

dBL(P ◦ [x(t+ τ)]−1, P ◦ [x(t))]−1)

= sup
∥f∥BL≤1

|
∫
Ω

[f(x(t+ τ))− f(x(t)))]dP |

≤
∫
Ω

∥x(t+ τ)− x(t)∥Om×ndP

≤(E∥x(t+ τ)− x(t)∥2Om×n)
1
2 ,

which combined with (3.5) yields that

dBL(P ◦ [x(t+ τ)]−1, P ◦ [x(t))]−1) ≤
√

Λε
ār

ār −Θ
,

that is, x(t) is almost periodic solution in the sense of distribution. This ends the proof.

Remark 3.1. Since the set of all almost periodic random processes in the sense of distribution

does not constitute a complete normed linear space, but space (B, ∥ · ∥B) is a Banach space, we

first prove that system (2.1) has a unique solution in B, and then use the definition to prove

that this solution is an almost periodic solution in the sense of distribution.

Similar to the proof of Theorem 3.2 in [51], one can readily show the following global

exponential stability result about the almost periodic solution of (2.1).

Theorem 3.2. Let (A1)-(A4) and the following condition

(A5)

C :=max
ij∈Ξ

{
5

(ārij)
2 (ā

c
ij)

2 +
5

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2 ∑
Ckl∈Nq(i,j)

(Lf )
2
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+
5

(ārij)
2

∑
Ckl∈Nq(i,j)

(C̄kl
ij )

2
∑

Ckl∈Nq(i,j)

(Mf )
2(2k)2

+
5

2ārij

∑
Ckl∈Nr(i,j)

(B̄kl
ij )

2 ∑
Ckl∈Nr(i,j)

(Mσ
ij)

2

}
< 1,

be satisfied. Let x be the almost periodic solution in the sense of distribution to system (2.1)

with initial value φ and y an arbitrary solution of system (2.1) with initial value ψ. Then there

exist constants λ > 0 and M > 1 such that

E∥x(t)− y(t)∥2Om×n ≤ME∥φ− ψ∥20e
−λt, t > 0,

where E∥φ− ψ∥20 = sup
s∈[−γ,0]

E∥φ(s)− ψ(s)∥2Om×n .

§4 Example

Example 4.1. In system (2.1), for n = 2 and i, j = 1, 2, take

xij =[xij ]0e0 + [xij ]1e1 + [xij ]2e2 + [xij ]3e3 + [xij ]4e4 + [xij ]5e5 + [xij ]6e6 + [xij ]7e7,

f(xij) =0.01e0 sin[xij ]0 + 0.03e1 sin[xij ]1 + 0.02e2 sin[xij ]2 + 0.05e3 sin[xij ]3

+ 0.02e4 sin[xij ]4 + 0.03e5 sin[xij ]5 + 0.01e6 sin[xij ]6 + 0.01e7 sin[xij ]7,

a11(t) =(1.2 + 0.2 sin t)e0 + 0.015e1 sin
√
3t+ 0.01e2 cos

√
2t+ 0.01e3 sin

√
5t

+ 0.02e4 cos
√
7t+ 0.03e5 sin

√
7t+ 0.01e6 cos

√
5t+ 0.02e7 sin

√
3t,

a12(t) =(1.3 + 0.3 sin t)e0 + 0.02e1 sin
√
2t+ 0.015e2 cos

√
3t+ 0.01e3 sin

√
7t

+ 0.03e4 cos
√
2t+ 0.02e5 cos t+ 0.04e6 sin

√
3t+ 0.03e7 sin

√
5t,

a21(t) =(1.1 + 0.1 sin t)e0 + 0.015e1 sin
√
3t+ 0.02e2 sin

√
2t+ 0.015e3 sin

√
5t

+ 0.02e4 sin
√
7t+ 0.01e5 cos

√
2t+ 0.03e6 cos

√
3t+ 0.01e7 cos t,

a22(t) =(1.4 + 0.4 sin t)e0 + 0.015e1 sin
√
2t+ 0.01e2 cos

√
5t+ 0.01e3 sin

√
3t

+ 0.03e4 cos
√
3t+ 0.02e5 sin

√
7t+ 0.015e6 cos t+ 0.03e7 cos

√
2t,

C11(t) =0.01e0 sin t+ 0.02e2 cos
√
2t, C12(t) = 0.02e1 sin

√
3t+ 0.01e3 cos t,

C21(t) =0.03e4 cos t+ 0.01e6 sin
√
2t, C22(t) = 0.01e5 cos

√
3t+ 0.03e7 sin t,

B11(t) =0.02e0 sin
√
2t+ 0.01e2 cos

√
5t, B12(t) = 0.03e1 cos

√
2t+ 0.01e3 sin t,

B21(t) =0.01e4 sin t+ 0.02e6 sin
√
3t, B22(t) = 0.02e5 sin t+ 0.01e7 cos

√
3t,

σij(xij) =0.01e0 sin[xij ]0 + 0.02e1 sin[xij ]1 + 0.01e2 sin[xij ]2 + 0.03e3[xij ]3

+ 0.02e4 sin[xij ]4 + 0.01e5 sin[xij ]5 + 0.03e6 sin[xij ]6 + 0.02e7 sin[xij ]7,

I11(t) =0.01e0 sin
√
3t+ 0.03e1 sin

√
2t+ 0.02e2 cos t+ 0.01e3 sin

√
6t

+ 0.02e4 cos
√
2t+ 0.01e5 sin

√
7t+ 0.03e6 sin t+ 0.01e7 cos

√
5t,

I12(t) =0.01e0 sin
√
3t+ 0.03e1 sin t+ 0.01e2 cos

√
2t+ 0.01e12 sin

√
3t

+ 0.03e4 sin
√
7t+ 0.02e5 cos

√
3t+ 0.01e6 sin

√
2t+ 0.03e7 cos t,

I21(t) =0.03e0 cos t+ 0.01e1 sin
√
3t+ 0.01e2 sin

√
2t+ 0.05e3 cos

√
2t
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+ 0.02e4 sin
√
5t+ 0.03e5 sin t+ 0.02e6 cos

√
3t+ 0.01e7 cos

√
5t,

I22(t) =0.02e0 sin
√
2t+ 0.01e1 cos

√
3t+ 0.03e2 sin

√
3t+ 0.02e3 sin

√
5t

+ 0.01e4 sin t+ 0.03e5 sin
√
7t+ 0.02e6 cos

√
2t+ 0.01e7 cos t,

νij(t) =0.03 sin t.

Take k = 0.0548, then, we have

Π ≈ 0.012182 <
1

4
,Θ ≈ 0.04873 < 1, C ≈ 0.020304 < 1.

Therefore, system(2.1) has a unique almost periodic solution in the sense of distribution that is

global exponentially stable (see Figures [1-3]).
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Figure 1. States [x11]p, [x12]p, [x21]p, [x22]p of (2.1) with different initial values.
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Figure 2. Stability of states [xij ]0, [xij ]1, [xij ]2, [xij ]3 of (2.1) with different initial values.
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Figure 3. Stability of states [xij ]4, [xij ]5, [xij ]6, [xij ]7 of (2.1) with different initial values.
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Remark 4.1. The conclusion of Example 1 cannot be deduced from [12, 34], nor from any

known results.

§5 Conclusion

In this paper, we have established the existence and stability of almost periodic solutions

in the sense of distribution for a class of octonion-valued stochastic shunting inhibitory neural

networks by using the direct method. This is the first time to consider the dynamics of octonion-

valued stochastic neural networks, so the results of this paper are completely new. The method

presented in this paper can be used to study the existence of almost automorphic solutions in

the sense of distribution of octonion-valued stochastic neural networks, and the existence and

stability of almost periodic solutions in the sense of distribution of fractional octonion-valued

stochastic neural networks.
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