Appl. Math. J. Chinese Univ.
2025, 40(4): 955-989

A selective survey on mathematical programming

in macroeconomics

CAI Zong-wu'! HU Jing-xian*

Abstract. This paper surveys the literature for the optimization problems in both discrete and
continuous time models in macroeconomics, and provides an overview over some related com-
putational methods to solve the models linearly and nonlinearly, and to compute the transition
dynamics and the impulse response functions. Also, the introduction of the financial sectors,
the continuous time analysis, and the advanced mathematical tools into the general equilibrium
framework expands greatly the scope of the interdisciplinary research to mathematics, statistics
and econometrics, and creates further space for exploration and collaboration. Finally, some

future research issues related to this topic are highlighted.

81 Introduction

Since the linear programming was introduced from mathematics to economics to help e-
conomists decide the allocation of limited resource, both mathematical programming methods
and macroeconomics theories have made much more progress. In the frontier of these progress,
the mathematical theories, the computational methods, and the macroeconomic models pro-
mote each other and make the boundaries among the three different subjects melt. This survey
provides a selective overview on how the relation between mathematical programming and
macroeconomics evolve from the past and about what the latest trend in this interdisciplinary
subject is nowadays.

Our review on this relation starts from the dynamic stochastic general equilibrium (DSGE)
models in discrete time dated back in 1970’s. The well known Bellman equations were applied
to solve the optimization problems of the agents within different microeconomic sectors in the
macroeconomy. In the mean time, the finance theory in continuous time was thriving due to its

popularity in asset pricing and the elegant combination of mathematics and portfolio theories.
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It was until the burst of the financial crisis of 2008 that financial sectors were added to the
macroeconomic models to help people better understand how the real sector of the economy
and the business cycles are influenced by the financial market’s turbulence. One critical tool
to construct such a connection is through the continuous time framework. Different from
the optimization methods in discrete time, the stochastic calculus, the stochastic control, the
numerical methods to solve the stochastic differential equations (SDEs), the ordinary differential
equations (ODEs), and the partial differential equations (PDEs) are often needed to solve the
macroeconomic optimization problems in continuous time. Therefore, the second half of this
survey provide an overview of the latest progress of the macroeconomic modeling in continuous
time, especially the heterogeneous agent models (HAM), as well as the advanced computational
methods to solve the models’ key equations, the transition dynamics, and the impulse response
functions. Thanks to the fast-growing computation power, the solutions that we can get from
the nonlinear models are global solutions.

The scope of the questions that macroeconomics can explore has been greatly expanded due
to the advances in the mathematical modeling and computational tools, from the macroeco-
nomics models without micro-foundations, to the models that depict the households’, firms’,
and governments’ decision-making; from the static analysis to the dynamic analysis; from the
deterministic equilibrium to the equilibrium with uncertainty; from the first-order approxima-
tion solutions locally, to the nonlinear solutions globally. Throughout this survey, we can find
the efforts made by generations of scholars that clarify and promote our knowledge on these
matters continuously. Even though the current coverings in this interdisciplinary subject can
be thought as scattered, we look forward to more future studies coming to fill the gap in the
unknown space.

The rest of this paper is organized as follows. Section 2 gives a review on mathematical
programming for macroeconomics models with micro-foundations. Section 3 outlines some
challenges for the discrete-time nonlinear dynamic stochastic general equilibrium models with
detailed derivation of the equations relegated to the Appendix. Section 4 describes the dynamic
programming methods for continuous-time macro-finance models. Finally, Section 5 concludes

the paper with some remarks for future research.

82 Mathematical Programming for Macroeconomics
Models with Micro-Foundations

The micro-foundation was first introduced in the macroeconomics models by the school of
the new classical macroeconomics. The two generations of the new classical macroeconomists
are the school of the rational expectation, such as Thomas J. Sargent, Robert E. Lucas Jr., and
the school of the real business cycle, such as Edward C. Prescott and Neil Wallace, respectively.
There are three key assumptions in the new classical macroeconomics: the agents’ maximization,
the rational expectation, and the market clearing. The decision problems of the microeconomic

sectors of the economy are combined in a general equilibrium model, thus serving as the micro-



CAI Zong-wu, HU Jing-zian. A selective survey on mathematical programming in... 957

foundation of the macroeconomics model. Specifically, the determination of the equilibrium
output and prices are from the solutions of the optimization problems of the households, the
producers, the retailers, and the government. To solve these optimization problems in discrete
time, the dynamic programming, such as the Bellman equation, is necessary.

The real business cycle school pointed that it is the real factors causing the economic fluc-
tuations, rather than the monetary factors. To answer the questions that how the real factors
cause the economic fluctuations and what the underlying transmission mechanism is, the real
business cycle theory emphasizes on the importance of the supply shock and the intertemporal
substitution between the leisure and the work. The latter explains why a small change in the
wage can cause large and long-term variations of the output and employment.

During the debate of the schools of macroeconomic thought, the new Keynesian school
borrowed the merits of the new classical macroeconomics and developed its own framework
to support Keynes’s economic thoughts. The representatives of the new Keynesian school
macroeconomists include, but not limited to, N. Gregory Mankiw, Lawrence H. Summers,
Olivier Blanchard, Julio Rotemberg, Edmund S. Phelps, George A. Akerlof, Janet L. Yellen,
Joseph Stiglitz, Ben S. Bernanke, David H. Romer, and so on. In contrast to the new classical
macroeconomics, the new Keynesian school does not assume that the market can clear once a
shock hits the economy, since the supply of labor and products, the wage and the price adjust
slowly. The new Keynesian school adopts the agents’ optimization and rational expectation
from the new classical macroeconomics, while following the Keynesian school to support that
the fluctuations of the aggregate demand shift both the output and the price in the short-run.
Therefore, the government’s policy plays a key role to bring the aggregate demand back to the
normal level during the economic recession.

As demonstrated in Gertler (2024), a typical macroeconomics model with micro-foundations
is consisted of the sectors of households, firms, monetary, and fiscal authorities. The dynamic
programming serves as an important method of solution for the optimization problems. Com-
pared to the dynamic programming applied in microeconomics, the application in macroeco-
nomics resides in a general equilibrium framework, which ultimately synthesizes the individual
sectors’ decisions into several types of equilibrium in macroeconomics, such as the competitive
equilibrium, the stationary equilibrium, and the Markov equilibrium. We will compare these

types of equilibrium later in Section 4.3.

2.1 Household’s Utility Maximization

Suppose that a representative household chooses {C, Ly, My, Py, Byy1, Ki11},~ to maximize
its utility

> 1 1— A Mt 1=7m 1 1+
E, gt ——C, 77 + () ——— L% 3, 1
{; 1—n " I—=9m \ P 1+ o

where Eg(-) denotes the mathematical expectation operator, 8 is the discount factor, which
is assumed to satisfy 0 < 8 < 1, C} is the household’s consumption, M; is the household’s
money holding, P; is the price level, and L; is the labor (hours worked). The parameters =y
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and 7,,, are the coefficients of the relative risk aversion, and ¢ ~! stands for the Frisch elasticity
of labor supply. The parameter a,, stands for the weight of real money balance in the utility.
For some special cases, 7y, Ym, ¢, and a,, might take some specific values. For example, when
v = vm = ¢ = 1, the constant relative risk aversion separable utility becomes the log separable
utility. For the case of cashless economy, a,, — 0. The optimization problem in (1) is subject
to the budget constraint given by

1
M, — M,_ (7R?)Bt+1 — B
Cr=—'Li+ Z K, + 1, + TR, — ————=1 _ - Qi (K111 — Ky),
Pt Pt Pt

where W, is the nominal wage, Z; is the rental cost of capital, K; is the capital holding, II,

is the profit from monopoly competitive firms, TR; is the government transfer, B; is the bond
holding, R} is the gross nominal interest rate, 1/R} is the price of one period discount bond
earning the gross nominal return R}, and @); is the price of capital. Additionally, we assume
that there is no Ponzi schemes. Note that the solution of the optimization problem yields the

so-called control variable K;,1 at ¢t + 1 as a policy function of the state variable K, at t.
2.2 Firms’ Profit Maximization and Cost Minimization

There are three types of firms in the general equilibrium model: the final good firms, the

intermediate good firms, and the capital producer.

2.2.1 Final Good Firms

Final good firms are competitive producers of a homogeneous good, Y;, using intermediate
goods, Y;(f). The production function that transforms intermediate goods into final output is
given by

—£ _
e—1
e—

Y= [/Olytm sldf} ,

where ¢ > 1 is the (constant) elasticity of substitution between intermediate goods. Note that

this production function also exhibits constant returns to scale and diminishing marginal prod-
uct for each input with (¢—1)/e < 1. Each firm chooses Y;(f) to minimize costs fol P.(HY:(f)df

e—1

for a given level of output Y; = [fol Yi(f) = df} 1 and given P;(f). The result is the following
demand function for each intermediate good f

vin = | AL Y

Combining with the production function yields the following nominal price index for the final

good

1

P = Ul Pt(f)lsdfy_s.

0

2.2.2 Intermediate Good Firms

There is a continuum of intermediate good firms, indexed by f € [0,1]. Each produces a

differentiated good and is a monopolistic competitor. Each firm uses both labor L;(f) and
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capital K¢(f) to produce output according to
Yi(f) = AK(f)*Lo(f)' 7,

where A; is the level of productivity and 0 < a < 1 is the capital share. Firm f chooses inputs
K;(f) and L.(f) to minimize the total cost given by

Wy
?tLt(f) + Z. K (f),

subject to the output demand
A K () Li(f) 7 =Y,
where Y is a given output level. The first order conditions (FOC) for this optimization problem

are as follows:

W,/ Py B N S
AL el and Syt gy = M),

where MCy(f) is the Lagrange multiplier, interpretable as the marginal cost of producing out-
put. By combining the two FOCs, it is easy to conclude that L, (f)/K:(f) = (1 — @) Z: Py /(aWy).
With this condition and the production function Y;(f) = A;K;(f)*L(f)'~, we could rewrite

MC,(f) as
Wt Pt 11—« Zt e

Note that the marginal cost and the gross markup are reciprocal,’ that is, 1 + p; = 1/MC;,

where p; is defined as the markup.

The intermediate good firms set prices on a staggered basis. Following Calvo (1983), each
period a firm adjusts its price with probability 1 — 6 and keeps it fixed with probability 6. All
firms have the same likelihood of adjustment. The adjustment probability is independent over
time and across firms. The average time for a price remaining fixed is given by

> Sl 1
i—1, __ T _
Firms that are able to adjust their prices choose P:(f),Y:(f), K¢(f) and L¢(f). These firms
maximize expected discounted profits given the production technology and the demand curve.

They choose the optimal reset price P?(f) to maximize

{50 o (B2 ) vr)]

Pe(f)\ ~°
Yiiri(f) = < Pt(f)> Yii,

where Eq(-) is the mathematical expectation operator, A;; = 8°Cy,%/C; " is the stochastic

subject to

discount factor, € is the elasticity of substitution between intermediate goods, and MC,; is the
nominal marginal cost. Then, the FOC is

s . PO
E, {Z 0"Ar,iYee4i(f) {Pt: —(1+ u)Mcm} } —0,

i=0
where 14+ o = /(e — 1) is the steady state gross markup. Given that (i) all firms that adjust
in period ¢ choose the same price P and (ii) the average price of firms that do not adjust is
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simply last period’s price level P;_1, then, we can rewrite the price index as
1
] T=

P= 0P + (1= 6) (P))!

The entrance of P,_; in P, introduces nominal inertia.

2.2.3 Capital Producer

The capital producer’s optimization problem is to choose the investment level I; such that

the profit from producing the capital is maximized

mIaX [QtJt - It]7

subject to J; =Ty — ¢ (I:/ Ky — 6)2 K/2, where J; stands for the technology for producing new
capital goods, and the capital producer invests I; units of final output and rents K; units of
capital to produce J; units of new capital. ¢ is the adjustment cost parameter, § is the capital
depreciation, and ¢ (I;/K; — 6)2 K, /2 reflects increasing marginal costs of producing new capital
goods after the depreciation. Then, the FOC yields I;/K; =0 + (1 — 1/Q:) /c.

2.3 Monetary and Fiscal Authorities

The central bank sets the nominal interest rate according to the following simple feedback

Pt d)ﬂ' )/’t ¢y
1+ =(1 v
+ri=( +r)<Pt_1) <Y;* e’t,

where Y;* is the natural (i.e., flexible price equilibrium) level of output with ¢, > 1 and ¢, > 0,

rule

ry is the nominal interest rate, r is the zero inflation steady state nominal interest rate, and
vy is the monetary shock. The fiscal policy is given by G; = G, where G; is the government
expenditure, and G is an exogenously given level of the government spending. The government
budget constraint is

Gy =Ty + (My — M;_1) | Py,

where T; is the government’s tax revenue, and M; is the monetary supply.

2.4 Competitive Equilibrium

The resource constraints in the economy contain the income and expenditure constraint
Y1 =Ci+ It + Gy,
and the evolution of capital constraint
Kyor = I, — 2c (It - 5>2Kt 4 (1- 0K,
2 \ K,
A competitive equilibrium is defined as an allocation (Y;, Lt, Ct, It, K;y1) and a price system
(Z, Wt, Py, P2, 17, Qs+, pit) such that all agents are maximizing subject to their respective con-
straints, all markets clear, and all resource constraints are satisfied, given P;_1, A;, and Kj.
In practice, it is convenient to express the equilibrium as a system of 10 equations for
(Y, Cy, Iy, Ly, Py, PPy, Q4 pit, Ki41), given the predetermined states Pr_q, A, K. It is useful
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to group the equations into aggregate demand, aggregate supply and policy blocks as follows.
First, the aggregate demand block has the following 4 equations:

Y, =C,+ 1, + G, (resource constraint)
P —0
C, = E, [(1 + ) B ! B} Ct+1} ) (consumption Euler equation)
t+1
i 5+1<1 1) (link bet t pri d investment)
— = —(1-=), ink between asset prices and investmen
K; c Q1 P
and P, Z 1-96
+ —
E, {At,+1 (14 22 } _E, {At,+1 { t+( )Qt+1] },
Piyq Q1

(marginal cost of funds = marginal return to capital)
with Z; = oYy /[(1 + pe) K], Ay 11 = BC.1/C; 7, and 0 = 1/v. These equations define an
investment-savings curve that relates spending inversely to the real rate (1 + ") P;/P;4+1 and
expectations of the future. Note that in equilibrium, G; = G is substituted in the resource

constraint Y; = Cy + I; + Gy. Second, the aggregate supply block has the following 5 equations:

Y; = AJKOL Vs, (production function)
Y; LY e
l-—a)— =00+ m) —, (labor market equilibrium)
L, c,”
1
P = [9 (P_1)' S+ (1-0) (Pf)l_a] T (price adjustment)
(o) —&
. Pe P° 14u -
E 0N | = Yiyi t-) =0, Phillips curve
t {; t,i (Pt+i> t+i <Pt+i 15 s (Phillips curve)
and )
1 1
Ky =1, — ¢ <Kt - 5) K+ (1 —-0)Ky, (evolution of capital)
¢

-1
with V, = {fol (%p) df} and [1 + pys]”t = MCyp;. V; reflects the misallocation of

intermediate inputs due to the relative price dispersion. Note that V; = 1 in the zero inflation
steady state. Finally, the policy block is given by
O ¢
P, Y\
1+ =(14r) ! L eV, (interest rate rule)
P Yy
where Y;* denotes the level of output in the flexible price equilibrium (the natural output).

Given that the exogenous process of the log of productivity A; the AR(1) model
InA; = p,InAy_1 + e,
and the monetary shock v; satisfy the AR(1) model
Ut = PmUt—1 + Eme-

Therefore, the equilibrium system with 10 unknown variables
(Yy, Cy, It, Ly, Py, PP, Qyy pit, K1) in the above 10 equations is complete.

Note that for the extension to models in the open economy, there are generally two types
of settings. The first one is a small open economy model and the second one is a two-country
open economy model. Compared to the closed economy model, the exchange rate, the foreign

price level, the consumption of foreign goods and other foreign country variables are added
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to the model. In particular, the open economy model produces the Backus-Smith condition,
the uncovered/covered interest parity, the purchasing power parity condition, the law of one
price, etc. For readers who have further interests in the DSGE models of the open economy,
please refer to Uribe and Schmitt-Grohé (2017), Céspedes, Chang, and Velasco (2004), Andrea,
Gertler, and Svensson (2008), Xavier and Maggiori (2015), Geanakoplos and Wang (2020), Liu,
Spiegel, and Zhang (2021), and so on.

83 Computational Challenges for the Discrete-Time DSGE Models

3.1 Log-linearization

To solve this typical nonlinear dynamic stochastic general equilibrium models, the most
common practice since Kydland and Prescott (1982) and King et al. (1988) is to approximate
the solutions using linear methods, especially the log-linearization method. As an illustration,
we follow the model that has been set up above and show the procedure of the log-linearization
as below.

Let X with no time subscript, no star superscript, and no tilde denote the level of a variable
at the zero-inflation steady state, where P;/P;,_; = 1. Let )Z't = InX; — In X stand for
the log-linear deviation of a variable from its zero-inflation steady state. Specially, since the
interest rate has already been in a percentage, its log-linearization follows R\f‘ = In R}, where
R} = 1+ r} denotes the gross nominal interest rate. Further, we have the net interest rate
A ﬁfb and 77,57T =dr} =rp} —r. Let iy = uy — u denote the deviation of the markup from its
steady state level. Let X denote the level of a variable in the flexible price equilibrium (the
natural level). Let p = —log 3 and r ~ = — 1. Log-linearize around the steady state with
zero inflation and we can write the log-linearized equilibrium into three blocks as follows.

The first block is for the aggregate demand given by

- O~ I~
Y, = ?Ct + ?It, (resource constraint)
C, = E, {—a (rff — M1 —p) + 5;;} , (consumption Euler equation)
.~ 1~
I, — K; = —6Qt, (link between asset prices and investment)
c

T?—ﬂ't_;,_]_p:(l_'r) (_//Zt"’g_lz) +T@—t\-_i-/l_@7
(marginal cost of funds = marginal return to capital)
_ SO - -1
where Z; = -y + Y, — Ky, my =P, — P,_j,and7=1-¢ {ﬁ +(1 75)} =(1-9)/[Z+
(1-=19)].

The second block is for the aggregate supply formulated as

Y = Ay +aKy + (1 — a)Ly, (production function)
Y, — Ly = fir + LP,LVt + Va, (labor market equilibrium)
m = — Mt + BE {mey1 }, (price adjustment and Phillips curve)

INote that in the zero-inflation steady state r™ = r = p.
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where A = (1 —0)(1—68)/0, and
Kiq =61, + (1-6K,. (evolution of capital)
Finally, the last one is for the monetary policy provided by
T =p 4 OrTy+ Gy ()th — f{*) + vy (interest rate rule)
For readers with further interests in the details of the log-linearization method, we provide the
detailed technical derivations in the Appendix for the above results.

The log-linearization method is a simple and convenient tool to study the equilibrium dy-
namics. If the shocks driving aggregate fluctuations are small and an interior stationary solu-
tion exists, the first-order approximations provide adequate answers to questions such as local
existence, determinacy of equilibrium and the size of the second moments of endogenous vari-
ables; see, for example, Schmitt-Grohé and Uribe (2004) for details. However, there are several
problems that exist in the process of log-linearization. First, the log-linearization omits the
higher-order terms. Therefore, the topics that are closely related with the higher-order terms,
such as the risk terms, are not able to be fully studied. Due to this shortage, the model’s con-
nection with the asset prices and the financial risk is very limited. In addition, the first-order
approximation techniques are not well suited to handle questions such as welfare comparisons
across alternative stochastic or policy environments.

Second, the log-linearization is not able to provide the global solution for nonlinear models.
It is only able to solve the model locally, at the cost of missing the most optimal solution due
to missing the true global optimum?. This becomes a relevant issue not only for its qualitative
and quantitative economic implications but also from an econometric and statistical perspec-
tive. When concerned about the estimation of the structural parameters of the model, an
econometrician /statistician is more interested in studying the global shape of the approximat-
ed likelihood function. This will not be possible if the solution of the model is built from a local
approximation. Furthermore, as shown in Ferndndez-Villaverde and Rubio-Ramirez (2005), it
is possible to obtain a better fit of the model to the data as well as more accurate point esti-
mates of the moments of the model by exploiting the nonlinear structure of the economic and
mathematical model, which can only be achieved through the use of global methods; see, for
instance, Parra-Alvarez (2018) for details.

Finally, we mark that even if the performance of linear methods is disappointing along a
number of dimensions, linearization in levels is preferred to the log-linearization for both the

benchmark calibration and the highly nonlinear cases in some real applications, as argued in
Aruoba et al. (2006).

3.2 Nonlinear Methods of Solutions

The ability to find global solutions and estimate highly nonlinear DSGE models is of critical
importance for central banks and policy makers with their interests in quantifying the impacts of

20ne exception is that the equivalent linearization representation of a nonlinear problem generates the same
global optimum but more efficiently.
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economic policies in a DSGE model. Since Taylor and Uhlig (1990) and Coleman (1990, 1991),
a number of nonlinear solution methods in discrete time have been proposed including the
perturbation methods proposed by Judd and Guu (1997) and the projection methods initiated
by Judd (1992), as alternatives to the linear approaches and to the value function iteration.
The perturbation method, formally introduced by Fleming (1971), has been applied extensively
to economic models by Judd and co-authors. Note that a first order perturbation is equivalent
to linearization when performed in levels, and is equivalent to log-linearization when performed
in logs. Aruoba et al. (2006) found that higher order perturbations display a much superior
performance over linear methods for a trivial marginal cost. These findings are based on the
computations in first, second, and fifth order, both in levels and in logs. The projection method,
on the other hand, is found to be more stable and accurate than the perturbation method. For
the projection method, Aruoba et al. (2006) found that finite elements perform very well for
all parameterizations. It is extremely stable and accurate over the range of the state space
even for high values of the risk aversion and the variance of the shock. This property is crucial
in estimation procedures, where accuracy is required to obtain unbiased estimates. Chebyshev
polynomials share all the good results of the finite elements method and are easier to implement.
However, in a model where policy functions have complicated local behavior, finite elements

might outperform Chebyshev polynomials.
Other methods to solve the DSGE models globally include the state space based approach,

as in Krusell and Smith (1997, 1998) with a parametric law of motion and as in Den Haan and
Rendahl (2010) with a nonlinear law of motion, and the simulation based approach as in Judd
et al. (2011) and Maliar et al. (2011), which solve a model only in the realized ergodic state

space in the equilibrium. For more details, the reader is referred to the aforementioned papers.

Even though the nonlinear methods as mentioned above can overcome some shortages of
the linear methods by improving the approximation, there exist some limitations as noted by
several papers. For example, Taylor and Uhlig (1990) found that the nonlinear solution methods
for solving the stochastic growth models are not satisfactory in answering the volatility related
questions, such as the relative volatility of investment and consumption. Schmitt-Grohe and
Uribe (2004) derived a second-order approximation to the policy function of a general class of
dynamic, discrete time, rational expectations models, and showed that the coefficients on the
terms linear and quadratic in the state vector in a second-order expansion of the decision rule
are independent of the volatility of the exogenous shocks. Therefore, up to the second order,

the presence of uncertainty affects only the constant term of the decision rules.

In parallel, a desire to understand the economic phenomena that can not be easily cap-
tured by linear models makes nonlinear models more relevant for empirical macroeconomics,
especially since the end of the great moderation, such as the financial crisis and the COVID-
19 pandemic. As noted by Aruoba et al. (2013), there are several types of nonlinearity that
can appear in a nonlinear DSGE model. The first is for the case that decision rules display
curvature and possibly asymmetries such as non-convex adjustment costs, and the second is
for kinks in decision rules, such as the zero lower bound on interest rates, credit constraints,
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borrowing constraints, and defaults. In addition to this categorization, we add a third type
of nonlinearity, that is the nonlinearity related with the uncertainty, such as the stochastic
volatility, time-varying risk premia, rare disasters, Poisson jumps, and Markov switches; see
Ferndndez-Villaverde et al. (2011) and Rudebusch and Swanson (2012) for examples.

More recently, Ferndndez-Villaverde and Levintal (2018) used a mixture of projection and
perturbation methods for computing the equilibrium of DSGE models with rare disasters. They
found that the Taylor projection delivers the best accuracy/speed tradeoff compared to the
third-order perturbations and the Smolyak collocation. Cao et al. (2023) introduced the global
DSGE (GDSGE) framework and a novel global solution method, called the simultaneous tran-
sition and policy function iterations, for solving the DSGE models. In the GDSGE, the state
variables and their global domain need to be specified. The algorithm solves jointly for policy
and transition functions over the iterations and is a pure projection method using wealth share
as an endogenous state variable with an implicit law of motion, different from the standard
policy function iteration algorithms as in Coleman (1990, 1991) and Judd (1992). Auclert et al.
(2021) and Lee (2024) solved the DSGE models globally in the sequence space. Additionally,
Lee (2024) developed the repeated transition method to accurately compute the sequence of the
conditional expectation of economic agents utilizing the ergodicity of DSGE models. Neither
a parametric law of motion nor parameterized expectation is necessary for the implementa-
tion. The method is flexibly applicable to standard macroeconomics models with and without
micro-level heterogeneity, especially for solving models with substantial nonlinearity in aggre-
gate fluctuations, as the method does not rely on a (potentially misspecified) parametric form
of the aggregate law of motion. This method provides a novel angle that a nonlinear model
with complex endogenous aggregate states (e.g., HAMS) can be solved using the sufficient s-
tatistic approach, and the validity of the approach can be tested based on some theory. For
further explorations, there are approaches which adopt the machine learning and deep learning
techniques, as in Han et al. (2021), Azinovic et al. (2022), and Ferndndez-Villaverde et al.
(2023), as well as the adaptive sparse grids, as in Winschel and Krétzig (2010) and Brumm and
Scheidegger (2017).

The estimation of the DSGE models can be categorized into likelihood-based approaches and
moments-based approaches; see DeJong and Dave (2007) and Canova (2007). The likelihood-
based approaches use nonlinear filters for the construction of the likelihood function, such as
the particle filter, the extended Kalman filter, and the unscented Kalman filter. Farmer (2021)
developed the discretization filter for approximating the likelihood of nonlinear, non-Gaussian
state space models. The major difficulty that arises when studying nonlinear state space models
is that the likelihood cannot be evaluated recursively in closed form as it can in linear models
with the Kalman filter. The discretization filter solves this problem by constructing a discrete-

valued Markov chain that approximates the dynamics of the state variables.

The moments-based approaches for estimating the nonlinear DSGE models include the
generalized method of moments (GMM); reviewed as in Ruge-Murcia (2013), the instrumental
variables approach; see Canova (2007), the simulated method of moments (SMM); see Duffie
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and Singleton (1993), Ruge-Murcia (2007), and Ruge-Murcia (2012), and the indirect inference;
see Smith (1993), Dridi et al. (2007), and Creel and Kristensen (2011).

Finally, as noted in Andreasen et al. (2017), the higher-order approximations often gener-
ate explosive sample paths because of the resulting unstable steady states in the approximated
system. The presence of explosive behavior complicates any model evaluation because no un-
conditional moments exist in this approximation. Any estimation method using unconditional
moments, such as GMM or SMM, is inapplicable because it relies on finite moments from sta-
tionary and ergodic probability distributions. Non-explosive sample paths are also required for
likelihood methods, for instance, when using the particle filter outlined in Fernandez-Villaverde
and Rubio-Ramirez (2007). To overcome this issue, Andreasen et al. (2017) applied pruning
to perturbation approximations of any order and showed how pruning greatly facilitates the
inference of DSGE models.

84 Dynamic Programming Methods for Continuous-Time
Macro-Finance Models

The continuous-time models can be dated back to the finance literature since the seminal
works by Robert C. Merton and others in 1970s. During 1990s, the continuous-time models were
successfully applied to the growth and the neoclassical investment theories. Since the financial
crisis in 2008, there has been a boom of continuous-time methods in macroeconomics, especially
in the fields of business cycles and financial markets. These literature connect the areas that
are seemingly disconnected in the past: finance, macroeconomics, and mathematics as well as
statistics. As a bridge, the continuous-time method can provide a promising framework to
integrate asset pricing theories studied in the finance literature to the real side of the economy
studied in macroeconomics, together with mathematical and statistical tools.

Theoretically, macroeconomics models in continuous time are preferred over the discrete-
time models because of their analytical tractability. The continuous-time methods transform
optimal control problems into stochastic differential equations, such as the Hamilton-Jacobi-
Bellman (HJB) equation, the Kolmogorov forward (KF) equation, and the Black-Scholes model.
Solving these SDEs is much simpler than solving the Bellman or the Chapman-Kolmogorov e-
quations in discrete time. Compared with the discrete-time framework, the elegant and powerful
mathematics such as differential equations and stochastic processes can be well applied in the
continuous-time framework. In fact, it is possible to derive closed-form solutions for a wider
class of models in continuous time without the need for strong parametric restrictions. On
the handling of borrowing constraints, the continuous-time framework is advantageous in the
presence of occasionally binding constraints, as these are dealt with using boundary conditions
rather than inequalities of the optimality conditions. Finally, continuous-time methods are suit-
ed to studying optimal stopping problems and situations where actions are taken infrequently
because they entail a fixed cost impulse control problem as described in Stokey (2009), such as
a country’s decision to default on its sovereign debt as discussed in Parra-Alvarez (2018).
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In particular, the continuous-time framework is well applied in the HAMs as in the work
of Achdou et al. (2022). When recast in continuous time, HAMs boil down to systems of
two coupled SDEs. The first SDE is the HJB equation for the optimal choices of a single
individual who takes the evolution of the distribution and hence prices as given. An individual’s
consumption saving decision depends on the evolution of the interest rate which is in turn
determined by the evolution of the distribution. And the second SDE is the KF equation
characterizing the evolution of the distribution, given optimal choices of individuals. The
evolution of the distribution depends on individuals’ saving decisions. More generally, this
approach is to cast HAMs in terms of the mathematical theory of the mean field games (MFG)
initiated by Huang et al. (2003, 2007) and Lasry and Lions (2007). The system of coupled
HJB and KF equations is known as the backward-forward MFG system. The two equations
run in opposite directions in time: the HJB equation runs backward and looks forward. It
answers the question “given an individual’s valuation of income and wealth tomorrow, how
much will she save today and what is the corresponding value function today?” In contrast,
the KF equation runs forward and looks backward. It answers the question “given the wealth
distribution, savings decisions and the random evolution of income today, what is the wealth
distribution tomorrow?”

Computationally, continuous time has resurfaced as a popular environment for economic
models because of its efficiency in numerical analysis. Solving a workhorse incomplete markets
model in continuous time is much faster compared to its discrete-time counterpart as argued in
Rendahl (2022). Financial frictions in macroeconomics require the nonlinear techniques. This
is especially important for the macro-finance models which include the financial intermediary
in the continuous-time framework, such as Chen (2010), Brunnermeier and Sannikov (2014),
Phelan (2016), Drechsler, Savov, and Schnabl (2018), He and Krishnamurthy (2019), Hansen et
al. (2024) and D’Avernas and Vandeweyer (2024). Modeling this class of problems rarely leads
to analytical solutions and needs to resort to the numerical techniques that provide accurate
and fast solution methods.

For the continuous-time macro-finance models in the open economy, new research is fast-
growing. Literature along this direction includes but is not limited to Grinols and Turnovsky
(1994), Zapatero (1995), Kumhof and Nieuwerburgh (2007), Pavlova and Rigobon (2010), Végh
(2013), Brunnermeier and Sannikov (2015), Nuno and Thomas(2015), Maggiori (2017), and
Oskolkov (2023).

Continuous time imparts a number of computational advantages relative to the discrete
time. First, in the continuous-time models, the optimality conditions (the first-order condi-
tions) that describe the equilibrium allocations of a stochastic economy are deterministic; see,
Chang (2010). Since the HJB equation does not contain future values of the value function and
the optimal policies only depend on the current value function, there is no need to approximate
expected values numerically. Hence, the computational cost and the numerical errors can be
reduced. This feature can also tame the “curse of dimensionality”, with which the standard

dynamic programming in discrete-time models often struggle with, given that the dynamic pro-
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gramming equation does not include any composition of functions or expectation operators in
the continuous-time framework; see, for example, Doraszelski and Judd (2012). The efficiency
of the perturbation methods and the projection methods can be improved in continuous time
as well. Since there is no need to approximate the composition of unknown functions, neither
to numerically approximate the integrals associated with expected values, the approximation-
s use much less computing time in both perturbation and projection methods. Specifically,
Parra-Alvarez (2018) assessed the performance of the first- and second-order perturbation and
the projection methods to compute an approximated solution of continuous-time DSGE models
based on the maximized HJB equation and the first-order conditions. It is found that the fit of
perturbation deteriorates when the degree of nonlinearity increases and the approximated value
is different from that obtained by global methods. Despite the perturbation being only locally
accurate, the increase in the order of approximation improves the goodness of fit substantial-
ly. Aruoba (2006) pointed that the projection methods are more accurate and robust than
perturbations for a wide range of values of the state-space centered around the deterministic
steady state, similarly to the discrete-time case. Their accuracy extends to different degrees of

nonlinearity.

Second, the discretized state space in continuous-time problems is very sparse. The sparse
structure of the implicit method (with finite differences) is by many considered the most im-
portant practical implication of continuous time, such as the sparsity of transition matrices as
discussed in Rendahl (2022).

Third, the viscosity solutions and finite difference methods can handle the non-differentiable
and non-convex problems in continuous time without the need to change the algorithm, while

these problems are difficult to handle in the standard discrete time methods.

To compare and contrast the performance of the continuous-time methods and the discrete-
time methods further, Rendahl (2022) compared the value function iteration for discrete time,
and the explicit and implicit finite difference methods for continuous time. The implicit finite
difference method is the continuous-time equivalent to Howard’s improvement algorithm in
discrete time, the implicit method is faster. Since the HJB equation does not contain future
values of the value function, the update of the value function can be formulated as the solution
to a system of linear equations. Through the sparse matrix operations, this system can be solved
efficiently. The explicit finite difference method in continuous time is where the value function
iteration in discrete time converges to. Since the value function iteration is less efficient, the

explicit method generally has slow convergence.

Mathematically or statistically, the continuous-time models do not impose a priori and
perfect synchronization of decisions among economic agents, since the decision interval of the
model is not tied to the observation interval in the data. They also allow for a clear distinction
between flows and stocks in the economy; see, the paper by Parra-Alvarez (2018) for more

discussions.
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4.1 Hamilton-Jacobi-Bellman Equations

The HJB equation is one of the most popular mathematical and statistical models in macroe-
conomics to characterize the macroeconomic activities; see, for example, Fernandez-Villaverde
and Nuno (2021) for details. The basic setup is that an agent maximizes the following

o0
max [Eg [/ e Pl (24, ) dt |
0

{o}i2o
subject to the law of motion for the state
dre = pie (T4, o) dt,
where 2; € X C R" is the state variable (such as K; in the new Keynesian model), oy € A ¢ RM
is the control variable (such as Cy, Ly, and K;y; in the new Keynesian model), oy = o (x¢) is
the policy function, p > 0 is the discount factor (recall that in the notation of new Keynesian
model: 8 = e~"), u(-) is the drift function, and w(-) is the instantaneous utility function. It

satisfies the HJB equation as follows:

pV(x) = % + max {u(x, @) + p(x,a) 'V, V(x)},

with a transversality condition limr . e ?TV(x) = 0, where V(x) stands for the value
function at time ¢t with the time subscript dropped, which might abuse notation. Here, AT
denotes the transpose of a vector or matrix A and tr(-) stands for the trace of a matrix. Note
that in the HJB equation, we use x to denote the vector of the state variables (dimension N x 1),
p(x, @) as the vector of the drift terms (dimension N X 1), and o(x, a) as the vector of the
risk terms (dimension N x 1), and o2(x, ) stands for the N x N variance-covariance matrix.
Finally, we use V,V(x) to denote the gradient of V(x) (dimension N x 1) and A,V (x) to
denote the Hessian matrix of V(x) (dimension N x N).

In a diffusion format, popular in the finance literature, the state is now
det = Ut (xt, at) dt + oy (.’ﬂt, O[t) th,

where W, is the standard Brownian motion. Then, the HJB equation is given by

pV(x) = %—\t’ + max {u(x, ) + p(x, )TV, V(x) + %tr (o(x, a)AmV(x))} .

To characterize a possible extension, one can use the following jump model
dzy = pi (T4, 54 dt,
where s; € {s1,s2} is a two-state continuous-time Markov chain s; € {s1, s2} and the Poisson
process jumps from state 1 to state 2 with intensity A; and vice-versa with intensity Ao, which

is the so-called famous Markov switching (diffusion) model in the finance literature. Thus, the

HJB equation for this case is

pVi(x) = % + max {u(x7 )+ p(x,a,s)" VzVi(x)} + A [Vj(x) — Vi(x)],

for i,j = 1,2, i # j, where V;(x) = V (x,s;) denotes the value function at time ¢ and state
si, with the time subscript dropped. When the HJB equation includes both the volatility and

jumps, we have the following jump-diffusion process

dLEt = Mt (J?t, Qg 57,) dt + Ot (ZCt,Oét) th,
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where s; and o (z1, o) dW; constitute a Lévy process. Hence, the HJB equation that we want

to solve numerically is given by

pVi(x) = 8;? + max {u(x, Q)+ p(x,a,8) VoVi(x)+ %tr (o (x, a)AIVi(x))}

+ i [V;(x) = Vi(x)],

with a transversality condition limz_,o, e ?7 Vp(x) = 0, and some boundary conditions defined

by the dynamics of x;.

4.2 Fokker-Plank Equations

Given a stochastic process x; with an associated infinitesimal generator A, its probability
density function g(x) is defined as Py, [z, € Q] = [, g(x)dx for any Q C X following the dynam-
ics 0g/0t = A*g, where A* is the adjoint operator of 4. Note that we omit the time subscript
of the function g(z). Let x; be a stochastic process given by the SDE as follows

dl’t = Mt (flﬁt) dt + oy (th) th,
which is a diffusion model or the so-called Black-Scholes model, widely used in the finance

literature. The evolution of the associated density is given by

og 0 1 0%

= =Ag=——[pux)gx)] + -5 [6?(x)g(x

B wg= o (g + s [0 (X))
with the initial value go(a¢) = (2 — o), which is the well known Kolmogorov forward equa-
tion.

Now, consider the case with a Poisson jump. To do so, let x; be a stochastic process given
by
dxy = py (x4, 8;) dt,

where s; is a two-state continuous-time Markov chain s; € {s1, s2} with intensities A\; and s,

respectively. Then, the evolution of the density is given by:

/01 = A" = 1 [ (x,50) 1)) — Mg () + Ay
for 4,5 = 1,2, i # j with the initial value g1 o(z¢) = § (2 — zo) and g o(x¢) = 0. Next, for x;
following a Lévy process
dry = g (2, 85) dt + oy (x) AWy,
the evolution of the density is given by

Ogi/0t = A*g = —% [ (X, 50) gi(x)] — Aigi(x) + Ajg;(x) + %7 [0%(x)gi(x)] -

4.3 Markov Equilibrium

Similar to the discrete-time model, a competitive equilibrium in the continuous time model
is characterized by the market prices together with the allocations, such that given prices,
agents optimize and markets clear. From the perspective of the macroeconomic dynamics, the
continuous-time framework can be used to further study the stationary equilibrium and the

Markov equilibrium due to its advanced stochastic features. In particular, the three types of
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equilibrium in macroeconomics models are summarized in Table 1 below.

Table 1. Types of equilibrium in macroeconomics models.

Type of
equilibrium

Dynamics of

Property Steady state
roperty Steady state state variables

Converge to

a deterministic steady state
(stationary value); Deterministic evolution
Time-invariant

Competitive Deterministic
equilibrium (no shock)

competitive equilibrium

. Converge to
Stochastic &

. . e a stochastic steady state Evolution with
Stationary (subject to shocks, but volatilities . s
R (the value of the state variable constant volatilities
equilibrium are at constant levels); . . o
with the highest probability eg, o =0

Time-invariant Markov equilibrium . o
1 from the stationary distribution)

Markov Stochastic Converge to Evolution with
(subject to shocks and 8 N
a stationary distribution

volatilities are time-varying)

time-varying volatilities

equilibrium
eg, 0y # 0

The stationary equilibrium is reached when the volatilities in the economic system are at
constant levels, even though the economy is still subject to the fundamental shocks. A Markov
equilibrium is a set of functions for the control variables, the monetary and fiscal policies, the
drifts and diffusions such that the agents’ optimal controls solve their respective HJB equations
given the law of motion of the state variable. In contrast to the stationary equilibrium, the
Markov equilibrium is where there is uncertainty in the value of the state variable and its law
of motion is endogenously solved by other structural variables in the model. The state variable
reaches a stationary distribution in the Markov equilibrium, in contrast to the case where
the state variable reaches a steady state value in the competitive equilibrium. A stochastic
steady state under the stationary distribution is the value of the state variable with the highest
probability from the stationary distribution®.

To solve the Markov equilibrium in continuous time, firstly we need to solve the optimization
problems and derive the allocations and prices as smooth functions of the state variable. Then,
define the stochastic process for the state variable and derive the law of motion of the state
variable, which is determined by the structural variables in the model using Ito’s lemma. Finally,
solve for the equilibrium by converting the stochastic differential equations into a system of
ODEs in the asset prices to find a numerical solution if there is no explicit solution; see, for
example, the book by Zhu et al. (2013) for more details. The ODEs can be solved using
appropriate boundary conditions.

3Note that the stationary equilibrium in our paper is not equivalent to the stationary value, which stands
for the deterministic steady state under the competitive equilibrium. Indeed, Achdou et al. (2022) defined
the stationary equilibrium as the time-invariant competitive equilibrium. However, we refer this concept as the
stationary value in this paper.
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4.4 Solution Methods

There are several methods to solve the SDEs (the HIB equations and the KF equations) in
the continuous-time models. First, the finite difference methods can approximate the deriva-
tives by differences; see, for instance, the book by Zhu et al. (2013) for details. Second, the
perturbation method can use a Taylor expansion of order ¢ to solve the SDEs around the de-
terministic steady state. Third, the projection method can project the value function over a
subspace of functions.

As an illustrative example, an implicit upwind finite difference scheme is used to solve
a simple HAM, the so-called Huggett (1993) model. This scheme converges to the viscosity
solution of the problem, as long as it satisfies three properties: monotonicity, stability, and
consistency. To be specific, an agent maximizes

max Eg {/OO e Plu(cr) dt] ,
{et}iZo 0
subject to da; = (s; + Reas — ¢¢) dt, which yields a global solution, where the agent’s id-
iosyncratic endowment s; € {s1,s2} is a Markovian chain with intensities s; — s2 : A1 and
S92 — 81 : Mg, ay is the agent’s wealth at the period t, ¢; is the consumption, p > 0, u(-) is the
momentary utility function, and R; is the gross real interest rate. Then the HJB equation is as
follows:
pVi(a) = mas {u(e) + pi(a)V (a)} + N (V;(a) — Vila),

for ¢ = 1 and 2, where p;(a) is the drift with p;(a) = s; + Ra — ¢(a) and V/(a) is the derivative
of V;(a). When the market clears, the aggregate income normalizes to one, that is, E[s;] = 1.
Total assets in zero net supply is Zle [ ag: (a,s;)da = 0, where g; (a, s;) is the income wealth
density. There are two ways that the value function can be updated, the explicit method and
the implicit method. Here we introduce the implicit method, since it is more efficient and more
stable/reliable. In addition, the step size in the implicit method can be arbitrarily large. Using
the implicit finite difference scheme, we can write the finite difference approximation of the
HJB equation as:

Vi?j—kl — Vi nt1 n nt+1\/ n n41 n+1

R VT =) + (V) (g 4 Ras — o) + 0, (Vi) =V,
where the parameter A denotes the step size of the implicit method. V;"; denotes the n’th
iteration value of the value function V; ;. For j = 1,2, assume that when j =1, —j = 2 and
vice versa, following Achdou et al. (2022). The derivative V;/; = V] (a;) is approximated with

either a forward or a backward difference approximation
v = Ve — Vi Vijg—Vi1j
L F Aa ’ Aa
Under the upwind scheme, using the forward difference approximation whenever the drift of the

! —
and Vi, p =

state variable is positive and the backward difference approximation whenever it is negative,
we have

pigF = 8j+ Rai — cijr,  pijB=s;+ Rai—cijB,
and

1y / !
Vii = Vigr Y, r>03 Vil s s<0r + Vi lu ; r<o<ps6)s
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where V/; = o/ (s; + Ra;). Thus, the HJB equation can be written as:
VZL]Jrl _VZLJ n+1 n n+1 ! n + n+1 ! n -
A TV = uley) + (Vise ) [si+ Rao—cly el + (Vile) [s5+ Rai =¢8]
+1 +1
+5 [V = VT
This equation constitutes a system of 2 x I  linear equations, and it can be written in matrix
notation using the following steps
‘/;njb—l . v Vn+1. o Vn+1 Vn+1 o Vn+1» B
J .3 +1 _ it1,j i, + i, =1,
A TV =) + o )+ (15.5)
+1 +1
+ A [V VT
Collecting terms with the same subscripts on the right-hand side, it leads to
1’7 /L) L
=R AV =) VI e VI e Vs A VA,

- + - +
where z; j = — (u7'; 5) /Aa, yij = — {(Mﬁj,F) — (175 5) } /Aa=X;, and z;,; = (45 )" /Aa.
Thus, this equation can be written in the matrix notation as % (V”Jrl — V”) + pVntl =
u” + AVt where

Y11 21,1 0 0 )\1 0 0 0
2,1 Y2, 22,1 0 N 0 /\1 0 0 N
0 3,1 Y31 23,1 0 . 0 )\1 0 0
A" — 0 i1 Yr1 0 0 0 0 )\1 ,

)\2 0 0 0 0 Y1,2 21,2 0 0 0

0 )\2 0 0 0 T22 Y22 222 0 0
0 0 X O 0 0 32 ys2 232 O
0 0
0 0 A2 0 - 0 wr2 yr2 /...
which is from the final HJB iteration, and u™ = (u (6?71) AN (C?,l) ) U (C?,Q) e U (C?,2)>T

This system can be written as B"V"*! = b", B® = (£ 4+ p)I — A", and b" = u" + V",
which can be solved very efficiently using sparse matrix (since A" is a sparse matrix) routines.
The matrix A" is a transition matrix that summarizes the Poisson intensities when the process
is approximated by the finite difference method with a discrete Poisson process. All rows in
A™ sum to zero, diagonal elements are non-positive and off-diagonal elements are non-negative.
All entries in a row being zero imply that the state remains fixed over time.

To solve the KF equation, we have to solve the following ODE using the finite difference
method d

0=——"lni(a)gj(@)] = X;g;(a) + A-jg-;(a),

where g(-) is the density function. With the Poisson jumps, g,(-) denotes the density function
under state j, and ¢g_;(-) is the density function under state —j. Then, the ODE can be

4We assume that i =1,...,Jand j=1,...,J.
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approximated by

iy (:u;l,j,F)+ —Gi-1j (M?fl,j,F)+ _ Yit1y (M?ﬂ,j,B) —Gij (NZ]',B)_
Aa Aa
Collecting terms, we obtain

— 9ijAj T 9i,—jA—; = 0.

9i-1,j%i-1,j + 9i,j¥i,5 + Gi+1,jTiv1,5 + gi,—jA—; =0,

where z;11,; = — (uZHLB)*/Aa, Yij = — {(N?,j,pﬁ _ (N?,ij)i} J/Aa — \;, and z;_1; =
(,u;fj_l,F)Jr /Aa. This approximation can be written in the matrix form ATg = 0 where AT
is the transpose of the intensity matrix A (A = lim,,_, o, A™) from the HJB equation.

To find the stationary distribution, one solves the eigenvalue problem ATg = 0, a system of
2 x J linear equations. The reason for using the transpose of the intensity matrix A can be made
more precise by the differential operators, so that one can write the HJB equation in terms of
a differential operator A, the infinitesimal generator of the process. Similarly, the Kolmogorov
forward equation can be written in terms of an operator A*, the adjoint of the operator A in the
HJB equation, which is the infinite-dimensional analogue of a matrix transpose. A is simply
the discretized infinitesimal generator, whereas AT is the discretized version of its adjoint, the

Kolmogorov forward operator.
4.5 Transition Dynamics and Impulse Responses

In this section, we provide several recent methods in the existing literature on computing
the transition dynamics and impulse response functions in the continuous-time models. The
computational method for solving transition dynamics from an arbitrary initial condition can
also be used to compute nonlinear impulse responses to unanticipated aggregate shocks, the
so-called MIT shocks, i.e., an unanticipated (zero probability) shock followed by a deterministic
transition as in Krusell and Smith (1998). Recently, Ferndndez-Villaverde et al. (2023) further
extended the model in Krusell and Smith (1998) by proposing a nonparametric perceived law
of motion (PLM) and updated with machine learning, and Boppart et al. (2018) and Auclert
et al. (2021) used the linearized counterpart to compute linear impulse responses to small MIT
shocks in order to obtain further speed gains. Additionally, both Auclert et al. (2021) and
Oskolkov (2023) used the sequence-space Jacobians to compute the impulse responses. For the
type of the representative agent model, He and Krishnamurthy (2019) provided a method to
compute the impulse responses in a continuous-time framework. Now, let us introduce these
methods in detail.

4.5.1 Aggregate Uncertainty and Linear Dynamics

When there is aggregate uncertainty, Krusell and Smith (1998) proposed a bounded ra-
tionality method. Households in the model approximate the distribution by a number of its
moments, e.g., the mean fooo fj ag(a, s)dads = Ky, where s; is the labor productivity following
the Ornstein-Uhlenbeck procegs as ds; = 0 (§ — s;) dt + 0dBy. The production function is given
by V; = F(As, K, L) = A, K2 Ly~ with the aggregate total factor productivity (TFP) Ay, fol-

lowing a diffusion process as dA; = pa (Ay) dt + o4 (A) dWy. The capital K; evolves according
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to dK¢ = pi (K, Ay) Kidt. Then, the HIB simplifies to

ov . v 2oV
pV(ms,A,K)—rilzag(u(c)—i—[ws—}—Ra—c]%—i—@(s—s)g—i—?ﬁ
oV 2(A) 0%V ov
a2 DOV e )2

0A 2 0A? 0K’

Suppose the perceived law of motion (PLM) has a simple parametric (linear) form
,U,K(K,A;e) :90+91K+92KA+93A. (PLM)

Then, begin with an initial guess of 8° = (98, 69,69, Og), and set n := 0.
(1) Given p (K, A;60°), solve the HJB equation and obtain the transition matrix A.

(2) Conduct the Monte Carlo simulation to obtain the simulated data of the aggregate TFP
{Am}f\gzo based on the model AA,,, = pa (Apm-1) At + 04 (Am—1) VAte,,, where g, ~
N(0,1).

(3) Compute the dynamics of the distribution using the KF equation and use it to obtain
aggregate capital [ [ ag(a,s)dads = K;.

(4) Run an ordinary least squares AK,, /K, = px (K, Am; 0) At over the simulated sample
{Am,Km}i\fzo to update coefficients @™, If 8”71 = @™ or they are very close, stop,
otherwise go back to step 1.

In a linearized system, Boppart et al. (2018) employed the MIT shock and obtained the
first-order perturbation solution just by computing transitional dynamics. The initial state is
the deterministic steady state fss(-). The aggregate TFP evolves with time according to

AAg=pa(Ao) At + 04 (Ag) VAL, and AA; = pa (A At, t>0,
where Ay = Ags. If the model is approximately linear, the response to an MIT shock is the

impulse response function of the model. The method can be extended to the case with n shocks
dA = (dA°,dAY,. .., dA") "

4.5.2 Aggregate Uncertainty and Nonlinear Dynamics

For models with aggregate nonlinear dynamics, which is a general form of PLM, Fernandez-
Villaverde et al. (2023) extended the Krusell and Smith (1998) methodology and proposed a
nonparametric perceived law of motion to globally compute and estimate the HAM, updated
using machine learning such as a neural network. As claimed by Ferndndez-Villaverde et al.
(2023), their algorithm can approximate the PLM arbitrarily well; see, for instance, the paper
by Ferndndez-Villaverde et al. (2023) for details.

Households consider a PLM of aggregate debt By

dBt = h (Bt, Nt) dt,
where h (B, N;) = E[dB; | B, Nt]/dt and N; = K; — By, the net wealth (i.e., inside equity) of
the expert, which is the difference between his assets (capital) and liabilities (debt). Given the
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PLM, the household’s HJB equation becomes

-1 aV; oV; aV;
[N (B, N)]* 82V;

+ X\ [Vj(a,B,N) — Vi(a,B,N)] + 5 N2’
where i # j = 1,2, the net wealth N, evolves as dN; = u® (B, Ny)dt + o (B, Ny) dWs,
and the household’s saving a; follows da; = (w¢s: + Riar — ¢¢) dt = p; (as, B, Nt) dt and By =
J adGy(a, s).

Instead of using the projection method to approximate the PLM: h(x; 0) = 90+Z?:1 041q(x)
Ferndndez-Villaverde et al. (2023) approximated the PLM with a neural network as h(x; 6) =
95+ZQQ 1040 ( +ZZ 02 »),whereX: {x1,%2,...,xs and x; = {a}, 23} = {By;, Ny, }
is a two-dimensional input. 6 = (95,9%, . ,95,98,1,91,1,92,1, oo, 08 Q,Hl Q,H ) denotes the
vector of weights. This is a neural network with one hidden layer, with a linear combination
of Q activation functions. ¢(-) is an activation function, such as ¢(z) = log (1 + €*). For the
approximation of a two-dimensional function, one single layer is enough. This neural network
can also be extended to include multiple hidden layers, which is the case of deep neural network.

To train the neural network, 0 is selected to minimize the quadratic error function £(6;X, fl)
~ ~ ~ o~ ~ ~ B, . _B,.
given a simulation (X, h), where h = {hl, ha..., hJ} and h; = %’ that is,

J J
X . =~ . -~ 1 ~ 2
0" = argmemé'(O;X,h) = arg min E 15 (O;Xj,hj) = argmin 5 E 1 Hh(xj;e) — th
j= j=

Ferndndez-Villaverde et al. (2023) solved this problem using the batch gradient descent algo-
rithm. Note that some other machine learning or deep learning methods can be applied to solve
the above system too.

Auclert et al. (2021) proposed a general and highly efficient method for solving and estimat-
ing the general equilibrium HAMs with aggregate shocks in discrete time. The model is set up
in the sequence space by assuming perfect foresight with respect to aggregates. The approach
relies on the rapid computation of sequence space Jacobians, the derivatives of perfect-foresight
equilibrium mappings between aggregate sequences around the steady state. This algorithm
can be combined with a systematic approach of composing and inverting Jacobians to solve
for general equilibrium impulse responses. A rapid procedure is obtained for likelihood-based
estimation and computation of nonlinear perfect-foresight transitions.

Equilibrium in the sequence space can always be expressed as a solution to a nonlinear system
F(X,Z) = 0, where X represents the time path of endogenous variables (usually aggregate prices
and quantities) and Z represents the time path of exogenous shocks. Obtaining the impulse
responses of unknowns to shocks, dX = —FiledZ, requires computing the Jacobians Fx and
Fz, which are formed by combining Jacobians from different parts of the model.

Similarly, Oskolkov (2023) employed the methods from Kaplan et al. (2018) and Auclert
et al. (2021) to analyze nonlinear solutions for aggregate one-time unanticipated shocks. In
particular, this paper works in the sequence space and computes the sequence-space Jacobians

by solving the linearized version of the coupled system of equations. For estimation, a sample
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path of z(¢) is integrated from a simulated sequence of shocks dW given the parameters, which
come from the calibration and determine the steady state. To estimate the parameters of the
processes, the simulated method of moments (SMM) of McFadden (1989) is used, which is to
compute the moments of these series, to compare them to the moments of simulated sequences,
and to look for a combination of parameters that minimize a quadratic distance.

Finally, in a representative agent model, He and Krishnamurthy (2019) studied the effect
of —1% shock in odW;, which means the fundamental shock leading capital to fall exogenously
by 1%. The computational algorithm to calculate the impulse response functions is as follows,

where the focus is on the mean path by shutting future shocks to zero.

(1) Compute the benchmark path of these variables without any shocks, but still subject to
the endogenous drift of the state variable in the model. In other words, calculate the

benchmark path for the realizations of dW,,, = 0 for m > 0.

(2) Compute the shocked path of these variables given the initial shock odW; = —1%, but

setting future realizations of shocks to be zero, i.e., dWyy,, = 0 for m > 0.

(3) Calculate and plot the (log) difference between the path with the shock and the mean path
without any shock. This computation is meant to mimic a deviation-from-steady-state
computation that is typically plotted in impulse-response functions in the linear-non-

stochastic models.

Note that in traditional linear models, the impulse-response functions are independent of
future shocks. However, the impact of a shock depends on future shocks in nonlinear models.
For more on the difference between impulse responses in linear models with a non-stochastic
steady state and those nonlinear models with a stochastic steady state; see, for example, the
papers by Koop et al. (1996) and Borovicka et al. (2011). An alternative method to calculate
the impulse response functions in the stochastic nonlinear models is to calculate the expected
impact of the initial shock cdW; = —1% on the variable at ¢t +m by integrating over all possible
future paths.

4.6 Estimation and Dynamic Programming: A Data Driven Approach

The sections above introduced the solution methods and the numerical analysis of the tran-
sition dynamics and the impulse responses. To see how the methods above can be connected
with the empirical analysis using the real-world data®, we propose a method that combines the
empirical estimation and the numerical computation in order to acquire the parameter values
and the solutions of the optimization problem simultaneously. Our current working paper tries
to address this issue; see, for example, Cai and Hu (2025) for details. The novelty of this ap-
proach is its data driven feature, where the empirical estimation is embedded into the algorithm

that finds the optimal controls of the optimization problem, and then the parameters and the

5We appreciate the anonymous referee for bringing our attention to this issue.
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optimal policies update recursively. We provide a brief description of the algorithm below, and
this method can be further applied in various adaptations according to the specific problems.

Step 1: Use the maximum likelihood estimation (MLE) method to estimate the drift and
the diffusion terms in the law of motion of the state variable. This step uses the data from
the financial market, such as the firms’ net worth value. For a reference on the empirical

macro-finance analysis, please see Gilchrist and Zakrajsek (2012).

Step 2: Based on the theoretical derivation, make a guess of the parametric form of the drift
function and the diffusion function of the state variable, where the control variable serves as a
key factor. Use the real-world data of the control variable to estimate the parameters in the

parametric functions of the drift and the diffusion.

Step 3: Substitute the estimated drift function and the diffusion function of the state variable
in the HJB equation. Use the finite difference method introduced in Section 4.4 to compute

the value function in the HJB equation.

Step 4: Substitute the computed value function in the FOCs, and solve the optimal policy:
the optimal control variable as a function of the state variable. Then use the estimated law
of motion (the drift and the diffusion) of the state variable and the Ito’s lemma, in addition
to the optimal policy function, to calculate the stochastic process (the drift and the diffusion)

that the control variable follows.

Step 5: Conduct the Monte Carlo simulation to obtain a series of simulated data of the control
variable based on the computed process in Step 4. Use the simulated data of the control variable
to update the parametric estimation of the drift function and the diffusion function of the state

variable in Step 2.

Step 6: Begin again from Step 3, substitute the updated drift function and the diffusion
function of the state variable in the HJB equation. Recompute the value function in the HJB
equation, and then update Steps 4 and 5. Iterate until the parameters of the drift function and

the diffusion function of the state variable converge.

To describe the process above in a nutshell, we aim to evaluate the parameters in the drift
function and the diffusion function of the state variable using the real-world data combined
with the optimization solution. We start from the real-world data of the state variable and
the control variable to acquire an initial estimation, then use the HJB equation, the FOC,
and the Tto’s lemma to derive the values of the control variable’s drift and diffusion from the
state variable’s drift and diffusion. Lastly we use the simulated data from the control variable’s
stochastic process to update the parametric estimation of the state variable’s drift function and
diffusion function.

Alternatively, the parametric method can be substituted by the nonparametric method,
such as the neural network, when the number of states and controls grows. When training the
neural network, first make a guess of the initial values of the parameters and then construct a
time series of data through the simulation. Then train the parameters on the simulated data
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and obtain the updated values of parameters by minimizing a quadratic error function. Iterate
until the value of the parameters converge.

Note that there are other approaches that can handle the combination of the parameter
estimation and the dynamic programming in addition to the methods introduced above, one of

such extension is the reinforcement learning.

4.7 A More General Framework

Achdou et al. (2022) extended the study to the backward-forward MFGs system in n
dimensions, which is a natural generalization of the equations for the Bewley-Huggett-Aiyagari
(BHA) models, proposed by Bewley (1987), Hugget (1993), and Aiyagari (1994), respectively.
The mathematical MFG literature typically writes this system using the language of the modern
theory of SDEs, especially the vector calculus notation, described as follows. For more details
about modeling BHA type models, the reader is referred to the papers by Kirkby (2018) and
Hansak (2023).

The mathematics literature typically only considers the case where the state variables follow
diffusion processes rather than processes featuring jumps. Under this assumption, a general

backward-forward MFG system in n dimensions is

n 1 n
pV = mOE}X {7“(1’, «, g) + 2_; al&V} + 5 z_; 022(1')({9”‘/ + 8tV7
in R™ x (0,7T), where we use the short-hand notation d,v = dv/da, and so on, and

n 1 n
g =— Zai (o5 (2,9)9) + 5 Zau' (0} (x)g) .
i=1 i=1

in R™ x (0,7T), with
9o = g(O) and Vp = V(x,g(T)),

in R™, where z € R™ is an n-dimensional state vector, a € R™ is a control vector and o its
optimally chosen policy function, V(z,t) is the value function, g(z,t) the density, r(z,«,g)
a period return function, and o?(x) a diffusion coefficient. The first equation is the HIJB
equation, the second equation is the KF equation and the equations in the third line are the
initial condition on the density and the terminal condition on the value function. The system
iterates backward-forward in the sense that given the steady state value function, the system
updates backward using the HJB equation to obtain the policies. Given the initial distribution,
the system updates forward using the KF equation to propagate the distribution. For a two-
dimensional special case, in the Huggett model with a diffusion process (close to but different
from the Huggett model discussed in Section 4.4),

dSt = (St) dt + o (St) th,

pv(a, s) = maxu(c) + 1v(a, s)ag + dav(a, s)as + %aggv(a, s)o?(s),

0= -0y (a1g9(a,s)) — 02 (aag(a, s)) + %822 (c*(s)g(a, s)) ,

where z € R? with 1 = a and x5 = s.
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Now, we define three useful operators: the gradient V, the Laplacian A and the divergence.
First, for a function f : R™ — R, the gradient vector is the vector of first derivatives Vf :=
[0f /0xq, .. .,8f/3xn]T. Second, for a function f : R™ — R, the Laplacian is the sum of all
the unmixed second derivatives Af = Y"1 | 9*f/0x?. Third, for a vector-valued function
v:R" =5 R ie, v(T1,...,25) = [U1 (X1, ., Tpn) .oy U (21, .. ,a:n)]T, the divergence of v
is div(v) := Y| Ov;/Oz;. Note that Af = div(Vf).

The MFG literature typically assumes that o?(z) = 2v for all x and all 4 which implies
that the second-order terms simplify. Assume H(z,p,g) := max, {r(z,a,g9) + > ., a;p;},
where H(z,p,g) denotes the Hamiltonian. The optimal drift of each state variable equals
al(z,g) = 0p, H(z, Vv, g). Using the Laplacian and the divergence just defined, the backward-
forward MFG system can be written into the standard mathematical formulation

pv = H(z,Vv,g) +vAv+ 0w inR" x (0,7),
Og = —div(V,H(x,Vv,g9)9) + vAg inR" x (0,T),
9(0) =go, v(x,T)=V(x,g(T)) inR"
Note that the MFG literature typically sets p = 0 for simplicity, i.e., it ignores discounting.

The backward-forward MFG system above describes general HAMs without aggregate un-
certainty. However, in many economically interesting situations, it is important to allow for
aggregate risk in addition to idiosyncratic risk as in Den Haan (1997) and Krusell and Smith
(1998). Fortunately, the theory of MFGs has also studied that case, with mathematicians re-
ferring to aggregate uncertainty as “common noise”. In the most general case, such MFGs
can be written in terms of the so-called “Master equation” as in Cardaliaguet et al. (2019).
This Master equation is an equation on the space of measures, i.e., it is an equation that is set
in infinite-dimensional space. In the case without aggregate uncertainty, the Master equation
reduces to the backward-forward MFG system.

85 Conclusion

This selective review outlined the mathematical/statistical tools and the computational
methods in mathematics for solving both discrete-time and continuous-time models in macroe-
conomics. As the mathematical tools and computational methods are more advanced in con-
tinuous time, we see a bright future for the macroeconomics modeling in continuous time. For
example, in addition to a neural network as employed by Ferndndez-Villaverde et al. (2023),
some advanced machine learning such as deep learning methods or AI methods can be applied
to this field too, especially for nonlinear models, which can attract some young scholars and
Ph.D. students in economics, mathematics and statistics, to find their own interesting research
topics for continuous-time models in macroeconomics. In addition, the well-developed asset
pricing theories in continuous time also shed light on the inclusion of financial risk analysis in
the macroeconomics models. Looking forward, more work can be for sure done to study the
connection between the real economy’s business cycles and the financial market’s fluctuations

within a continuous-time general equilibrium framework. Even though the discrete-time model
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and the continuous-time model may share similar computational accuracy, we still have much
confidence on the scope of the analysis that can be done only in continuous time which can not
be substituted by the discrete-time model, such as the formulation of problems related with
uncertainty. Finally, similar to the model specification problem for conventional stochastic dif-
fusions, well studied in the literature such as the pioneer work by Ait-Sahalia (1996), it would
be interesting to consider some possible model specification tests for HAMs with aggregate
shocks under full or partial information as addressed in Cai, Mei and Wang (2024), which is
definitely warranted as future research. The reader is referred to the paper by Cai, Mei and

Wang (2024) for more discussions.

Appendix. The details of log-linearization

In the following detailed derivation of the equations in Section 3.1, we use the general
formula of the log-linearization as: X; = InX; — InX ~ (X, — X)/X, so that X, = Xe*,
X~ X <1+Xt), and eXt 1+X’t. Also, In(14+ X)) ~ Xy and dln Xy =InX; —In X =~

(X; — X)/X = dX,;/X ~ X;. Next, we derive the equations listed in Section 3.1.

1. The resource constraint can be written as follows:
Vi=Cot L+ GandY (147) =C(146G) +1(1+1) +G.
At the steady state, we have that Y = C' + I + G. Thus, Yﬁ = C’ét + Ift and f’t =
CCy]Y +II)Y.

2. The consumption Euler equations become the following equations

Ct:Et{|:(1+T;”) Pt 6:|Uct+1},

Py
~ —o
_ __ P, __
- e
Ce‘t = F, et % = x 3 CeCr1 § |
e t+1

1+5tEt{[(1+1/?r/?> (1+15t1/3;ﬂ)ﬁ}_0(1+5:1)},

ln<1+/C\';) :Et{—a [ln(l—i—lf—l—\_r/f) +ln(1—7rt+1)+lnﬁ} —|—ln(1—|—a\+/1>},

and
Ct = Et {—O' (1 +7’? — T¢41 —p) +Ct+1},
where m, = P, — P,_1 and In 8 = —p. Since 1 + 1} = eﬂ\ri then, In (14 r}) = 1/—_i—\r/?,

—_~—

so that ' =~ 14 r and

CN’tzEt{—U(T?—WtH—P)*'é;;}-
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3. The link between asset prices and investment is given by

I; 1( 1)

[ A— + — ]__7 ,
Kt Qt

Ielt 1 1
e~:6+<1—~>’
K@Kt C Qth

~ _— ~ o~ 1 _~ o~ —_—
IQelte®t = QK eQteft + = (QKeQ‘eK‘ — Ker) ,
c

o

" 1Q (1 +E) (1 +@t) — QK (1 +@t) (1 +f<t)
+% o (1+Q.) (14 ) -k (14 K)].

I 1 1

At the steady state, we have

Therefore,
~ 1 _ ~ ~ ~ = 1 K ~
IQIt—*KQt:IQKt and It—KtzfiQt.
c cl@
In the equilibrium, we have
1
? — 5 - O,
which also implies Q = 1 with the steady state condition. Thus,
~ - 1 ~
I = Ky = — Q4.
cd

4. Marginal cost of funds and marginal return to capital are given by
P, Zi+(1-96
E, {At,+1 1 +rf) 5 } =B {At,+1 ( e )QtH)} ;
Piiq o

ln(l + T?) + h’lPt — lnPt+1 = 1n [Zt + (1 — 6)Qt+1] — ant'
Take total differential to obtain the following

dln(l +7’?) +dlIlPt fdlnPt_H = le[Zt + (]. *é)Qt—&-l] — dant7

and

and
~ — [dZi+(1-06)d - o
dri + P — Pryq = | tZEr(l)(S?tH] = Qg =1 —p=(1=7)Zt + TQs11 — Q.
Since dr? = r? —r =17, Zy = a¥;/[(1 + pe) Ky, and at the steady state r = p, it is easy
to see that 1_5
n_p— = Z Qi1 — Q.
E TP = A ) t+ Z+(1—6)Qt+1 Qt

Now, define 7 = (1 — 6) [ai‘% +(1 _5)T1 = (1-6)/[Z+(1—0)]. Then, 1 -7 =

Z/|Z+ (1 —=9)]. Thus, r} —my1 —p = (1 — T)Z—i-Tét: — Q. Since Z, = dIn Z; =
dln (Hlﬂta%) = —dIn(1+ ) +dnY; —dn K, = —fi + Y, — Ky, and dln (1 + ) =
duy = fiy, in particular, we arrive at

rf —mgp1—p=(1-1) (—ﬂ\t+5~/t—Kt)+7'Qt+1—Qt-
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5. Production function is Y; = A, K# L} ~*V;, so that InY; = In A; + aln Ky 4 (1 — ) In L; +

InV;. Taking total differential leads to
ay, dA, dK; dLy
v 7‘1‘0&7,4‘(1—0&)7.

-1
—E&
Since V; = fol (%tf)) df] , it vanishes in a first-order log linearization around a zero

inflation steady state due to the reason that the deviation of In (P;(f)/P;) must average
to zero. Thus,
}ft = At +OéKt + (1 — Ck)Lt.

6. Labor market equilibrium is (1 — a) =1+ Mt) then, In(1 —a)+InY; —InL; =

c; =
In (14 pt)+¢ln Li++1n C;. Taking total differential, one obtains Y}—Lt = [+l —l—’ya.

7. Price adjustment and Phillips curve can be simplified as follows. It follows from P, =
[9 (P_)' " +(1-0) (Pto)l_a} " that P, = 0P + (1 — 0)P?, which can be trans-
formed into m = P, — J/D;\_/l =(1-290) (ﬁtg - ﬁt> /0. Also, it is easy to see from
By 3200 M (PP ) Peyi) ™" Yoqi [P/ Prgi — (14 1) /(1 + pi+)] = O that

B = (1-09)B, - 09) (MG, + Pr) = (1 08) (NITy+ B + 03, (P}

Therefore,
P — P, = (1 — 08)MC, + 08E, {T:l — P14+ Py — é} .
Thus,
— 0
T g™t = (1-0B8)MC; + 08E; {1_97Tt+1 + 7Tt+1} ;
and

(1-0)(1—-6p)

Ty = 9

where A = (1 —0)(1—60)/6.

1\7[\0/15 + BE {mii1} = =iy + BE {me41 },

8. Evolution of capital is approximated by

1 (1 ?
Kt+1 —It— C( ! 5) Kt+(1—6)Kt,
K

=1 (1w " 7,
KeKt+1 _ Ielt o §C <K€Ith _ 5) KeKt 4 (1 _ §)K€Kt,
and
2 |K
+(1—5)K(1+f{

() = (1) - e (107 R) o] K (1K)

N\"' Z

t .
At the steady state, the fact that K = I—c ( 5) K+(1-9)K implies that KKtH
Ht—cl(——é)( Kt)+[K—I—(1 §)K|K, + (1 — §)KK, and

- [ (5 -0)] 5

N
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9.
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In the equilibrium, I/K = §, so that [/(—,;_/1 =61, 4+ (1 — (5)]@

¢7r ¢y
Interest rate rule is given by 1 + 77 = (14 r) (Pf:) (;{*) e’t. Then, In(1+7r}) =
In(1+7)+dr (In P — In Py_y)+éy, (In Yy — In Y;*) vy, which yields 17" = -+, (ﬁt f 13;/1)+

Dy (f/} - 37?) +v;. Since in the equilibrium, r = p, thus, r} = p+¢-m+¢, (ﬁ - i/;v*) +vy.
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