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A selective survey on mathematical programming

in macroeconomics
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Abstract. This paper surveys the literature for the optimization problems in both discrete and

continuous time models in macroeconomics, and provides an overview over some related com-

putational methods to solve the models linearly and nonlinearly, and to compute the transition

dynamics and the impulse response functions. Also, the introduction of the financial sectors,

the continuous time analysis, and the advanced mathematical tools into the general equilibrium

framework expands greatly the scope of the interdisciplinary research to mathematics, statistics

and econometrics, and creates further space for exploration and collaboration. Finally, some

future research issues related to this topic are highlighted.

§1 Introduction

Since the linear programming was introduced from mathematics to economics to help e-

conomists decide the allocation of limited resource, both mathematical programming methods

and macroeconomics theories have made much more progress. In the frontier of these progress,

the mathematical theories, the computational methods, and the macroeconomic models pro-

mote each other and make the boundaries among the three different subjects melt. This survey

provides a selective overview on how the relation between mathematical programming and

macroeconomics evolve from the past and about what the latest trend in this interdisciplinary

subject is nowadays.

Our review on this relation starts from the dynamic stochastic general equilibrium (DSGE)

models in discrete time dated back in 1970’s. The well known Bellman equations were applied

to solve the optimization problems of the agents within different microeconomic sectors in the

macroeconomy. In the mean time, the finance theory in continuous time was thriving due to its

popularity in asset pricing and the elegant combination of mathematics and portfolio theories.
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It was until the burst of the financial crisis of 2008 that financial sectors were added to the

macroeconomic models to help people better understand how the real sector of the economy

and the business cycles are influenced by the financial market’s turbulence. One critical tool

to construct such a connection is through the continuous time framework. Different from

the optimization methods in discrete time, the stochastic calculus, the stochastic control, the

numerical methods to solve the stochastic differential equations (SDEs), the ordinary differential

equations (ODEs), and the partial differential equations (PDEs) are often needed to solve the

macroeconomic optimization problems in continuous time. Therefore, the second half of this

survey provide an overview of the latest progress of the macroeconomic modeling in continuous

time, especially the heterogeneous agent models (HAM), as well as the advanced computational

methods to solve the models’ key equations, the transition dynamics, and the impulse response

functions. Thanks to the fast-growing computation power, the solutions that we can get from

the nonlinear models are global solutions.

The scope of the questions that macroeconomics can explore has been greatly expanded due

to the advances in the mathematical modeling and computational tools, from the macroeco-

nomics models without micro-foundations, to the models that depict the households’, firms’,

and governments’ decision-making; from the static analysis to the dynamic analysis; from the

deterministic equilibrium to the equilibrium with uncertainty; from the first-order approxima-

tion solutions locally, to the nonlinear solutions globally. Throughout this survey, we can find

the efforts made by generations of scholars that clarify and promote our knowledge on these

matters continuously. Even though the current coverings in this interdisciplinary subject can

be thought as scattered, we look forward to more future studies coming to fill the gap in the

unknown space.

The rest of this paper is organized as follows. Section 2 gives a review on mathematical

programming for macroeconomics models with micro-foundations. Section 3 outlines some

challenges for the discrete-time nonlinear dynamic stochastic general equilibrium models with

detailed derivation of the equations relegated to the Appendix. Section 4 describes the dynamic

programming methods for continuous-time macro-finance models. Finally, Section 5 concludes

the paper with some remarks for future research.

§2 Mathematical Programming for Macroeconomics

Models with Micro-Foundations

The micro-foundation was first introduced in the macroeconomics models by the school of

the new classical macroeconomics. The two generations of the new classical macroeconomists

are the school of the rational expectation, such as Thomas J. Sargent, Robert E. Lucas Jr., and

the school of the real business cycle, such as Edward C. Prescott and Neil Wallace, respectively.

There are three key assumptions in the new classical macroeconomics: the agents’ maximization,

the rational expectation, and the market clearing. The decision problems of the microeconomic

sectors of the economy are combined in a general equilibrium model, thus serving as the micro-
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foundation of the macroeconomics model. Specifically, the determination of the equilibrium

output and prices are from the solutions of the optimization problems of the households, the

producers, the retailers, and the government. To solve these optimization problems in discrete

time, the dynamic programming, such as the Bellman equation, is necessary.

The real business cycle school pointed that it is the real factors causing the economic fluc-

tuations, rather than the monetary factors. To answer the questions that how the real factors

cause the economic fluctuations and what the underlying transmission mechanism is, the real

business cycle theory emphasizes on the importance of the supply shock and the intertemporal

substitution between the leisure and the work. The latter explains why a small change in the

wage can cause large and long-term variations of the output and employment.

During the debate of the schools of macroeconomic thought, the new Keynesian school

borrowed the merits of the new classical macroeconomics and developed its own framework

to support Keynes’s economic thoughts. The representatives of the new Keynesian school

macroeconomists include, but not limited to, N. Gregory Mankiw, Lawrence H. Summers,

Olivier Blanchard, Julio Rotemberg, Edmund S. Phelps, George A. Akerlof, Janet L. Yellen,

Joseph Stiglitz, Ben S. Bernanke, David H. Romer, and so on. In contrast to the new classical

macroeconomics, the new Keynesian school does not assume that the market can clear once a

shock hits the economy, since the supply of labor and products, the wage and the price adjust

slowly. The new Keynesian school adopts the agents’ optimization and rational expectation

from the new classical macroeconomics, while following the Keynesian school to support that

the fluctuations of the aggregate demand shift both the output and the price in the short-run.

Therefore, the government’s policy plays a key role to bring the aggregate demand back to the

normal level during the economic recession.

As demonstrated in Gertler (2024), a typical macroeconomics model with micro-foundations

is consisted of the sectors of households, firms, monetary, and fiscal authorities. The dynamic

programming serves as an important method of solution for the optimization problems. Com-

pared to the dynamic programming applied in microeconomics, the application in macroeco-

nomics resides in a general equilibrium framework, which ultimately synthesizes the individual

sectors’ decisions into several types of equilibrium in macroeconomics, such as the competitive

equilibrium, the stationary equilibrium, and the Markov equilibrium. We will compare these

types of equilibrium later in Section 4.3.

2.1 Household’s Utility Maximization

Suppose that a representative household chooses {Ct, Lt,Mt, Pt, Bt+1,Kt+1}t≥0 to maximize

its utility

E0

{ ∞∑
t=0

βt

[
1

1− γ
C1−γ

t +
am

1− γm

(
Mt

Pt

)1−γm

− 1

1 + φ
L1+φ
t

]}
, (1)

where E0(·) denotes the mathematical expectation operator, β is the discount factor, which

is assumed to satisfy 0 < β < 1, Ct is the household’s consumption, Mt is the household’s

money holding, Pt is the price level, and Lt is the labor (hours worked). The parameters γ
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and γm are the coefficients of the relative risk aversion, and φ−1 stands for the Frisch elasticity

of labor supply. The parameter am stands for the weight of real money balance in the utility.

For some special cases, γ, γm, φ, and am might take some specific values. For example, when

γ = γm = φ = 1, the constant relative risk aversion separable utility becomes the log separable

utility. For the case of cashless economy, am → 0. The optimization problem in (1) is subject

to the budget constraint given by

Ct =
Wt

Pt
Lt + ZtKt +Πt +TRt −

Mt −Mt−1

Pt
−

(
1
Rn

t

)
Bt+1 −Bt

Pt
−Qt (Kt+1 −Kt) ,

where Wt is the nominal wage, Zt is the rental cost of capital, Kt is the capital holding, Πt

is the profit from monopoly competitive firms, TRt is the government transfer, Bt is the bond

holding, Rn
t is the gross nominal interest rate, 1/Rn

t is the price of one period discount bond

earning the gross nominal return Rn
t , and Qt is the price of capital. Additionally, we assume

that there is no Ponzi schemes. Note that the solution of the optimization problem yields the

so-called control variable Kt+1 at t+ 1 as a policy function of the state variable Kt at t.

2.2 Firms’ Profit Maximization and Cost Minimization

There are three types of firms in the general equilibrium model: the final good firms, the

intermediate good firms, and the capital producer.

2.2.1 Final Good Firms

Final good firms are competitive producers of a homogeneous good, Yt, using intermediate

goods, Yt(f). The production function that transforms intermediate goods into final output is

given by

Yt =

[∫ 1

0

Yt(f)
ε−1
ε df

] ε
ε−1

,

where ε > 1 is the (constant) elasticity of substitution between intermediate goods. Note that

this production function also exhibits constant returns to scale and diminishing marginal prod-

uct for each input with (ε−1)/ε < 1. Each firm chooses Yt(f) to minimize costs
∫ 1

0
Pt(f)Yt(f)df

for a given level of output Yt =
[∫ 1

0
Yt(f)

ε−1
ε df

] ε
ε−1

and given Pt(f). The result is the following

demand function for each intermediate good f

Yt(f) =

[
Pt(f)

Pt

]−ε

Yt.

Combining with the production function yields the following nominal price index for the final

good

Pt =

[∫ 1

0

Pt(f)
1−εdf

] 1
1−ε

.

2.2.2 Intermediate Good Firms

There is a continuum of intermediate good firms, indexed by f ∈ [0, 1]. Each produces a

differentiated good and is a monopolistic competitor. Each firm uses both labor Lt(f) and
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capital Kt(f) to produce output according to

Yt(f) = AtKt(f)
αLt(f)

1−α,

where At is the level of productivity and 0 < α < 1 is the capital share. Firm f chooses inputs

Kt(f) and Lt(f) to minimize the total cost given by

Wt

Pt
Lt(f) + ZtKt(f),

subject to the output demand

AıKt(f)
αLt(f)

1−α = Ȳ ,

where Ȳ is a given output level. The first order conditions (FOC) for this optimization problem

are as follows:
Wt/Pt

(1− α)Yt(f)/Lt(f)
= MCt(f) and

Zt

αYt(f)/Kt(f)
= MCt(f),

where MCt(f) is the Lagrange multiplier, interpretable as the marginal cost of producing out-

put. By combining the two FOCs, it is easy to conclude that Lt(f)/Kt(f) = (1− α)ZtPt/(αWt).

With this condition and the production function Yt(f) = AtKt(f)
αLt(f)

1−α, we could rewrite

MCt(f) as

MCt(f) =
1

At

(
Wt/Pt

1− α

)1−α (
Zt

α

)α

≡ MCt.

Note that the marginal cost and the gross markup are reciprocal,‘ that is, 1 + µt = 1/MCt,

where µt is defined as the markup.

The intermediate good firms set prices on a staggered basis. Following Calvo (1983), each

period a firm adjusts its price with probability 1− θ and keeps it fixed with probability θ. All

firms have the same likelihood of adjustment. The adjustment probability is independent over

time and across firms. The average time for a price remaining fixed is given by

(1− θ)
∞∑
i=1

θi−1i =
∞∑
i=0

θi =
1

1− θ
.

Firms that are able to adjust their prices choose Pt(f), Yt(f),Kt(f) and Lt(f). These firms

maximize expected discounted profits given the production technology and the demand curve.

They choose the optimal reset price P o
t (f) to maximize

Et

{ ∞∑
i=0

θi
[
Λt,i

(
P o
t (f)

Pt+i
−MCt+i

)
Yt,t+i(f)

]}
,

subject to

Yt,t+i(f) =

(
P o
t (f)

Pt+i

)−ε

Yt+i,

where Et(·) is the mathematical expectation operator, Λt,i = βiC−γ
t+i/C

−γ
t is the stochastic

discount factor, ε is the elasticity of substitution between intermediate goods, and MCt+i is the

nominal marginal cost. Then, the FOC is

Et

{ ∞∑
i=0

θiΛt,iYt,t+i(f)

[
P o
t

Pt+i
− (1 + µ)MCt+i

]}
= 0,

where 1 + µ = ε/(ε− 1) is the steady state gross markup. Given that (i) all firms that adjust

in period t choose the same price P 0
t and (ii) the average price of firms that do not adjust is
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simply last period’s price level Pt−1, then, we can rewrite the price index as

Pt =
[
θ (Pt−1)

1−ε
+ (1− θ) (P o

t )
1−ε

] 1
1−ε

.

The entrance of Pt−1 in Pt introduces nominal inertia.

2.2.3 Capital Producer

The capital producer’s optimization problem is to choose the investment level It such that

the profit from producing the capital is maximized

max
It

[QtJt − It],

subject to Jt = It − c (It/Kt − δ)
2
Kt/2, where Jt stands for the technology for producing new

capital goods, and the capital producer invests It units of final output and rents Kt units of

capital to produce Jt units of new capital. c is the adjustment cost parameter, δ is the capital

depreciation, and c (It/Kt − δ)
2
Kt/2 reflects increasing marginal costs of producing new capital

goods after the depreciation. Then, the FOC yields It/Kt = δ + (1− 1/Qt) /c.

2.3 Monetary and Fiscal Authorities

The central bank sets the nominal interest rate according to the following simple feedback

rule

1 + rnt = (1 + r)

(
Pt

Pt−1

)ϕπ
(
Yt
Y ∗
t

)ϕy

evt ,

where Y ∗
t is the natural (i.e., flexible price equilibrium) level of output with ϕπ > 1 and ϕy > 0,

rnt is the nominal interest rate, r is the zero inflation steady state nominal interest rate, and

υt is the monetary shock. The fiscal policy is given by Gt = Ḡ, where Gt is the government

expenditure, and Ḡ is an exogenously given level of the government spending. The government

budget constraint is

Gt = Tt + (Mt −Mt−1) /Pt,

where Tt is the government’s tax revenue, and Mt is the monetary supply.

2.4 Competitive Equilibrium

The resource constraints in the economy contain the income and expenditure constraint

Yt = Ct + It +Gt,

and the evolution of capital constraint

Kt+1 = It −
1

2
c

(
It
Kt

− δ

)2

Kt + (1− δ)Kt.

A competitive equilibrium is defined as an allocation (Yt, Lt, Ct, It,Kt+1) and a price system

(Zt,Wt, Pt, P
o
t , r

n
t , Qt, µt) such that all agents are maximizing subject to their respective con-

straints, all markets clear, and all resource constraints are satisfied, given Pt−1, At, and Kt.

In practice, it is convenient to express the equilibrium as a system of 10 equations for

(Yt, Ct, It, Lt, Pt, P
o
t , r

n
t , Qt, µt,Kt+1), given the predetermined states Pt−1, At,Kt. It is useful
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to group the equations into aggregate demand, aggregate supply and policy blocks as follows.

First, the aggregate demand block has the following 4 equations:

Yt = Ct + It + Ḡ, (resource constraint)

Ct = Et

{[
(1 + rnt )

Pt

Pt+1
β

]−σ

Ct+1

}
, (consumption Euler equation)

It
Kt

= δ +
1

c

(
1− 1

Qt

)
, (link between asset prices and investment)

and

Et

{
Λt,+1 (1 + rnt )

Pt

Pt+1

}
= Et

{
Λt,+1

[
Zt + (1− δ)Qt+1

Qt

]}
,

(marginal cost of funds = marginal return to capital)

with Zt = αYt/[(1 + µt)Kt], Λt,+1 = βC−γ
t+1/C

−γ
t , and σ = 1/γ. These equations define an

investment-savings curve that relates spending inversely to the real rate (1 + rnt )Pt/Pt+1 and

expectations of the future. Note that in equilibrium, Gt = Ḡ is substituted in the resource

constraint Yt = Ct+ It+Gt. Second, the aggregate supply block has the following 5 equations:

Yt = AtK
α
t L

1−α
t Vt, (production function)

(1− α)
Yt
Lt

= (1 + µt)
Lφ
t

C−γ
t

, (labor market equilibrium)

Pt =
[
θ (Pt−1)

1−ε
+ (1− θ) (P o

t )
1−ε

] 1
1−ε

, (price adjustment)

Et

{ ∞∑
i=0

θiΛt,i

(
P o
t

Pt+i

)−ε

Yt+i

(
P o
t

Pt+i
− 1 + µ

1 + µt+i

)}
= 0, (Phillips curve)

and

Kt+1 = It −
1

2
c

(
It
Kt

− δ

)2

Kt + (1− δ)Kt, (evolution of capital)

with Vt =

[∫ 1

0

(
Pt(f)
Pt

)−ε

df

]−1

and [1 + µt+i]
−1 = MCt+i. Vt reflects the misallocation of

intermediate inputs due to the relative price dispersion. Note that Vt = 1 in the zero inflation

steady state. Finally, the policy block is given by

1 + rnt = (1 + r)

(
Pt

Pt−1

)ϕπ
(
Yt
Y ∗
t

)ϕy

eυt , (interest rate rule)

where Y ∗
t denotes the level of output in the flexible price equilibrium (the natural output).

Given that the exogenous process of the log of productivity At the AR(1) model

lnAt = ρa lnAt−1 + εat,

and the monetary shock υt satisfy the AR(1) model

υt = ρmυt−1 + εmt.

Therefore, the equilibrium system with 10 unknown variables

(Yt, Ct, It, Lt, Pt, P
o
t , r

n
t , Qt, µt,Kt+1) in the above 10 equations is complete.

Note that for the extension to models in the open economy, there are generally two types

of settings. The first one is a small open economy model and the second one is a two-country

open economy model. Compared to the closed economy model, the exchange rate, the foreign

price level, the consumption of foreign goods and other foreign country variables are added
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to the model. In particular, the open economy model produces the Backus-Smith condition,

the uncovered/covered interest parity, the purchasing power parity condition, the law of one

price, etc. For readers who have further interests in the DSGE models of the open economy,

please refer to Uribe and Schmitt-Grohé (2017), Céspedes, Chang, and Velasco (2004), Andrea,

Gertler, and Svensson (2008), Xavier and Maggiori (2015), Geanakoplos and Wang (2020), Liu,

Spiegel, and Zhang (2021), and so on.

§3 Computational Challenges for the Discrete-Time DSGE Models

3.1 Log-linearization

To solve this typical nonlinear dynamic stochastic general equilibrium models, the most

common practice since Kydland and Prescott (1982) and King et al. (1988) is to approximate

the solutions using linear methods, especially the log-linearization method. As an illustration,

we follow the model that has been set up above and show the procedure of the log-linearization

as below.

Let X with no time subscript, no star superscript, and no tilde denote the level of a variable

at the zero-inflation steady state, where Pt/Pt−1 = 11. Let X̃t ≡ lnXt − lnX stand for

the log-linear deviation of a variable from its zero-inflation steady state. Specially, since the

interest rate has already been in a percentage, its log-linearization follows R̃n
t ≡ lnRn

t , where

Rn
t = 1 + rnt denotes the gross nominal interest rate. Further, we have the net interest rate

rnt ≈ R̃n
t and r̃nt = drnt = rnt − r. Let µ̂t = µt − µ denote the deviation of the markup from its

steady state level. Let X∗
t denote the level of a variable in the flexible price equilibrium (the

natural level). Let ρ ≡ − log β and r ≈ β−1 − 1. Log-linearize around the steady state with

zero inflation and we can write the log-linearized equilibrium into three blocks as follows.

The first block is for the aggregate demand given by

Ỹt =
C

Y
C̃t +

I

Y
Ĩt, (resource constraint)

C̃t = Et

{
−σ (rnt − πt+1 − ρ) + C̃t+1

}
, (consumption Euler equation)

Ĩt − K̃t =
1

cδ
Q̃t, (link between asset prices and investment)

rnt − πt+1 − ρ = (1− τ)
(
−µ̂t + Ỹt − K̃t

)
+ τQ̃t+1 − Q̃t,

(marginal cost of funds = marginal return to capital)

where Z̃t = −µ̂t + Ỹt − K̃t, πt = P̃t − P̃t−1, and τ = 1− δ
[

αY
(1+µ)K + (1− δ)

]−1

= (1− δ)/[Z +

(1− δ)].

The second block is for the aggregate supply formulated as

Ỹt = Ãt + αK̃t + (1− α)L̃t, (production function)

Ỹt − L̃t = µ̂t + φL̃t + γC̃t, (labor market equilibrium)

πt = −λµ̂t + βEt {πt+1} , (price adjustment and Phillips curve)

1Note that in the zero-inflation steady state rn = r = ρ.
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where λ = (1− θ)(1− θβ)/θ, and

K̃t+1 = δĨt + (1− δ)K̃t. (evolution of capital)

Finally, the last one is for the monetary policy provided by

rnt = ρ+ ϕππt + ϕy

(
Ỹt − Ỹ ∗

t

)
+ υt. (interest rate rule)

For readers with further interests in the details of the log-linearization method, we provide the

detailed technical derivations in the Appendix for the above results.

The log-linearization method is a simple and convenient tool to study the equilibrium dy-

namics. If the shocks driving aggregate fluctuations are small and an interior stationary solu-

tion exists, the first-order approximations provide adequate answers to questions such as local

existence, determinacy of equilibrium and the size of the second moments of endogenous vari-

ables; see, for example, Schmitt-Grohé and Uribe (2004) for details. However, there are several

problems that exist in the process of log-linearization. First, the log-linearization omits the

higher-order terms. Therefore, the topics that are closely related with the higher-order terms,

such as the risk terms, are not able to be fully studied. Due to this shortage, the model’s con-

nection with the asset prices and the financial risk is very limited. In addition, the first-order

approximation techniques are not well suited to handle questions such as welfare comparisons

across alternative stochastic or policy environments.

Second, the log-linearization is not able to provide the global solution for nonlinear models.

It is only able to solve the model locally, at the cost of missing the most optimal solution due

to missing the true global optimum2. This becomes a relevant issue not only for its qualitative

and quantitative economic implications but also from an econometric and statistical perspec-

tive. When concerned about the estimation of the structural parameters of the model, an

econometrician/statistician is more interested in studying the global shape of the approximat-

ed likelihood function. This will not be possible if the solution of the model is built from a local

approximation. Furthermore, as shown in Fernández-Villaverde and Rubio-Ramı́rez (2005), it

is possible to obtain a better fit of the model to the data as well as more accurate point esti-

mates of the moments of the model by exploiting the nonlinear structure of the economic and

mathematical model, which can only be achieved through the use of global methods; see, for

instance, Parra-Alvarez (2018) for details.

Finally, we mark that even if the performance of linear methods is disappointing along a

number of dimensions, linearization in levels is preferred to the log-linearization for both the

benchmark calibration and the highly nonlinear cases in some real applications, as argued in

Aruoba et al. (2006).

3.2 Nonlinear Methods of Solutions

The ability to find global solutions and estimate highly nonlinear DSGE models is of critical

importance for central banks and policy makers with their interests in quantifying the impacts of

2One exception is that the equivalent linearization representation of a nonlinear problem generates the same
global optimum but more efficiently.
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economic policies in a DSGE model. Since Taylor and Uhlig (1990) and Coleman (1990, 1991),

a number of nonlinear solution methods in discrete time have been proposed including the

perturbation methods proposed by Judd and Guu (1997) and the projection methods initiated

by Judd (1992), as alternatives to the linear approaches and to the value function iteration.

The perturbation method, formally introduced by Fleming (1971), has been applied extensively

to economic models by Judd and co-authors. Note that a first order perturbation is equivalent

to linearization when performed in levels, and is equivalent to log-linearization when performed

in logs. Aruoba et al. (2006) found that higher order perturbations display a much superior

performance over linear methods for a trivial marginal cost. These findings are based on the

computations in first, second, and fifth order, both in levels and in logs. The projection method,

on the other hand, is found to be more stable and accurate than the perturbation method. For

the projection method, Aruoba et al. (2006) found that finite elements perform very well for

all parameterizations. It is extremely stable and accurate over the range of the state space

even for high values of the risk aversion and the variance of the shock. This property is crucial

in estimation procedures, where accuracy is required to obtain unbiased estimates. Chebyshev

polynomials share all the good results of the finite elements method and are easier to implement.

However, in a model where policy functions have complicated local behavior, finite elements

might outperform Chebyshev polynomials.

Other methods to solve the DSGE models globally include the state space based approach,

as in Krusell and Smith (1997, 1998) with a parametric law of motion and as in Den Haan and

Rendahl (2010) with a nonlinear law of motion, and the simulation based approach as in Judd

et al. (2011) and Maliar et al. (2011), which solve a model only in the realized ergodic state

space in the equilibrium. For more details, the reader is referred to the aforementioned papers.

Even though the nonlinear methods as mentioned above can overcome some shortages of

the linear methods by improving the approximation, there exist some limitations as noted by

several papers. For example, Taylor and Uhlig (1990) found that the nonlinear solution methods

for solving the stochastic growth models are not satisfactory in answering the volatility related

questions, such as the relative volatility of investment and consumption. Schmitt-Grohè and

Uribe (2004) derived a second-order approximation to the policy function of a general class of

dynamic, discrete time, rational expectations models, and showed that the coefficients on the

terms linear and quadratic in the state vector in a second-order expansion of the decision rule

are independent of the volatility of the exogenous shocks. Therefore, up to the second order,

the presence of uncertainty affects only the constant term of the decision rules.

In parallel, a desire to understand the economic phenomena that can not be easily cap-

tured by linear models makes nonlinear models more relevant for empirical macroeconomics,

especially since the end of the great moderation, such as the financial crisis and the COVID-

19 pandemic. As noted by Aruoba et al. (2013), there are several types of nonlinearity that

can appear in a nonlinear DSGE model. The first is for the case that decision rules display

curvature and possibly asymmetries such as non-convex adjustment costs, and the second is

for kinks in decision rules, such as the zero lower bound on interest rates, credit constraints,
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borrowing constraints, and defaults. In addition to this categorization, we add a third type

of nonlinearity, that is the nonlinearity related with the uncertainty, such as the stochastic

volatility, time-varying risk premia, rare disasters, Poisson jumps, and Markov switches; see

Fernández-Villaverde et al. (2011) and Rudebusch and Swanson (2012) for examples.

More recently, Fernández-Villaverde and Levintal (2018) used a mixture of projection and

perturbation methods for computing the equilibrium of DSGE models with rare disasters. They

found that the Taylor projection delivers the best accuracy/speed tradeoff compared to the

third-order perturbations and the Smolyak collocation. Cao et al. (2023) introduced the global

DSGE (GDSGE) framework and a novel global solution method, called the simultaneous tran-

sition and policy function iterations, for solving the DSGE models. In the GDSGE, the state

variables and their global domain need to be specified. The algorithm solves jointly for policy

and transition functions over the iterations and is a pure projection method using wealth share

as an endogenous state variable with an implicit law of motion, different from the standard

policy function iteration algorithms as in Coleman (1990, 1991) and Judd (1992). Auclert et al.

(2021) and Lee (2024) solved the DSGE models globally in the sequence space. Additionally,

Lee (2024) developed the repeated transition method to accurately compute the sequence of the

conditional expectation of economic agents utilizing the ergodicity of DSGE models. Neither

a parametric law of motion nor parameterized expectation is necessary for the implementa-

tion. The method is flexibly applicable to standard macroeconomics models with and without

micro-level heterogeneity, especially for solving models with substantial nonlinearity in aggre-

gate fluctuations, as the method does not rely on a (potentially misspecified) parametric form

of the aggregate law of motion. This method provides a novel angle that a nonlinear model

with complex endogenous aggregate states (e.g., HAMs) can be solved using the sufficient s-

tatistic approach, and the validity of the approach can be tested based on some theory. For

further explorations, there are approaches which adopt the machine learning and deep learning

techniques, as in Han et al. (2021), Azinovic et al. (2022), and Fernández-Villaverde et al.

(2023), as well as the adaptive sparse grids, as in Winschel and Krätzig (2010) and Brumm and

Scheidegger (2017).

The estimation of the DSGE models can be categorized into likelihood-based approaches and

moments-based approaches; see DeJong and Dave (2007) and Canova (2007). The likelihood-

based approaches use nonlinear filters for the construction of the likelihood function, such as

the particle filter, the extended Kalman filter, and the unscented Kalman filter. Farmer (2021)

developed the discretization filter for approximating the likelihood of nonlinear, non-Gaussian

state space models. The major difficulty that arises when studying nonlinear state space models

is that the likelihood cannot be evaluated recursively in closed form as it can in linear models

with the Kalman filter. The discretization filter solves this problem by constructing a discrete-

valued Markov chain that approximates the dynamics of the state variables.

The moments-based approaches for estimating the nonlinear DSGE models include the

generalized method of moments (GMM); reviewed as in Ruge-Murcia (2013), the instrumental

variables approach; see Canova (2007), the simulated method of moments (SMM); see Duffie
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and Singleton (1993), Ruge-Murcia (2007), and Ruge-Murcia (2012), and the indirect inference;

see Smith (1993), Dridi et al. (2007), and Creel and Kristensen (2011).

Finally, as noted in Andreasen et al. (2017), the higher-order approximations often gener-

ate explosive sample paths because of the resulting unstable steady states in the approximated

system. The presence of explosive behavior complicates any model evaluation because no un-

conditional moments exist in this approximation. Any estimation method using unconditional

moments, such as GMM or SMM, is inapplicable because it relies on finite moments from sta-

tionary and ergodic probability distributions. Non-explosive sample paths are also required for

likelihood methods, for instance, when using the particle filter outlined in Fernández-Villaverde

and Rubio-Ramı́rez (2007). To overcome this issue, Andreasen et al. (2017) applied pruning

to perturbation approximations of any order and showed how pruning greatly facilitates the

inference of DSGE models.

§4 Dynamic Programming Methods for Continuous-Time

Macro-Finance Models

The continuous-time models can be dated back to the finance literature since the seminal

works by Robert C. Merton and others in 1970s. During 1990s, the continuous-time models were

successfully applied to the growth and the neoclassical investment theories. Since the financial

crisis in 2008, there has been a boom of continuous-time methods in macroeconomics, especially

in the fields of business cycles and financial markets. These literature connect the areas that

are seemingly disconnected in the past: finance, macroeconomics, and mathematics as well as

statistics. As a bridge, the continuous-time method can provide a promising framework to

integrate asset pricing theories studied in the finance literature to the real side of the economy

studied in macroeconomics, together with mathematical and statistical tools.

Theoretically, macroeconomics models in continuous time are preferred over the discrete-

time models because of their analytical tractability. The continuous-time methods transform

optimal control problems into stochastic differential equations, such as the Hamilton-Jacobi-

Bellman (HJB) equation, the Kolmogorov forward (KF) equation, and the Black-Scholes model.

Solving these SDEs is much simpler than solving the Bellman or the Chapman-Kolmogorov e-

quations in discrete time. Compared with the discrete-time framework, the elegant and powerful

mathematics such as differential equations and stochastic processes can be well applied in the

continuous-time framework. In fact, it is possible to derive closed-form solutions for a wider

class of models in continuous time without the need for strong parametric restrictions. On

the handling of borrowing constraints, the continuous-time framework is advantageous in the

presence of occasionally binding constraints, as these are dealt with using boundary conditions

rather than inequalities of the optimality conditions. Finally, continuous-time methods are suit-

ed to studying optimal stopping problems and situations where actions are taken infrequently

because they entail a fixed cost impulse control problem as described in Stokey (2009), such as

a country’s decision to default on its sovereign debt as discussed in Parra-Alvarez (2018).
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In particular, the continuous-time framework is well applied in the HAMs as in the work

of Achdou et al. (2022). When recast in continuous time, HAMs boil down to systems of

two coupled SDEs. The first SDE is the HJB equation for the optimal choices of a single

individual who takes the evolution of the distribution and hence prices as given. An individual’s

consumption saving decision depends on the evolution of the interest rate which is in turn

determined by the evolution of the distribution. And the second SDE is the KF equation

characterizing the evolution of the distribution, given optimal choices of individuals. The

evolution of the distribution depends on individuals’ saving decisions. More generally, this

approach is to cast HAMs in terms of the mathematical theory of the mean field games (MFG)

initiated by Huang et al. (2003, 2007) and Lasry and Lions (2007). The system of coupled

HJB and KF equations is known as the backward-forward MFG system. The two equations

run in opposite directions in time: the HJB equation runs backward and looks forward. It

answers the question “given an individual’s valuation of income and wealth tomorrow, how

much will she save today and what is the corresponding value function today?” In contrast,

the KF equation runs forward and looks backward. It answers the question “given the wealth

distribution, savings decisions and the random evolution of income today, what is the wealth

distribution tomorrow?”

Computationally, continuous time has resurfaced as a popular environment for economic

models because of its efficiency in numerical analysis. Solving a workhorse incomplete markets

model in continuous time is much faster compared to its discrete-time counterpart as argued in

Rendahl (2022). Financial frictions in macroeconomics require the nonlinear techniques. This

is especially important for the macro-finance models which include the financial intermediary

in the continuous-time framework, such as Chen (2010), Brunnermeier and Sannikov (2014),

Phelan (2016), Drechsler, Savov, and Schnabl (2018), He and Krishnamurthy (2019), Hansen et

al. (2024) and D’Avernas and Vandeweyer (2024). Modeling this class of problems rarely leads

to analytical solutions and needs to resort to the numerical techniques that provide accurate

and fast solution methods.

For the continuous-time macro-finance models in the open economy, new research is fast-

growing. Literature along this direction includes but is not limited to Grinols and Turnovsky

(1994), Zapatero (1995), Kumhof and Nieuwerburgh (2007), Pavlova and Rigobon (2010), Végh

(2013), Brunnermeier and Sannikov (2015), Nuño and Thomas(2015), Maggiori (2017), and

Oskolkov (2023).

Continuous time imparts a number of computational advantages relative to the discrete

time. First, in the continuous-time models, the optimality conditions (the first-order condi-

tions) that describe the equilibrium allocations of a stochastic economy are deterministic; see,

Chang (2010). Since the HJB equation does not contain future values of the value function and

the optimal policies only depend on the current value function, there is no need to approximate

expected values numerically. Hence, the computational cost and the numerical errors can be

reduced. This feature can also tame the “curse of dimensionality”, with which the standard

dynamic programming in discrete-time models often struggle with, given that the dynamic pro-
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gramming equation does not include any composition of functions or expectation operators in

the continuous-time framework; see, for example, Doraszelski and Judd (2012). The efficiency

of the perturbation methods and the projection methods can be improved in continuous time

as well. Since there is no need to approximate the composition of unknown functions, neither

to numerically approximate the integrals associated with expected values, the approximation-

s use much less computing time in both perturbation and projection methods. Specifically,

Parra-Alvarez (2018) assessed the performance of the first- and second-order perturbation and

the projection methods to compute an approximated solution of continuous-time DSGE models

based on the maximized HJB equation and the first-order conditions. It is found that the fit of

perturbation deteriorates when the degree of nonlinearity increases and the approximated value

is different from that obtained by global methods. Despite the perturbation being only locally

accurate, the increase in the order of approximation improves the goodness of fit substantial-

ly. Aruoba (2006) pointed that the projection methods are more accurate and robust than

perturbations for a wide range of values of the state-space centered around the deterministic

steady state, similarly to the discrete-time case. Their accuracy extends to different degrees of

nonlinearity.

Second, the discretized state space in continuous-time problems is very sparse. The sparse

structure of the implicit method (with finite differences) is by many considered the most im-

portant practical implication of continuous time, such as the sparsity of transition matrices as

discussed in Rendahl (2022).

Third, the viscosity solutions and finite difference methods can handle the non-differentiable

and non-convex problems in continuous time without the need to change the algorithm, while

these problems are difficult to handle in the standard discrete time methods.

To compare and contrast the performance of the continuous-time methods and the discrete-

time methods further, Rendahl (2022) compared the value function iteration for discrete time,

and the explicit and implicit finite difference methods for continuous time. The implicit finite

difference method is the continuous-time equivalent to Howard’s improvement algorithm in

discrete time, the implicit method is faster. Since the HJB equation does not contain future

values of the value function, the update of the value function can be formulated as the solution

to a system of linear equations. Through the sparse matrix operations, this system can be solved

efficiently. The explicit finite difference method in continuous time is where the value function

iteration in discrete time converges to. Since the value function iteration is less efficient, the

explicit method generally has slow convergence.

Mathematically or statistically, the continuous-time models do not impose a priori and

perfect synchronization of decisions among economic agents, since the decision interval of the

model is not tied to the observation interval in the data. They also allow for a clear distinction

between flows and stocks in the economy; see, the paper by Parra-Alvarez (2018) for more

discussions.
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4.1 Hamilton-Jacobi-Bellman Equations

The HJB equation is one of the most popular mathematical and statistical models in macroe-

conomics to characterize the macroeconomic activities; see, for example, Fernández-Villaverde

and Nuño (2021) for details. The basic setup is that an agent maximizes the following

max
{αt}∞

t=0

E0

[∫ ∞

0

e−ρtu (xt, αt) dt

]
,

subject to the law of motion for the state

dxt = µt (xt, αt) dt,

where xt ∈ X ⊂ RN is the state variable (such asKt in the new Keynesian model), αt ∈ A ⊂ RM

is the control variable (such as Ct, Lt, and Kt+1 in the new Keynesian model), αt = αt (xt) is

the policy function, ρ > 0 is the discount factor (recall that in the notation of new Keynesian

model: β = e−ρ), µ(·) is the drift function, and u(·) is the instantaneous utility function. It

satisfies the HJB equation as follows:

ρV(x) =
∂V

∂t
+max

α

{
u(x,α) + µ(x,α)⊤∇xV(x)

}
,

with a transversality condition limT→∞ e−ρTVT (x) = 0, where V(x) stands for the value

function at time t with the time subscript dropped, which might abuse notation. Here, A⊤

denotes the transpose of a vector or matrix A and tr(·) stands for the trace of a matrix. Note

that in the HJB equation, we use x to denote the vector of the state variables (dimension N×1),

µ(x,α) as the vector of the drift terms (dimension N × 1), and σ(x,α) as the vector of the

risk terms (dimension N × 1), and σ2(x,α) stands for the N ×N variance-covariance matrix.

Finally, we use ∇xV(x) to denote the gradient of V(x) (dimension N × 1) and ∆xV(x) to

denote the Hessian matrix of V(x) (dimension N ×N).

In a diffusion format, popular in the finance literature, the state is now

dxt = µt (xt, αt) dt+ σt (xt, αt) dWt,

where Wt is the standard Brownian motion. Then, the HJB equation is given by

ρV(x) =
∂V

∂t
+max

α

{
u(x,α) + µ(x,α)⊤∇xV(x) +

1

2
tr
(
σ2(x,α)∆xV(x)

)}
.

To characterize a possible extension, one can use the following jump model

dxt = µt (xt, αt, si) dt,

where si ∈ {s1, s2} is a two-state continuous-time Markov chain si ∈ {s1, s2} and the Poisson

process jumps from state 1 to state 2 with intensity λ1 and vice-versa with intensity λ2, which

is the so-called famous Markov switching (diffusion) model in the finance literature. Thus, the

HJB equation for this case is

ρVi(x) =
∂Vi

∂t
+max

α

{
u(x,α) + µ (x,α, si)

⊤ ∇xVi(x)
}
+ λi [Vj(x)−Vi(x)] ,

for i, j = 1, 2, i ̸= j, where Vi(x) ≡ V (x, si) denotes the value function at time t and state

si, with the time subscript dropped. When the HJB equation includes both the volatility and

jumps, we have the following jump-diffusion process

dxt = µt (xt, αt, si) dt+ σt (xt, αt) dWt,
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where si and σt (xt, αt) dWt constitute a Lévy process. Hence, the HJB equation that we want

to solve numerically is given by

ρVi(x) =
∂Vi

∂t
+max

α

{
u(x,α) + µ (x,α, si)

⊤ ∇xVi(x) +
1

2
tr
(
σ2(x,α)∆xVi(x)

)}
+ λi [Vj(x)−Vi(x)] ,

with a transversality condition limT→∞ e−ρTVT (x) = 0, and some boundary conditions defined

by the dynamics of xt.

4.2 Fokker-Plank Equations

Given a stochastic process xt with an associated infinitesimal generator A, its probability

density function g(x) is defined as Pt0 [xt ∈ Ω] =
∫
Ω
g(x)dx for any Ω ⊂ X following the dynam-

ics ∂g/∂t = A∗g, where A∗ is the adjoint operator of A. Note that we omit the time subscript

of the function g(x). Let xt be a stochastic process given by the SDE as follows

dxt = µt (xt) dt+ σt (xt) dWt,

which is a diffusion model or the so-called Black-Scholes model, widely used in the finance

literature. The evolution of the associated density is given by

∂g

∂t
= A∗g = − ∂

∂x
[µ(x)g(x)] +

1

2

∂2

∂x2
[
σ2(x)g(x)

]
with the initial value g0(xt) = δ (xt − x0), which is the well known Kolmogorov forward equa-

tion.

Now, consider the case with a Poisson jump. To do so, let xt be a stochastic process given

by

dxt = µt (xt, si) dt,

where si is a two-state continuous-time Markov chain si ∈ {s1, s2} with intensities λ1 and λ2,

respectively. Then, the evolution of the density is given by:

∂gi/∂t = A∗g = − ∂

∂x
[µ (x, si)gi(x)]− λigi(x) + λjgj(x)

for i, j = 1, 2, i ̸= j with the initial value g1,0(xt) = δ (xt − x0) and g2,0(xt) = 0. Next, for xt

following a Lévy process

dxt = µt (xt, si) dt+ σt (xt) dWt,

the evolution of the density is given by

∂gi/∂t = A∗g = − ∂

∂x
[µ (x, si)gi(x)]− λigi(x) + λjgj(x) +

1

2

∂2

∂x2
[
σ2(x)gi(x)

]
.

4.3 Markov Equilibrium

Similar to the discrete-time model, a competitive equilibrium in the continuous time model

is characterized by the market prices together with the allocations, such that given prices,

agents optimize and markets clear. From the perspective of the macroeconomic dynamics, the

continuous-time framework can be used to further study the stationary equilibrium and the

Markov equilibrium due to its advanced stochastic features. In particular, the three types of
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equilibrium in macroeconomics models are summarized in Table 1 below.

Table 1. Types of equilibrium in macroeconomics models.

Type of
equilibrium

Property Steady state
Dynamics of
state variables

Competitive
equilibrium

Deterministic
(no shock)

Converge to
a deterministic steady state
(stationary value);
Time-invariant
competitive equilibrium

Deterministic evolution

Stationary
equilibrium

Stochastic
(subject to shocks, but volatilities
are at constant levels);
Time-invariant Markov equilibrium

Converge to
a stochastic steady state
(the value of the state variable
with the highest probability
from the stationary distribution)

Evolution with
constant volatilities
eg, σt = σ

Markov
equilibrium

Stochastic
(subject to shocks and
volatilities are time-varying)

Converge to
a stationary distribution

Evolution with
time-varying volatilities
eg, σt ̸= σ

The stationary equilibrium is reached when the volatilities in the economic system are at

constant levels, even though the economy is still subject to the fundamental shocks. A Markov

equilibrium is a set of functions for the control variables, the monetary and fiscal policies, the

drifts and diffusions such that the agents’ optimal controls solve their respective HJB equations

given the law of motion of the state variable. In contrast to the stationary equilibrium, the

Markov equilibrium is where there is uncertainty in the value of the state variable and its law

of motion is endogenously solved by other structural variables in the model. The state variable

reaches a stationary distribution in the Markov equilibrium, in contrast to the case where

the state variable reaches a steady state value in the competitive equilibrium. A stochastic

steady state under the stationary distribution is the value of the state variable with the highest

probability from the stationary distribution3.

To solve the Markov equilibrium in continuous time, firstly we need to solve the optimization

problems and derive the allocations and prices as smooth functions of the state variable. Then,

define the stochastic process for the state variable and derive the law of motion of the state

variable, which is determined by the structural variables in the model using Ito’s lemma. Finally,

solve for the equilibrium by converting the stochastic differential equations into a system of

ODEs in the asset prices to find a numerical solution if there is no explicit solution; see, for

example, the book by Zhu et al. (2013) for more details. The ODEs can be solved using

appropriate boundary conditions.

3Note that the stationary equilibrium in our paper is not equivalent to the stationary value, which stands
for the deterministic steady state under the competitive equilibrium. Indeed, Achdou et al. (2022) defined
the stationary equilibrium as the time-invariant competitive equilibrium. However, we refer this concept as the
stationary value in this paper.
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4.4 Solution Methods

There are several methods to solve the SDEs (the HJB equations and the KF equations) in

the continuous-time models. First, the finite difference methods can approximate the deriva-

tives by differences; see, for instance, the book by Zhu et al. (2013) for details. Second, the

perturbation method can use a Taylor expansion of order q to solve the SDEs around the de-

terministic steady state. Third, the projection method can project the value function over a

subspace of functions.

As an illustrative example, an implicit upwind finite difference scheme is used to solve

a simple HAM, the so-called Huggett (1993) model. This scheme converges to the viscosity

solution of the problem, as long as it satisfies three properties: monotonicity, stability, and

consistency. To be specific, an agent maximizes

max
{ct}∞

t=0

E0

[∫ ∞

0

e−ρtu (ct) dt

]
,

subject to dat = (si +Rtat − ct) dt, which yields a global solution, where the agent’s id-

iosyncratic endowment si ∈ {s1, s2} is a Markovian chain with intensities s1 → s2 : λ1 and

s2 → s1 : λ2, at is the agent’s wealth at the period t, ct is the consumption, ρ > 0, u(·) is the
momentary utility function, and Rt is the gross real interest rate. Then the HJB equation is as

follows:

ρVi(a) = max
c

{u(c) + µi(a)V
′
i (a)}+ λi (Vj(a)− Vi(a)) ,

for i = 1 and 2, where µi(a) is the drift with µi(a) = si +Ra− c(a) and V ′
i (a) is the derivative

of Vi(a). When the market clears, the aggregate income normalizes to one, that is, E [si] = 1.

Total assets in zero net supply is
∑2

i=1

∫
agt (a, si) da = 0, where gt (a, si) is the income wealth

density. There are two ways that the value function can be updated, the explicit method and

the implicit method. Here we introduce the implicit method, since it is more efficient and more

stable/reliable. In addition, the step size in the implicit method can be arbitrarily large. Using

the implicit finite difference scheme, we can write the finite difference approximation of the

HJB equation as:

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u
(
cni,j

)
+

(
V n+1
i,j

)′ (
sj +Rai − cni,j

)
+ λj

(
V n+1
i,−j − V n+1

i,j

)
,

where the parameter ∆ denotes the step size of the implicit method. V n
i,j denotes the n’th

iteration value of the value function Vi,j . For j = 1, 2, assume that when j = 1, −j = 2 and

vice versa, following Achdou et al. (2022). The derivative V ′
i,j = V ′

j (ai) is approximated with

either a forward or a backward difference approximation

V ′
i,j,F ≡ Vi+1,j − Vi,j

∆a
, and V ′

i,j,B ≡ Vi,j − Vi−1,j

∆a
.

Under the upwind scheme, using the forward difference approximation whenever the drift of the

state variable is positive and the backward difference approximation whenever it is negative,

we have

µi,j,F = sj +Rai − ci,j,F , µi,j,B = sj +Rai − ci,j,B,

and

V ′
i,j = V ′

i,j,F1{µi,j,F>0} + V ′
i,j,B1{µi,j,B<0} + V̄ ′

i,j1{µi,j,F606µi,j,B},
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where V̄ ′
i,j = u′ (sj +Rai). Thus, the HJB equation can be written as:

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u
(
cni,j

)
+
(
V n+1
i,j,F

)′ [
sj +Rai − cni,j,F

]+
+
(
V n+1
i,j,B

)′ [
sj +Rai − cni,j,B

]−
+ λj

[
V n+1
i,−j − V n+1

i,j

]
,

This equation constitutes a system of 2× I 4 linear equations, and it can be written in matrix

notation using the following steps

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u
(
cni,j

)
+
V n+1
i+1,j − V n+1

i,j

∆a

(
µn
i,j,F

)+
+
V n+1
i,j − V n+1

i−1,j

∆a

(
µn
i,j,B

)−
+ λj

[
V n+1
i,−j − V n+1

i,j

]
.

Collecting terms with the same subscripts on the right-hand side, it leads to

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u
(
cni,j

)
+ V n+1

i−1,jxi,j + V n+1
i,j yi,j + V n+1

i+1,jzi,j + V n+1
i,−j λj ,

where xi,j = −
(
µn
i,j,B

)−
/∆a, yi,j = −

[(
µn
i,j,F

)+ −
(
µn
i,j,B

)−]
/∆a−λj , and zi,j =

(
µn
i,j,F

)+
/∆a.

Thus, this equation can be written in the matrix notation as 1
∆

(
Vn+1 −Vn

)
+ ρVn+1 =

un +AnVn+1, where

An =



y1,1 z1,1 0 . . . 0 λ1 0 0 . . . 0

x2,1 y2,1 z2,1 0 . . . 0 λ1 0 0 . . .

0 x3,1 y3,1 z3,1 0 . . . 0 λ1 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . . xI,1 yI,1 0 0 0 0 λ1

λ2 0 0 0 0 y1,2 z1,2 0 0 0

0 λ2 0 0 0 x2,2 y2,2 z2,2 0 0

0 0 λ2 0 0 0 x3,2 y3,2 z3,2 0

0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · · · · 0 λ2 0 · · · 0 xI,2 yI,2


2I×2I

,

which is from the final HJB iteration, and un =
(
u
(
cn1,1

)
, . . . , u

(
cnI,1

)
, u

(
cn1,2

)
, . . . , u

(
cnI,2

))⊤
.

This system can be written as BnVn+1 = bn, Bn =
(

1
∆ + ρ

)
I − An, and bn = un + 1

∆Vn,

which can be solved very efficiently using sparse matrix (since An is a sparse matrix) routines.

The matrix An is a transition matrix that summarizes the Poisson intensities when the process

is approximated by the finite difference method with a discrete Poisson process. All rows in

An sum to zero, diagonal elements are non-positive and off-diagonal elements are non-negative.

All entries in a row being zero imply that the state remains fixed over time.

To solve the KF equation, we have to solve the following ODE using the finite difference

method

0 = − d

da
[µj(a)gj(a)]− λjgj(a) + λ−jg−j(a),

where g(·) is the density function. With the Poisson jumps, gj(·) denotes the density function

under state j, and g−j(·) is the density function under state −j. Then, the ODE can be

4We assume that i = 1, . . . , I and j = 1, . . . , J .
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approximated by

−
gi,j

(
µn
i,j,F

)+ − gi−1,j

(
µn
i−1,j,F

)+
∆a

−
gi+1,j

(
µn
i+1,j,B

)− − gi,j
(
µn
i,j,B

)−
∆a

− gi,jλj + gi,−jλ−j = 0.

Collecting terms, we obtain

gi−1,jzi−1,j + gi,jyi,j + gi+1,jxi+1,j + gi,−jλ−j = 0,

where xi+1,j = −
(
µn
i,j+1,B

)−
/∆a, yi,j = −

[(
µn
i,j,F

)+ −
(
µn
i,j,B

)−]
/∆a − λj , and zi−1,j =(

µn
i,j−1,F

)+
/∆a. This approximation can be written in the matrix form A⊤g = 0 where A⊤

is the transpose of the intensity matrix A (A = limn→∞ An) from the HJB equation.

To find the stationary distribution, one solves the eigenvalue problem ATg = 0, a system of

2×J linear equations. The reason for using the transpose of the intensity matrix A can be made

more precise by the differential operators, so that one can write the HJB equation in terms of

a differential operator A, the infinitesimal generator of the process. Similarly, the Kolmogorov

forward equation can be written in terms of an operator A∗, the adjoint of the operator A in the

HJB equation, which is the infinite-dimensional analogue of a matrix transpose. A is simply

the discretized infinitesimal generator, whereas A⊤ is the discretized version of its adjoint, the

Kolmogorov forward operator.

4.5 Transition Dynamics and Impulse Responses

In this section, we provide several recent methods in the existing literature on computing

the transition dynamics and impulse response functions in the continuous-time models. The

computational method for solving transition dynamics from an arbitrary initial condition can

also be used to compute nonlinear impulse responses to unanticipated aggregate shocks, the

so-called MIT shocks, i.e., an unanticipated (zero probability) shock followed by a deterministic

transition as in Krusell and Smith (1998). Recently, Fernández-Villaverde et al. (2023) further

extended the model in Krusell and Smith (1998) by proposing a nonparametric perceived law

of motion (PLM) and updated with machine learning, and Boppart et al. (2018) and Auclert

et al. (2021) used the linearized counterpart to compute linear impulse responses to small MIT

shocks in order to obtain further speed gains. Additionally, both Auclert et al. (2021) and

Oskolkov (2023) used the sequence-space Jacobians to compute the impulse responses. For the

type of the representative agent model, He and Krishnamurthy (2019) provided a method to

compute the impulse responses in a continuous-time framework. Now, let us introduce these

methods in detail.

4.5.1 Aggregate Uncertainty and Linear Dynamics

When there is aggregate uncertainty, Krusell and Smith (1998) proposed a bounded ra-

tionality method. Households in the model approximate the distribution by a number of its

moments, e.g., the mean
∫∞
0

∫ s̄

s
ag(a, s)dads = Kt, where st is the labor productivity following

the Ornstein-Uhlenbeck process as dst = θ (ŝ− st) dt+σdBt. The production function is given

by Yt = F (At,Kt, Lt) = AtK
α
t L

1−α
t with the aggregate total factor productivity (TFP) At, fol-

lowing a diffusion process as dAt = µA (At) dt+σA (At) dWt. The capital Kt evolves according
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to dKt = µK (Kt, At)Ktdt. Then, the HJB simplifies to

ρV (a, s, A,K) =max
c≥0

u(c) + [ws+Ra− c]
∂V

∂a
+ θ(ŝ− s)

∂V

∂s
+
σ2

2

∂2V

∂s2

+ µA(A)
∂V

∂A
+
σ2
A(A)

2

∂2V

∂A2
+KµK(K,A)

∂V

∂K
.

Suppose the perceived law of motion (PLM) has a simple parametric (linear) form

µK(K,A;θ) = θ0 + θ1K + θ2KA+ θ3A. (PLM)

Then, begin with an initial guess of θ0 =
(
θ00, θ

0
1, θ

0
2, θ

0
3

)
, and set n := 0.

(1) Given µK

(
K,A;θ0

)
, solve the HJB equation and obtain the transition matrix A.

(2) Conduct the Monte Carlo simulation to obtain the simulated data of the aggregate TFP

{Am}Mm=0 based on the model ∆Am = µA (Am−1)∆t + σA (Am−1)
√
∆tεm, where εm ∼

N (0, 1).

(3) Compute the dynamics of the distribution using the KF equation and use it to obtain

aggregate capital
∫∞
0

∫ s̄

s
ag(a, s)dads = Kt.

(4) Run an ordinary least squares ∆Km/Km = µK (Km, Am;θ)∆t over the simulated sample

{Am,Km}Mm=0 to update coefficients θn+1. If θn+1 = θn or they are very close, stop,

otherwise go back to step 1 .

In a linearized system, Boppart et al. (2018) employed the MIT shock and obtained the

first-order perturbation solution just by computing transitional dynamics. The initial state is

the deterministic steady state fss(·). The aggregate TFP evolves with time according to

∆A0 = µA (A0)∆t+ σA (A0)
√
∆t, and ∆At = µA (At)∆t, t > 0,

where A0 = Ass. If the model is approximately linear, the response to an MIT shock is the

impulse response function of the model. The method can be extended to the case with n shocks

dA ≡
(
dA0, dA1, . . . , dAn

)⊤
.

4.5.2 Aggregate Uncertainty and Nonlinear Dynamics

For models with aggregate nonlinear dynamics, which is a general form of PLM, Fernández-

Villaverde et al. (2023) extended the Krusell and Smith (1998) methodology and proposed a

nonparametric perceived law of motion to globally compute and estimate the HAM, updated

using machine learning such as a neural network. As claimed by Fernández-Villaverde et al.

(2023), their algorithm can approximate the PLM arbitrarily well; see, for instance, the paper

by Fernández-Villaverde et al. (2023) for details.

Households consider a PLM of aggregate debt Bt

dBt = h (Bt, Nt) dt,

where h (Bt, Nt) = E [dBt | Bt, Nt]/dt and Nt = Kt −Bt, the net wealth (i.e., inside equity) of

the expert, which is the difference between his assets (capital) and liabilities (debt). Given the



976 Appl. Math. J. Chinese Univ. Vol. 40, No. 4

PLM, the household’s HJB equation becomes

ρVi(a,B,N) =max
c

c1−γ − 1

1− γ
+ µi(a,B,N)

∂Vi
∂a

+ h(B,N)
∂Vi
∂B

+ µN (B,N)
∂Vi
∂N

+ λi [Vj(a,B,N)− Vi(a,B,N)] +

[
σN (B,N)

]2
2

∂2Vi
∂N2

,

where i ̸= j = 1, 2, the net wealth Nt evolves as dNt = µN (Bt, Nt) dt + σN (Bt, Nt) dWt,

and the household’s saving at follows dat = (wtst +Rtat − ct) dt = µi (at, Bt, Nt) dt and Bt ≡∫
adGt(a, s).

Instead of using the projection method to approximate the PLM: h(x;θ) = θ0+
∑Q

q=1 θqψq(x),

Fernández-Villaverde et al. (2023) approximated the PLM with a neural network as h(x;θ) =

θ10+
∑Q

q=1 θ
1
qϕ

(
θ20,q +

∑2
i=1 θ

2
i,qx

i
)
, whereX = {x1,x2, . . . ,xJ} and xj =

{
x1j , x

2
j

}
=

{
Btj , Ntj

}
is a two-dimensional input. θ =

(
θ10, θ

1
1, . . . , θ

1
Q, θ

2
0,1, θ

2
1,1, θ

2
2,1, . . . , θ

2
0,Q, θ

2
1,Q, θ

2
2,Q

)
denotes the

vector of weights. This is a neural network with one hidden layer, with a linear combination

of Q activation functions. ϕ(·) is an activation function, such as ϕ(x) = log (1 + ex). For the

approximation of a two-dimensional function, one single layer is enough. This neural network

can also be extended to include multiple hidden layers, which is the case of deep neural network.

To train the neural network, θ is selected to minimize the quadratic error function E(θ;X, ĥ)
given a simulation (X, ĥ), where ĥ =

{
ĥ1, ĥ2 . . . , ĥJ

}
and ĥj ≡

Btj+∆t−Btj

∆t , that is,

θ∗ = argmin
θ

E(θ;X, ĥ) = argmin
θ

J∑
j=1

E
(
θ;xj , ĥj

)
= argmin

θ

1

2

J∑
j=1

∥∥∥h (xj ;θ)− ĥj

∥∥∥2 .
Fernández-Villaverde et al. (2023) solved this problem using the batch gradient descent algo-

rithm. Note that some other machine learning or deep learning methods can be applied to solve

the above system too.

Auclert et al. (2021) proposed a general and highly efficient method for solving and estimat-

ing the general equilibrium HAMs with aggregate shocks in discrete time. The model is set up

in the sequence space by assuming perfect foresight with respect to aggregates. The approach

relies on the rapid computation of sequence space Jacobians, the derivatives of perfect-foresight

equilibrium mappings between aggregate sequences around the steady state. This algorithm

can be combined with a systematic approach of composing and inverting Jacobians to solve

for general equilibrium impulse responses. A rapid procedure is obtained for likelihood-based

estimation and computation of nonlinear perfect-foresight transitions.

Equilibrium in the sequence space can always be expressed as a solution to a nonlinear system

F(X,Z) = 0, whereX represents the time path of endogenous variables (usually aggregate prices

and quantities) and Z represents the time path of exogenous shocks. Obtaining the impulse

responses of unknowns to shocks, dX = −F−1
X FZdZ, requires computing the Jacobians FX and

FZ, which are formed by combining Jacobians from different parts of the model.

Similarly, Oskolkov (2023) employed the methods from Kaplan et al. (2018) and Auclert

et al. (2021) to analyze nonlinear solutions for aggregate one-time unanticipated shocks. In

particular, this paper works in the sequence space and computes the sequence-space Jacobians

by solving the linearized version of the coupled system of equations. For estimation, a sample
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path of x(t) is integrated from a simulated sequence of shocks dW given the parameters, which

come from the calibration and determine the steady state. To estimate the parameters of the

processes, the simulated method of moments (SMM) of McFadden (1989) is used, which is to

compute the moments of these series, to compare them to the moments of simulated sequences,

and to look for a combination of parameters that minimize a quadratic distance.

Finally, in a representative agent model, He and Krishnamurthy (2019) studied the effect

of −1% shock in σdWt, which means the fundamental shock leading capital to fall exogenously

by 1%. The computational algorithm to calculate the impulse response functions is as follows,

where the focus is on the mean path by shutting future shocks to zero.

(1) Compute the benchmark path of these variables without any shocks, but still subject to

the endogenous drift of the state variable in the model. In other words, calculate the

benchmark path for the realizations of dWt+m = 0 for m ≥ 0.

(2) Compute the shocked path of these variables given the initial shock σdWt = −1%, but

setting future realizations of shocks to be zero, i.e., dWt+m = 0 for m > 0.

(3) Calculate and plot the (log) difference between the path with the shock and the mean path

without any shock. This computation is meant to mimic a deviation-from-steady-state

computation that is typically plotted in impulse-response functions in the linear-non-

stochastic models.

Note that in traditional linear models, the impulse-response functions are independent of

future shocks. However, the impact of a shock depends on future shocks in nonlinear models.

For more on the difference between impulse responses in linear models with a non-stochastic

steady state and those nonlinear models with a stochastic steady state; see, for example, the

papers by Koop et al. (1996) and Borovic̆ka et al. (2011). An alternative method to calculate

the impulse response functions in the stochastic nonlinear models is to calculate the expected

impact of the initial shock σdWt = −1% on the variable at t+m by integrating over all possible

future paths.

4.6 Estimation and Dynamic Programming: A Data Driven Approach

The sections above introduced the solution methods and the numerical analysis of the tran-

sition dynamics and the impulse responses. To see how the methods above can be connected

with the empirical analysis using the real-world data5, we propose a method that combines the

empirical estimation and the numerical computation in order to acquire the parameter values

and the solutions of the optimization problem simultaneously. Our current working paper tries

to address this issue; see, for example, Cai and Hu (2025) for details. The novelty of this ap-

proach is its data driven feature, where the empirical estimation is embedded into the algorithm

that finds the optimal controls of the optimization problem, and then the parameters and the

5We appreciate the anonymous referee for bringing our attention to this issue.
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optimal policies update recursively. We provide a brief description of the algorithm below, and

this method can be further applied in various adaptations according to the specific problems.

Step 1: Use the maximum likelihood estimation (MLE) method to estimate the drift and

the diffusion terms in the law of motion of the state variable. This step uses the data from

the financial market, such as the firms’ net worth value. For a reference on the empirical

macro-finance analysis, please see Gilchrist and Zakrajšek (2012).

Step 2: Based on the theoretical derivation, make a guess of the parametric form of the drift

function and the diffusion function of the state variable, where the control variable serves as a

key factor. Use the real-world data of the control variable to estimate the parameters in the

parametric functions of the drift and the diffusion.

Step 3: Substitute the estimated drift function and the diffusion function of the state variable

in the HJB equation. Use the finite difference method introduced in Section 4.4 to compute

the value function in the HJB equation.

Step 4: Substitute the computed value function in the FOCs, and solve the optimal policy:

the optimal control variable as a function of the state variable. Then use the estimated law

of motion (the drift and the diffusion) of the state variable and the Ito’s lemma, in addition

to the optimal policy function, to calculate the stochastic process (the drift and the diffusion)

that the control variable follows.

Step 5: Conduct the Monte Carlo simulation to obtain a series of simulated data of the control

variable based on the computed process in Step 4. Use the simulated data of the control variable

to update the parametric estimation of the drift function and the diffusion function of the state

variable in Step 2.

Step 6: Begin again from Step 3, substitute the updated drift function and the diffusion

function of the state variable in the HJB equation. Recompute the value function in the HJB

equation, and then update Steps 4 and 5. Iterate until the parameters of the drift function and

the diffusion function of the state variable converge.

To describe the process above in a nutshell, we aim to evaluate the parameters in the drift

function and the diffusion function of the state variable using the real-world data combined

with the optimization solution. We start from the real-world data of the state variable and

the control variable to acquire an initial estimation, then use the HJB equation, the FOC,

and the Ito’s lemma to derive the values of the control variable’s drift and diffusion from the

state variable’s drift and diffusion. Lastly we use the simulated data from the control variable’s

stochastic process to update the parametric estimation of the state variable’s drift function and

diffusion function.

Alternatively, the parametric method can be substituted by the nonparametric method,

such as the neural network, when the number of states and controls grows. When training the

neural network, first make a guess of the initial values of the parameters and then construct a

time series of data through the simulation. Then train the parameters on the simulated data
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and obtain the updated values of parameters by minimizing a quadratic error function. Iterate

until the value of the parameters converge.

Note that there are other approaches that can handle the combination of the parameter

estimation and the dynamic programming in addition to the methods introduced above, one of

such extension is the reinforcement learning.

4.7 A More General Framework

Achdou et al. (2022) extended the study to the backward-forward MFGs system in n

dimensions, which is a natural generalization of the equations for the Bewley-Huggett-Aiyagari

(BHA) models, proposed by Bewley (1987), Hugget (1993), and Aiyagari (1994), respectively.

The mathematical MFG literature typically writes this system using the language of the modern

theory of SDEs, especially the vector calculus notation, described as follows. For more details

about modeling BHA type models, the reader is referred to the papers by Kirkby (2018) and

Hansak (2023).

The mathematics literature typically only considers the case where the state variables follow

diffusion processes rather than processes featuring jumps. Under this assumption, a general

backward-forward MFG system in n dimensions is

ρV = max
α

{
r(x, α, g) +

n∑
i=1

αi∂iV

}
+

1

2

n∑
i=1

σ2
i (x)∂iiV + ∂tV,

in Rn × (0, T ), where we use the short-hand notation ∂av = ∂v/∂a, and so on, and

∂tg = −
n∑

i=1

∂i (α
∗
i (x, g)g) +

1

2

n∑
i=1

∂ii
(
σ2
i (x)g

)
,

in Rn × (0, T ), with

g0 = g(0) and VT = V (x, g(T )),

in Rn, where x ∈ Rn is an n-dimensional state vector, α ∈ Rn is a control vector and α∗ its

optimally chosen policy function, V (x, t) is the value function, g(x, t) the density, r(x, α, g)

a period return function, and σ2
i (x) a diffusion coefficient. The first equation is the HJB

equation, the second equation is the KF equation and the equations in the third line are the

initial condition on the density and the terminal condition on the value function. The system

iterates backward-forward in the sense that given the steady state value function, the system

updates backward using the HJB equation to obtain the policies. Given the initial distribution,

the system updates forward using the KF equation to propagate the distribution. For a two-

dimensional special case, in the Huggett model with a diffusion process (close to but different

from the Huggett model discussed in Section 4.4),

dst = µ (st) dt+ σ (st) dWt,

ρv(a, s) = max
c
u(c) + ∂1v(a, s)α1 + ∂2v(a, s)α2 +

1

2
∂22v(a, s)σ

2(s),

0 = −∂1 (α1g(a, s))− ∂2 (α2g(a, s)) +
1

2
∂22

(
σ2(s)g(a, s)

)
,

where x ∈ R2 with x1 = a and x2 = s.
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Now, we define three useful operators: the gradient ∇, the Laplacian ∆ and the divergence.

First, for a function f : Rn → R, the gradient vector is the vector of first derivatives ∇f :=

[∂f/∂x1, . . . , ∂f/∂xn]
⊤
. Second, for a function f : Rn → R, the Laplacian is the sum of all

the unmixed second derivatives ∆f :=
∑n

i=1 ∂
2f/∂x2i . Third, for a vector-valued function

v : Rn → Rn, i.e., v (x1, . . . , xn) = [v1 (x1, . . . , xn) , . . . , vn (x1, . . . , xn)]
⊤
, the divergence of v

is div(v) :=
∑n

i=1 ∂vi/∂xi. Note that ∆f = div(∇f).
The MFG literature typically assumes that σ2

i (x) = 2ν for all x and all i which implies

that the second-order terms simplify. Assume H(x, p, g) := maxα {r(x, α, g) +
∑n

i=1 αipi},
where H(x, p, g) denotes the Hamiltonian. The optimal drift of each state variable equals

α∗
i (x, g) = ∂piH(x,∇v, g). Using the Laplacian and the divergence just defined, the backward-

forward MFG system can be written into the standard mathematical formulation

ρv = H(x,∇v, g) + ν∆v + ∂tv in Rn × (0, T ),

∂tg = − div (∇pH(x,∇v, g)g) + ν∆g in Rn × (0, T ),

g(0) = g0, v(x, T ) = V (x, g(T )) in Rn.

Note that the MFG literature typically sets ρ = 0 for simplicity, i.e., it ignores discounting.

The backward-forward MFG system above describes general HAMs without aggregate un-

certainty. However, in many economically interesting situations, it is important to allow for

aggregate risk in addition to idiosyncratic risk as in Den Haan (1997) and Krusell and Smith

(1998). Fortunately, the theory of MFGs has also studied that case, with mathematicians re-

ferring to aggregate uncertainty as “common noise”. In the most general case, such MFGs

can be written in terms of the so-called “Master equation” as in Cardaliaguet et al. (2019).

This Master equation is an equation on the space of measures, i.e., it is an equation that is set

in infinite-dimensional space. In the case without aggregate uncertainty, the Master equation

reduces to the backward-forward MFG system.

§5 Conclusion

This selective review outlined the mathematical/statistical tools and the computational

methods in mathematics for solving both discrete-time and continuous-time models in macroe-

conomics. As the mathematical tools and computational methods are more advanced in con-

tinuous time, we see a bright future for the macroeconomics modeling in continuous time. For

example, in addition to a neural network as employed by Fernández-Villaverde et al. (2023),

some advanced machine learning such as deep learning methods or AI methods can be applied

to this field too, especially for nonlinear models, which can attract some young scholars and

Ph.D. students in economics, mathematics and statistics, to find their own interesting research

topics for continuous-time models in macroeconomics. In addition, the well-developed asset

pricing theories in continuous time also shed light on the inclusion of financial risk analysis in

the macroeconomics models. Looking forward, more work can be for sure done to study the

connection between the real economy’s business cycles and the financial market’s fluctuations

within a continuous-time general equilibrium framework. Even though the discrete-time model
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and the continuous-time model may share similar computational accuracy, we still have much

confidence on the scope of the analysis that can be done only in continuous time which can not

be substituted by the discrete-time model, such as the formulation of problems related with

uncertainty. Finally, similar to the model specification problem for conventional stochastic dif-

fusions, well studied in the literature such as the pioneer work by Aı̈t-Sahalia (1996), it would

be interesting to consider some possible model specification tests for HAMs with aggregate

shocks under full or partial information as addressed in Cai, Mei and Wang (2024), which is

definitely warranted as future research. The reader is referred to the paper by Cai, Mei and

Wang (2024) for more discussions.

Appendix. The details of log-linearization

In the following detailed derivation of the equations in Section 3.1, we use the general

formula of the log-linearization as: X̃t ≡ lnXt − lnX ≈ (Xt −X)/X, so that Xt = XeX̃t ,

Xt ≈ X
(
1 + X̃t

)
, and eX̃t ≈ 1 + X̃t. Also, ln (1 +Xt) ≈ Xt and d lnXt = lnXt − lnX ≈

(Xt −X)/X = dXt/X ≈ X̃t. Next, we derive the equations listed in Section 3.1.

1. The resource constraint can be written as follows:

Yt = Ct + It +G and Y
(
1 + Ỹt

)
= C

(
1 + C̃t

)
+ I

(
1 + Ĩt

)
+G.

At the steady state, we have that Y = C + I + G. Thus, Y Ỹt = CC̃t + IĨt and Ỹt =

CC̃t/Y + IĨt/Y .

2. The consumption Euler equations become the following equations

Ct = Et

{[
(1 + rnt )

Pt

Pt+1
β

]−σ

Ct+1

}
,

CeC̃t = Et


[
e1̃+rnt × eP̃t

eP̃t+1

× β

]−σ

CeC̃t+1

 ,

1 + C̃t = Et

{[(
1 + 1̃ + rnt

)(
1 + P̃t − P̃t+1

)
β
]−σ (

1 + C̃t+1

)}
,

ln
(
1 + C̃t

)
= Et

{
−σ

[
ln
(
1 + 1̃ + rnt

)
+ ln (1− πt+1) + lnβ

]
+ ln

(
1 + C̃t+1

)}
,

and

C̃t = Et

{
−σ

(
1̃ + rnt − πt+1 − ρ

)
+ C̃t+1

}
,

where πt = P̃t − P̃t−1 and lnβ = −ρ. Since 1 + rnt = e1̃+rnt , then, ln (1 + rnt ) = 1̃ + rnt ,

so that rnt ≈ 1̃ + rnt and

C̃t = Et

{
−σ (rnt − πt+1 − ρ) + C̃t+1

}
.
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3. The link between asset prices and investment is given by

It
Kt

= δ +
1

c

(
1− 1

Qt

)
,

IeĨt

KeK̃t

= δ +
1

c

(
1− 1

QeQ̃t

)
,

IQeĨteQ̃t = δQKeQ̃teK̃t +
1

c

(
QKeQ̃teK̃t −KeK̃t

)
,

and

IQ
(
1 + Ĩt

)(
1 + Q̃t

)
= δQK

(
1 + Q̃t

)(
1 + K̃t

)
+

1

c

[
QK

(
1 + Q̃t

)(
1 + K̃t

)
−K

(
1 + K̃t

)]
.

At the steady state, we have
I

K
= δ +

1

c

(
1− 1

Q

)
.

Therefore,

IQĨt −
1

c
KQ̃t = IQK̃t and Ĩt − K̃t =

1

c

K

IQ
Q̃t.

In the equilibrium, we have
I

K
− δ = 0,

which also implies Q = 1 with the steady state condition. Thus,

Ĩt − K̃t =
1

cδ
Q̃t.

4. Marginal cost of funds and marginal return to capital are given by

Et

{
Λt,+1 (1 + rnt )

Pt

Pt+1

}
= Et

{
Λt,+1

(
Zt + (1− δ)Qt+1

Qt

)}
,

and

ln (1 + rnt ) + lnPt − lnPt+1 = ln [Zt + (1− δ)Qt+1]− lnQt.

Take total differential to obtain the following

d ln (1 + rnt ) + d lnPt − d lnPt+1 = d ln [Zt + (1− δ)Qt+1]− d lnQt,

and

drnt + P̃t − P̃t+1 =
[dZt + (1− δ)dQt+1]

Z + (1− δ)
− Q̃tr

n
t − πt+1 − ρ = (1− τ)Z̃t + τQ̃t+1 − Q̃t.

Since drnt = rnt − r = r̃nt , Zt = αYt/[(1 + µt)Kt], and at the steady state r = ρ, it is easy

to see that

rnt − ρ− πt+1 =
Z

Z + (1− δ)
Z̃t +

1− δ

Z + (1− δ)
Q̃t+1 − Q̃t.

Now, define τ = (1 − δ)
[

αY
(1+µ)K + (1− δ)

]−1

= (1 − δ)/[Z + (1 − δ)]. Then, 1 − τ =

Z/[Z + (1 − δ)]. Thus, rnt − πt+1 − ρ = (1 − τ)Z̃t + τQ̃t+1 − Q̃t. Since Z̃t = d lnZt =

d ln
(

1
1+µt

α Yt

Kt

)
= −d ln (1 + µt) + d lnYt − d lnKt = −µ̂t + Ỹt − K̃t, and d ln (1 + µt) =

dµt = µ̂t, in particular, we arrive at

rnt − πt+1 − ρ = (1− τ)
(
−µ̂t + Ỹt − K̃t

)
+ τQ̃t+1 − Q̃t.
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5. Production function is Yt = AtK
α
t L

1−α
t Vt, so that lnYt = lnAt+α lnKt+(1−α) lnLt+

lnVt. Taking total differential leads to
dYt
Y

=
dAt

A
+ α

dKt

K
+ (1− α)

dLt

L
.

Since Vt =

[∫ 1

0

(
Pt(f)
Pt

)−ε

df

]−1

, it vanishes in a first-order log linearization around a zero

inflation steady state due to the reason that the deviation of ln (Pt(f)/Pt) must average

to zero. Thus,

Ỹt = Ãt + αK̃t + (1− α)L̃t.

6. Labor market equilibrium is (1 − α) Yt

Lt
= (1 + µt)

Lφ
t

C−γ
t

, then, ln(1 − α) + lnYt − lnLt =

ln (1 + µt)+φ lnLt+γ lnCt. Taking total differential, one obtains Ỹt−L̃t = µ̂t+φL̃t+γC̃t.

7. Price adjustment and Phillips curve can be simplified as follows. It follows from Pt =[
θ (Pt−1)

1−ε
+ (1− θ) (P o

t )
1−ε

] 1
1−ε

that P̃t = θP̃t−1 + (1 − θ)P̃ o
t , which can be trans-

formed into πt = P̃t − P̃t−1 = (1 − θ)
(
P̃ o
t − P̃t

)
/θ. Also, it is easy to see from

Et

∑∞
i=0 θ

iΛt,i (P
o
t /Pt+i)

−ε
Yt+i [P

o
t /Pt+i − (1 + µ)/(1 + µt+i)] = 0 that

P̃ o
t = (1− θβ)Et

∞∑
i=0

(θβ)i
(
M̃Ct+i + P̃t+i

)
= (1− θβ)

(
M̃Ct + P̃t

)
+ θβEt

{
P̃ o
t+1

}
.

Therefore,

P̃ o
t − P̃t = (1− θβ)M̃Ct + θβEt

{
P̃ o
t+1 − P̃t+1 + P̃t+1 − P̃t

}
.

Thus,
θ

1− θ
πt = (1− θβ)M̃Ct + θβEt

{
θ

1− θ
πt+1 + πt+1

}
,

and

πt =
(1− θ)(1− θβ)

θ
M̃Ct + βEt {πt+1} = −λµ̂t + βEt {πt+1} ,

where λ = (1− θ)(1− θβ)/θ.

8. Evolution of capital is approximated by

Kt+1 = It −
1

2
c

(
It
Kt

− δ

)2

Kt + (1− δ)Kt,

KeK̃t+1 = IeĨt − 1

2
c

(
I

K
eĨtK̃t − δ

)2

KeK̃t + (1− δ)KeK̃t ,

and

K
(
1 + K̃t+1

)
= I

(
1 + Ĩt

)
− 1

2
c

[
I

K

(
1 + Ĩt − K̃t

)
− δ

]2
K

(
1 + K̃t

)
+ (1− δ)K

(
1 + K̃t

)
.

At the steady state, the fact that K = I− 1
2c

(
I
K − δ

)2
K+(1−δ)K implies that KK̃t+1 =

IĨt − cI
(

I
K − δ

) (
Ĩt − K̃t

)
+ [K − I − (1− δ)K]K̃t + (1− δ)KK̃t and

K̃t+1 − K̃t =

[
I

K
− c

I

K

(
I

K
− δ

)](
Ĩt − K̃t

)
.
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In the equilibrium, I/K = δ, so that K̃t+1 = δĨt + (1− δ)K̃t.

9. Interest rate rule is given by 1 + rnt = (1 + r)
(

Pt

Pt−1

)ϕπ
(

Yt

Y ∗
t

)ϕy

evt . Then, ln (1 + rnt ) =

ln(1+r)+ϕπ (lnPt − lnPt−1)+ϕy (lnYt − lnY ∗
t )+vt, which yields rnt = r+ϕπ

(
P̃t − P̃t−1

)
+

ϕy

(
Ỹt − Ỹ ∗

t

)
+vt. Since in the equilibrium, r = ρ, thus, rnt = ρ+ϕππt+ϕy

(
Ỹt − Ỹ ∗

t

)
+vt.
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