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Relative controllability of Langevin delayed fractional
system with multiple delays in control

Mustafa Aydin'* Nazim I. Mahmudov??

Abstract. A Langevin delayed fractional system with multiple delays in control, is a delayed
fractional system that includes delay parameters in both state and control, is first introduced.
This paper is devoted to investigating the relative controllability of the Langevin delayed frac-
tional system with multiple delays in control. For linear systems to be relatively controllable,
necessary and sufficient circumstances are identified by introducing and employing the Gramian
matrix. The sufficient conditions for the relative controllability of semilinear systems are offered
based on Schauder’s fixed point theorem. As an unusual approach, the controllability results of
the delayed system are built for the first time on the exact solution produced by the Mittag-
Leffler type function although controllability ones in the literature are built on the Volterra

integral equations or the mild solutions produced by resolvent families.

81 Introduction

Undoubtedly, ordinary calculus has never reached the level of development it has reached
today. While this shows us how much ordinary calculus contributes to science, it also shows
how inadequate it represents the new world problems. We observe that this fundamental gap
is filled by scientists with fractional calculus, which owes its existence only to an innocent
sense of curiosity and is an expansion of ordinary calculus. The ability of fractional calculus
to model real-world problems is better than ordinary calculus and pushes researchers to work
in this field and to discover aspects that have not yet been discovered. This has led fractional
calculus to be used in many areas such as mathematical physics, engineering, biophysics [1,2,
7-11], etc; and in many kinds of applications as dynamics of interfaces between substrates and
nanoparticles [12], signal processing [13], circuit theory [14], earthquakes [15], etc. Moreover,
there has been so many kinds of different fractional definitions such as Riemman-Liouville,
Caputo, Grinwald, Hadamard, cotangent fractional derivatives [68,69], etc. In recent times,
the conformable fractional derivatives has been defined and improved in many aspects [66,67,71].
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The Caputo fractional derivative is often considered superior in many applications due to
its compatibility with classical initial conditions, making it more intuitive and practical for
modeling real-world problems. Unlike the Riemann-Liouville derivative, which requires initial
conditions to be defined in terms of fractional integrals, the Caputo derivative uses standard
integer-order derivatives, aligning naturally with traditional physical interpretations. This sim-
plifies the formulation and solution of fractional differential equations, particularly in engineer-
ing and physics, where initial states are typically specified in classical terms. Additionally, the
Caputo derivative ensures a smooth transition between fractional and integer-order models,
providing flexibility and consistency in analysis. Its numerical implementation is also more
straightforward, facilitating its widespread use in applied fields. This combination of practical
advantages makes the Caputo fractional derivative a preferred choice for many researchers and

practitioners.

Control systems in which the notion of controllability plays an important role cause the pro-
duction of control theory. Numerous researchers have substantially investigated both ordinary
differential equations and fractional differential equations in terms of controllability concepts.
Dauer and Gahl [17] managed to obtain controllability results for nonlinear equations incor-
porating delays. Balachandran and Dauer [18] investigated the controllability of linear and
semilinear equations having delays. Balachandran [16,19] examined the relative controllability
results for nonlinear fractional equations with both distributional delays and multiple delays in
control. Klamka [20,21] determined controllability results for linear and nonlinear systems with
time-varying delays in control. In recent times, Mur et al. [22] proved fractional-order linear
systems with delays relatively controllable.

The Langevin delayed fractional system is a model that combines the Langevin equation
with fractional calculus and time delays. It captures systems with memory effects, where past
states influence future behavior, and is used to describe complex phenomena in various fields
like physics and biology. The inclusion of fractional derivatives allows for more accurate mod-
eling of anomalous diffusion and delayed feedback. Langevin delayed fractional system with
multiple delays in control is applied in real-world systems where memory effects and time de-
lays significantly influence dynamics. Examples include biological systems (e.g., population
dynamics, neural networks), engineering (e.g., robotics, control systems), and finance (e.g.,
stock market modeling). The multiple delays account for the influence of past states at dif-
ferent time intervals, improving the accuracy of system predictions and control strategies in
complex, real-world environments. More recently, Kaushik et al. [72] have offered new results
on controllability analysis of nonlinear fractional order integrodifferential Langevin system with
multiple delays. Controllability [73, 78] of Hilfer fractional Langevin evolution equations has
been researched. Jothimani et al. [74] have worked on the controllability of the Hilfer-Langevin
system via an integral contractor approach. Prabu et al. [75] have examined the controllability
of nonlinear fractional Langevin systems using ¥-Caputo fractional derivative. The controlla-
bility of fractional Langevin impulsive system [76], fractional delay integrodifferential Langevin
systems [77], and fractal linear dynamical systems [70] have been studied.

A differential delayed equation is composed of the present state, the past state, and the
derivatives of the present states. Minorsky and Volterra employed such differential delayed
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equations in their works such as viscoelasticity, predator-prey, automatic steering, and ship
stabilization [23-25]. The common point of these equations is that the states only contain
the delay parameters. Numerous works [26-51] exist about these sorts of differential delayed
systems. But so few works exit differential delayed system with a delay or multiple delays in an
admissible control. Such systems are mostly studied in terms of controllability [17,52-62]. Tt is
significant for these equations to drive between the relative controllability in Euclidean space
and function controllability concepts. This distinction emerges since the natural state space
is originally a function space even though the solutions of such equations are trajectories in
Euclidean space. For the aims of this paper, our discussion is limited to relative controllability.

The Langevin differential equations have been employed to describe Brownian motions and
quite a number of the stochastic processes in fluctuant environments [63,64]. Langevin differ-
ential equations are inadequate in modeling some of today’s sophisticated problems. For this
reason, Langevin-type differential equations are in need of such various generalizations that
they have the ability to describe physical processes [65] more appropriately. Undoubtedly, one
of them is the Langevin-type fractional delayed equations with two different fractional orders,
which include both the delay and the fractional derivatives. According to our observations,
except for a few studies, there is almost no work on such equations. Considering the impor-
tance of the fractional differential equation and the delayed differential equation, as well as the
inadequacy of studies on Langevin-type differential equations, we will dedicate this paper to the
investigation of relative controllability of the following nonlinear Langevin delayed fractional
system with multiple delays in control, for ¢ € [0,T] with T > 0,

d
€D, p(s) — nED p(s) — Apls = 7) = Y _owv(mi(s)) + (s, p(s), v(s)), (1)
k=0

p(s) =¢(), <€[-70], 7>0,
where ¢©g+ and ¢©g+ stand for the Caputo derivatives of fractional orders 1 < o < 2 and
0<p<L. peR" veR™ Ao, eR k=0,1,2,...,d, dis the number of delays in control
function, and 7% : [0,7] — R, k = 0,1,2,...,d, is a delayed function in control function. 7
is a delay in the state function. The initial function ¢ : [—h,0] — R™ is continuous and the
nonlinear function 7:[0,7] x R™ x R™ — R™ is also continuous.

In addition, the controllability of Langevin delayed fractional systems with multiple delays
in control is crucial for understanding and managing complex dynamic behaviors in various real-
world applications. These systems, governed by fractional differential equations, incorporate
memory and hereditary properties, making them highly suitable for modeling processes in fields
such as physics, biology, finance, and engineering. The inclusion of delays further enhances the
model’s realism by accounting for the inherent time lags in real systems, such as response times
in feedback mechanisms or propagation delays in communication networks. Controllability
ensures that it is possible to steer the system from any initial state to a desired final state
within a finite time using appropriate control inputs, even in the presence of these delays.
This capability is fundamental for the effective design and implementation of control strategies,
as it provides theoretical guarantees that the desired performance objectives can be achieved
despite the system’s complexity. Furthermore, the controllability analysis of such systems
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aids in optimizing control parameters, ensuring stability, and improving robustness against
disturbances, making it an indispensable aspect of modern control theory and practical system
design.

Unfortunately, the given information in the statement of system (1) remains incapable of
proving the relative controllability of the linear or nonlinear version. So we need additional
assumptions which are stated below:

Al) 7 :[0,T] — R with 74(s) <, ¢ € [0,T], k =0,1,2,...,d, are such functions that they
are strictly increasing and continuously differentiable two times.

A2) The following information holds true
Td(T) < 74-1(T) < oo < T 1(T) <0 =70(T) < 71 (1),

A3) Time lead functions hy, : [7%(0), 7(T)] — [0,T], £ =0,1,2,...,d are given hy(7x(s)) = ¢,
cel0,7), k=0,1,2,....d.

A4) With v : [-7,T] — R™ being a function, the function v, ¢ € [0,7] is given by v¢(s) =
v(s +s), s € [-1,0].

In the current paper, the contributions are stated as follows:

i) We give representations of not only an exact solution of the linear version but also a global

solution of the nonlinear version of system (1) in terms of determining functions.

ii) We offer necessary and sufficient circumstances for the relative controllability of the linear
version of system (1) by introducing the Gramian matrix.

iii) We transform the relative controllability problem for the nonlinear version of system (1)
to a fixed point problem, which allows us to exploit the Schauder fixed point theorem to
show the accuracy of our main findings.

§2 Short preliminaries

In this section, we share a few necessary tools to be used in the forthcoming sections.
R represents the set of real numbers. R”™ is the set of all ordered n-tuples of real numbers.

Definition 1. [1], [2] The Caputo derivative *®, p(<) of fractional order n —1 < a < n is
defined by

IS n—a—1 (n)
C@a Q) = / (C — 5) p (S) dS, <> O7

where T (-) is the famous Gamma function and the function p(s) has absolutely continuous
derivatives up to order (n —1).

Definition 2. [3/ A (control) function v(t) € R™ is called admissible provided that it is both
measurable and bounded on a finite interval.
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Definition 3. The system (1) is called relatively controllable if, for an initial control function
vo(s), s € [—7,0], an initial function ¢(s), s € [—7,0], and the final state pr € R™ with time
T, then there is such an admissible control v(s), s € [0,T] that the corresponding solution p(s),
s € [—7,T) to system (1) fulfills p(T) = pr and p(s) = &(s), s € [-7,0].

Lemma 4. [4, Proposition 1] If the locally bounded function 71 in R™ x R™ fulfills lim(,, )| oo
% = 0 uniformly in [0,T], then for every pair of constants § and =y, there is a constant
e > 0 such that if ||(p,v)|| < e, then §|T(s, p,v)| +v < e for all s € [0,T].

§3 Controllability of the linear version of system (1)

In this section, we first try to define the Gramian matrix. In the sequel, we will introduce
such an admissible control function including the Grammian matrix that with the help of this
control, one can easily prove the relative controllability of the linear version of system (1), which
is expressed as follows:

D p(s) — DY p(s) = Apls —7) = Zokw ce0.7),

p(s) = ¢(<), sel-, 0], 7 >0,
where all of the information is given in (1). Based on [5, Theorem 4.2.], the exact solution of

(2)

system (2) can be expressed as

d S
D=m©+ 3 [ B sl dis = s)ono(n(s)ds
k=00
where
m (g) - (]- + /\E;,a—ﬂ,a+1(:u'7 >‘; S — T)) ¢(O) + ]E;,oz—ﬁ,a(,uv >‘; §)¢,(0)

min{¢—7,0}
+ )‘/ E;,afﬁ,a(ﬂa )‘; S—T— s)¢(8)dsa

-7

and the delayed analogue of M-L type function of three parameters [6] is given as follows:

i+ A iatBtr— .
B xi9) = 25 () X i i,

== I'(ia+jB +7)

where, H () is the known heaviside function. In order to introduce the so-called Gramian
matrix, we will apply the following steps to make v(s), ¢ € [0, 7] more visible in this solution.

Firstly, one should apply the substitution z = 7;(s), then the solution is transformed into
the below form

d 7'1,(§) ,
p(6) = m(s) + 3 / EL, 0t X6 — hi(2)) ol (2)o(a)d.
k=0 7i(0)

Secondly, one should apply the inequalities and equalities in (A2), then the solution is trans-
ferred into the following form

m T,L(T) ,
oT) =m(T)+ 3 / o) BT = he(s))owl (s)o(s)ds
k‘:O Ti 0
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£y / (AT = hi())okh(s)o(s)ds
k=m+1 7:(0)
m T ,
NGEDS / ool N T — hi(s))owhi(s)u(s)ds
k=0
m .0
> o E 0 T = Bl ) en(s) s
k=0vTi
d TL(T) ,
£y / ol T — hi(s))owhi(s)vo (s)ds
k=m+177i(0)

For simplicity,

Ly / T ol A — hi(s))okh(s)vo(s)ds,
and

XINT (608) = D BL o g ot Xis — hi(s))onhy(s).

k=0
Then, one can rewrite the solution as follows:

T
o(T) = n3(T) +/O Xé‘,’;‘f&a(T,s)v(s)d&

where 73(s) = n1(s) + 12(s). Now, we can introduce the Gramian matrix as noted below
T *
A A
G(0,T) = /0 2T (Tos) [0, (1)) s,
where the star sign * stands for the transpose of a matrix.
The following theorem states necessary and sufficient circumstances for controllability of

system (2).

Theorem 5. The nonsingularity of the Gramian matrix requires that system (2) is relatively
controllable, and vice versa.

Proof. The nonsingularity of the Gramian matrix G := G(0,T') provides that the inverse of the
Gramian matrix G~! exists. Then one can introduce the well-defined control function as stated
below .

v(e) = [XE0T, o(T,9)] G [or = me(T)].
It is so easy to verify the relative controllability of system (2) as follows based on the Definition
3

T *
o) =m(T) + [ 207, L (18) [0, L (19)] G pr = (1) ds

=n3(T) + GG [pr — n3(T)]
The first part of the proof is finished. To prove the second part that the Gramian matrix
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is nonsingular by the method of reductio ad absurdum, assume that system (2) is relatively
controllable and the Gramian matrix is singular. Due to the singularity of G, there is such a
nonzero real vector b € R™ that Gb = 0. Using this, one can get

a,a—f,« a,a—f,«

b*Gb:O:/ bt (1) [ (1 s)] bds,
0
and then
VXPNT (T,¢)=0, 0<¢<T. (3)

a,a—f,a
Based on the Definition 3, under the initial functions there are such different admissible controls

v1(s), v2(s), ¢ € [0,T] that the corresponding solution p(s), ¢ € [—7,T] to system (1) fulfills
p(T) =0 and p(T') = b, respectively. This means that

p(T) = 1s(T) + / XEAT (T, $)or(s)ds = 0, (4)

and

p(T) =ns(T / Xo’fi 75 o(T:s)v2(s)ds = b. (5)

It can be acquired from equations (4) and (5) that

bb = /0 XEAT (T, 5) (ua(s) — v1(s)) ds.

By means of the information (3), b*b = 0 which gives b = 0. This obtained result contradicts
with b # 0. O

§4 Controllability of the nonlinear version of system (1)

In the current section, we will offer sufficient conditions via a main theorem to prove the
relative controllability of the nonlinear version of system (1) which is expressed as noted below

€D p(s) — p<DL, pls) — Apls —7) Zokv 7%(<)) + (s, pls), v(s)),

p(s) = (<), sel= T,O], >0,
where all of the information is granted in (1).

(6)

Let C([0,T],R™) be the Banach space of all continuous function endowed with ||p|| =
sup{|p(¢)| : ¢ € [0,T]} and U = C([0,T],R™) x C([0,T],R™) be the Banach space given by the
uniform norm [(,v)]| = [lell + [l

Based on [5, Theorem 4.2.], the global solution of system (6) can be expressed as

d <
(6) + kz_;)/o B a—pialit Ais = s)okv(mi(s))ds

+/ Bl o p.altt; A6 —8)T(s, p(s), v(s))ds.
0

As done in the previous section, the substitution x = 7;(s) and (A2) transform the global
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solution to the below form

p(T) = ns(T X”AT (T, s)v(s)ds

a,a— ,Ba

" / EL o g M T — 5)(s. p(s), v(s))ds.
0

Assume that the function pair (p, v) generates a solution pair to the set of the below nonlinear
equations

v(s) = XN, o(T59)] e [pT —n3(T) - /OT Efapalts ;T = 5)
X (s, p(s), v(s))ds} ,

/ a,o— Ba )U(S)d8+/0 E;,a—,@,a(ua/\;g_s)
x (s, p(s),v(s))ds,

where it is supposed that p is a solution to the system (6) corresponding to the control function
v. So, it can be easily confirmed that

§0) =)+ [ X0 (18) [12, )] s
e [pT () = [ Bl T = 95005, v(s))ds]
T
+ / EL, o gl 2T — 5)(s. pls), o(s))ds
0
T
_(T) + GG [pT () = [ EL (0T = )T, v(s))ds]
0

T
+ / EL o s X T — 8)7(s, pls), v(s))ds
0

= PT-
We will identify sufficient circumstances which are stated in the following theorem to guarantee
the existence of a solution pair to the set of the just-above equations.

Theorem 6. Let 1 be such a continuous function such that it satisfies uniformly in [0, T)
(sl
(pw)l=oo |(p,0)]
The nonlinear system (6) is relatively controllable provided that the linear system (2) is relatively
controllable.

Proof. In order to transfer the relative controllability problem into the Schauder fixed point
problem, we need to define the following operator P : U — U by P(p,v) = (z,v) where

* T
v(s) = [ X2 o(Th0)| G {pT —n3(T) — /O B ool T = 5)

% (s, p(s), v(s))ds} ,
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< <
2(6) = ms(s) + / KO (6, 5)u(s)ds + / EL ool Aic — 5)
0 0

x (s, p(s),v(s))ds.

It is known from [5, Lemma 5.1.] that [|E7 5 (g, A;¢)|| < T LePls Huls” - For simplicity, set:

a,B,y
¢ 1= max{T|| X075 (T.0)]. 1},
4y A, T * - @ “ o’
81 = A (XN, (T, 0)]* [ G [T T

AT * —
= 4Ael|[X53 s (T 0P G Izl + 2lns (1)),
T o [e% a—fB
8y v= Amax{T|| X227, (T,0), 7T T,
Y2 :=4ns(T)], 6 :=max{d1,d2}, 7= {71,72}
By means of Lemma 4, there is such € > 0 that 6|7 (s, p,v)| +v < ¢ for all ¢ € [0,T] provided
that ||(p,v)|| < e. First of all, it should be proved that P(B.) C B. where B, = {(p,v) € U :

l(p,v)|| <e}. Assume that (p,v) € U. Then
Ol <l [2227, @.0] e Wlorl + Ins()])
T * — « « a—p
[T (T 0) (|G T XTI S[lépT]l_I(sp(C),U(C)N
<elo,

< y1(de) 4+ 81(4e) 7 sup [T(s, p(s), (<))
s€[0,T]

< (4e) My 46 sup |7(s, p(s), v(<))])
s€[0,T]

< (40)_15 <

)

= m

and
AT
()N = s ()l + TNXL L5 o (T O[]

T NTHET sup TG, o), 0(9)])
s€[0,T]

y o
<o+ % s [ ple). v
s€[0,T]
1 €
< (48 sup (s, (<), v())]) + 7
4 <€0.7] 4
e E_¢
442
Due to [|(z,v)[| = [|2(s)[| + [[v(s)[| € § + 5 = 2 < ¢, the desired result P(B.) C B is obtained.

Now, we will prove that P(B;) is equicontinuous. Take arbitrary elements ¢1,¢ € [0,7] and
for all (z,v) € Be, consider

[v(s) = v(s2)ll

<[] = [, @a] 167 ol

T
+ [lns (D) +/O IIEQ,Q_;a,a(Mw\;T—S)IIII"i(S,p(S),v(S))IIdS], (7)
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and
[2(c1) — z(c2) |
S IMIES 0 gat1 (s At = 7) —EL o par1 (s Asa = 7) [ 9(0) ]
+ B 0o (11 A1) = L g a1 As2) |6 (0)]]

min{¢y—7,0}
+ P\|/ IEG a—p,a(k: Assa =7 = 8)[lo(s) || ds

min{¢; —7,0}
min{¢; —7,0}

+ ‘)" ”E;,afﬁ,a(ﬂa )‘7 1 —T— 8) - E;,afﬁ,a(ua )‘7 G2 —T— S)H

—T

x [|6(s)llds
+Z / E7 o gl X6t — hi(3)) — BT ot Mz — hi(s)]

x ||Uk||”hk(s)HHUO(s)”ds

Ti(s2)

+ Z / IEZ . (1t A sz = () ok |1 () [vo (s) | ds

k=m+1YTi (s1)

Ti (§1

s / IET o gt Asst — hi(s)) — EL o poits A — Bi(9))]

k=m+1
x [low [ () vo(s)llds

S2
AT
+/ XA (o0, 9)lIv(5) 1 ds
(S
1(1 A, A,
b IR o(619) = X (el ()]s
0

S1
+/ IES a—p,a(ts Ais1 —8) —Ef o501 As62 = s)|lds sup [T(s, p(s), v(<))]
0 s€[0,7]

S2

+/ IEG a—p,a (ks As2 = s)[lds sup [T(c, p(<), v(<))]- (8)
S1 s€(0,T]

The right hand side of the inequalities (7) and (8) is independent of (p,v) € B. and goes to

zero as ¢ — ¢3. This implies that P is equicontinuous, and hence is completely continuous

by the application of Arzela-Ascoli’s theorem. Because B, is nonempty, closed, bounded, and

convex, the Schauder fixed point theorem gives that P has a fixed point in B.. O

85 Numerical and simulated exemplifications

In this section, we illustrate our theoretical results by means of the following examples.
The numerical computations were performed and the graphics were drawn using [Mathematica]
on a [Computer Specifications: Intel Core i7 processor with 16 GB RAM] running [Operating
System: Windows 10].

Example 7. We will consider the following nonlinear Langevin delayed fractional system with
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multiple delays in control, for ¢ € [0, 3],
D4 p() = 300 p(s) — 2p(s — 0.2) = 3u(s) + 4u(s — 2),
p(() = ¢(§)a S € [_0'2a 0]7
where the initial function ¢(c) = 0, the nonlinear function 7(s, p(s),v(s)) = 0. Here,
20715, 8) = BBV 0.715(3,256) +4BY2 0 715(3,2i6 — (s +2)).

The Gramian matriz is as noted below

G(0,3) /2{13752’5’7215 5) [A020715(3,5)] ds = 398.162,

,0

which is nonzero, so it is nonsingular. Based on Theorem 5, system (9) is relatively controllable.
The graphs of the control function v(s) and the solution function p(s) corresponding to the
control function are given in Figure 1.

P(5) v(s)
7 ) J—
o
of

s

L L L L Lo L L L L L L
05 10 15 20 25 30 05 10 15 20 25 30

Figure 1. Graphs of the control v(s) and the solution p(s).

Remark 8. It is clear that system (9) is linear. So we prove that the corresponding Gramian
matriz is invertible, and then by Theorem 5, we show system (9) relatively controllable. The
admissible control steering system (9) from the initial control function vy(s) =0, ¢ € [-0.2,0],
an initial function ¢(s) =0, ¢ € [—0.2,0] to the final state ps = 1+ n3(3) € R is given by the
following formula

oie) = [A2902,56,9] 67
Moreover, the solution function p(s) corresponding to the control function v(s) is offered by

p(s) = ms(s) + / XF2ZO2.(C syu(s)ds.

The solution pair (p,v) to system (9) is drawn in Figure 1.

Example 9. We will investigate the following nonlinear Langevin delayed fractional system
with multiple delays in control, for ¢ € [0, 5],

€D, p(s) — uEDL, p(s) — Apls — 1) Zokv 7:(€)) + (<, p(s), v(<)),

p(s) = (s), <€l- 770], >0,
where a = 1.2 and 8 = 0.3. p(<) = [p1(<) p2()]"; v(<) = [v1(s) v2()]", p=3,A==5,01 =
6,00 =1, 7 =1 1() =5, 11(s) = ¢ — 1. The initial function ¢(s) = [¢ +2 2¢% + 1]* is

(10)
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vt+p
1+v2+4p?

continuous and the nonlinear function (s, p(s),v(s)) = [0 * is also continuous. It is

easy to compute
3,—5,1 . .
X5 001.2(5,8) = 6E%.2,0.9,1.2(37 —56—s)+ E%.2,0.9,1.2(37 =5;¢—(s+1)).
The corresponding Gramian matriz is given by
5 *
G0.5) = [ X5 01506.9) [0535.14(5.5)] s = asts02

which is nonzero, so it is nonsingular. Based on Theorem 5, the linear version of system (10) is
+

T

on Theorem 6. As a result, Theorem 6 ensures that the nonlinear system (10) is relatively

relatively controllable. (s, p(s),v(s)) = [0 I* is continuous and satisfies the conditions

controllable.

Remark 10. The system (10) is nonlinear. It is more complicated than the previous one.
According to Theorem 6, there are two main conditions to guarantee that the nonlinear system
(10) is relatively controllable. One of them is that the linear part of it is controllable, and the
other is the limit condition. We take the help of Theorem 5 to ensure that the linear part of it
s controllable as in Example 1. In the sequel, it is demonstrated that the limit requirement built
on the nonlinear function is satisfied. In light of Theorem 6, it has emerged that the nonlinear
system (10) is relatively controllable.

86 Conclusion

In the current paper, we shared the exact and global solutions of the linear and nonlinear
system (1), respectively. In the sequel, we defined the Gramian matrix to control the linear
version of system (1) relatively and proved the nonlinear system (1) relatively controllable by
means of the Schauder fixed point theorem.

This paper is quite comprehensive because all obtained results are also new in the cases of
both 7 = 0 and A = 0 individually. For g = 7 = 0, the findings in this paper also coincide with
those of [16] providing A = A € R.

As a future study, the obtained results may be extended to the semilinear Langevin de-
layed fractional systems with distributed delays in an admissible control, also to the semilinear
Langevin Sobolev-type evolution equations with multiple delays or distributed delays in an
admissible control, and to the semilinear Langevin delayed Sobolev-type evolution equations
with multiple delays or distributed delays in an admissible control. Additionally, introduc-
ing nonlinearities or stochastic components could improve its application to real-world systems
like robotics, ecological models, or financial markets, where delays and uncertainties play a
significant role.
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