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Relative controllability of Langevin delayed fractional

system with multiple delays in control

Mustafa Aydin1,∗ Nazim I. Mahmudov2,3

Abstract. A Langevin delayed fractional system with multiple delays in control, is a delayed

fractional system that includes delay parameters in both state and control, is first introduced.

This paper is devoted to investigating the relative controllability of the Langevin delayed frac-

tional system with multiple delays in control. For linear systems to be relatively controllable,

necessary and sufficient circumstances are identified by introducing and employing the Gramian

matrix. The sufficient conditions for the relative controllability of semilinear systems are offered

based on Schauder’s fixed point theorem. As an unusual approach, the controllability results of

the delayed system are built for the first time on the exact solution produced by the Mittag-

Leffler type function although controllability ones in the literature are built on the Volterra

integral equations or the mild solutions produced by resolvent families.

§1 Introduction

Undoubtedly, ordinary calculus has never reached the level of development it has reached

today. While this shows us how much ordinary calculus contributes to science, it also shows

how inadequate it represents the new world problems. We observe that this fundamental gap

is filled by scientists with fractional calculus, which owes its existence only to an innocent

sense of curiosity and is an expansion of ordinary calculus. The ability of fractional calculus

to model real-world problems is better than ordinary calculus and pushes researchers to work

in this field and to discover aspects that have not yet been discovered. This has led fractional

calculus to be used in many areas such as mathematical physics, engineering, biophysics [1, 2,

7–11], etc; and in many kinds of applications as dynamics of interfaces between substrates and

nanoparticles [12], signal processing [13], circuit theory [14], earthquakes [15], etc. Moreover,

there has been so many kinds of different fractional definitions such as Riemman-Liouville,

Caputo, Grünwald, Hadamard, cotangent fractional derivatives [68, 69], etc. In recent times,

the conformable fractional derivatives has been defined and improved in many aspects [66,67,71].
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The Caputo fractional derivative is often considered superior in many applications due to

its compatibility with classical initial conditions, making it more intuitive and practical for

modeling real-world problems. Unlike the Riemann-Liouville derivative, which requires initial

conditions to be defined in terms of fractional integrals, the Caputo derivative uses standard

integer-order derivatives, aligning naturally with traditional physical interpretations. This sim-

plifies the formulation and solution of fractional differential equations, particularly in engineer-

ing and physics, where initial states are typically specified in classical terms. Additionally, the

Caputo derivative ensures a smooth transition between fractional and integer-order models,

providing flexibility and consistency in analysis. Its numerical implementation is also more

straightforward, facilitating its widespread use in applied fields. This combination of practical

advantages makes the Caputo fractional derivative a preferred choice for many researchers and

practitioners.

Control systems in which the notion of controllability plays an important role cause the pro-

duction of control theory. Numerous researchers have substantially investigated both ordinary

differential equations and fractional differential equations in terms of controllability concepts.

Dauer and Gahl [17] managed to obtain controllability results for nonlinear equations incor-

porating delays. Balachandran and Dauer [18] investigated the controllability of linear and

semilinear equations having delays. Balachandran [16,19] examined the relative controllability

results for nonlinear fractional equations with both distributional delays and multiple delays in

control. Klamka [20,21] determined controllability results for linear and nonlinear systems with

time-varying delays in control. In recent times, Mur et al. [22] proved fractional-order linear

systems with delays relatively controllable.

The Langevin delayed fractional system is a model that combines the Langevin equation

with fractional calculus and time delays. It captures systems with memory effects, where past

states influence future behavior, and is used to describe complex phenomena in various fields

like physics and biology. The inclusion of fractional derivatives allows for more accurate mod-

eling of anomalous diffusion and delayed feedback. Langevin delayed fractional system with

multiple delays in control is applied in real-world systems where memory effects and time de-

lays significantly influence dynamics. Examples include biological systems (e.g., population

dynamics, neural networks), engineering (e.g., robotics, control systems), and finance (e.g.,

stock market modeling). The multiple delays account for the influence of past states at dif-

ferent time intervals, improving the accuracy of system predictions and control strategies in

complex, real-world environments. More recently, Kaushik et al. [72] have offered new results

on controllability analysis of nonlinear fractional order integrodifferential Langevin system with

multiple delays. Controllability [73, 78] of Hilfer fractional Langevin evolution equations has

been researched. Jothimani et al. [74] have worked on the controllability of the Hilfer-Langevin

system via an integral contractor approach. Prabu et al. [75] have examined the controllability

of nonlinear fractional Langevin systems using Ψ-Caputo fractional derivative. The controlla-

bility of fractional Langevin impulsive system [76], fractional delay integrodifferential Langevin

systems [77], and fractal linear dynamical systems [70] have been studied.

A differential delayed equation is composed of the present state, the past state, and the

derivatives of the present states. Minorsky and Volterra employed such differential delayed
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equations in their works such as viscoelasticity, predator-prey, automatic steering, and ship

stabilization [23–25]. The common point of these equations is that the states only contain

the delay parameters. Numerous works [26–51] exist about these sorts of differential delayed

systems. But so few works exit differential delayed system with a delay or multiple delays in an

admissible control. Such systems are mostly studied in terms of controllability [17,52–62]. It is

significant for these equations to drive between the relative controllability in Euclidean space

and function controllability concepts. This distinction emerges since the natural state space

is originally a function space even though the solutions of such equations are trajectories in

Euclidean space. For the aims of this paper, our discussion is limited to relative controllability.

The Langevin differential equations have been employed to describe Brownian motions and

quite a number of the stochastic processes in fluctuant environments [63, 64]. Langevin differ-

ential equations are inadequate in modeling some of today’s sophisticated problems. For this

reason, Langevin-type differential equations are in need of such various generalizations that

they have the ability to describe physical processes [65] more appropriately. Undoubtedly, one

of them is the Langevin-type fractional delayed equations with two different fractional orders,

which include both the delay and the fractional derivatives. According to our observations,

except for a few studies, there is almost no work on such equations. Considering the impor-

tance of the fractional differential equation and the delayed differential equation, as well as the

inadequacy of studies on Langevin-type differential equations, we will dedicate this paper to the

investigation of relative controllability of the following nonlinear Langevin delayed fractional

system with multiple delays in control, for ς ∈ [0, T ] with T > 0,
CDα

0+ρ(ς)− µCDβ
0+ρ(ς)− λρ(ς − τ) =

d∑
k=0

σkυ(τk(ς)) + k(ς, ρ(ς), υ(ς)),

ρ(ς) = ϕ(ς), ς ∈ [−τ, 0], τ > 0,

(1)

where CDα
0+ and CDβ

0+ stand for the Caputo derivatives of fractional orders 1 < α ≤ 2 and

0 < β ≤ 1. ρ ∈ Rn, υ ∈ Rm, µ, λ, σk ∈ R, k = 0, 1, 2, . . . , d, d is the number of delays in control

function, and τk : [0, T ] → R, k = 0, 1, 2, . . . , d, is a delayed function in control function. τ

is a delay in the state function. The initial function ϕ : [−h, 0] → Rn is continuous and the

nonlinear function k : [0, T ]× Rn × Rm → Rn is also continuous.

In addition, the controllability of Langevin delayed fractional systems with multiple delays

in control is crucial for understanding and managing complex dynamic behaviors in various real-

world applications. These systems, governed by fractional differential equations, incorporate

memory and hereditary properties, making them highly suitable for modeling processes in fields

such as physics, biology, finance, and engineering. The inclusion of delays further enhances the

model’s realism by accounting for the inherent time lags in real systems, such as response times

in feedback mechanisms or propagation delays in communication networks. Controllability

ensures that it is possible to steer the system from any initial state to a desired final state

within a finite time using appropriate control inputs, even in the presence of these delays.

This capability is fundamental for the effective design and implementation of control strategies,

as it provides theoretical guarantees that the desired performance objectives can be achieved

despite the system’s complexity. Furthermore, the controllability analysis of such systems
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aids in optimizing control parameters, ensuring stability, and improving robustness against

disturbances, making it an indispensable aspect of modern control theory and practical system

design.

Unfortunately, the given information in the statement of system (1) remains incapable of

proving the relative controllability of the linear or nonlinear version. So we need additional

assumptions which are stated below:

A1) τk : [0, T ] → R with τk(ς) ≤ ς, ς ∈ [0, T ], k = 0, 1, 2, . . . , d, are such functions that they

are strictly increasing and continuously differentiable two times.

A2) The following information holds true

τd(T ) ≤ τd−1(T ) ≤ . . . ≤ τm+1(T ) ≤ 0 = τm(T ) < τm−1(T ),

τm−1(T ) = τm−2(T ) = · · · = τ2(T ) = τ1(T ) = τ0(T ) = T,

τ0(t) = t, ς ∈ [0, T ].

A3) Time lead functions hk : [τk(0), τk(T )] → [0, T ], k = 0, 1, 2, . . . , d are given hk(τk(ς)) = ς,

ς ∈ [0, T ], k = 0, 1, 2, . . . , d.

A4) With υ : [−τ, T ] → Rm being a function, the function υς , ς ∈ [0, T ] is given by υς(s) =

υ(ς + s), s ∈ [−τ, 0].

In the current paper, the contributions are stated as follows:

i) We give representations of not only an exact solution of the linear version but also a global

solution of the nonlinear version of system (1) in terms of determining functions.

ii) We offer necessary and sufficient circumstances for the relative controllability of the linear

version of system (1) by introducing the Gramian matrix.

iii) We transform the relative controllability problem for the nonlinear version of system (1)

to a fixed point problem, which allows us to exploit the Schauder fixed point theorem to

show the accuracy of our main findings.

§2 Short preliminaries

In this section, we share a few necessary tools to be used in the forthcoming sections.

R represents the set of real numbers. Rn is the set of all ordered n-tuples of real numbers.

Definition 1. [1], [2] The Caputo derivative CDα
0+ρ(ς) of fractional order n − 1 < α < n is

defined by

CDα
0+ρ(ς) =

∫ ς

0

(ς − s)
n−α−1

ρ
(n)

(s)

Γ (n− α)
ds, ς > 0,

where Γ (·) is the famous Gamma function and the function ρ(ς) has absolutely continuous

derivatives up to order (n− 1).

Definition 2. [3] A (control) function υ(t) ∈ Rm is called admissible provided that it is both

measurable and bounded on a finite interval.
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Definition 3. The system (1) is called relatively controllable if, for an initial control function

υ0(ς), ς ∈ [−τ, 0], an initial function ϕ(ς), ς ∈ [−τ, 0], and the final state ρT ∈ Rn with time

T , then there is such an admissible control υ(ς), ς ∈ [0, T ] that the corresponding solution ρ(ς),

ς ∈ [−τ, T ] to system (1) fulfills ρ(T ) = ρT and ρ(ς) = ϕ(ς), ς ∈ [−τ, 0].

Lemma 4. [4, Proposition 1] If the locally bounded function k in Rn×Rm fulfills lim|(ρ,υ)|→∞
|k(ς,ρ,υ)|
|(ρ,υ)| = 0 uniformly in [0, T ], then for every pair of constants δ and γ, there is a constant

ε > 0 such that if ∥(ρ, υ)∥ ≤ ε, then δ |k (ς, ρ, υ)|+ γ ≤ ε for all ς ∈ [0, T ].

§3 Controllability of the linear version of system (1)

In this section, we first try to define the Gramian matrix. In the sequel, we will introduce

such an admissible control function including the Grammian matrix that with the help of this

control, one can easily prove the relative controllability of the linear version of system (1), which

is expressed as follows:
CDα

0+ρ(ς)− µCDβ
0+ρ(ς)− λρ(ς − τ) =

d∑
k=0

σkυ(τk(ς)), ς ∈ [0, T ],

ρ(ς) = ϕ(ς), ς ∈ [−τ, 0], τ > 0,

(2)

where all of the information is given in (1). Based on [5, Theorem 4.2.], the exact solution of

system (2) can be expressed as

ρ(ς) = η1(ς) +

d∑
k=0

∫ ς

0

Eτ
α,α−β,α(µ, λ; ς − s)σkυ(τk(s))ds,

where

η1(ς) =
(
1 + λEτ

α,α−β,α+1(µ, λ; ς − τ)
)
ϕ(0) + Eτ

α,α−β,α(µ, λ; ς)ϕ
′
(0)

+ λ

∫ min{ς−τ,0}

−τ

Eτ
α,α−β,α(µ, λ; ς − τ − s)ϕ(s)ds,

and the delayed analogue of M-L type function of three parameters [6] is given as follows:

Eτ
α,β,γ(µ, λ; ς) =

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λiµj

Γ(iα+ jβ + γ)
(ς − iτ)

iα+jβ+γ−1 H (ς − iτ) ,

where, H (ς) is the known heaviside function. In order to introduce the so-called Gramian

matrix, we will apply the following steps to make υ(ς), ς ∈ [0, T ] more visible in this solution.

Firstly, one should apply the substitution x = τi(s), then the solution is transformed into

the below form

ρ(ς) = η1(ς) +
d∑

k=0

∫ τi(ς)

τi(0)

Eτ
α,α−β,α(µ, λ; ς − hk(x))σkh

′

k(x)υ(x)dx.

Secondly, one should apply the inequalities and equalities in (A2), then the solution is trans-

ferred into the following form

ρ(T ) = η1(T ) +

m∑
k=0

∫ τi(T )

τi(0)

Eτ
α,α−β,α(µ, λ;T − hk(s))σkh

′

k(s)υ(s)ds
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+
d∑

k=m+1

∫ τi(T )

τi(0)

Eτ
α,α−β,α(µ, λ;T − hk(s))σkh

′

k(s)υ(s)ds

= η1(T ) +

m∑
k=0

∫ T

0

Eτ
α,α−β,α(µ, λ;T − hk(s))σkh

′

k(s)υ(s)ds

+
m∑

k=0

∫ 0

τi(0)

Eτ
α,α−β,α(µ, λ;T − hk(s))σkh

′

k(s)υ0(s)ds

+
d∑

k=m+1

∫ τi(T )

τi(0)

Eτ
α,α−β,α(µ, λ;T − hk(s))σkh

′

k(s)υ0(s)ds.

For simplicity,

η2(ς) =
m∑

k=0

∫ 0

τi(0)

Eτ
α,α−β,α(µ, λ; ς − hk(s))σkh

′

k(s)υ0(s)ds

+
d∑

k=m+1

∫ τi(ς)

τi(0)

Eτ
α,α−β,α(µ, λ; ς − hk(s))σkh

′

k(s)υ0(s)ds,

and

X µ,λ,τ
α,α−β,α(ς, s) =

m∑
k=0

Eτ
α,α−β,α(µ, λ; ς − hk(s))σkh

′

k(s).

Then, one can rewrite the solution as follows:

ρ(T ) = η3(T ) +

∫ T

0

X µ,λ,τ
α,α−β,α(T, s)υ(s)ds,

where η3(ς) = η1(ς) + η2(ς). Now, we can introduce the Gramian matrix as noted below

G(0, T ) =

∫ T

0

X µ,λ,τ
α,α−β,α(T, s)

[
X µ,λ,τ

α,α−β,α(T, s)
]∗

ds,

where the star sign ∗ stands for the transpose of a matrix.

The following theorem states necessary and sufficient circumstances for controllability of

system (2).

Theorem 5. The nonsingularity of the Gramian matrix requires that system (2) is relatively

controllable, and vice versa.

Proof. The nonsingularity of the Gramian matrix G := G(0, T ) provides that the inverse of the

Gramian matrix G−1 exists. Then one can introduce the well-defined control function as stated

below

υ(ς) =
[
X µ,λ,τ

α,α−β,α(T, ς)
]∗

G−1 [ρT − η3(T )] .

It is so easy to verify the relative controllability of system (2) as follows based on the Definition

3

ρ(T ) = η3(T ) +

∫ T

0

X µ,λ,τ
α,α−β,α(T, s)

[
X µ,λ,τ

α,α−β,α(T, s)
]∗

G−1 [ρT − η3(T )] ds

= η3(T ) +GG−1 [ρT − η3(T )]

= ρT .

The first part of the proof is finished. To prove the second part that the Gramian matrix
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is nonsingular by the method of reductio ad absurdum, assume that system (2) is relatively

controllable and the Gramian matrix is singular. Due to the singularity of G, there is such a

nonzero real vector b ∈ Rn that Gb = 0. Using this, one can get

b∗Gb = 0 =

∫ T

0

b∗X µ,λ,τ
α,α−β,α(T, s)

[
X µ,λ,τ

α,α−β,α(T, s)
]∗

bds,

and then

b∗X µ,λ,τ
α,α−β,α(T, ς) = 0, 0 ≤ ς ≤ T. (3)

Based on the Definition 3, under the initial functions there are such different admissible controls

υ1(ς), υ2(ς), ς ∈ [0, T ] that the corresponding solution ρ(ς), ς ∈ [−τ, T ] to system (1) fulfills

ρ(T ) = 0 and ρ(T ) = b, respectively. This means that

ρ(T ) = η3(T ) +

∫ T

0

X µ,λ,τ
α,α−β,α(T, s)υ1(s)ds = 0, (4)

and

ρ(T ) = η3(T ) +

∫ T

0

X µ,λ,τ
α,α−β,α(T, s)υ2(s)ds = b. (5)

It can be acquired from equations (4) and (5) that

b∗b =

∫ T

0

X µ,λ,τ
α,α−β,α(T, s) (υ2(s)− υ1(s)) ds.

By means of the information (3), b∗b = 0 which gives b = 0. This obtained result contradicts

with b ̸= 0.

§4 Controllability of the nonlinear version of system (1)

In the current section, we will offer sufficient conditions via a main theorem to prove the

relative controllability of the nonlinear version of system (1) which is expressed as noted below
CDα

0+ρ(ς)− µCDβ
0+ρ(ς)− λρ(ς − τ) =

d∑
k=0

σkυ(τk(ς)) + k(ς, ρ(ς), υ(ς)),

ρ(ς) = ϕ(ς), ς ∈ [−τ, 0], τ > 0,

(6)

where all of the information is granted in (1).

Let C([0, T ],Rn) be the Banach space of all continuous function endowed with ∥ρ∥ =

sup{|ρ(ς)| : ς ∈ [0, T ]} and U = C([0, T ],Rn)×C([0, T ],Rm) be the Banach space given by the

uniform norm ∥(ρ, υ)∥ = ∥ρ∥+ ∥υ∥.

Based on [5, Theorem 4.2.], the global solution of system (6) can be expressed as

ρ(ς) = η1(ς) +
d∑

k=0

∫ ς

0

Eτ
α,α−β,α(µ, λ; ς − s)σkυ(τk(s))ds

+

∫ ς

0

Eτ
α,α−β,α(µ, λ; ς − s)k(s, ρ(s), υ(s))ds.

As done in the previous section, the substitution x = τi(s) and (A2) transform the global



944 Appl. Math. J. Chinese Univ. Vol. 40, No. 4

solution to the below form

ρ(T ) = η3(T ) +

∫ T

0

X µ,λ,τ
α,α−β,α(T, s)υ(s)ds

+

∫ T

0

Eτ
α,α−β,α(µ, λ;T − s)k(s, ρ(s), υ(s))ds.

Assume that the function pair (ρ, υ) generates a solution pair to the set of the below nonlinear

equations

υ(ς) =
[
X µ,λ,τ

α,α−β,α(T, ς)
]∗

G−1

[
ρT − η3(T )−

∫ T

0

Eτ
α,α−β,α(µ, λ;T − s)

× k(s, ρ(s), υ(s))ds
]
,

ρ(ς) = η3(ς) +

∫ ς

0

X µ,λ,τ
α,α−β,α(ς, s)υ(s)ds+

∫ ς

0

Eτ
α,α−β,α(µ, λ; ς − s)

× k(s, ρ(s), υ(s))ds,
where it is supposed that ρ is a solution to the system (6) corresponding to the control function

υ. So, it can be easily confirmed that

ρ(T ) = η3(T ) +

∫ T

0

X µ,λ,τ
α,α−β,α(T, s)

[
X µ,λ,τ

α,α−β,α(T, T )
]∗

ds

×G−1

[
ρT − η3(T )−

∫ T

0

Eτ
α,α−β,α(µ, λ;T − s)k(s, ρ(s), υ(s))ds

]
+

∫ T

0

Eτ
α,α−β,α(µ, λ;T − s)k(s, ρ(s), υ(s))ds

= η3(T ) +GG−1

[
ρT − η3(T )−

∫ T

0

Eτ
α,α−β,α(µ, λ;T − s)k(s, ρ(s), υ(s))ds

]
+

∫ T

0

Eτ
α,α−β,α(µ, λ;T − s)k(s, ρ(s), υ(s))ds

= ρT .

We will identify sufficient circumstances which are stated in the following theorem to guarantee

the existence of a solution pair to the set of the just-above equations.

Theorem 6. Let k be such a continuous function such that it satisfies uniformly in [0, T ]

lim
|(ρ,υ)|→∞

|k (ς, ρ, υ)|
|(ρ, υ)|

= 0.

The nonlinear system (6) is relatively controllable provided that the linear system (2) is relatively

controllable.

Proof. In order to transfer the relative controllability problem into the Schauder fixed point

problem, we need to define the following operator P : U → U by P(ρ, υ) = (z, ν) where

ν(ς) =
[
X µ,λ,τ

α,α−β,α(T, ς)
]∗

G−1

[
ρT − η3(T )−

∫ T

0

Eτ
α,α−β,α(µ, λ;T − s)

× k(s, ρ(s), υ(s))ds
]
,



Mustafa Aydin, Nazim I. Mahmudov. Relative controllability of Langevin delayed... 945

z(ς) = η3(ς) +

∫ ς

0

X µ,λ,τ
α,α−β,α(ς, s)ν(s)ds+

∫ ς

0

Eτ
α,α−β,α(µ, λ; ς − s)

× k(s, ρ(s), υ(s))ds.

It is known from [5, Lemma 5.1.] that ∥Eτ
α,β,γ(µ, λ; ς)∥ ≤ ςγ−1e|λ|ς

α+|µ|ςβ . For simplicity, set:

c := max{T∥Xµ,λ,τ
α,α−β,α(T, 0)∥, 1},

δ1 := 4c∥[X µ,λ,τ
α,α−β,α(T, 0)]

∗∥∥G−1∥Tαe|λ|T
α+|µ|Tα−β

,

γ1 := 4c∥[X µ,λ,τ
α,α−β,α(T, 0)]

∗∥∥G−1∥(∥ρT ∥+ 2∥η3(T )∥),
δ2 := 4max{T∥Xµ,λ,τ

α,α−β,α(T, 0)∥, T
αe|λ|T

α+|µ|Tα−β

},
γ2 := 4∥η3(T )∥, δ := max{δ1, δ2}, γ := {γ1, γ2}.

By means of Lemma 4, there is such ε > 0 that δ |k (ς, ρ, υ)|+ γ ≤ ε for all ς ∈ [0, T ] provided

that ∥(ρ, υ)∥ ≤ ε. First of all, it should be proved that P(Bε) ⊂ Bε where Bε = {(ρ, υ) ∈ U :

∥(ρ, υ)∥ ≤ ε}. Assume that (ρ, υ) ∈ U . Then

∥ν(ς)∥ ≤∥
[
X µ,λ,τ

α,α−β,α(T, ς)
]∗

∥∥G−1∥(∥ρT ∥+ ∥η3(T )∥)

+ ∥[X µ,λ,τ
α,α−β,α(T, 0)]

∗∥∥G−1∥Tαe|λ|T
α+|µ|Tα−β

sup
ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|

≤ γ1(4c)
−1 + δ1(4c)

−1 sup
ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|

≤ (4c)−1(γ + δ sup
ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|)

≤ (4c)−1ε ≤ ε

4
,

and

∥z(ς)∥ = ∥η3(ς)∥+ T∥Xµ,λ,τ
α,α−β,α(T, 0)∥∥ν∥

+ Tαe|λ|T
α+|µ|Tα−β

sup
ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|)

≤ γ2
4

+ c∥ν∥+ δ2
4

sup
ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|)

≤ 1

4
(γ + δ sup

ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|) + ε

4

≤ ε

4
+

ε

4
=

ε

2
.

Due to ∥(z, ν)∥ = ∥z(ς)∥+ ∥ν(ς)∥ ≤ ε
4 +

ε
2 = 3ε

4 ≤ ε, the desired result P(Bε) ⊂ Bε is obtained.

Now, we will prove that P(Bε) is equicontinuous. Take arbitrary elements ς1, ς2 ∈ [0, T ] and

for all (z, ν) ∈ Bε, consider

∥ν(ς1)− ν(ς2)∥

≤
∥∥∥[X µ,λ,τ

α,α−β,α(T, ς1)
]∗

−
[
X µ,λ,τ

α,α−β,α(T, ς2)
]∗∥∥∥ ∥G−1∥

[
∥ρT ∥

+ ∥η3(T )∥+
∫ T

0

∥Eτ
α,α−β,α(µ, λ;T − s)∥∥k(s, ρ(s), υ(s))∥ds

]
, (7)
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and

∥z(ς1)− z(ς2)∥
≤ |λ|∥Eτ

α,α−β,α+1(µ, λ; ς1 − τ)− Eτ
α,α−β,α+1(µ, λ; ς2 − τ)∥∥ϕ(0)∥

+ ∥Eτ
α,α−β,α(µ, λ; ς1)− Eτ

α,α−β,α(µ, λ; ς2)∥∥ϕ
′
(0)∥

+ |λ|
∫ min{ς2−τ,0}

min{ς1−τ,0}
∥Eτ

α,α−β,α(µ, λ; ς2 − τ − s)∥∥ϕ(s)∥ds

+ |λ|
∫ min{ς1−τ,0}

−τ

∥Eτ
α,α−β,α(µ, λ; ς1 − τ − s)− Eτ

α,α−β,α(µ, λ; ς2 − τ − s)∥

× ∥ϕ(s)∥ds

+
m∑

k=0

∫ 0

τi(0)

∥Eτ
α,α−β,α(µ, λ; ς1 − hk(s))− Eτ

α,α−β,α(µ, λ; ς2 − hk(s))∥

× ∥σk∥∥h
′

k(s)∥∥υ0(s)∥ds

+

d∑
k=m+1

∫ τi(ς2)

τi(ς1)

∥Eτ
α,α−β,α(µ, λ; ς2 − hk(s))∥∥σk∥∥h

′

k(s)∥∥υ0(s)∥ds

+
d∑

k=m+1

∫ τi(ς1)

τi(0)

∥Eτ
α,α−β,α(µ, λ; ς1 − hk(s))− Eτ

α,α−β,α(µ, λ; ς2 − hk(s))∥

× ∥σk∥∥h
′

k(s)∥∥υ0(s)∥ds

+

∫ ς2

ς1

∥X µ,λ,τ
α,α−β,α(ς2, s)∥∥ν(s)∥ds

+

∫ ς1

0

∥X µ,λ,τ
α,α−β,α(ς1, s)−X µ,λ,τ

α,α−β,α(ς2, s)∥∥ν(s)∥ds

+

∫ ς1

0

∥Eτ
α,α−β,α(µ, λ; ς1 − s)− Eτ

α,α−β,α(µ, λ; ς2 − s)∥ds sup
ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|

+

∫ ς2

ς1

∥Eτ
α,α−β,α(µ, λ; ς2 − s)∥ds sup

ς∈[0,T ]

|k(ς, ρ(ς), υ(ς))|. (8)

The right hand side of the inequalities (7) and (8) is independent of (ρ, υ) ∈ Bε and goes to

zero as ς1 → ς2. This implies that P is equicontinuous, and hence is completely continuous

by the application of Arzela-Ascoli’s theorem. Because Bε is nonempty, closed, bounded, and

convex, the Schauder fixed point theorem gives that P has a fixed point in Bε.

§5 Numerical and simulated exemplifications

In this section, we illustrate our theoretical results by means of the following examples.

The numerical computations were performed and the graphics were drawn using [Mathematica]

on a [Computer Specifications: Intel Core i7 processor with 16 GB RAM] running [Operating

System: Windows 10].

Example 7. We will consider the following nonlinear Langevin delayed fractional system with
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multiple delays in control, for ς ∈ [0, 3],{
CD1.5

0+ ρ(ς)− 3CD0.8
0+ ρ(ς)− 2ρ(ς − 0.2) = 3υ(ς) + 4υ(ς − 2),

ρ(ς) = ϕ(ς), ς ∈ [−0.2, 0],
(9)

where the initial function ϕ(ς) = 0, the nonlinear function k(ς, ρ(ς), υ(ς)) = 0. Here,

X 3,2,0.2
1.5,0.7,1.5(ς, s) = 3E0.2

1.5,0.7,1.5(3, 2; ς) + 4E0.2
1.5,0.7,1.5(3, 2; ς − (s+ 2)).

The Gramian matrix is as noted below

G(0, 3) =

∫ 3

0

X 3,2,0.2
1.5,0.7,1.5(3, s)

[
X 3,2,0.2

1.5,0.7,1.5(3, s)
]∗

ds = 398.162,

which is nonzero, so it is nonsingular. Based on Theorem 5, system (9) is relatively controllable.

The graphs of the control function υ(ς) and the solution function ρ(ς) corresponding to the

control function are given in Figure 1.

0.5 1.0 1.5 2.0 2.5 3.0
V

1

2

3

4

5

6

7

ΡHVL

0.5 1.0 1.5 2.0 2.5 3.0
V

1

2

3

4

ΥHVL

Figure 1. Graphs of the control υ(ς) and the solution ρ(ς).

Remark 8. It is clear that system (9) is linear. So we prove that the corresponding Gramian

matrix is invertible, and then by Theorem 5, we show system (9) relatively controllable. The

admissible control steering system (9) from the initial control function υ0(ς) = 0, ς ∈ [−0.2, 0],

an initial function ϕ(ς) = 0, ς ∈ [−0.2, 0] to the final state ρ3 = 1 + η3(3) ∈ R is given by the

following formula

υ(ς) =
[
X 3,2,0.2

1.5,0.7,1.5(3, ς)
]∗

G−1.

Moreover, the solution function ρ(ς) corresponding to the control function υ(ς) is offered by

ρ(ς) = η3(ς) +

∫ ς

0

X 3,2,0.2
1.5,0.7,1.5(ς, s)υ(s)ds.

The solution pair (ρ, υ) to system (9) is drawn in Figure 1.

Example 9. We will investigate the following nonlinear Langevin delayed fractional system

with multiple delays in control, for ς ∈ [0, 5],
CDα

0+ρ(ς)− µCDβ
0+ρ(ς)− λρ(ς − τ) =

1∑
k=0

σkυ(τk(ς)) + k(ς, ρ(ς), υ(ς)),

ρ(ς) = ϕ(ς), ς ∈ [−τ, 0], τ > 0,

(10)

where α = 1.2 and β = 0.3. ρ(ς) = [ρ1(ς) ρ2(ς)]
∗, υ(ς) = [υ1(ς) υ2(ς)]

∗, µ = 3, λ = −5, σ1 =

6, σ2 = 1, τ = 1 τ0(ς) = ς, τ1(ς) = ς − 1. The initial function ϕ(ς) = [ς + 2 2ς2 + 1]∗ is
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continuous and the nonlinear function k(ς, ρ(ς), υ(ς)) = [0 υ+ρ
1+υ2+ρ2 ]

∗ is also continuous. It is

easy to compute

X 3,−5,1
1.2,0.9,1.2(ς, s) = 6E1

1.2,0.9,1.2(3,−5; ς − s) + E1
1.2,0.9,1.2(3,−5; ς − (s+ 1)).

The corresponding Gramian matrix is given by

G(0, 5) =

∫ 5

0

X 3,−5,1
1.2,0.9,1.2(5, s)

[
X 3,−5,1

1.2,0.9,1.2(5, s)
]∗

ds = 481502,

which is nonzero, so it is nonsingular. Based on Theorem 5, the linear version of system (10) is

relatively controllable. k(ς, ρ(ς), υ(ς)) = [0 υ+ρ
1+υ2+ρ2 ]

∗ is continuous and satisfies the conditions

on Theorem 6. As a result, Theorem 6 ensures that the nonlinear system (10) is relatively

controllable.

Remark 10. The system (10) is nonlinear. It is more complicated than the previous one.

According to Theorem 6, there are two main conditions to guarantee that the nonlinear system

(10) is relatively controllable. One of them is that the linear part of it is controllable, and the

other is the limit condition. We take the help of Theorem 5 to ensure that the linear part of it

is controllable as in Example 1. In the sequel, it is demonstrated that the limit requirement built

on the nonlinear function is satisfied. In light of Theorem 6, it has emerged that the nonlinear

system (10) is relatively controllable.

§6 Conclusion

In the current paper, we shared the exact and global solutions of the linear and nonlinear

system (1), respectively. In the sequel, we defined the Gramian matrix to control the linear

version of system (1) relatively and proved the nonlinear system (1) relatively controllable by

means of the Schauder fixed point theorem.

This paper is quite comprehensive because all obtained results are also new in the cases of

both τ = 0 and λ = 0 individually. For µ = τ = 0, the findings in this paper also coincide with

those of [16] providing λ = A ∈ R.

As a future study, the obtained results may be extended to the semilinear Langevin de-

layed fractional systems with distributed delays in an admissible control, also to the semilinear

Langevin Sobolev-type evolution equations with multiple delays or distributed delays in an

admissible control, and to the semilinear Langevin delayed Sobolev-type evolution equations

with multiple delays or distributed delays in an admissible control. Additionally, introduc-

ing nonlinearities or stochastic components could improve its application to real-world systems

like robotics, ecological models, or financial markets, where delays and uncertainties play a

significant role.
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