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Fractional Milne-type inequalities by various function
classes

Cihan Unal' Fatih Hezenci®* Hiiseyin Budak®*

Abstract. The manuscript’s authors examine some Milne-type inequalities for various function
classes. Firstly, some Milne-type inequalities are established for differentiable convex functions
by using Riemann-Liouville integrals. Secondly, we provide some fractional Milne-type inequal-
ities for bounded functions by fractional integrals. Afterwards, we offer several Milne-type
inequalities for Lipschitzian functions. Likewise, we offers Milne-type inequalities by fractional
integrals of bounded variation. Finally, we demonstrate the correctness of our results by using

special cases and examples of the obtained theorems.

81 Introduction

Numerical integration formulas and their error bounds using different techniques have been
investigated by many mathematicians. In order to find the error bounds of numerical integration
formulas, mathematical inequalities are studied with a variety of functions including convex,
bounded, and Lipschitzian functions and so on. For instance, in papers [1,2], some error bounds
have been established for the midpoint and trapezoidal inequalities of numerical integration
applying convex functions. The error bounds of Simpson-type inequalities have been established
utilizing the convex functions and some of these bounds can be found in papers [3-5]. The
paper [6] presents Simpson-type inequalities and their application to quadrature inequalities in
numerical analysis. A number of fractional Simpson-type inequalities are examined in the paper
[7] for the case of functions whose second derivatives in absolute value are convex. Moreover, in
paper [8], several variants of Simpson-type inequalities are studied for the case of differentiable
convex functions by generalized fractional integrals. Please see references [9-18] and the cited
sources therein for further details.

The three-point Newton-Cotes quadrature rule is followed by Simpson’s second rule, which
is why evaluations involving three-step quadratic kernels are frequently referred to as Newton-
type results. The literature refers to these outcomes as Newton-type inequalities. For instance,
in papers [19,20], some error bounds for Newton-type inequalities in numerical integration have
also been proved by using the convex functions. For the case of functions whose first derivative
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in absolute value at a given power is arithmetically-harmonically convex, various Newton-type
inequalities are investigated in paper [21]. Likewise, certain Newton-type inequalities based
on convexity are presented and some applications for special cases of real functions are also
given in paper [23]. Moreover, some of Riemann-Liouville fractional Newton-type inequalities
for functions of bounded variation are considered in paper [22]. One may refer to [24-27] as
well as the references listed in those sources. Several new estimates of Milne’s quadrature
rule are obtained by Djenaoui and Meftah [32], specifically for functions whose first derivative
is s-convex. Moreover, in paper [29], some error estimations of Milne-type inequalities are
presented for functions of bounded variation. Moreover, in papers [30-32], fractional versions
of Milne-type inequalities are established by using the differentiable convex functions.

The main purpose of this paper is to establish several Milne-type inequalities for various
function classes. The entire research structure takes eight sections including the introduction.
In Section 2, there will be a few basic details about the paper. In Section 3, we will establish
an essential equality involving Riemann-Liouville integrals. With the help of this equality,
some Milne-type inequalities will be proved for differentiable convex functions. Afterwords, in
Section 4, some fractional Milne-type inequalities will be investigated for bounded functions by
fractional integrals. In Section 5, we will present some fractional Milne-type inequalities for
Lipschitzian functions. Moreover, in Section 6, several Milne-type inequalities will be consid-
ered by fractional integrals of bounded variation. Furthermore, in Section 7, we will offer the
correctness of our results by using special cases and examples of the obtained theorems. Finally,
some conclusions of research will be given in Section 8.

§2 Preliminaries

Let’s introduce some primary concepts that will be used in the following sections.

(i) The following is the expression for Simpson’s quadrature formula, also referred to as
Simpson’s 1/3 rule

jf(m)dx%(sga{}-(U)-FU:(U;(S)-F}_((;)}; (1)

(ii) The definition of Simpson’s second formula, also referred to as the Newton-Cotes quadratic
formula or Simpson’s 3/8 rule (see [33]), is as follows:

/6f<x>dx%5§0 Fesar(20) war (252 er0]. @

Formulas (1) and (2) are applicable to any function F that possesses a continuous fourth
derivative on the interval [o,d]. The following is one of the most famous Newton-Cotes quadra-

ture techniques that uses a three-point Simpson-type inequality.

Theorem 1. Note that F : [0,6] = R is a four times continuously differentiable function on
(0,9), and H}'(‘l)HOO = sup ‘.7-'(4) (x)| < 00. Then, the following inequality holds
z€(0,0)

1

: [}'(o)+4}'(g;r§> +]~'(5)} - 5i0/:f(:c)dw .

<— <4>H — o)t
_QSSOH]: L0=a)
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One of the classical closed-type quadrature rules is the Simpson 3/8 rule, which is founded
on the Simpson 3/8 inequality, expressed as follows.

Theorem 2 (See [33]). If F : [0,0] = R is a four times continuously differentiable function on

(0,0), and H]:(4)H00 = sup ‘]—'(4) (.23)’ < 00, then the following inequality holds
z€(0,6)

;{f(o)+3f(20;5>+3f<0225>+f } 70/]-‘

FO| @-o".

- 6480 H

The well-known Riemann-Liouville fractional integrals that are defined as follows.

Definition 1 (See [34,35]). The Riemann-Liouville integrals J&, F and Jg* F of order a > 0
with ¢ > 0 are given by

I3 F @) = s | C@— 9 Flo)de, @ >0,

and s
a 1 a—1
I Fe) = g [ €= T F e @<
respectively. Here, F belongs to L;[o,d] and I'(«) is the Gamma function defining as
oo
INa) = / e "u*"tdu.
0

The fractional integral equals to the classical integral for the case of a = 1.

83 Fractional Milne-type inequalities for convex functions

In this section, we prove an crucial equality involving Riemann-Liouville integrals. Sub-
sequently, some Milne-type inequalities are established for differentiable convex functions by
taking the modulus of the newly established identity. Moreover, we establish some Milne-type
inequalities with the help of Holder and power-mean inequality.

Lemma 1. Consider that F : [0,0] — R is an absolutely continuous function (o,d) so that
F' € Ly 0,0]. Then, the equality

) (5 ()]

20710 (a+ 1) [, N
—W[JUM Flo)+ J2 F ()]

0—o0
—T[I1+IQ}

is valid. Here, I is Euler Gamma function and

e [ (5974 25%0) = 7 (50 + 2559)

Wl e O —

I

I
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Proof. Utilizing the principles of integration by parts, we can easily obtain

Ipz/f“Pﬂ(§+2 d ) fw% +2§>}&' (3)
:5%2{ (55+22g )+f(ga+22§0]é

0

1

%% [ .. £ 2-¢
s [e [ (Gov ) -7

0

(
_ (5ig) 20}71 {f(‘%:é) +;("Z35>
(

1

20 o €. 2-¢ 2 —
0

In a similar way to the previous procedure, we have

i<fa D (50 2550) -7 (o 255
Fo )P )]t ()
/ [( 2;£U)+f(gg 226)]@

1
3
Combining (3) with (4) allows us to easily obtain

b= g [f(az?)é)*”(ga:éﬂ‘s(;a)’T(U;d) )

20 . ¢ 2-¢ 3 2-¢
0

Let us use the change of the variable z = %5 + %O’ and y = ga + 2—556 for £ € [0,1]. Then,
the equality (5) can be rewritten as follows

8 o+ 36 3049 4 o+9
I I, = 2 _
i P (55) 2 () () @
220 (a+1) [, .
_4612F;T7Lg¥1f@ﬂ+¢g¥+f@ﬂ.
Consequently, multiplying both sides of (6) by £ 257 finishes the proof of Lemma 1. O

Theorem 3. Let us consider that all assumptions of Lemma 1 hold and |F'| is a convex function
on [0,0]. Then, it yields

s () A () (00)) ™
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20 T (a+)
(0—0o)"
(u (a) + Qo () [|F' (o) + [F (9)]]-

[ 120 F(0)+ Jg};j(é)]‘

0—o

<
- 4

Here,
Ql (a) = gadg — 7(044»1%2‘”’17

QQ (Oé)

W= e O

(5 € de = oy (= — 1) + 35

Proof. By Lemma 1 and convexity of |F’|, we have
1 o+ 36 o+ 30+6
sl () - (57) - ()

2970 (e + 1) [, o
Sera |2 Flo)+ Ja;uf(é)H
! g 2_5 ! E 2
F (26+ 7 U)—]: (20+2 )’df

ans
0
P25 (G4 25%) dg]

‘ 2 2 2
{/5 siF o (5 el SiF ol (25E) 1 o]
+/<3—s“) Sro () IFe s iF e (25 f’(&]d&]

1
2

+

= (sza (1 (@) + Qa2 () [|F ()| +|F (9)]] -

That is the desired result.

Theorem 4. Suppose that all assumptions of Lemma 1 hold. If |F’
q > 1, then we have the following Milne-type inequality

() (05 e (5]

2a—1p 1
i G [ I8 Flo)+ J?;M]-'(é)H

O

|7 is convez on [o,d] where

(0—0)°

<27 {(aplﬂ (;)“”“) [(IF' O+ 717 <o>|q>3 ) (f/ Gallka i (5>|‘1)3]
+ (/1 (;‘ga)pdg); [(3|f'(5>|q1+65|f’<0>|q>5+(3|f’<a>|‘11+65f’(5>|q>31 |

2
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1,1 _
where s+, =1
Proof. Taking into account Lemma 1, we can easily get

‘;[2F<az35)_f(a;5>+2f<3a:5ﬂ o)

—%‘) [J?‘+s Flo)+ Ji,";(;+f(5)H

| —&, (€ 2-¢

y 2-¢ a3 2 5
Hf<‘”2) f( *z)\dﬁ

Now, we consider the integrals on the right side of (9). Using well-known Hoélder inequality and
the convexity of |F'|?, we have

HEEUCORED)
_W { 2 F(0)+ Ji,';uf(é)H

+

2

Q=

Jera) ([l (e255)
0 0

1
1 q

F o Pl 6 2-€)\|
+ ZWf|pds Zﬂf‘(20+- ; 6)

£7s d¢
[ 4P [ (6. 2= \["
+ /f“—§ d¢ /f’<26+ 5 a) de¢

q

dg

=

=
Qe

=

3 d

¥ jfa—4p%

P

1
/
<27 jemg !(|P 2-8 1,

|
/N
DO [y
Q
+
[\
m‘ |
a5
<%
N———
[l=)
Q=
v g

1

=
Q=

+ | [emae j(gu%wﬁ - ﬁf%»)ds

0 0

Nl
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« / B / q
N /(3— ) /( @+ 25 o)) e
S |/ F o)+ 22517 (0)7) d
. (3 ) /( | G
“P“ |f’ ()| +71F (o)|\ *
ap+1 16 ) +<
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Q=

Q=

I ()" + 7| F (9]

16

(3|f’( I +51F (o)
16

(e

2

This completes the proof of Theorem 4.

Theorem 5. Assume that all assumptions of Lemma 1 hold. If |F’

q > 1, then we have the following Milne-type inequality

o () (5 ()

> .\ (3|f' (@) +51F (3)!°

16

| q

Q=

=)+ 4

—W [ 2 F(o)+ J?f;uf((S)H
< 2T (@) [(©4 () 17 )+ (@) |7 (o))
+ (9 (0) |7 (@)1 + Q4 () |7 (8)]) ]
(0 <a>>1‘% [(© (@) 17 (9)]7 + 9 (@) | (0)]")
+ (95 () 17 (o) + 96 (@) |7 (8))) 7]}
Here Q1 () and Qs (a) are deﬁned in Theorem 3 and
0 (o) = [ 5706 = ok ().
(o) = z (22 ) £rdE = a+1)(a+2) (355
05 () = § (4~ €) dE = 5 (P~ ) +
9 (o) = [ (35°) (3 - €) e = Gy (355 -

Proof. Let us consider power mean inequality. Then, it follows
1 o+ 30 o+ 30+
s Pr () - (5) 2 (557

_W[Jﬁ‘;(s_f( )+ Jeps H‘”H

)

)]

is convex on [0, 6] where

W

O

(10)
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(jé“dﬁ (/5 F (55255 )

_ 1

- ifadﬁ> | /|§a |7 (5o + 255) )
0
+ jga—gdg h ji“—g f’(26+ ; a>qd£ ;
2 i %
(Jleste) {fle il s

Using the convexity of |F’|?, we have

sl () - () e (7))

W{J?M F(o) + J(:;‘Ur}—(é)H

[ [ q 2- / q
Jea| | [elSrors 2t o) e
0 0

1 1*% 1 =
« «@ § / o q u / q
¥ O/§d§) O/s Hl- f(é)]dé)

q
1—

q

Q=

1
q

+ /1(—5“) /<§‘5> PO+ 2 o a

2

(o)) [[Go)fmor st

2

Q=

+
Q ”‘H\H

= 02700 (@) [(93(0) 1 () + 0 (@) |7 (o))

+ (9 (@) 17 (0)|7 + 9 (0) |7 (9)]) ]
(2 (@) (@5 (@) 17 (0)]" + Q6 () |7 (0)]")
+ (95 (0) 17 (@)1 + 96 (o) |7 (9))) ¢ ]}

Q=

Q=
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84 Fractional Milne-type inequalities for bounded functions
In this section, we present a fractional Milne-type inequality for bounded functions.

Theorem 6. Let us consider that the conditions of Lemma 1 hold. If there exist m,M € R
such that m < F'(§) < M for £ € [o,0], then it yields

) A ) e

D [y P+ g, F0)

0—o 1 1 2
< — (= 1)+ M —m).
=7 {a+1<20‘ )+3}( m)
Proof. By using Lemma 1, we have
1 o+ 30 o+ 30+
s (B2) - () o ()] (12)

2070 (e + 1) [, o
TG |20 Flo)+ J2p F )]

o) [l (6 2-€\ mi+M
S /g {J—"<26+ . o)— . }dg
0

Foalm+M (e 2-¢
0
1

el (3522

2

1
o 4 m+M ) 6 2_5
() [P (B i) e

2
Using the absolute value of (12), we obtain

(=) (13 ()

O ENE R0

b—o i £ 2—¢& m+ M
< alr S -
=7 /f ]-"(25—6- 5 0) 5 ’d{
0

fe

m+M [ 2-¢
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1
4 o 3 2—-¢ m+ M
(o) (Gor i) - e

1
4 « m+M ! 5 275
(e

2 2
1
2

It is known that m < F'(§) < M for £ € [o,d]. Thus, we get

’]__,<§6+2—§J>_m+M _M-m

27" 2 2 |- 2

’m+M—f’(§a+2;£5)‘<M_m. (14)

and

2 2 - 2
If we consider (13) and (14), then we get

b () (559) o (22

8 Flo)+ J%gj(a)]‘

1

d—o 4
< —— (M —m){ [ &¥de + (—5“) dg
4 / / 3

1
2

:(SZJ{a}rl (;_1)+§}(M—m).

85 Fractional Milne-type inequalities for Lipschitzian functions
Now, we give a fractional Milne’s rule for the case of Lipschitzian functions.

Theorem 7. Note that the assumptions of Lemma 1 are valid. If F' is a L-Lipschitzian
function on [o,0], then the following inequality holds

() o (5) o ()]

_2‘1_(;11(;‘“)1‘1) [ s F(o)+ Jﬁ“;(;+f(5)H

(6-0) (1 1 a+3
< Lq— -1 .
- 4 6+(a+1)(a+2) 2041
Proof. Using the fact that F’ is L-Lipschitzian function, by Lemma 1, we have
1 o+ 39 o+6 30+
sl () -7 (557) x5

g [ 0+ 12,7 0)
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b= | [l (6. 2-¢ (6 2-¢
0
1
4 a ! 5 2_€ / E 2_6

1

<277 if“L(l—f)(é—o)d€+/(4—5“>L(1—£)(5—0)d€
0

3

1
2

- (540)2’3{(15* CEIeES) <02[a++13 1>}

86 Fractional Milne-type inequalities for functions of bounded
variation

Now, a Milne-type inequality is offered by fractional integrals of bounded variation.
Theorem 8. Suppose that F : [0,0] — R is a function of bounded variation on [o,0]. Then,
we obtain

1 o+ 30 o+ 30+4
Z 19 _ R 9 = -
sl () A (57) 2 (7))

20717 (o 4 1
2 Tlat]) [J2s Flo)+ Jﬁ‘;rg+]-"(6)H

(0—0)*

5
1 1 4 1
< - — - — .
_2max{2a,3 2(1}\0/(]:)
d

Here, \/ (F) denotes the total variation of F on [c,d].

c

Proof. Define the function K, (z) by

(x — o), o<z < 328
oo 4(50), o<,

—(0—x)°, o130 < g < 4.
With the help of the integrating by parts, we obtain

/6[(@ (x) dF (x)
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- 75(x—a)adf($)+ 7{@—0)“—3(6;0)1 dF(z)
; / 6=+ (5;“)1 a7 () +/5 - (3 - )" dF (@)

o446
ots ="
e 4 (6~ “ 2 o
—i—{(m—a) —3( 2(7) ]}"(x e O / (z —0)* " F(z)da
4 30+8

4 /5—0c\* 30+6
(7)) ()

Q| W~
7N\

-« 7(3} — o) Fla)de — /6 (6 —2)* " F(z)da

= (;_2757);1 {2?(“235) —I(U;L(S) +2F(30:5>}

~T(a+1) [J2 _F(0)+ 2, F (6)]

This follows
1 o+ 36 o+ 30+46
27 (5) - (5 v ()]

22T (a+1)
(0—0a)"

| Jes Flo)+ J2u F )]

4
a—1
_ 7(52— = / Ko(2)dF(x).

()4 ()

927

It is known that if G, F : [0, ] — R are such that G is continuous on [0, §] and F is of bounded
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5
variation on [0, 8], then [ G(&)dF(§) exist and

/ G(e)dF(©)| < s 16(6)]\/(F). (15)

By using (15), we have

o (22 o (25 ()

:(;j:)a jKa(x)df(x) <(62a;>a{ T(w—a)“df(w)
| J oo -2 (52 o] o] [ - £ (552 e

+ze[’°’<’sép,%+5] (x—o0)* — (520>0‘ 3}{;(]—")
+xe[$fi+35]’§ (5;a)a_(5—x)“ (§(I>+LE[£75]|<5_ >a|U\Z/35<;)}
) Vo) -0 U
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87 Special cases and examples of main results

In this section, the correctness of our results are established by using special cases and
examples of the obtained theorems.

Ezample 1. Let us take a function F : [0, 8] = [0,4] — R given by F (z) = 2? with « € (0, 10] .
Thus, the left-hand side of (7) reduces to
i Ca+l) | .
’3 [2F (3) — F (2) +2F (1)] — —ar [ JS_F(0)+ J§ F (4)] (16)

2 4
=13 - o / eigds+ [ g
2
|4 (a—=1)(a+4)
N ‘ 3(a+1)(a+2 ’
Moreover, the right-hand side of (7) becomes to

8 1 + L L 1)+ g
(a+1)20tL o1 \ 20+ 3|
This follows that

(a—1)(a+4) 1 1 1 2
< + -1)+-.
6(a+1)(a+2) (a+1)20Ft @+ 1 \ 20! 3
As one can see in Figure 1, the left-hand side of (7) in Example 1 is always below the right-hand
side of this equation, for all values of a € (0, 10].

0.7

T T T
The left hand side of the inequality (7)
—— The right hand side of the inequality (7).

Figure 1. MATLAB was used to compute and represent the graph of both sides of (7) in
Example 1.

Remark 1. If we choose @ = 1 in Theorem 3, then we can get the Milne-type inequality

or (2520) - (742 wor (200)] - 2 [ i
5(6—0)
48

< IF (o) + 1F (9],
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which is proved by Ali et al. in paper [31, Corollary 1]. This inequality helps us find the error
bound of Milne-type inequality.

Ezample 2. Let us take a function F : [0, 8] = [0,4] — R given by F (z) = 22 with « € (0,10].
From Theorem 4 with p = ¢ = 2, the left-hand side of (8) becomes to (16) and the right-hand
side of (8) coincides with

(w> (2(14v7))

Grsem ] ws ) 60 a)
This vields
Hoonen (1

+(§+3(a8+1)[2;“_1}_20[11[22;1_1});(\@+\/5)'

Using MATLAB software, one can see in Figure 2, the left-hand side of (8) in Example 2 is
always below the right-hand side of this equation, for all values of « € (0, 10].

T T T T
| —— The left hand side of the inequalit (8)

| —— The right hand side of the inequality (8) | |

Figure 2. Evaluated and plotted using MATLAB, the graph of both sides of (8) in Example 2
depends on a.

Remark 2. Let us note that & = 1 in Theorem 4. Then, we obtain the following Milne’s formula

il))[2;(0236)_f(0;6>+2;<3a:5)]_510/‘5F(§)d£
S64 {<2p+1(1p+1)> <|]:/(5)|q+7|]:l(0)|q>;+<|.7-"(U)q+7|}"(5)|‘1>§]

16 16
5p+1 1 P
6+ (p+1) 37+ (p+1)

l (2 O 4517 (o >|4>3+(3|f'<o>q+5|f'<6>|4>3”’

=

16
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which is given by Ali et al. in paper [31, Corollary 2]. We can find the error bound of Milne-type
inequality with the aid of this inequality.

Example 3. Choose a function F : [0, 6] = [0,4] — R given by F (z) = 2. By Theorem 5 with
a € (0,10] and g = 2, the left-hand side of (10) reduces to equality (16) and the right-side of
(10) coincides with

8{ (@1 (@) [192 (@)* + [ ()]
+

+ (22 (a))

ol
—
o)
wt
—~
Q
=
N
@)
(=2}
—
R
=
Nl
[E—"
—

Finally, we have
(a—1)(a+4)
’6(a+ 1) (a+2)
+ (92 (@))* [195 ()] + [2 ()]
Figure 3 presents that in Example 3, the left-hand side of (10) is constantly below the
right-hand side by using MATLAB software for all values of o € (0, 10].

03 1
02 1
01f 1

ok ‘— The left hand side of the inequality (10) | _|

—— The right hand side of the inequality (10)
. . . .

01 L L L L L
0 1 2 3 4 5 6 7 8 9 10

Figure 3. The graphs of both sides of (10) in Example 3, as functions of «, were examined and
drawn using MATLAB.

Corollary 1. If we take o = 1 in Theorem 5, then the following Milne’s formula holds

O I L R o | Ry T

6—c {1 K’)IF O + |7 <a>‘1)3 . <5|f' ()| + |7 <5>|q)3]

<
- 4 8 6 6

. (274) KW' @ 4517 <o>|4>3 - (U U + 517 <6>|4>3] }

This inequality helps us find the error bound of Milne’s rule.

Ezample 4. Consider a function F : [0,6] = [0,4] — R given by F (z) = z2. By Theorem 6
with @ € (0,10] and 0 < F'(z) < 8, the left-hand side of (11) reduces to (16) and the right-side

of (11) coincides with
NENAERN
a+1\2 3)°
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Consequently, we get

6(?04_—1—11))((0[&—:—42))‘ S Jlr 1 <21a - 1) + %

Hence, the left-hand side of (11) in Example 4 continuously stays below the right-hand side.

or —— The left hand side of the inequality (11) | -
—— The right hand side of the inequality (1)
. . . . .

0 1 2 3 4 5 6 7 8 9 10

Figure 4. The graphs of both sides of (11) in Example 4, as functions of o € (0, 10], were
evaluated and plotted using MATLAB.

Corollary 2. If we select a« =1 in Theorem 6, then we have

H”(JZ%) _f(a;5>+2f<3o4+5ﬂ _6i00/6]-“(§)d£

5(6—0)
48

Corollary 3. Under assumption of Theorem 6, if there exist M € R such that |F'(£)| < M
for all £ € [0,4], then we get

() (50 ()

_W [ 2 F(o)+ JS;EJ(&H

L0z b (LN 2y,
2 \la+1\20 3

Corollary 4. If we assign o =1 in Corollary 3, then we get

1 o+ 36 o490 30+ 1 /0
Z 9 _ 9 _

P () 7 (557 o ()] =55 [ 7o
5(6 —o0)
24
Corollary 5. Take a =1 in Theorem 7. Then, the following Milne-type inequality holds:

o () () o (5] [
24

< (M —m).

< M.

< L.
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Corollary 6. Let us consider o« = 1 in Theorem 8. Then, we have the following Milne-type
inequality

()£ (232 (2] 2

88 Concluding remarks

< E\/(Jf).

This paper represents several Milne-type inequalities for various function classes. More pre-
cisely, several new versions of Milne-type inequalities are given for the case of differentiable
convex functions by using Riemann-Liouville fractional integrals. Namely, Milne-type inequal-
ities are obtained by taking advantage of the convexity, the Holder inequality, and the power
mean inequality. Afterwards, some Milne-type inequalities are given for bounded functions by
fractional integrals. Subsequently, we present some fractional Milne-type inequalities for the
case of Lipschitzian functions. Furthermore, we investigate Milne-type inequalities by fraction-
al integrals of bounded variation. Finally, the correctness of our results are proved by using
special cases and examples of the obtained theorems.

In future papers, the concepts and strategies related to our results associated with Milne-
type inequalities by Riemann-Liouville fractional integrals may open the way for new avenues
in mathematics. Moreover, one may consider generalizing our findings by exploring alternative
classes of convex functions or different types of fractional integral operators. Furthermore,
one can obtain Milne-type inequalities with the help of the various function classes by using
quantum calculus.
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