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Fractional Milne-type inequalities by various function

classes

Cihan Ünal1 Fatih Hezenci2,∗ Hüseyin Budak3,4

Abstract. The manuscript’s authors examine some Milne-type inequalities for various function

classes. Firstly, some Milne-type inequalities are established for differentiable convex functions

by using Riemann-Liouville integrals. Secondly, we provide some fractional Milne-type inequal-

ities for bounded functions by fractional integrals. Afterwards, we offer several Milne-type

inequalities for Lipschitzian functions. Likewise, we offers Milne-type inequalities by fractional

integrals of bounded variation. Finally, we demonstrate the correctness of our results by using

special cases and examples of the obtained theorems.

§1 Introduction

Numerical integration formulas and their error bounds using different techniques have been

investigated by many mathematicians. In order to find the error bounds of numerical integration

formulas, mathematical inequalities are studied with a variety of functions including convex,

bounded, and Lipschitzian functions and so on. For instance, in papers [1,2], some error bounds

have been established for the midpoint and trapezoidal inequalities of numerical integration

applying convex functions. The error bounds of Simpson-type inequalities have been established

utilizing the convex functions and some of these bounds can be found in papers [3–5]. The

paper [6] presents Simpson-type inequalities and their application to quadrature inequalities in

numerical analysis. A number of fractional Simpson-type inequalities are examined in the paper

[7] for the case of functions whose second derivatives in absolute value are convex. Moreover, in

paper [8], several variants of Simpson-type inequalities are studied for the case of differentiable

convex functions by generalized fractional integrals. Please see references [9–18] and the cited

sources therein for further details.

The three-point Newton-Cotes quadrature rule is followed by Simpson’s second rule, which

is why evaluations involving three-step quadratic kernels are frequently referred to as Newton-

type results. The literature refers to these outcomes as Newton-type inequalities. For instance,

in papers [19,20], some error bounds for Newton-type inequalities in numerical integration have

also been proved by using the convex functions. For the case of functions whose first derivative
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in absolute value at a given power is arithmetically-harmonically convex, various Newton-type

inequalities are investigated in paper [21]. Likewise, certain Newton-type inequalities based

on convexity are presented and some applications for special cases of real functions are also

given in paper [23]. Moreover, some of Riemann-Liouville fractional Newton-type inequalities

for functions of bounded variation are considered in paper [22]. One may refer to [24-27] as

well as the references listed in those sources. Several new estimates of Milne’s quadrature

rule are obtained by Djenaoui and Meftah [32], specifically for functions whose first derivative

is s-convex. Moreover, in paper [29], some error estimations of Milne-type inequalities are

presented for functions of bounded variation. Moreover, in papers [30–32], fractional versions

of Milne-type inequalities are established by using the differentiable convex functions.

The main purpose of this paper is to establish several Milne-type inequalities for various

function classes. The entire research structure takes eight sections including the introduction.

In Section 2, there will be a few basic details about the paper. In Section 3, we will establish

an essential equality involving Riemann–Liouville integrals. With the help of this equality,

some Milne-type inequalities will be proved for differentiable convex functions. Afterwords, in

Section 4, some fractional Milne-type inequalities will be investigated for bounded functions by

fractional integrals. In Section 5, we will present some fractional Milne-type inequalities for

Lipschitzian functions. Moreover, in Section 6, several Milne-type inequalities will be consid-

ered by fractional integrals of bounded variation. Furthermore, in Section 7, we will offer the

correctness of our results by using special cases and examples of the obtained theorems. Finally,

some conclusions of research will be given in Section 8.

§2 Preliminaries

Let’s introduce some primary concepts that will be used in the following sections.

(i) The following is the expression for Simpson’s quadrature formula, also referred to as

Simpson’s 1/3 rule
δ∫

σ

F (x) dx ≈ δ − σ

6

[
F (σ) + 4F

(
σ + δ

2

)
+ F (δ)

]
; (1)

(ii) The definition of Simpson’s second formula, also referred to as the Newton-Cotes quadratic

formula or Simpson’s 3/8 rule (see [33]), is as follows:
δ∫

σ

F (x) dx ≈ δ − σ

8

[
F (σ) + 3F

(
2σ + δ

3

)
+ 3F

(
σ + 2δ

3

)
+ F (δ)

]
. (2)

Formulas (1) and (2) are applicable to any function F that possesses a continuous fourth

derivative on the interval [σ, δ]. The following is one of the most famous Newton-Cotes quadra-

ture techniques that uses a three-point Simpson-type inequality.

Theorem 1. Note that F : [σ, δ] → R is a four times continuously differentiable function on

(σ, δ) , and
∥∥F (4)

∥∥
∞ = sup

x∈(σ,δ)

∣∣F (4)(x)
∣∣ < ∞. Then, the following inequality holds∣∣∣∣∣16

[
F(σ) + 4F

(
σ + δ

2

)
+ F(δ)

]
− 1

δ − σ

∫ δ

σ

F(x)dx

∣∣∣∣∣ ≤ 1

2880

∥∥∥F (4)
∥∥∥
∞

(δ − σ)
4
.
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One of the classical closed-type quadrature rules is the Simpson 3/8 rule, which is founded

on the Simpson 3/8 inequality, expressed as follows.

Theorem 2 (See [33]). If F : [σ, δ] → R is a four times continuously differentiable function on

(σ, δ) , and
∥∥F (4)

∥∥
∞ = sup

x∈(σ,δ)

∣∣F (4)(x)
∣∣ < ∞, then the following inequality holds∣∣∣∣∣18

[
F (σ) + 3F

(
2σ + δ

3

)
+ 3F

(
σ + 2δ

3

)
+ F (δ)

]
− 1

δ − σ

∫ δ

σ

F(x)dx

∣∣∣∣∣
≤ 1

6480

∥∥∥F (4)
∥∥∥
∞

(δ − σ)
4
.

The well-known Riemann-Liouville fractional integrals that are defined as follows.

Definition 1 (See [34, 35]). The Riemann–Liouville integrals Jα
σ+F and Jα

δ−F of order α > 0

with σ ≥ 0 are given by

Jα
σ+F(x) =

1

Γ(α)

∫ x

σ

(x− ξ)
α−1 F(ξ)dξ, x > σ,

and

Jα
δ−F(x) =

1

Γ(α)

∫ δ

x

(ξ − x)
α−1 F(ξ)dξ, x < δ,

respectively. Here, F belongs to L1[σ, δ] and Γ(α) is the Gamma function defining as

Γ(α) :=

∫ ∞

0

e−uuα−1du.

The fractional integral equals to the classical integral for the case of α = 1.

§3 Fractional Milne-type inequalities for convex functions

In this section, we prove an crucial equality involving Riemann–Liouville integrals. Sub-

sequently, some Milne-type inequalities are established for differentiable convex functions by

taking the modulus of the newly established identity. Moreover, we establish some Milne-type

inequalities with the help of Hölder and power-mean inequality.

Lemma 1. Consider that F : [σ, δ] → R is an absolutely continuous function (σ, δ) so that

F ′ ∈ L1 [σ, δ]. Then, the equality

1

3

[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]

=
δ − σ

4
[I1 + I2]

is valid. Here, Γ is Euler Gamma function and
I1 =

1
2∫
0

ξα
[
F ′
(

ξ
2δ +

2−ξ
2 σ

)
−F ′

(
ξ
2σ + 2−ξ

2 δ
)]

dξ,

I2 =
1∫
1
2

(
ξα − 4

3

) [
F ′
(

ξ
2δ +

2−ξ
2 σ

)
−F ′

(
ξ
2σ + 2−ξ

2 δ
)]

dξ.
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Proof. Utilizing the principles of integration by parts, we can easily obtain

I1 =

1
2∫

0

ξα
[
F ′
(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ (3)

=
2ξα

δ − σ

[
F
(
ξ

2
δ +

2− ξ

2
σ

)
+ F

(
ξ

2
σ +

2− ξ

2
δ

)]∣∣∣∣ 12
0

− 2α

δ − σ

1
2∫

0

ξα−1

[
F
(
ξ

2
δ +

2− ξ

2
σ

)
−F

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ

=
1

(δ − σ)

1

2α−1

[
F
(
3σ + δ

4

)
+ F

(
σ + 3δ

4

)]

− 2α

δ − σ

1
2∫

0

ξα−1

[
F
(
ξ

2
δ +

2− ξ

2
σ

)
+ F

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ.

In a similar way to the previous procedure, we have

I2 =

1∫
1
2

(
ξα − 4

3

)[
F ′
(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ (4)

= − 2

δ − σ

(
1

2α
− 4

3

)[
F
(
σ + 3δ

4

)
+ F

(
3σ + δ

4

)]
− 4

3 (δ − σ)
F
(
σ + δ

2

)

− 2α

δ − σ

1∫
1
2

ξα−1

[
F
(
ξ

2
δ +

2− ξ

2
σ

)
+ F

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ.

Combining (3) with (4) allows us to easily obtain

I1 + I2 =
8

3 (δ − σ)

[
F
(
σ + 3δ

4

)
+ 2F

(
3σ + δ

4

)]
− 4

3 (δ − σ)
F
(
σ + δ

2

)
(5)

− 2α

δ − σ

1∫
0

ξα−1

[
F
(
ξ

2
δ +

2− ξ

2
σ

)
+ F

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ.

Let us use the change of the variable x = ξ
2δ +

2−ξ
2 σ and y = ξ

2σ + 2−ξ
2 δ for ξ ∈ [0, 1]. Then,

the equality (5) can be rewritten as follows

I1 + I2 =
8

3 (δ − σ)

[
F
(
σ + 3δ

4

)
+ 2F

(
3σ + δ

4

)]
− 4

3 (δ − σ)
F
(
σ + δ

2

)
(6)

− 2α+1Γ (α+ 1)

(δ − σ)
α+1

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]
.

Consequently, multiplying both sides of (6) by δ−σ
4 finishes the proof of Lemma 1.

Theorem 3. Let us consider that all assumptions of Lemma 1 hold and |F ′| is a convex function

on [σ, δ] . Then, it yields∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
(7)
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−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4
(Ω1 (α) + Ω2 (α)) [|F ′ (σ)|+ |F ′ (δ)|] .

Here, 
Ω1 (α) =

1
2∫
0

ξαdξ = 1
(α+1)2α+1 ,

Ω2 (α) =
1∫
1
2

(
4
3 − ξα

)
dξ = 1

(α+1)

(
1

2α+1 − 1
)
+ 2

3 .

Proof. By Lemma 1 and convexity of |F ′| , we have∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4


1
2∫

0

|ξα|
∣∣∣∣F ′

(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ
+

1∫
1
2

∣∣∣∣ξα − 4

3

∣∣∣∣ ∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ


≤ δ − σ

4


1
2∫

0

ξα
[
ξ

2
|F ′ (δ)|+

(
2− ξ

2

)
|F ′ (σ)|+ ξ

2
|F ′ (σ)|+

(
2− ξ

2

)
|F ′ (δ)|

]
dξ

+

1∫
1
2

(
4

3
− ξα

)[
ξ

2
|F ′ (δ)|+

(
2− ξ

2

)
|F ′ (σ)|+ ξ

2
|F ′ (σ)|+

(
2− ξ

2

)
|F ′ (δ)|

]
dξ


=

δ − σ

4
(Ω1 (α) + Ω2 (α)) [|F ′ (σ)|+ |F ′ (δ)|] .

That is the desired result.

Theorem 4. Suppose that all assumptions of Lemma 1 hold. If |F ′|q is convex on [σ, δ] where

q > 1, then we have the following Milne-type inequality∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
(8)

−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4


(

1

αp+ 1

(
1

2

)αp+1
) 1

p
[(

|F ′ (δ)|q + 7 |F ′ (σ)|q

16

) 1
q

+

(
|F ′ (σ)|q + 7 |F ′ (δ)|q

16

) 1
q

]

+

 1∫
1
2

(
4

3
− ξα

)p

dξ


1
p [(

3 |F ′ (δ)|q + 5 |F ′ (σ)|q

16

) 1
q

+

(
3 |F ′ (σ)|q + 5 |F ′ (δ)|q

16

) 1
q

] ,
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where 1
p + 1

q = 1.

Proof. Taking into account Lemma 1, we can easily get∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
(9)

−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4


1
2∫

0

|ξα|
∣∣∣∣F ′

(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ
+

1∫
1
2

∣∣∣∣ξα − 4

3

∣∣∣∣ ∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ
 .

Now, we consider the integrals on the right side of (9). Using well-known Hölder inequality and

the convexity of |F ′|q, we have∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4




1
2∫

0

|ξα|p dξ


1
p


1
2∫

0

∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)∣∣∣∣q dξ


1
q

+


1
2∫

0

|ξα|p dξ


1
p


1
2∫

0

∣∣∣∣F ′
(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣q dξ


1
q

+

 1∫
1
2

∣∣∣∣ξα − 4

3

∣∣∣∣p dξ


1
p
 1∫

1
2

∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)∣∣∣∣q dξ


1
q

+

 1∫
1
2

∣∣∣∣ξα − 4

3

∣∣∣∣p dξ


1
p
 1∫

1
2

∣∣∣∣F ′
(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣q dξ


1
q


≤ δ − σ

4




1
2∫

0

ξαpdξ


1
p


1
2∫

0

(
ξ

2
|F ′ (δ)|q + 2− ξ

2
|F ′ (σ)|q

)
dξ


1
q

+


1
2∫

0

ξαpdξ


1
p


1
2∫

0

(
ξ

2
|F ′ (σ)|q + 2− ξ

2
|F ′ (δ)|q

)
dξ


1
q
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+

 1∫
1
2

(
4

3
− ξα

)p

dξ


1
p
 1∫

1
2

(
ξ

2
|F ′ (δ)|q + 2− ξ

2
|F ′ (σ)|q

)
dξ


1
q

+

 1∫
1
2

(
4

3
− ξα

)p

dξ


1
p
 1∫

1
2

(
ξ

2
|F ′ (σ)|q + 2− ξ

2
|F ′ (δ)|q

)
dξ


1
q


=

δ − σ

4


(

1

αp+ 1

(
1

2

)αp+1
) 1

p
[(

|F ′ (δ)|q + 7 |F ′ (σ)|q

16

) 1
q

+

(
|F ′ (σ)|q + 7 |F ′ (δ)|q

16

) 1
q

]

+

 1∫
1
2

(
4

3
− ξα

)p

dξ


1
p [(

3 |F ′ (δ)|q + 5 |F ′ (σ)|q

16

) 1
q

+

(
3 |F ′ (σ)|q + 5 |F ′ (δ)|q

16

) 1
q

] .

This completes the proof of Theorem 4.

Theorem 5. Assume that all assumptions of Lemma 1 hold. If |F ′|q is convex on [σ, δ] where

q ≥ 1, then we have the following Milne-type inequality∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
(10)

−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4

{
(Ω1 (α))

1− 1
q

[(
Ω3 (α) |F ′ (δ)|q +Ω4 (α) |F ′ (σ)|q

) 1
q

+
(
Ω3 (α) |F ′ (σ)|q +Ω4 (α) |F ′ (δ)|q

) 1
q

]
+(Ω2 (α))

1− 1
q

[(
Ω5 (α) |F ′ (δ)|q +Ω6 (α) |F ′ (σ)|q

) 1
q

+
(
Ω5 (α) |F ′ (σ)|q +Ω6 (α) |F ′ (δ)|q

) 1
q

]}
.

Here Ω1 (α) and Ω2 (α) are defined in Theorem 3 and

Ω3 (α) =

1
2∫
0

ξα+1

2 dξ = 1
α+2

(
1

2α+3

)
,

Ω4 (α) =

1
2∫
0

(
2−ξ
2

)
ξαdξ = 1

(α+1)(α+2)

(
3α+7
2α+3

)
,

Ω5 (α) =
1∫
1
2

ξ
2

(
4
3 − ξα

)
dξ = 1

α+2

(
1

2α+3 − 1
2

)
+ 1

4 ,

Ω6 (α) =
1∫
1
2

(
2−ξ
2

) (
4
3 − ξα

)
dξ = 1

(α+1)(α+2)

(
3α+7
2α+3 − α+3

2

)
+ 5

12 .

Proof. Let us consider power mean inequality. Then, it follows∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣



Cihan Ünal, et al. Fractional Milne-type inequalities by various function classes 923

≤ δ − σ

4




1
2∫

0

|ξα| dξ


1− 1

q


1
2∫

0

|ξα|
∣∣∣∣F ′

(
ξ

2
δ +

2− ξ

2
σ

)∣∣∣∣q dξ


1
q

+


1
2∫

0

|ξα| dξ


1− 1

q


1
2∫

0

|ξα|
∣∣∣∣F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣q dξ


1
q

+

 1∫
1
2

∣∣∣∣ξα − 4

3

∣∣∣∣ dξ


1− 1
q
 1∫

1
2

∣∣∣∣ξα − 4

3

∣∣∣∣ ∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)∣∣∣∣q dξ


1
q

+

 1∫
1
2

∣∣∣∣ξα − 4

3

∣∣∣∣ dξ


1− 1
q
 1∫

1
2

∣∣∣∣ξα − 4

3

∣∣∣∣ ∣∣∣∣F ′
(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣q dξ


1
q

 .

Using the convexity of |F ′|q, we have∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4




1
2∫

0

ξαdξ


1− 1

q


1
2∫

0

ξα
[
ξ

2
|F ′ (δ)|q + 2− ξ

2
|F ′ (σ)|q

]
dξ


1
q

+


1
2∫

0

ξαdξ


1− 1

q


1
2∫

0

ξα
[
ξ

2
|F ′ (σ)|q + 2− ξ

2
|F ′ (δ)|q

]
dξ


1
q

+

 1∫
1
2

(
4

3
− ξα

)
dξ


1− 1

q
 1∫

1
2

(
4

3
− ξα

)[
ξ

2
|F ′ (δ)|q + 2− ξ

2
|F ′ (σ)|q

]
dξ


1
q

+

 1∫
1
2

(
4

3
− ξα

)
dξ


1− 1

q
 1∫

1
2

(
4

3
− ξα

)[
ξ

2
|F ′ (σ)|q + 2− ξ

2
|F ′ (δ)|q

]
dξ


1
q


=

δ − σ

4

{
(Ω1 (α))

1− 1
q

[(
Ω3 (α) |F ′ (δ)|q +Ω4 (α) |F ′ (σ)|q

) 1
q

+
(
Ω3 (α) |F ′ (σ)|q +Ω4 (α) |F ′ (δ)|q

) 1
q

]
+(Ω2 (α))

1− 1
q

[(
Ω5 (α) |F ′ (δ)|q +Ω6 (α) |F ′ (σ)|q

) 1
q

+
(
Ω5 (α) |F ′ (σ)|q +Ω6 (α) |F ′ (δ)|q

) 1
q

]}
.
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§4 Fractional Milne-type inequalities for bounded functions

In this section, we present a fractional Milne-type inequality for bounded functions.

Theorem 6. Let us consider that the conditions of Lemma 1 hold. If there exist m,M ∈ R
such that m ≤ F ′(ξ) ≤ M for ξ ∈ [σ, δ] , then it yields∣∣∣∣13

[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
(11)

−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4

{
1

α+ 1

(
1

2α
− 1

)
+

2

3

}
(M −m) .

Proof. By using Lemma 1, we have

1

3

[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
(12)

− 2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]

=
δ − σ

4


1
2∫

0

ξα
[
F ′
(
ξ

2
δ +

2− ξ

2
σ

)
− m+M

2

]
dξ

+

1
2∫

0

ξα
[
m+M

2
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ

+

1∫
1
2

(
ξα − 4

3

)[
F ′
(
ξ

2
δ +

2− ξ

2
σ

)
− m+M

2

]
dξ

+

1∫
1
2

(
ξα − 4

3

)[
m+M

2
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)]
dξ

 .

Using the absolute value of (12), we obtain∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4


1
2∫

0

ξα
∣∣∣∣F ′

(
ξ

2
δ +

2− ξ

2
σ

)
− m+M

2

∣∣∣∣ dξ
+

1
2∫

0

ξα
∣∣∣∣m+M

2
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ
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+

1∫
1
2

(
4

3
− ξα

) ∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)
− m+M

2

∣∣∣∣ dξ

+

1∫
1
2

(
4

3
− ξα

) ∣∣∣∣m+M

2
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ
 .

It is known that m ≤ F ′(ξ) ≤ M for ξ ∈ [σ, δ] . Thus, we get∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)
− m+M

2

∣∣∣∣ ≤ M −m

2
, (13)

and ∣∣∣∣m+M

2
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ ≤ M −m

2
. (14)

If we consider (13) and (14), then we get∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ δ − σ

4
(M −m)


1
2∫

0

ξαdξ +

1∫
1
2

(
4

3
− ξα

)
dξ


=

δ − σ

4

{
1

α+ 1

(
1

2α
− 1

)
+

2

3

}
(M −m) .

§5 Fractional Milne-type inequalities for Lipschitzian functions

Now, we give a fractional Milne’s rule for the case of Lipschitzian functions.

Theorem 7. Note that the assumptions of Lemma 1 are valid. If F ′ is a L-Lipschitzian

function on [σ, δ] , then the following inequality holds∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ (δ − σ)
2

4
L

{
1

6
+

1

(α+ 1) (α+ 2)

(
α+ 3

2α+1
− 1

)}
.

Proof. Using the fact that F ′ is L-Lipschitzian function, by Lemma 1, we have∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣
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≤ δ − σ

4


1
2∫

0

ξα
∣∣∣∣F ′

(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ
+

1∫
1
2

(
4

3
− ξα

) ∣∣∣∣F ′
(
ξ

2
δ +

2− ξ

2
σ

)
−F ′

(
ξ

2
σ +

2− ξ

2
δ

)∣∣∣∣ dξ


≤ δ − σ

4


1
2∫

0

ξαL (1− ξ) (δ − σ) dξ +

1∫
1
2

(
4

3
− ξα

)
L (1− ξ) (δ − σ) dξ


=

(δ − σ)
2

4
L

{
1

6
+

1

(α+ 1) (α+ 2)

(
α+ 3

2α+1
− 1

)}
.

§6 Fractional Milne-type inequalities for functions of bounded

variation

Now, a Milne-type inequality is offered by fractional integrals of bounded variation.

Theorem 8. Suppose that F : [σ, δ] → R is a function of bounded variation on [σ, δ] . Then,

we obtain ∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

≤ 1

2
max

{
1

2α
,
4

3
− 1

2α

} δ∨
σ

(F).

Here,
d∨
c
(F) denotes the total variation of F on [c, d] .

Proof. Define the function Kα(x) by

Kα(x) =



(x− σ)
α
, σ ≤ x < 3σ+δ

4 ,

(x− σ)
α − 4

3

(
δ−σ
2

)α
, 3σ+δ

4 ≤ x < σ+δ
2 ,

− (δ − x)
α
+ 4

3

(
δ−σ
2

)α
, σ+δ

2 ≤ x < σ+3δ
4 ,

− (δ − x)
α
, σ+3δ

4 ≤ x ≤ δ.

With the help of the integrating by parts, we obtain
δ∫

σ

Kα (x) dF (x)
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=

3σ+δ
4∫

σ

(x− σ)
α
dF(x) +

σ+δ
2∫

3σ+δ
4

[
(x− σ)

α − 4

3

(
δ − σ

2

)α]
dF(x)

+

σ+3δ
4∫

σ+δ
2

[
− (δ − x)

α
+

4

3

(
δ − σ

2

)α]
dF(x) +

δ∫
σ+3δ

4

[− (δ − x)
α
] dF(x)

= (x− σ)
α F(x)|

3σ+δ
4

σ − α

3σ+δ
4∫

σ

(x− σ)
α−1 F(x)dx

+

[
(x− σ)

α − 4

3

(
δ − σ

2

)α]
F(x)

∣∣∣∣
σ+δ
2

3σ+δ
4

− α

σ+δ
2∫

3σ+δ
4

(x− σ)
α−1 F(x)dx

+

[
− (δ − x)

α
+

4

3

(
δ − σ

2

)α]
F(x)

∣∣∣∣
σ+3δ

4

σ+δ
2

− α

σ+3δ
4∫

σ+δ
2

(δ − x)
α−1 F(x)dx

+ [− (δ − x)
α
]F(x)|δσ+3δ

4
− α

δ∫
σ+3δ

4

(δ − x)
α−1 F(x)dx

=
4

3

(
δ − σ

2

)α

F
(
3σ + δ

4

)
+

4

3

(
δ − σ

2

)α

F
(
σ + 3δ

4

)
− 2

3

(
δ − σ

2

)α

F
(
σ + δ

2

)

− α

σ+δ
2∫

σ

(x− σ)
α−1 F(x)dx− α

δ∫
σ+δ
2

(δ − x)
α−1 F(x)dx

=
(δ − σ)

α

3 · 2α−1

[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− Γ (α+ 1)

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]
.

This follows
1

3

[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]

=
2α−1

(δ − σ)
α

δ∫
σ

Kα(x)dF(x).

It is known that if G,F : [σ, δ] → R are such that G is continuous on [σ, δ] and F is of bounded
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variation on [σ, δ], then
δ∫
σ

G(ξ)dF(ξ) exist and∣∣∣∣∣∣
δ∫

σ

G(ξ)dF(ξ)

∣∣∣∣∣∣ ≤ sup
ξ∈[σ,δ]

|G(ξ)|
δ∨
σ

(F). (15)

By using (15), we have∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
Jα

σ+δ
2 −F (σ) + Jα

σ+δ
2 +

F (δ)
]∣∣∣∣

=
2α−1

(δ − σ)
α

∣∣∣∣∣∣
δ∫

σ

Kα(x)dF(x)

∣∣∣∣∣∣ ≤ 2α−1

(δ − σ)
α


∣∣∣∣∣∣∣

3σ+δ
4∫

σ

(x− σ)
α
dF(x)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
σ+δ
2∫

3σ+δ
4

[
(x− σ)

α − 4

3

(
δ − σ

2

)α]
dF(x)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

σ+3δ
4∫

σ+δ
2

[
− (δ − x)

α
+

4

3

(
δ − σ

2

)α]
dF(x)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
δ∫

σ+3δ
4

[− (δ − x)
α
] dF(x)

∣∣∣∣∣∣∣
 ≤ 2α−1

(δ − σ)
α

 sup
x∈[σ, 3σ+δ

4 ]
|(x− σ)

α|

3σ+δ
4∨
σ

(F)

+ sup
x∈[ 3σ+δ

4 ,σ+δ
2 ]

∣∣∣∣(x− σ)
α − 4

3

(
δ − σ

2

)α∣∣∣∣
σ+δ
2∨

3σ+δ
4

(F)

+ sup
x∈[σ+δ

2 ,σ+3δ
4 ]

∣∣∣∣43
(
δ − σ

2

)α

− (δ − x)
α

∣∣∣∣
σ+3δ

4∨
σ+δ
2

(F) + sup
x∈[σ+3δ

4 ,δ]
|(δ − x)

α|
δ∨

σ+3δ
4

(F)


=

2α−1

(δ − σ)
α


(
δ − σ

4

)α
3σ+δ

4∨
σ

(F) +

[
4

3

(
δ − σ

2

)α

−
(
δ − σ

4

)α] σ+δ
2∨

3σ+δ
4

(F)

+

[
4

3

(
δ − σ

2

)α

−
(
δ − σ

4

)α] σ+3δ
4∨

σ+δ
2

(F) +

(
δ − σ

4

)α δ∨
σ+3δ

4

(F)


=

2α−1

(δ − σ)
α

(
δ − σ

2

)α

×

 1

2α

3σ+δ
4∨
σ

(F) +

[
4

3
− 1

2α

] σ+δ
2∨

3σ+δ
4

(F) +

[
4

3
− 1

2α

] σ+3δ
4∨

σ+δ
2

(F) +
1

2α

δ∨
σ+3δ

4

(F)


≤ 1

2
max

{
1

2α
,
4

3
− 1

2α

} δ∨
σ

(F).
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§7 Special cases and examples of main results

In this section, the correctness of our results are established by using special cases and

examples of the obtained theorems.

Example 1. Let us take a function F : [σ, δ] = [0, 4] −→ R given by F (x) = x2 with α ∈ (0, 10] .

Thus, the left-hand side of (7) reduces to∣∣∣∣13 [2F (3)−F (2) + 2F (1)]− Γ (α+ 1)

2α+1

[
Jα
2−F (0) + Jα

2+F (4)
]∣∣∣∣ (16)

=

∣∣∣∣∣∣163 − α

2α+1

 2∫
0

ξα−1ξ2dξ +

4∫
2

(4− ξ)
α−1

ξ2dξ

∣∣∣∣∣∣
=

∣∣∣∣4 (α− 1) (α+ 4)

3 (α+ 1) (α+ 2)

∣∣∣∣ .
Moreover, the right-hand side of (7) becomes to

8

[
1

(α+ 1) 2α+1
+

1

α+ 1

(
1

2α+1
− 1

)
+

2

3

]
.

This follows that∣∣∣∣ (α− 1) (α+ 4)

6 (α+ 1) (α+ 2)

∣∣∣∣ ≤ 1

(α+ 1) 2α+1
+

1

α+ 1

(
1

2α+1
− 1

)
+

2

3
.

As one can see in Figure 1, the left-hand side of (7) in Example 1 is always below the right-hand

side of this equation, for all values of α ∈ (0, 10] .

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

The left hand side of the inequality (7)
The right hand side of the inequality (7)

Figure 1. MATLAB was used to compute and represent the graph of both sides of (7) in
Example 1.

Remark 1. If we choose α = 1 in Theorem 3, then we can get the Milne-type inequality∣∣∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 1

δ − σ

δ∫
σ

F (ξ) dξ

∣∣∣∣∣∣
≤ 5 (δ − σ)

48
[|F ′ (σ)|+ |F ′ (δ)|] ,
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which is proved by Ali et al. in paper [31, Corollary 1]. This inequality helps us find the error

bound of Milne-type inequality.

Example 2. Let us take a function F : [σ, δ] = [0, 4] −→ R given by F (x) = x2 with α ∈ (0, 10] .

From Theorem 4 with p = q = 2, the left-hand side of (8) becomes to (16) and the right-hand

side of (8) coincides with(
1

(2α+ 1) 22α+1

) 1
2 (

2
(
1 +

√
7
))

+

(
8

9
+

8

3 (α+ 1)

[
1

2α+1
− 1

]
− 1

2α+ 1

[
1

22α+1
− 1

]) 1
2 (

2
(√

3 +
√
5
))

.

This yields∣∣∣∣2 (α− 1) (α+ 4)

3 (α+ 1) (α+ 2)

∣∣∣∣ ≤ ( 1

(2α+ 1) 22α+1

) 1
2 (

1 +
√
7
)

+

(
8

9
+

8

3 (α+ 1)

[
1

2α+1
− 1

]
− 1

2α+ 1

[
1

22α+1
− 1

]) 1
2 (√

3 +
√
5
)
.

Using MATLAB software, one can see in Figure 2, the left-hand side of (8) in Example 2 is

always below the right-hand side of this equation, for all values of α ∈ (0, 10].

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

The left hand side of the inequality (8)
The right hand side of the inequality (8)

Figure 2. Evaluated and plotted using MATLAB, the graph of both sides of (8) in Example 2
depends on α.

Remark 2. Let us note that α = 1 in Theorem 4. Then, we obtain the following Milne’s formula∣∣∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 1

δ − σ

δ∫
σ

F (ξ) dξ

∣∣∣∣∣∣
≤ δ − σ

4

{(
1

2p+1 (p+ 1)

) 1
p

[(
|F ′ (δ)|q + 7 |F ′ (σ)|q

16

) 1
q

+

(
|F ′ (σ)|q + 7 |F ′ (δ)|q

16

) 1
q

]

+

(
5p+1

6p+1 (p+ 1)
− 1

3p+1 (p+ 1)

) 1
p

×

[(
3 |F ′ (δ)|q + 5 |F ′ (σ)|q

16

) 1
q

+

(
3 |F ′ (σ)|q + 5 |F ′ (δ)|q

16

) 1
q

]}
,
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which is given by Ali et al. in paper [31, Corollary 2]. We can find the error bound of Milne-type

inequality with the aid of this inequality.

Example 3. Choose a function F : [σ, δ] = [0, 4] −→ R given by F (x) = x2. By Theorem 5 with

α ∈ (0, 10] and q = 2, the left-hand side of (10) reduces to equality (16) and the right-side of

(10) coincides with

8
{
(Ω1 (α))

1
2

[
[Ω3 (α)]

1
2 + [Ω4 (α)]

1
2

]
+(Ω2 (α))

1
2

[
[Ω5 (α)]

1
2 + [Ω6 (α)]

1
2

]}
.

Finally, we have ∣∣∣∣ (α− 1) (α+ 4)

6 (α+ 1) (α+ 2)

∣∣∣∣ ≤ (Ω1 (α))
1
2

[
[Ω3 (α)]

1
2 + [Ω4 (α)]

1
2

]
+ (Ω2 (α))

1
2

[
[Ω5 (α)]

1
2 + [Ω6 (α)]

1
2

]
.

Figure 3 presents that in Example 3, the left-hand side of (10) is constantly below the

right-hand side by using MATLAB software for all values of α ∈ (0, 10].

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The left hand side of the inequality (10)
The right hand side of the inequality (10)

Figure 3. The graphs of both sides of (10) in Example 3, as functions of α, were examined and
drawn using MATLAB.

Corollary 1. If we take α = 1 in Theorem 5, then the following Milne’s formula holds∣∣∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 1

δ − σ

δ∫
σ

F (ξ) dξ

∣∣∣∣∣∣
≤ δ − σ

4

{
1

8

[(
5 |F ′ (δ)|q + |F ′ (σ)|q

6

) 1
q

+

(
5 |F ′ (σ)|q + |F ′ (δ)|q

6

) 1
q

]

+

(
7

24

)1− 1
q

[(
9 |F ′ (δ)|q + 5 |F ′ (σ)|q

48

) 1
q

+

(
9 |F ′ (σ)|q + 5 |F ′ (δ)|q

48

) 1
q

]}
.

This inequality helps us find the error bound of Milne’s rule.

Example 4. Consider a function F : [σ, δ] = [0, 4] −→ R given by F (x) = x2. By Theorem 6

with α ∈ (0, 10] and 0 ≤ F ′(x) ≤ 8, the left-hand side of (11) reduces to (16) and the right-side

of (11) coincides with

8

{
1

α+ 1

(
1

2α
− 1

)
+

2

3

}
.
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Consequently, we get ∣∣∣∣ (α− 1) (α+ 4)

6 (α+ 1) (α+ 2)

∣∣∣∣ ≤ 1

α+ 1

(
1

2α
− 1

)
+

2

3
.

Hence, the left-hand side of (11) in Example 4 continuously stays below the right-hand side.

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1
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0.4
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0.6

0.7

The left hand side of the inequality (11)
The right hand side of the inequality (11)

Figure 4. The graphs of both sides of (11) in Example 4, as functions of α ∈ (0, 10], were
evaluated and plotted using MATLAB.

Corollary 2. If we select α = 1 in Theorem 6, then we have∣∣∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 1

δ − σ

δ∫
σ

F (ξ) dξ

∣∣∣∣∣∣
≤ 5 (δ − σ)

48
(M −m) .

Corollary 3. Under assumption of Theorem 6, if there exist M ∈ R+ such that |F ′(ξ)| ≤ M

for all ξ ∈ [σ, δ] , then we get∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
−2α−1Γ (α+ 1)

(δ − σ)
α

[
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σ+δ
2 −F (σ) + Jα

σ+δ
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F (δ)
]∣∣∣∣

≤ δ − σ

2

{
1

α+ 1

(
1

2α
− 1

)
+

2

3

}
M.

Corollary 4. If we assign α = 1 in Corollary 3, then we get∣∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 1

δ − σ

∫ δ

σ

F(ξ)dξ

∣∣∣∣∣
≤ 5 (δ − σ)

24
M.

Corollary 5. Take α = 1 in Theorem 7. Then, the following Milne-type inequality holds:∣∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 1

δ − σ

∫ δ

σ

F(ξ)dξ
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≤ (δ − σ)

2

24
L.
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Corollary 6. Let us consider α = 1 in Theorem 8. Then, we have the following Milne-type

inequality∣∣∣∣∣13
[
2F
(
σ + 3δ

4

)
−F

(
σ + δ

2

)
+ 2F

(
3σ + δ

4

)]
− 1

δ − σ

∫ δ

σ

F(ξ)dξ

∣∣∣∣∣ ≤ 5

12

δ∨
σ

(F).

§8 Concluding remarks

This paper represents several Milne-type inequalities for various function classes. More pre-

cisely, several new versions of Milne-type inequalities are given for the case of differentiable

convex functions by using Riemann-Liouville fractional integrals. Namely, Milne-type inequal-

ities are obtained by taking advantage of the convexity, the Hölder inequality, and the power

mean inequality. Afterwards, some Milne-type inequalities are given for bounded functions by

fractional integrals. Subsequently, we present some fractional Milne-type inequalities for the

case of Lipschitzian functions. Furthermore, we investigate Milne-type inequalities by fraction-

al integrals of bounded variation. Finally, the correctness of our results are proved by using

special cases and examples of the obtained theorems.

In future papers, the concepts and strategies related to our results associated with Milne-

type inequalities by Riemann-Liouville fractional integrals may open the way for new avenues

in mathematics. Moreover, one may consider generalizing our findings by exploring alternative

classes of convex functions or different types of fractional integral operators. Furthermore,

one can obtain Milne-type inequalities with the help of the various function classes by using

quantum calculus.
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[30] H Budak, P Kösem, H Kara. On new Milne-type inequalities for fractional integrals, J

Inequal Appl, 2023, 2023: 10.
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