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Higher order Haar wavelet method for the numerical

solution of second-order integro-differential equations

Shumaila Yasmeen Rohul Amin*

Abstract. In this paper, we used higher order Haar wavelet method (HOHWM), introduced by
Majak et al. [1], for approximate solution of second order integro-differential equations (IDEs)
of second-kind. It is improvement of long-established Haar wavelet collocation method (H-
WCM) which has been much popular among researchers and has many applications in litera-
ture. Present study aims to improve the numerical results of second order IDEs from first order
rate of convergence in case of HWCM to the second and fourth order rate of convergence using
HOHWM, depending on parameter A for values 1 and 2, respectively. Several problems available
in the literature of both, Volterra and Fredholm type of IDEs, are tested and compared with
HWCM to illustrate the performance of our proposed method.

81 Introduction

An equation in which the unknown function occurs on one side as an ordinary derivative
and appears on the other side under the integral sign is called an a integro-dfferential equation.
And the equations involving second order as the highest derivative in the equation is known as
second-order IDEs. Volterra and Fredholm are the two main types of IDEs. The upper limit
of the integral in the Volterra type is variable, while in the Fredholm type it is constant, and
general form of these equations are given below [2]. HOHWM will be developed for solution of
second order Volterra and Fredholm IDEs. Consider Fredholm IDE of second order as

w”(t) + a1 (H)w'(t) + aa(t / M(t,r)w(r)dr + f(t), w(0)=wo,w (0) =wy, (1)
and Volterra as
w”(t) + a1 (H)w'(t) + aa(t / M (t,r)w(r)dr + f(t), w(0)=wo,w (0) =wi. (2)

Second-order IDEs can model a large number of important problems in applications related
to scientific and physical engineering [3]. A large range of initial and boundary value prob-
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lems can be resolved by using Volterra or Fredholm integral equations. The development of
integral equations benefited most from the potential theory. Therefore, researchers in applied
mathematics have focused a lot of attention on the solution to these equations. Here, certain
numerical techniques are discussed in [4-7].

This paper is put in order as follows. Definition and applications of Haar wavelet are
provided in Section 2. This section is extended with introduction to the higher order Haar
wavelet method along with its recent work and applications. In Section 3, method is developed
for second-order IDEs separately for both types, Voltera and Fredholm IDEs. In Section 4 , test
problem from the literature are solved using HOHWM and results are displayed in the form of
tables. Also comparison and brief discussion is given in the same section. Section 5 provides

conclusions.

§2 Haar wavelets

The Haar Wavelet (HW) has an important role among all wavelets used for numerical
approximations because of its good approximate properties as well as its simple representation.
Alfred Haar defined HW for the first time in 1910, after then many researchers have used it in
various domains. Literature contains number of HW applications for numerical approximations.
IEs [8], differential equations [9], IDEs [10], partial differential equations [11], have all been
numerically solved by using HW. Majak et al. [12,13] presented theoretical results for HW

convergence.

The following functions comprise HW family defined on [0, 1)

1, if telo,1),
hi(t) =
0, otherwise,
and
1, if tela,pf),
h’l(t) = _17 it te [67’7)’
0, otherwise, 1=2,3,...,
where
k 0.5+k 1+ k&
o= —), 5 = ( )7 ,y = 5
m m m

m=2, k=0,1,....m—1, j=0,1,....
The translation parameter is k, while the wavelet’s level is indicated by the number j. 7 =
k+m + 1 is relation between i, m, and k. While hs(t) is mother wavelet for HW family, hq (¢)

is known as the scaling function.

We introduce the notations

Raslt) = [ hils)ds.

t
Rot1,i(t) = / R,i(s)ds, n=1,2,....
0
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Above integrals are evaluated as

0, if tel0,a),
Ros(t) = Lt —a)m, if tela,p),
ar [t =)™ =2(t = B)"], it te[B,7),
alt—a)r =2 =B+ (-], if telyl), n=12..,

where 1 =2,3,.... If i =1, then
Rnal(t) = E7

Chen and Hsiao methodology is mostly exploited in literature to implement numerical methods

n

n=12,....

based on HW for various types of differential equations [14]. This methodology uses a HW
expansion to determine the derivative with the highest order that occurs in the provided IDEs.
Measures such as accuracy, convergence, efficiency, and stability are used to assess the effec-
tiveness of numerical methods. Over the past 20 years, the Haar wavelet method (HWM), a
collocation technique based on HW for numerical approximations, has been increasingly promi-
nent. The theoretical convergence results were presented by Majak et al. [12,13]. HWM was
used by Lepik to solve partial and ordinary differential equations numerically [9,15]. It was
used by Aziz and Islam to solve IEs and IDEs numerically [16]. The slow convergence of the
HWM is one of its drawbacks.

2.1 Higher order Haar wavelet method

Majak et al. presented a new HOHWM [1] to increase the convergence rate of HWM.
Following that, it was effectively utilized to solve nonlinear evolution equations [17], nonlinear
PDEs [18], vibration analysis of nanobeams [19], ordinary differential equations [20], an efficient
technique based on higher order Haar wavelet method for Lane-Emden equations [21], dynamics
of flight of the fragments with higher order Haar wavelet method [22] and TEs [23]. Compared to
the traditional HW approach, the convergence order increases from 2 to 4 in HOHWM. When
using the usual HW technique, the number of boundary conditions and number of constants
that result from integration are the same. But in new method, number of unknown constants
exceeds the boundary conditions as the HW series is expended with higher derivative than the
order of derivative in the problem. Increment in the number of derivatives is denoted by the
parameter \. Let us assume the highest derivative of order n exists in the equation

dn+2)\w t e
dtTQ)E) = Zaihi(t)v (3)
i=1

where A = 1,2,.... We take the even increment 2\ due to symmetry and more accurate results
[1]. By integrating the preceding expression, values for all of its derivatives that are included in
the equation and unknown function are obtained. The formula obtained by integrating n + 2\
times Eq. (3) is as follows

oo 2F—1

Z g1 R pox o i (8) + S(8) + H(1), (4)
k=0 1=0

alt’n+2)\

W) =Gt
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where [ = 0,1,...,t — 1, t = 2¥ and T = 2K. In this case, T represents the highest degree of
resolution and ¢ indicates the HW resolution. In Eq.(4), the words S(¢) and H(t) are defined

as follows

n—1 n+2A—1

tr tr
S(t) = z;)cTﬁ, H(t)= Z e (5)
and the n + 2\ constants ¢,,r = 0,1, ...,n+ 2\ — 1 are involved in aforementioned procedure.

While values of remaining 2 constants can be found by using the original equation, the values
of n integration constants may be computed using the boundary conditions. To produce 2\
more equations, we particularly take into account 2\ points and put these points in discretized
equation. The collocation points (CPs) and these 2 points should be different. There are an
infinite number of ways to take the 2\ constants, which implies there are infinite number of
methods to calculate the remaining 2\ constants.

This method [1] considers higher order derivatives of the unknown function that are higher by
an even increment than the highest ordered derivative found in the provided equation. However,
we take into account all derivatives that are greater than the highest ordered derivative found
in provided equation in order to apply the approach to integral and IDEs. As a result, the

unknown function w(t) will be approximated as

Pwt)
AN :Zazhl(t)’ )‘:1723"'7 (6)
i=1
where the unknown constants N are a;,7 = 1,2,...,N. By integrating the aforementioned

expression A times, the function w(t) is obtained. Through this process, we obtain an extra A

constant, making a total of N + A constants. We will use CPs listed below for

j — 0.5
:]N . j=1,2,...,N. (7)
We establish N x (N + A) linear system by discretizing utilizing the above collocation points
and substituting the HW expressions in the provided IDEs. The HOHWM [1] indicates that

any A points from the domain other than CPs in the original equation can be substituted to

tj

produce the additional A equations. We consider only two values A = 1, and \ = 2.

83 Numerical method

This section presents numerical solution of second-order IDEs with HOHWM. The first step
in developing the second-order IDE is to approximate w'’(t) by using Haar wavelet series. The
unknown function w(t) will be obtained by integrating the obtained formula three times. The

method for linear Volterra and Fredholm IDEs of second-order is developed.

3.1 Fredholm IDEs

Let us consider second-order Fredholm IDEs as defined in Eq. (1). The procedures for A = 1
and A = 2 will be discussed.
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Case 1 (A=1).
Let

/// Z az z (8)

integrating three times and using initial COHdlthIlb we have

N
w"(t) = E1 + Z a;iR1,(t), (9)
i=1
N
w'(t) = wy + Byt + Z ail2 (1), (10)
i=1
and
R
w(t) :wo+w1t+E1§ +ZaiR3,i(t)' (11)

i=1
Equation (1) becomes, with this assumption as

N N
E1 -+ Z aiRLi(t) -+ aq (t) (11)1 + Elt + Z aiRg,i(t)>

i=1 =1

2 &
+ ax(t) (wo +wit+ E1§ + Z aiR3,i(t)>

=1
1 r2 N
= f(t) + /0 M(t, ’/‘) (UJO +wir + El? + Z aiR37i(r)> dr, (12)
=1

which implies

N
Zal <R1z +a1( )Rg,i(t) +a2 R31 / M t,r Rgz )d )

i=1

£2
= f(t) — W1 (al(t) —+ tag(t)) — woaz(t) — E1 (]. —+ tCLl(t) -+ 2&2(t))
1 2
+ / (wo 4+ wyr + E12> M(t,r)dr, (13)
0
after simplification, we obtain
N
Zai (Rl,i(t) +a1(t)Rai(t) + az(t)Rsi(t / M(t,7)Rs ;(r)dr )
i=1

= f(t) —wo (az(t) - /1 M(t,r)dr) —wy <a1(t) + tas(t) — /01 rM(t,r)dr>

—E1(1+m1( fag / —M(t,r)d > (14)

Substituting ¢ = 0 into the above equation to obtain extra condition,

_ iai/olM(o,r)Rw(r)dr — £(0) — wy ( / M(0,7) )

_— <a1(0)—/0 rM(O,r)d) B (1—/017"22M(o,r)dr>, (15)
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which reduces to

B (1 - 01 ’”;M(o,mdr) — F(0) — wo (ag(O) - /0 1 M(O,r)dr)

1 N 1
o (al(O)— / rM(O,r)dr) 3 / M(0,7) Ry (r)dr. (16)
0 P 0
Let us introduce the notation
1 1 1
IC% = / M(0,7)Ra,;(r)dr, Koo :/ MO, r)dr, Kio= / sM (0, r)dr. (17)
0 0 0

Using above notations, we obtain

Ey (1= K1) = ¢(0) — wo (a(0) — Koo) + XN: aik3. (18)

Thus 1
e o) <¢(0) — wp (a(0) = Koo) + Z} aﬂ%) : (19)
K3 = /01 M(0,7) Ry i(r)dr, Koo = 01 2M(o r)dr, (20)

and Koo, K10 are given in (17). Furthermore, for ¢ = 1, we have

N
> ai (Roi(1) + a(1)Rs:(1) = KF) = ¢(1) — wo(a(1) — Kor) — E1 (14 a(1) — Ks)

1

—E <1 + % - /C21> ) (21)

where
1 1 1 12
K3 = / M(1,7)Rs ;(r)dr, Ko :/ M1, r)dr, K11 :/ sM(1,r)dr, Koy = M(l r)dr.
0 0 0 0
(22)
We compute F; and E5 as
1 a(l
B = S< (1+(2) /C21> #(0)
a(l)

+ Ka00(1) — ((a(O) — Koo) <1 + - IC21> + Kao(a(l) — lCol)) wo

2
N N
+ (1 + @ — ’C21> ZaﬂCg — ICQO Zm (R271(1) + a(].)Rgﬂ(].) — IC?) >, (23)

E; = ;( — (I +a(1) = K11)9(0) + (1 = K10)¢(1) + (a(0) — a(1) + a(0)a(1) — Koo — a(1)Koo

N
+a(1)Kro + Kot — K10Kor — a(0)K11 + KooKan)wo — (1+ a(l) = K11) Y aik§

N
(1—Ko) Zal (Roi(1) + a(1)R3,(1) — K3) > (24)
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where
S =(1-Ki) (1 + %1) — IC21> + Koo (1 4+a(l) — Kq1) .

Using the notations K3, Koo, K10 and Ko defined in Eqs. (17) and (20), we have
N

El (1 — ICQO) = f(O) — Wo (CLQ(O) - Koo) — w1 (al(O) - ’Clo) + ZallCS’
i=1
Thus the value of E; is given as

1

N
FE = m <f(0) — Wo ((IQ(O) — K:()()) — wq (al(O) — ICl()) =+ ZCLJC%) .

i=1
Hence, we have
N

(R“()—kal()Rgz()—kag (t)Rs3(t /Mtngl (r)d >

i=1

- (ag(t)— /0 M(t,r)dr) —wy (al(t)—i—tag(t)— /O 1rM(t,r)dr>

_(]_1]C20)<f(0)_w0( () ’COO) ( () KlO +ZaKo>

X (1—|—ta1(t —az / —M(t,r) )

Putting the CPs, we get a linear system which can be solved by any linear solver.

Case 2 (A =2).

Here, it is assumed that

E aZ’L

integrating four times and using initial COHdlthHS we have
N
w”/(t) = E1 —+ Z aiRl,i(t),

i=1

N
w'(t) = By + Byt + y_ a;Ro4(t),
i=1
and
2

N
t
w'(t) = wy + Bt + Bag + ; aiRs,i(t),
2 3

N
w(t) = wo + wit + Eo 5 + B 5 + ;alel,z(t)

With this assumption, Eq. (1) becomes

N
Eit+ Fs +ZaiR2,i(t) +ai(t) <w1 +E1 +E2t+za1Rdz ))
i=1 i—1

907
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+ ag(t) (U)Q + wlt + E1 + E2 -|— Z CLZR4 Z>

which implies
N

Z a; <R2’i(t) + al(t)Rg’i(t) + ag(t)R47Z‘ — /0 ]\4(757 ’I’)R4’i(7‘)d7">

3 2 N
= f(t) + / M(t,r) <w0 +wps+ El% + By + Zaim,i(s)) dr, (34)
0 =1

s3 52 t2
M(t,T) <w0+w13+E16+E22> d’I“—EQ—tEl—Ch(t)( )
0

wy + 5E1 + tEy
3 2
— ag(t) <wo + twy + E1E + E22> )

A more precise representation of this equation is as follows
N

; a; <R2,i(t) + a1 (t)R3:(t) + ag(t) Ry, — /0 M (¢, T)R4,i(s)dr)

(35)

— ) - ( / Mt r)d ) —w (al(t) + tas(t) — /01 sM(t,r)dr)
- F ( t2 a1 (t) / —M(t,r) )
— B, <1+ta1( —aQ / —M(t,r) )

and we substitute ¢ = 0 and ¢ = 1 in the above equation to obtain the extra condition

X / M0, () = £(0) — wo (aQ(O) - / M0, r)dr>
—wy <a1(0) - /01 sM(O,r)dr) +F, (/01 S;M(O,r)dr> — B (1 — /01 s;M(O,r)dr> . (37)
Let

(36)

1

1.3
i = / M(O,r) Ry (s)dr, Koo = | =M(O,r)dr. (38)
0 0
Combining with the notations previously presented in Eqgs. (17) and (20), we have
N
— ElKgo + E2 (1 — ICQ(]) = f(O) — Wo (GQ(O) — ’COO) — w1 ((ll(O) - IClo) + ZCLK (39)
also

i=1

— F(1) — wo (az(l) -/ 1 M(LS)dr) oy (a1(1> ra() - [ 1 SM<17s>dr>

N
> a (RQZ )+ a1 (1)Rs,i(1) + az(1) Ry (1 / M(1,8)Ra( )d)
i=1
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1
_E1<1+2a1( + G,Q / M].S )

—E2<1+a1( + a2 / —M(1,s)d ) (40)
Using the notations
Ki= /1 M(1,8)Ry(s)dr, Kz = /l %BM(L s)dr. (41)
Using these notations alongowith the ones provided in Eq.0(22), we get
E (1 + o)+ La) - /c31> o <1 Fai(l) + %az(m - /czl)

2 6
= f(1) = wo (az(1) = Ko1) —wy (a1(1) + az(1) — K1)
- XN:% (R2,i(1) + a1 (1)Rs (1) 4+ as(1) Ry (1) — K1) . (42)
From this, we derlve the values of F1 and FEs as
E, = 1;1 <(1 — Ka0)f(1) = S2£(0) — wo ((1 = Kao) (az(1) — Kor) — S2 (a2(0) = Koo) )

—wi (1 = Kap) (a1 (1) + az(1) = K11) — S2 (a1(0) — K1o) )

N
=Y ai (1= Kao) (Ra,i(1) + ar(1)Rsi(1) + az(1)Rai(1) — KY) + S2K7) ) (43)

and -
Ey = Dil ((Slf(o) — K30 f(1) = wo (S1 (a2(0) — Koo) — Ks0 (az(1) — Ko1))
—wy (81 (a1(0) = Kio) — Ko (a1(1) + az(1) — K11))
N
+ Z a; (SllCé + ,C30(R2,i(].) + al(l)Rg,i(].) + (ZQ(].)R;LJ‘(].) — Icéll)) >, (44)
i—1
where

2 6
Dy = 51 (1 — Kap) + S2K30. (45)

The remaining steps follow the same procedure as the IDEs section previously.

Sy = (1 + o)+ Ta) - ;c31> (S = (1 +an(1) + %@(1) - /c21> ,

3.2 Volterra IDEs

The Volterra IDEs of second order, as defined by (2), will be studied. In this section, we
will develop the suggested approach for the two cases where A =1 and \ = 2.

Case 1 (A=1).
Let
w”(t) = ahi(t), (46)

i=1
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integrating three times and using initial conditions, we have

N
w”(t) = By + Z a; Ry ;(t), (47)
i=1

N
w'(t) = wy + Eit + Z a; R ;(t), (48)

i=1

2

w()—WO+w1t+E15+ZazR31 ) (49)

Substitute the above assumption in Eq. (2) to get the followmg equation,

N N
E1 =+ Z aiRL,;(t) + a1 (t) <w1 + Elt + Z aiRQ,i(t)>

i=1 =1

2 X
+ as(t) (wo + wit + E1§ + Z aiRS,i(t)>

i=1

t 2 N
t) + / M(t,r) (wo + wis + Ef% + Z aiR?),i(S)) dr, (50)
0 i=1

SO
N
Za (Rlz )+ a1(t)Rai(t) 4+ az(t)Rs (¢ /MtTRm )d>
i=1
= f(t) — Ey <1+a1( )+ ao(t *—/ Mt?”)Zd)
— wy (ag(t) —/ M(t,r)dr)
0
t
— W1 (al(t) + ag(t)t — / SM(t, ’I")dT) 5 (51)
0
and we substitute ¢ = 0 in the above equation to obtain extra condition and value of F; as
E; = f(0) — a1(0)wy — a2(0)wy. (52)

Case 2 (A =2).

Consider

Z aih;( (53)

integrating four times and using initial condltlons we have

N
w” (t) = By + Z a;Ryi(t), (54)
i=1

N
w”(t) = By + Ext+ Y a;Ra(t), (55)

i=1

.

w'(t) = wy + Eot + E15 + Z ails (1), (56)

i=1
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and
2
w(t) = wo +w1t+E2 R +ZazR4z

By substituting all of this in Eq. (2), we have
N

By + Eit + Z aiRgﬂ-(t) + ay (t) <w1 + Eot + E1 -l— Z a1R3 z )

i=1

t3
+ as(t) (wo +w1t+E2 5 +E1* +ZazR4l>

i=1

3
/Mtr)<w0+w1r+E2 +E1—+ZazR4l ))dr. (58)

=1
It can be simplified as
N t
> ai <R27i(t) + a1 (t)R3,i(t) + az(t) Ry — / M(t, r)R4,i(r)dr>

i=1

f(t) — Es <1+a1()t+a2 /Mtr);d)

—E1<t+a1() + as(t ——/Mtr )
—w0< /Mtr >—w1 (al(t)+a2(t)t—/0trM(t,r)dr>. (59)

Using t = 0 and ¢t = 1 in Eq. (59), we can obtain the extra constants E; and Es. We obtain
the value of Fy for t =0 as

E2 = f(O) — a (O)w1 — GQ(O)wo. (60)
For t =1, we have

E1(1+;a1( + ag / —M(1,r)d )
— ) - B (1+a1(1)+a2(1)2—/0 M(1,s)7";dr>
~ wo (ag(l)—/olM(l,r)dr) - ( (1) + as(1) — /17«M(1 r)d)

_i‘” <R27i(1)+a1(1)R3,i(1)+a2 JR4(1 / M(1,7)Ryi(r)dr ) (61)

Using the notations introduced in Egs. (22) and (41), we can write
1 1 1
E1 (]. + 5@1(1) + 6&2(1) - ]C31> S f(].)_E2 (1 + Cll(].) + 0@(1)5 — ’C21> —Wo (ag(l) - ]C()l)

N
—wi (a1(1) + az(1) = K11) = > ai(Ra,i(1) + a1 (1) Rs,i(1) + aa(1) Ry (1) — K1), (62)
i=1
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Table 1. Numerical results for Example 1 at p = 0.5.

HOHWM (A=1) | HOHWM (A = 2)
LE,(N) | Rp(N) | Ep(N) | By(N)
38le—04 | - 1.32¢ — 06 -
982 —05 | 1.96 | 2.91e—07 | 3.89
247¢—05 | 1.99 | 1.87¢—08 | 3.96
6.19¢—06 | 1.99 | 1.19e—09 | 3.98
1.55¢ — 06 | 1.99 | 7.46e—011 | 3.99

CU W o |y
o W
oKl

The value of Ey is
1

FE = FQ <f(1) — (f(O) — al(O)wl — CLQ(O)IU()) (1 + al(l) + ag(l)% — Kgl) — Wo (ag(l) — KOI)

N
—wy (a1(1) + a2(1) — K11) Z a;(R2,i(1) + a1(1)R3,:(1) + az(1)Ra (1) — ’Cil)>7 (63)

where

1 1
D2 =1 + 50,1(1) + 60,2(1) - IC31- (64)

84 Numerical experiments

This section includes the computation of the rate of convergence and absolute point-wise
errors at random points in order to assess the effectiveness of the suggested method. E,(N),

point-wise absolute error at a point p using N number of CPs is defined as

Ey(N) = |w(p) —w*(p)], (65)
where approximate solution at point p is w*(p), and the exact solution is w(p). Additionally,
R,(N) will represent the experimental rate of convergence

() = NI,V

(66)
Example 1. Consider the Fredholm IDE [24]

w'(t) =e' —t —1—/0 trw(r)dr, w(0)=1, w'(0)=1, (67)

whose exact solution is w(t) = €.

HOHWM technique is applied to solve test problem 1. The problem was examined at
t = 0.5. The results for various HOHWM resolution levels are shown in Table 1, in columns 3
and 4 for A = 1 and A = 2, respectively. Particularly, an improvement in absolute error can be
seen by comparing the results for A = 1 and A = 2. The final column of this table shows the
rate of convergence, which reduces to 4.

Example 2. Consider the Volterra IDE [25]

w’(t) =1 +/0 (t —r)w(r)dr, w(0)=1, w'(0)=0, (68)
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Table 2. Numerical results for Example 2 at p = 0.5.

HOHWM (A=1) | HOHWM (A =2)

Ep(N) | By(N) | Ep(N) | By(N)
3.29¢ — 04 - 1326 -
8.29¢ — 05 | 1.98890 | 2.9¢—07 | 3.89
2.08¢ — 05 | 1.99717 | 1.87¢ —08 | 3.95
5.19¢ — 06 | 1.99929 | 1.19¢ —09 | 3.98
1.30e — 06 | 1.99982 | 7.46e — 011 | 3.99

13, SISO OR

2R ez

whose exact solution is w(t) = cosh(t).
Table 2 provides results for this example at various resolution levels, which were solved by
using recently introduced method HOHWM. The performance of suggested technique improves

with higher resolution levels, however for A = 2 absolute error, it decreases quite quickly.

85 Conclusion

This article presents a numerical technique for solving second-order Volterra and Fredholm
IDEs of second-kind by using HOHWM. The second-order fredholm and Voltera IDE were
treated with this technique. The results of the table confirm that the accuracy of the solution
is improved compared to the classical HWM and the convergence rate approaches the proven
convergence rate for HOHWM, which is 2, for A = 1 and 4, for A = 2. Based on its successful

performance in achieving the goal, this work can be expanded to higher order IDEs.
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