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Higher order Haar wavelet method for the numerical

solution of second-order integro-differential equations

Shumaila Yasmeen Rohul Amin∗

Abstract. In this paper, we used higher order Haar wavelet method (HOHWM), introduced by

Majak et al. [1], for approximate solution of second order integro-differential equations (IDEs)

of second-kind. It is improvement of long-established Haar wavelet collocation method (H-

WCM) which has been much popular among researchers and has many applications in litera-

ture. Present study aims to improve the numerical results of second order IDEs from first order

rate of convergence in case of HWCM to the second and fourth order rate of convergence using

HOHWM, depending on parameter λ for values 1 and 2, respectively. Several problems available

in the literature of both, Volterra and Fredholm type of IDEs, are tested and compared with

HWCM to illustrate the performance of our proposed method.

§1 Introduction

An equation in which the unknown function occurs on one side as an ordinary derivative

and appears on the other side under the integral sign is called an a integro-dfferential equation.

And the equations involving second order as the highest derivative in the equation is known as

second-order IDEs. Volterra and Fredholm are the two main types of IDEs. The upper limit

of the integral in the Volterra type is variable, while in the Fredholm type it is constant, and

general form of these equations are given below [2]. HOHWM will be developed for solution of

second order Volterra and Fredholm IDEs. Consider Fredholm IDE of second order as

w′′(t) + a1(t)w
′(t) + a2(t)w(t) =

∫ 1

0

M(t, r)w(r)dr + f(t), w(0) = w0, w
′(0) = w1, (1)

and Volterra as

w′′(t) + a1(t)w
′(t) + a2(t)w(t) =

∫ t

0

M(t, r)w(r)dr + f(t), w(0) = w0, w
′(0) = w1. (2)

Second-order IDEs can model a large number of important problems in applications related

to scientific and physical engineering [3]. A large range of initial and boundary value prob-
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lems can be resolved by using Volterra or Fredholm integral equations. The development of

integral equations benefited most from the potential theory. Therefore, researchers in applied

mathematics have focused a lot of attention on the solution to these equations. Here, certain

numerical techniques are discussed in [4–7].

This paper is put in order as follows. Definition and applications of Haar wavelet are

provided in Section 2. This section is extended with introduction to the higher order Haar

wavelet method along with its recent work and applications. In Section 3, method is developed

for second-order IDEs separately for both types, Voltera and Fredholm IDEs. In Section 4 , test

problem from the literature are solved using HOHWM and results are displayed in the form of

tables. Also comparison and brief discussion is given in the same section. Section 5 provides

conclusions.

§2 Haar wavelets

The Haar Wavelet (HW) has an important role among all wavelets used for numerical

approximations because of its good approximate properties as well as its simple representation.

Alfred Haar defined HW for the first time in 1910, after then many researchers have used it in

various domains. Literature contains number of HW applications for numerical approximations.

IEs [8], differential equations [9], IDEs [10], partial differential equations [11], have all been

numerically solved by using HW. Majak et al. [12, 13] presented theoretical results for HW

convergence.

The following functions comprise HW family defined on [0, 1)

h1(t) =

1, if t ∈ [0, 1),

0, otherwise,

and

hi(t) =


1, if t ∈ [α, β),

−1, if t ∈ [β, γ),

0, otherwise, i = 2, 3, . . . ,

where

α =
k

m
, β =

(0.5 + k)

m
, γ =

1 + k

m
;

m = 2j , k = 0, 1, . . . ,m− 1, j = 0, 1, . . . .

The translation parameter is k, while the wavelet’s level is indicated by the number j. i =

k +m+ 1 is relation between i,m, and k. While h2(t) is mother wavelet for HW family, h1(t)

is known as the scaling function.

We introduce the notations

R1,i(t) =

∫ t

0

hi(s) ds,

Rn+1,i(t) =

∫ t

0

Rn,i(s) ds, n = 1, 2, . . . .
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Above integrals are evaluated as

Rn,i(t) =


0, if t ∈ [0, α),

1
n! (t− α)n, if t ∈ [α, β),

1
n! [(t− α)n − 2(t− β)n] , if t ∈ [β, γ),

1
n! [(t− α)n − 2(t− β)n + (t− γ)n] , if t ∈ [γ, 1), n = 1, 2, . . . ,

where i = 2, 3, . . . . If i = 1, then

Rn,1(t) =
tn

n!
, n = 1, 2, . . . .

Chen and Hsiao methodology is mostly exploited in literature to implement numerical methods

based on HW for various types of differential equations [14]. This methodology uses a HW

expansion to determine the derivative with the highest order that occurs in the provided IDEs.

Measures such as accuracy, convergence, efficiency, and stability are used to assess the effec-

tiveness of numerical methods. Over the past 20 years, the Haar wavelet method (HWM), a

collocation technique based on HW for numerical approximations, has been increasingly promi-

nent. The theoretical convergence results were presented by Majak et al. [12, 13]. HWM was

used by Lepik to solve partial and ordinary differential equations numerically [9, 15]. It was

used by Aziz and Islam to solve IEs and IDEs numerically [16]. The slow convergence of the

HWM is one of its drawbacks.

2.1 Higher order Haar wavelet method

Majak et al. presented a new HOHWM [1] to increase the convergence rate of HWM.

Following that, it was effectively utilized to solve nonlinear evolution equations [17], nonlinear

PDEs [18], vibration analysis of nanobeams [19], ordinary differential equations [20], an efficient

technique based on higher order Haar wavelet method for Lane-Emden equations [21], dynamics

of flight of the fragments with higher order Haar wavelet method [22] and IEs [23]. Compared to

the traditional HW approach, the convergence order increases from 2 to 4 in HOHWM. When

using the usual HW technique, the number of boundary conditions and number of constants

that result from integration are the same. But in new method, number of unknown constants

exceeds the boundary conditions as the HW series is expended with higher derivative than the

order of derivative in the problem. Increment in the number of derivatives is denoted by the

parameter λ. Let us assume the highest derivative of order n exists in the equation

dn+2λw(t)

dtn+2λ
=

∞∑
i=1

aihi(t), (3)

where λ = 1, 2, . . . . We take the even increment 2λ due to symmetry and more accurate results

[1]. By integrating the preceding expression, values for all of its derivatives that are included in

the equation and unknown function are obtained. The formula obtained by integrating n+ 2λ

times Eq. (3) is as follows

w(t) =
a1t

n+2λ

(n+ 2λ)!
+

∞∑
k=0

2k−1∑
l=0

a2k+l+1Rn+2λ,2k+l+1(t) + S(t) +H(t), (4)
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where l = 0, 1, . . . , t − 1, t = 2k and T = 2K . In this case, T represents the highest degree of

resolution and t indicates the HW resolution. In Eq.(4), the words S(t) and H(t) are defined

as follows

S(t) =
n−1∑
r=0

cr
tr

r!
, H(t) =

n+2λ−1∑
r=n

cr
tr

r!
, (5)

and the n+ 2λ constants cr, r = 0, 1, . . . , n+ 2λ− 1 are involved in aforementioned procedure.

While values of remaining 2λ constants can be found by using the original equation, the values

of n integration constants may be computed using the boundary conditions. To produce 2λ

more equations, we particularly take into account 2λ points and put these points in discretized

equation. The collocation points (CPs) and these 2λ points should be different. There are an

infinite number of ways to take the 2λ constants, which implies there are infinite number of

methods to calculate the remaining 2λ constants.

This method [1] considers higher order derivatives of the unknown function that are higher by

an even increment than the highest ordered derivative found in the provided equation. However,

we take into account all derivatives that are greater than the highest ordered derivative found

in provided equation in order to apply the approach to integral and IDEs. As a result, the

unknown function w(t) will be approximated as

dλw(t)

dtλ
=

N∑
i=1

aihi(t), λ = 1, 2, . . . , (6)

where the unknown constants N are ai, i = 1, 2, . . . , N . By integrating the aforementioned

expression λ times, the function w(t) is obtained. Through this process, we obtain an extra λ

constant, making a total of N + λ constants. We will use CPs listed below for

tj =
j − 0.5

N
, j = 1, 2, . . . , N. (7)

We establish N × (N + λ) linear system by discretizing utilizing the above collocation points

and substituting the HW expressions in the provided IDEs. The HOHWM [1] indicates that

any λ points from the domain other than CPs in the original equation can be substituted to

produce the additional λ equations. We consider only two values λ = 1, and λ = 2.

§3 Numerical method

This section presents numerical solution of second-order IDEs with HOHWM. The first step

in developing the second-order IDE is to approximate w′′′(t) by using Haar wavelet series. The

unknown function w(t) will be obtained by integrating the obtained formula three times. The

method for linear Volterra and Fredholm IDEs of second-order is developed.

3.1 Fredholm IDEs

Let us consider second-order Fredholm IDEs as defined in Eq. (1). The procedures for λ = 1

and λ = 2 will be discussed.
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Case 1 (λ = 1).

Let

w′′′(t) =
N∑
i=1

aihi(t), (8)

integrating three times and using initial conditions, we have

w′′(t) = E1 +
N∑
i=1

aiR1,i(t), (9)

w′(t) = w1 + E1t+

N∑
i=1

aiR2,i(t), (10)

and

w(t) = w0 + w1t+ E1
t2

2
+

N∑
i=1

aiR3,i(t). (11)

Equation (1) becomes, with this assumption as

E1 +
N∑
i=1

aiR1,i(t) + a1(t)

(
w1 + E1t+

N∑
i=1

aiR2,i(t)

)

+ a2(t)

(
w0 + w1t+ E1

t2

2
+

N∑
i=1

aiR3,i(t)

)

= f(t) +

∫ 1

0

M(t, r)

(
w0 + w1r + E1

r2

2
+

N∑
i=1

aiR3,i(r)

)
dr, (12)

which implies
N∑
i=1

ai

(
R1,i(t) + a1(t)R2,i(t) + a2(t)R3,i(t)−

∫ 1

0

M(t, r)R3,i(r)dr

)
= f(t)− w1(a1(t) + ta2(t))− w0a2(t)− E1

(
1 + ta1(t) +

t2

2
a2(t)

)
+

∫ 1

0

(
w0 + w1r + E1

r2

2

)
M(t, r)dr, (13)

after simplification, we obtain
N∑
i=1

ai

(
R1,i(t) + a1(t)R2,i(t) + a2(t)R3,i(t)−

∫ 1

0

M(t, r)R3,i(r)dr

)
= f(t)− w0

(
a2(t)−

∫ 1

0

M(t, r)dr

)
− w1

(
a1(t) + ta2(t)−

∫ 1

0

rM(t, r)dr

)
− E1

(
1 + ta1(t) +

t2

2
a2(t)−

∫ 1

0

r2

2
M(t, r)dr

)
. (14)

Substituting t = 0 into the above equation to obtain extra condition,

−
N∑
i=1

ai

∫ 1

0

M(0, r)R3,i(r)dr = f(0)− w0

(
a2(0)−

∫ 1

0

M(0, r)dr

)
− w1

(
a1(0)−

∫ 1

0

rM(0, r)dr

)
− E1

(
1−

∫ 1

0

r2

2
M(0, r)dr

)
, (15)
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which reduces to

E1

(
1−

∫ 1

0

r2

2
M(0, r)dr

)
= f(0)− w0

(
a2(0)−

∫ 1

0

M(0, r)dr

)
− w1

(
a1(0)−

∫ 1

0

rM(0, r)dr

)
+

N∑
i=1

ai

∫ 1

0

M(0, r)R3,i(r)dr. (16)

Let us introduce the notation

K2
0 =

∫ 1

0

M(0, r)R2,i(r)dr, K00 =

∫ 1

0

M(0, r)dr, K10 =

∫ 1

0

sM(0, r)dr. (17)

Using above notations, we obtain

E1 (1−K10) = ϕ(0)− w0 (a(0)−K00) +
N∑
i=1

aiK2
0. (18)

Thus

E1 =
1

(1−K10)

(
ϕ(0)− w0 (a(0)−K00) +

N∑
i=1

aiK2
0

)
, (19)

K3
0 =

∫ 1

0

M(0, r)R3,i(r)dr, K20 =

∫ 1

0

s2

2
M(0, r)dr, (20)

and K00, K10 are given in (17). Furthermore, for t = 1, we have
N∑
i=1

ai
(
R2,i(1) + a(1)R3,i(1)−K3

1

)
= ϕ(1)− w0(a(1)−K01)− E1 (1 + a(1)−K5)

− E2

(
1 +

a(1)

2
−K21

)
, (21)

where

K3
1 =

∫ 1

0

M(1, r)R3,i(r)dr, K01 =

∫ 1

0

M(1, r)dr, K11 =

∫ 1

0

sM(1, r)dr, K21 =

∫ 1

0

s2

2
M(1, r)dr.

(22)

We compute E1 and E2 as

E1 =
1

S

((
1 +

a(1)

2
−K21

)
ϕ(0)

+K20ϕ(1)−
(
(a(0)−K00)

(
1 +

a(1)

2
−K21

)
+K20(a(1)−K01)

)
w0

+

(
1 +

a(1)

2
−K21

) N∑
i=1

aiK3
0 −K20

N∑
i=1

ai
(
R2,i(1) + a(1)R3,i(1)−K3

1

))
, (23)

E2 =
1

S

(
− (1 + a(1)−K11)ϕ(0) + (1−K10)ϕ(1) + (a(0)− a(1) + a(0)a(1)−K00 − a(1)K00

+ a(1)K10 +K01 −K10K01 − a(0)K11 +K00K11)w0 − (1 + a(1)−K11)
N∑
i=1

aiK3
0

− (1−K10)
N∑
i=1

ai
(
R2,i(1) + a(1)R3,i(1)−K3

1

))
, (24)
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where

S = (1−K10)

(
1 +

a(1)

2
−K21

)
+K20 (1 + a(1)−K11) . (25)

Using the notations K3
0, K00, K10 and K20 defined in Eqs. (17) and (20), we have

E1 (1−K20) = f(0)− w0 (a2(0)−K00)− w1 (a1(0)−K10) +

N∑
i=1

aiK3
0. (26)

Thus the value of E1 is given as

E1 =
1

(1−K20)

(
f(0)− w0 (a2(0)−K00)− w1 (a1(0)−K10) +

N∑
i=1

aiK3
0

)
. (27)

Hence, we have
N∑
i=1

ai

(
R1,i(t) + a1(t)R2,i(t) + a2(t)R3,i(t)−

∫ 1

0

M(t, r)R3,i(r)dr

)
= f(t)− w0

(
a2(t)−

∫ 1

0

M(t, r)dr

)
− w1

(
a1(t) + ta2(t)−

∫ 1

0

rM(t, r)dr

)
− 1

(1−K20)

(
f(0)− w0 (a2(0)−K00)− w1 (a1(0)−K10) +

N∑
i=1

aiK3
0

)

×
(
1 + ta1(t) +

t2

2
a2(t)−

∫ 1

0

r2

2
M(t, r)dr

)
. (28)

Putting the CPs, we get a linear system which can be solved by any linear solver.

Case 2 (λ = 2).

Here, it is assumed that

wiv(t) =
N∑
i=1

aihi(t), (29)

integrating four times and using initial conditions, we have

w′′′(t) = E1 +
N∑
i=1

aiR1,i(t), (30)

w′′(t) = E2 + E1t+

N∑
i=1

aiR2,i(t), (31)

and

w′(t) = w1 + E2t+ E1
t2

2
+

N∑
i=1

aiR3,i(t), (32)

w(t) = w0 + w1t+ E2
t2

2
+ E1

t3

6
+

N∑
i=1

aiR4,i(t). (33)

With this assumption, Eq. (1) becomes

E1t+ E2 +

N∑
i=1

aiR2,i(t) + a1(t)

(
w1 + E1

t2

2
+ E2t+

N∑
i=1

aiR3,i(t)

)
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+ a2(t)

(
w0 + w1t+ E1

t3

6
+ E2

t2

2
+

N∑
i=1

aiR4,i

)

= f(t) +

∫ 1

0

M(t, r)

(
w0 + w1s+ E1

s3

6
+ E2

s2

2
+

N∑
i=1

aiR4,i(s)

)
dr, (34)

which implies
N∑
i=1

ai

(
R2,i(t) + a1(t)R3,i(t) + a2(t)R4,i −

∫ 1

0

M(t, r)R4,i(r)dr

)
= f(t) +

∫ 1

0

M(t, r)

(
w0 + w1s+ E1

s3

6
+ E2

s2

2

)
dr − E2 − tE1 − a1(t)

(
w1 +

t2

2
E1 + tE2

)
− a2(t)

(
w0 + tw1 + E1

t3

6
+ E2

t2

2

)
. (35)

A more precise representation of this equation is as follows
N∑
i=1

ai

(
R2,i(t) + a1(t)R3,i(t) + a2(t)R4,i −

∫ 1

0

M(t, r)R4,i(s)dr

)
= f(t)− w0

(
a2(t)−

∫ 1

0

M(t, r)dr

)
− w1

(
a1(t) + ta2(t)−

∫ 1

0

sM(t, r)dr

)
− E1

(
t+

t2

2
a1(t) +

t3

6
a2(t)−

∫ 1

0

s3

6
M(t, r)dr

)
− E2

(
1 + ta1(t) +

t2

2
a2(t)−

∫ 1

0

s2

2
M(t, r)dr

)
, (36)

and we substitute t = 0 and t = 1 in the above equation to obtain the extra condition,

−
N∑
i=1

ai

∫ 1

0

M(0, r)R4,i(s)dr = f(0)− w0

(
a2(0)−

∫ 1

0

M(0, r)dr

)
− w1

(
a1(0)−

∫ 1

0

sM(0, r)dr

)
+ E1

(∫ 1

0

s3

6
M(0, r)dr

)
− E2

(
1−

∫ 1

0

s2

2
M(0, r)dr

)
. (37)

Let

K4
0 =

∫ 1

0

M(0, r)R4,i(s)dr, K30 =

∫ 1

0

s3

6
M(0, r)dr. (38)

Combining with the notations previously presented in Eqs. (17) and (20), we have

− E1K30 + E2 (1−K20) = f(0) − w0 (a2(0)−K00) − w1 (a1(0)−K10) +

N∑
i=1

aiK4
0, (39)

also
N∑
i=1

ai

(
R2,i(1) + a1(1)R3,i(1) + a2(1)R4,i(1)−

∫ 1

0

M(1, s)R4,i(s)dr

)
= f(1)− w0

(
a2(1)−

∫ 1

0

M(1, s)dr

)
− w1

(
a1(1) + a2(1)−

∫ 1

0

sM(1, s)dr

)
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− E1

(
1 +

1

2
a1(1) +

1

6
a2(1)−

∫ 1

0

s3

6
M(1, s)dr

)
− E2

(
1 + a1(1) +

1

2
a2(1)−

∫ 1

0

s2

2
M(1, s)dr

)
. (40)

Using the notations

K4
1 =

∫ 1

0

M(1, s)R4,i(s)dr, K31 =

∫ 1

0

s3

6
M(1, s)dr. (41)

Using these notations along with the ones provided in Eq. (22), we get

E1

(
1 +

1

2
a1(1) +

1

6
a2(1)−K31

)
+ E2

(
1 + a1(1) +

1

2
a2(1)−K21

)
= f(1)− w0 (a2(1)−K01)− w1 (a1(1) + a2(1)−K11)

−
N∑
i=1

ai
(
R2,i(1) + a1(1)R3,i(1) + a2(1)R4,i(1)−K4

1

)
. (42)

From this, we derive the values of E1 and E2 as

E1 =
1

D1

(
(1−K20)f(1)− S2f(0)− w0

(
(1−K20) (a2(1)−K01)− S2 (a2(0)−K00)

)
− w1

(
(1−K20) (a1(1) + a2(1)−K11)− S2 (a1(0)−K10)

)
−

N∑
i=1

ai
(
(1−K20)

(
R2,i(1) + a1(1)R3,i(1) + a2(1)R4,i(1)−K4

1

)
+ S2K4

0

))
, (43)

and

E2 =
1

D1

(
(S1f(0)−K30f(1)− w0 (S1 (a2(0)−K00)−K30 (a2(1)−K01))

− w1 (S1 (a1(0)−K10)−K30 (a1(1) + a2(1)−K11))

+
N∑
i=1

ai
(
S1K4

0 +K30(R2,i(1) + a1(1)R3,i(1) + a2(1)R4,i(1)−K4
1)
))

, (44)

where

S1 =

(
1 +

1

2
a1(1) +

1

6
a2(1)−K31

)
, S2 =

(
1 + a1(1) +

1

2
a2(1)−K21

)
,

D1 = S1 (1−K20) + S2K30. (45)

The remaining steps follow the same procedure as the IDEs section previously.

3.2 Volterra IDEs

The Volterra IDEs of second order, as defined by (2), will be studied. In this section, we

will develop the suggested approach for the two cases where λ = 1 and λ = 2.

Case 1 (λ = 1).

Let

w′′′(t) =
N∑
i=1

aihi(t), (46)
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integrating three times and using initial conditions, we have

w′′(t) = E1 +
N∑
i=1

aiR1,i(t), (47)

w′(t) = w1 + E1t+
N∑
i=1

aiR2,i(t), (48)

w(t) = w0 + w1t+ E1
t2

2
+

N∑
i=1

aiR3,i(t). (49)

Substitute the above assumption in Eq. (2) to get the following equation,

E1 +

N∑
i=1

aiR1,i(t) + a1(t)

(
w1 + E1t+

N∑
i=1

aiR2,i(t)

)

+ a2(t)

(
w0 + w1t+ E1

t2

2
+

N∑
i=1

aiR3,i(t)

)

= f(t) +

∫ t

0

M(t, r)

(
w0 + w1s+ E1

s2

2
+

N∑
i=1

aiR3,i(s)

)
dr, (50)

so
N∑
i=1

ai

(
R1,i(t) + a1(t)R2,i(t) + a2(t)R3,i(t)−

∫ t

0

M(t, r)R3,i(s)dr

)
= f(t)− E1

(
1 + a1(t)t+ a2(t)

t2

2
−
∫ t

0

M(t, r)
s2

2
dr

)
− w0

(
a2(t)−

∫ t

0

M(t, r)dr

)
− w1

(
a1(t) + a2(t)t−

∫ t

0

sM(t, r)dr

)
, (51)

and we substitute t = 0 in the above equation to obtain extra condition and value of E1 as

E1 = f(0)− a1(0)w1 − a2(0)w0. (52)

Case 2 (λ = 2).

Consider

wiv(t) =
N∑
i=1

aihi(t), (53)

integrating four times and using initial conditions, we have

w′′′(t) = E1 +
N∑
i=1

aiR1,i(t), (54)

w′′(t) = E2 + E1t+

N∑
i=1

aiR2,i(t), (55)

w′(t) = w1 + E2t+ E1
t2

2
+

N∑
i=1

aiR3,i(t), (56)
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and

w(t) = w0 + w1t+ E2
t2

2
+ E1

t3

6
+

N∑
i=1

aiR4,i. (57)

By substituting all of this in Eq. (2), we have

E2 + E1t+
N∑
i=1

aiR2,i(t) + a1(t)

(
w1 + E2t+ E1

t2

2
+

N∑
i=1

aiR3,i(t)

)

+ a2(t)

(
w0 + w1t+ E2

t2

2
+ E1

t3

6
+

N∑
i=1

aiR4,i

)

= f(t) +

∫ t

0

M(t, r)

(
w0 + w1r + E2

r2

2
+ E1

r3

6
+

N∑
i=1

aiR4,i(r)

)
dr. (58)

It can be simplified as
N∑
i=1

ai

(
R2,i(t) + a1(t)R3,i(t) + a2(t)R4,i −

∫ t

0

M(t, r)R4,i(r)dr

)
= f(t)− E2

(
1 + a1(t)t+ a2(t)

t2

2
−
∫ t

0

M(t, r)
r2

2
dr

)
− E1

(
t+ a1(t)

t2

2
+ a2(t)

t3

6
−
∫ t

0

M(t, r)
r3

6
dr

)
− w0

(
a2(t)−

∫ t

0

M(t, r)dr

)
− w1

(
a1(t) + a2(t)t−

∫ t

0

rM(t, r)dr

)
. (59)

Using t = 0 and t = 1 in Eq. (59), we can obtain the extra constants E1 and E2. We obtain

the value of E2 for t = 0 as

E2 = f(0)− a1(0)w1 − a2(0)w0. (60)

For t = 1, we have

E1

(
1 +

1

2
a1(1) +

1

6
a2(1)−

∫ 1

0

r3

6
M(1, r)dr

)
= f(1)− E2

(
1 + a1(1) + a2(1)

1

2
−
∫ 1

0

M(1, s)
r2

2
dr

)
− w0

(
a2(1)−

∫ 1

0

M(1, r)dr

)
− w1

(
a1(1) + a2(1)−

∫ 1

0

rM(1, r)dr

)
−

N∑
i=1

ai

(
R2,i(1) + a1(1)R3,i(1) + a2(1)R4,i(1)−

∫ 1

0

M(1, r)R4,i(r)dr

)
. (61)

Using the notations introduced in Eqs. (22) and (41), we can write

E1

(
1 +

1

2
a1(1) +

1

6
a2(1)−K31

)
= f(1)−E2

(
1 + a1(1) + a2(1)

1

2
−K21

)
−w0 (a2(1)−K01)

− w1 (a1(1) + a2(1)−K11)−
N∑
i=1

ai
(
R2,i(1) + a1(1)R3,i(1) + a2(1)R4,i(1)−K4

1

)
. (62)
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Table 1. Numerical results for Example 1 at p = 0.5.

HOHWM (λ = 1) HOHWM (λ = 2)
J N Ep(N) Rp(N) Ep(N) Rp(N)
1 4 3.81e− 04 - 4.32e− 06 -
2 8 9.82e− 05 1.96 2.91e− 07 3.89
3 16 2.47e− 05 1.99 1.87e− 08 3.96
4 32 6.19e− 06 1.99 1.19e− 09 3.98
5 64 1.55e− 06 1.99 7.46e− 011 3.99

The value of E1 is

E1 =
1

D2

(
f(1)−

(
f(0)− a1(0)w1 − a2(0)w0

)(
1 + a1(1) + a2(1)

1

2
−K21

)
− w0 (a2(1)−K01)

− w1 (a1(1) + a2(1)−K11)−
N∑
i=1

ai
(
R2,i(1) + a1(1)R3,i(1) + a2(1)R4,i(1)−K4

1

))
, (63)

where

D2 = 1 +
1

2
a1(1) +

1

6
a2(1)−K31. (64)

§4 Numerical experiments

This section includes the computation of the rate of convergence and absolute point-wise

errors at random points in order to assess the effectiveness of the suggested method. Ep(N),

point-wise absolute error at a point p using N number of CPs is defined as

Ep(N) = |w(p)− w∗(p)| , (65)

where approximate solution at point p is w∗(p), and the exact solution is w(p). Additionally,

Rp(N) will represent the experimental rate of convergence

Rp(N) =
ln (Ep(N/2)/Ep(N))

ln 2
. (66)

Example 1. Consider the Fredholm IDE [24]

w′′(t) = et − t+

∫ 1

0

trw(r)dr, w(0) = 1, w′(0) = 1, (67)

whose exact solution is w(t) = et.

HOHWM technique is applied to solve test problem 1. The problem was examined at

t = 0.5. The results for various HOHWM resolution levels are shown in Table 1, in columns 3

and 4 for λ = 1 and λ = 2, respectively. Particularly, an improvement in absolute error can be

seen by comparing the results for λ = 1 and λ = 2. The final column of this table shows the

rate of convergence, which reduces to 4.

Example 2. Consider the Volterra IDE [25]

w′′(t) = 1 +

∫ t

0

(t− r)w(r)dr, w(0) = 1, w′(0) = 0, (68)
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Table 2. Numerical results for Example 2 at p = 0.5.

HOHWM (λ = 1) HOHWM (λ = 2)
J N Ep(N) Rp(N) Ep(N) Rp(N)
1 4 3.29e− 04 - 4.32e− 6 -
2 8 8.29e− 05 1.98890 2.9e− 07 3.89
3 16 2.08e− 05 1.99717 1.87e− 08 3.95
4 32 5.19e− 06 1.99929 1.19e− 09 3.98
5 64 1.30e− 06 1.99982 7.46e− 011 3.99

whose exact solution is w(t) = cosh(t).

Table 2 provides results for this example at various resolution levels, which were solved by

using recently introduced method HOHWM. The performance of suggested technique improves

with higher resolution levels, however for λ = 2 absolute error, it decreases quite quickly.

§5 Conclusion

This article presents a numerical technique for solving second-order Volterra and Fredholm

IDEs of second-kind by using HOHWM. The second-order fredholm and Voltera IDE were

treated with this technique. The results of the table confirm that the accuracy of the solution

is improved compared to the classical HWM and the convergence rate approaches the proven

convergence rate for HOHWM, which is 2, for λ = 1 and 4, for λ = 2. Based on its successful

performance in achieving the goal, this work can be expanded to higher order IDEs.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

[1] J Majak, M Pohlak, K Karjust, et al. New higher order Haar wavelet method: Application

to FGM structures, Composite Structures, 2018, 201: 72-78.

[2] M Ghasemi, K Mohammadi, A Alipanah. Numerical solution of system of second-order

integro-differential equations using nonclassical Sinc collocation method, Boundary Value

Problems, 2023, 2023: 38.

[3] M Fathy, M El-Gamel, M S El-Azab. Legendre-Galerkin method for the linear Fredholm

integro-differential equations, Applied Mathematics and Computation, 2014, 243: 789-800.



914 Appl. Math. J. Chinese Univ. Vol. 40, No. 4

[4] S Yeganeh, Y Ordokhani, A Saadatmandi. A Sinc-Collocation Method for Second-Order

Boundary Value Problems of Nonlinear Integro-Differential Equation, Journal of Informa-

tion and Computing Science, 2012, 7: 151-160.

[5] Z Wang, L Liu, Y Wu. The unique solution of boundary value problems for nonlinear second-

order integral-differential equations of mixed type in Banach spaces, Computers & Mathe-

matics with Applications, 2007, 54: 1293-1301.

[6] S H Behiry, H Hashish. Wavelet methods for the numerical solution of Fredholm integro-

differential equations, International Journal of Applied Mathematics, 2002, 11: 27-35.

[7] R Saadeh. An Iterative Approach to Solve Volterra Nonlinear Integral Equations, European

Journal of Pure and Applied Mathematics, 2023, 16: 1491-1507.

[8] I Aziz. New algorithms for numerical solution of nonlinear Fredholm and Volterra integral

equations using Haar wavelets, Journal of Computational and Applied Mathematics, 2013,

239: 333-345.
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