
Appl. Math. J. Chinese Univ.
2025, 40(4): 886-900

Global attractivity of a rational difference equation with

higher order and its application to several conjectures

LI Xian-yi∗ LI Dan-yang

Abstract. We study the global dynamics of a rational difference equation with higher order,

which includes many rational difference equations as its special cases. By some complicate com-

putations and mathematical skills, we show that its unique nonnegative fixed point is globally

attractive. As application, our results not only improve many known ones, but also solve several

“Open Problems and Conjectures” given by Professors Ladas and Camouzis, et al.

§1 Introduction

Difference equation are one of the most powerful tools to describe the change rule of natural

phenomena. There are many real applications for difference equation in various disciplines, such

as cybernetics, biology, physics and other applied fields. Difference equation comes not only

from the discretization of differential equations, but also from the modelling of real problems.

Rational difference equation (for short, RDE) is a typical kind of nonlinear difference equations,

whose research time is not long. Because the research of many core problems for difference

equations is due to the prototype for the problems of RDEs, the investigations of RDEs have

received much attention and developed rapidly in the past several decades. For example, refer

to the monographs [1–3] and the papers [4–15] and the references therein.

Recently, Li and Zhu [16] considered the following RDE

xn+1 =
p+ qxn

1 + rxn−k + sxn−l
, n = 0, 1, · · · , (1)

where the parameters p, q, r, s ∈ [0,∞), k and l are positive integers with k < l, and the initial

conditions x−m, ..., x−1, x0 ∈ (0,∞).

The results obtained in [16] not only include and improve many known ones [1–3,17–22], but

also solve several “Open Problemss and Conjectures” presented by famous professors Ladas,
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Kocic, Kulenovic and Camouzis, et al. in [1–3, 22]. Although those results in [16] are very

pretty, we still find that there are some limitations for their results. For example, their results

can not solve the attractivity for the following two difference equations [3, Equation♯189]

xn+1 =
p+ xn

A+ xn + sxn−1 + txn−2
, n = 0, 1, ..., (2)

with positive parameters p,A, s, t and arbitrary nonnegative initial conditions x−2, x−1, x0, and

[3, Equation♯134]

xn+1 =
qxn

A+ rxn + sxn−1 + txn−2
, n = 0, 1, ..., (3)

with positive parameters q,A, r, s, t and arbitrary nonnegative initial conditions x−2, x−1, x0.

Certainly, there are still many other problems for higher order RDEs which need to be further

investigated. These existing problems motivate us to consider in this paper the following RDE

with higher order

xn+1 =
p+ qxn

1 + rxn−k + sxn−l + txn−m
, n = 0, 1, · · · . (4)

where the parameters p, q, r, s, t ∈ [0,∞), k, l and m are positive integers with k < l < m, and

the initial conditions x−m, ..., x−1, x0 ∈ (0,∞). To avoid trivial cases, we suppose that p+q > 0

and r + s+ t > 0.

Eq.(4), which is the main aim in this paper to be considered, obviously is a generalization

of Eq.(1). Although the forms of Eqs.(1) and (4) look similar, they possess completely different

recursive rules. So, Eq.(4) is worthy investigating. Our results in this paper not only include

all of results in [16], but also generalize all of the corresponding results [17–21], and solves some

new problems that can not be solved by known work.

§2 Main result and its proof

In this section, we formulate our main result in this paper and its proof. The main idea for

the proof is to comprehensively use the three key lemmas cited in the appendix to transfer the

higher order RDE (4) into one order difference eqution that is easily dealt with.

Eq.(4) has a unique nonnegative fixed point, denoted as x̄, namely,

x̄ =
q − 1 +

√
(q − 1)2 + 4p(r + s+ t)

2(r + s+ t)
.

Our main result in this paper is as follows.

Theorem 2.1 Consider Eq.(4). Assume that the parameters p, q, r, s, t ∈ [0,∞) with

p + q > 0 and r + s + t > 0, and the paramenters k, l and m are positive integers with

k < l < m. Then the unique nonnegative fixed point x̄ of Eq.(4) is a global attractor of all of

its positive solutions.

Proof. When p = 0 and q ∈ (0, 1], x̄ = 0. Then it follows from Eq.(4) that xn+1 < qxn,

so one can see xn eventually monotonically approaches x̄. Notice {p = 0} ∩ {q ∈ [0, 1]} = {p >

0} ∪ q ∈ (1,∞). Hence, in the next, one assumes p > 0 or q ∈ (1,∞), namely, we only study

the behavior of positive fixed point of Eq.(4).
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Evidently, Eq.(4) may be written as

xn+1 = xn

p
xn

+ q

1 + rxn−k + sxn−l + txn−m
. (5)

Set

f(u0, u1, .., uk, .., ul, .., um) =

p
u0

+ q

1 + ruk + sul + tum
.

The function f may be verified to satisfy the conditions (H1)-(H4) of Lemma 4.1 in the appendix.

So, the function G defined by (23) may be derived as

G(x, y) = y

p
y + q

1 + (r + s+ t)x

p
x̄ + q

1 + (r + s)x̄+ ty
(

p
x̄ + q

1 + (r + s+ t)x
)m−1

=

[
1 + (r + s+ t)x̄

1 + (r + s+ t)x

]m
p+ qy

1 + (r + s)x̄+ ty
.

Moreover,
∂G(x, y)

∂y
=

[
1 + (r + s+ t)x̄

1 + (r + s+ t)x

]m
q(1 + (r + s)x̄)− pt

(1 + (r + s)x̄+ ty)2
. (6)

In order to apply Lemma 4.3, one has to calculate the function F defined by (22). Consider

the following two cases.

Case I: 0 < q ≤ pt
1+(r+s)x̄ .

In this case, it follows from (6) that the function F can be given by

F (x) =

[
1 + (r + s+ t)x̄

1 + (r + s+ t)x

]m
p+ qx

1 + (r + s)x̄+ tx

=
A(p+ qx)

[1 + (r + s+ t)x]m(1 + (r + s)x̄+ tx)
,

(7)

where x̄, x ∈ (0,∞), A = [1 + (r + s+ t)x̄]m.

Now in order to show that x is a global attractor of all positive solutions of Eq.(4), by Lemma

4.1 (b), it suffices for us to verify that the function F has no periodic points of prime 2 except

x. According to Lemma 4.2, one must prove that x is a global attractor of positive solutions of

the difference equation (24) with F (x) defined by Eq.(7) and x0 ∈ [0,∞). Accordingly, in view

of Lemma 4.3, one has to verify that F has a negative Schwarzian derivative.

To do this, notice

F ′(x) = A
q[(1 + (r + s+ t)x)m(1 + (r + s)x̄+ tx)]

(1 + (r + s+ t)x)2m(1 + (r + s)x̄+ tx)2

−A
(p+ qx)[m(r + s+ t)(1 + (r + s+ t)x)m−1(1 + (r + s)x̄+ tx)]

(1 + (r + s+ t)x)2m(1 + (r + s)x̄+ tx)2

−A
(p+ qx)[t(1 + (r + s+ t)x)m]

(1 + (r + s+ t)x)2m(1 + (r + s)x̄+ tx)2

= A
q[(1 + (r + s+ t)x)(1 + (r + s)x̄+ tx)]

(1 + (r + s+ t)x)m+1(1 + (r + s)x̄+ tx)2

−A
(p+ qx)[m(r + s+ t)(1 + (r + s)x̄+ tx) + t(1 + (r + s+ t)x)]

(1 + (r + s+ t)x)m+1(1 + (r + s)x̄+ tx)2

=
A∆

(1 + (r + s+ t)x)m+1(1 + (r + s)x̄+ tx)2
,
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where
∆ =: [q(1 + (r + s)x̄)− pt](1 + (r + s+ t)x)

−m(r + s+ t)(1 + (r + s)x̄+ tx)(p+ qx)

= −T (1 + (r + s+ t)x)−m(r + s+ t)(1 + (r + s)x̄+ tx)(p+ qx),

T =: pt− q(1 + (r + s)x̄).

(8)

The condition 0 < q ≤ pt
(1+(r+s)x̄) implies T ≥ 0. So ∆ < 0 and hence, F ′(x) < 0.

Take I = (0, pA
1+(r+s)x̄ ]. For any given x ∈ I, one has 0 < F (x) < F (0) = limx→0+ F (x) =

pA
1+(r+s)x̄ . So, F (I) ⊂ I. In addition,

F ′′(x) = A
∆′[(1 + (r + s+ t)x)(1 + (r + s)x̄+ tx)]−∆[U + 2t(1 + (r + s+ t)x)]

(1 + (r + s+ t)x)m+2(1 + (r + s)x̄+ tx)3
,

where U =: (m+ 1)(r + s+ t)(1 + (r + s)x̄+ tx) > 0. From (2.4), one has

∆′ = (r + s+ t)[−T − ptm− qm(1 + (r + s)x̄+ 2tx)] < 0. (9)

Denote

Γ = ∆′[(1+(r+s+t)x)(1 + (r+s)x̄+ tx)]−∆[U + 2t(1 + (r + s+ t)x)]. (10)

Then

F ′′(x) =
AΓ

(1 + (r + s+ t)x)l+2(1 + (r + s)x̄+ tx)3
, (11)

Let V =: (r+ s+ t)(1+ (r+ s+ t)x)(1+ (r+ s)x̄+ tx). Then V > 0. Now let us determine

the sign of Γ. Obviously,

Γ =V [−T − ptm− qm(1 + (r + s)x̄+ 2tx)] + (m+ 1)TV + 2t(1+(r+s+t)x)2T

+m(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+qx)+2tm(p+ qx)V

=V [−T − ptm− qm(1 + (r + s)x̄+ 2tx) + T (m+ 1) + 2tm(p+ qx)]

+ lU(r + s+ t)(1 + (r + s)x̄+ tx)(p+ qx)+2t(1 + (r + s+ t)x)2T

=2mTV +m(r + s+ t)(1 + (r + s)x̄+ tx)(p+ qx)U + 2t(1 + (r + s+ t)x)2T.

So, Γ > 0, and from (11), one can see F ′′(x) > 0. Furthermore,

F ′′(x)

F ′(x)
=

Γ

(1 + (r + s+ t)x)(1 + (r + s)x̄+ tx)∆

and

(
F ′′(x)

F ′(x)
)′ =

Γ′[(1 + (r + s+ t)x)(1 + (r + s)x̄+ tx)∆]

(1 + (r + s+ t)x)2(1 + (r + s)x̄+ tx)2∆2

− Γ[(1 + (r + s+ t)x)(1 + (r + s)x̄+ tx)∆]′

(1 + (r + s+ t)x)2(1 + (r + s)x̄+ tx)2∆2
.

Set
Ω = Γ′[(1 + (r + s+ t)x)(1 + (r + s)x̄+ tx)∆]

− Γ[(1 + (r + s+ t)x)(1 + (r + s)x̄+ tx)∆]′.
(12)

Accordingly,

SF (x) = [
F ′′(x)

F ′(x)
]′ − 1

2
[
F ′′(x)

F ′(x)
]2

=
Ω− 1/2Γ2

(1 + (r + s+ t)x)2(1 + (r + s)x̄+ tx)2∆2
.

(13)
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According to the definition (10) of Γ, we have

Γ′=2m(r + s+ t)T [(r + s+ t)(1 + (r + s)x̄+ tx) + t(1 + (r + s+ t)x)]

+ 2mt(m+ 1)(r + s+ t)2(p+ qx)(1 + (r + s)x̄+ tx)

+ qm(ml + 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2

+ 4tT (r + s+ t)(1 + (r + s+ t)x).

(14)

Denote I =: (r + s+ t)(1 + (r + s)x̄+ tx) + t(1 + (r + s+ t)x) > 0. Then

Γ′=2m(r + s+ t)TI + 2mt(m+ 1)(r + s+ t)2(p+ qx)(1 + (r + s)x̄+ tx)

+ qm(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2

+ 4tT (r + s+ t)(1 + (r + s+ t)x) > 0.

Put Φ = Ω − 1/2Γ2 and H = Γ′[(1+(r+s +t)x)(1+ (r+s)x̄+tx)∆]. Now simplify Φ to see

whether Φ < 0 or not.

Φ = Ω− 1/2Γ2

= Γ′[(1+(r+s+t)x)(1+ (r+s)x̄+tx)∆]

−Γ[(I∆+ (1 + (r+s)x̄+ tx)(1 + (r+s+t)x)∆′+1/2Γ]

= H − Γ{I[−T (1 + (r + s+ t)x)−m(r + s+ t)(1 + (r+s)x̄+ tx)(p+ qx)]

+ V [−T − ptm̈− qm(1 + (r+s)x̄+ 2tx)] + t(1 + (r + s+ t)x)2T

+mTV + 1/2m(r + s+ t)(1 + (r + s)x̄+ tx)(p+ qx)U}

= H − Γ{−TV − t(1 + (r + s+ t)x)2T −m(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)

−mt(p+ qx)V + V [−T −m(pt+ q(1 + (r + s)x̄+ 2tx)] +mTV

+ 1/2m(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx) + t(1 + (r + s+ t)x)2T}

= H − Γ{1/2m(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx) +mTV

+ V [−T − T −mt(p+ qx)−m(pt+ 2q(1 + (r + s)x̄) + 2qtx− q(1 + (r + s)x̄)]}

= H − Γ{1/2m(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx) +mTV

+ V [−2T −mT −m(pt+ qtx+ 2q(1 + (r + s)x̄+ tx))]}

= H − Γ{1/2m(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx) +mTV

+ V [−(m+ 2)T −m(pt− q(1 + (r + s)x̄) + qtx+ 3q(1 + (r + s)x̄) + 2qtx]}

= H − Γ[1/2m(m−1)(r+s+t)2(1+ (r+s)x̄+tx)2(p+qx)

−(m+2)TV −3qm(1+ (r+s)x̄+tx)V ]

=: H +Q,

where Q = −Γ[1/2m(m − 1)(r + s + t)2(1 + (r + s)x̄ + tx)2(p + qx) − (m + 2)TV − 3qm(1 +

(r + s)x̄+ tx)V ].

Now further simply H and Q.

H = Γ′[(1+(r+s+t)x)(1+ (r+s)x̄+tx)∆]

= Γ′[−T (1+(r+s+t)x)2(1+ (r+s)x̄+tx)−m(p+ qx)(1 + (r + s)x̄+ tx)V ]

= 2m(r + s+ t)2(1 + (r + s)x̄+ tx)T · (−T (1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2)
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+ 2m(r + s+ t)2(1 + (r + s)x̄+ tx)T · (−m(p+ qx)(1 + (r + s)x̄+ tx)V )

+ 2mt(r + s+ t)(1 + (r + s+ t)x)T · (−T (1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2)

+ 2mt(r + s+ t)(1 + (r + s+ t)x)T · (−m(p+ qx)(1 + (r + s)x̄+ tx)V )

+ 2mt(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)T · (−T (1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2)

+ 2mt(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)T · (−m(p+ qx)(1 + (r + s)x̄+ tx)V )

+ qm(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2 · (−T (1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2)

+ qm(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2 · (−m(p+ qx)(1 + (r + s)x̄+ tx)V )

+ 4t(r + s+ t)(1 + (r + s+ t)x)T · (−T (1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2)

+ 4t(r + s+ t)(1 + (r + s+ t)x)T · (−m(p+ qx)(1 + (r + s)x̄+ tx)V )

=−2mT 2V 2 − 2m2(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

− 2mt(1+(r+s+t)x)2T 2V −2m2t(p+qx)TV 2−qm(l+1)(1 + (r+s)x̄+tx)TV 2

− qm2(m+1)(r+s+t)2(1+ (r+s)x̄+tx)3(p+qx)V −2tm(m+1)(p+qx)TV 2

− 2tm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2V

− 4t(1 + (r + s+ t)x)2T 2V − 4mt(p+ qx)TV 2

=−2mT 2V 2 − TV 2[2mt(m+ 1)(p+ qx) + qm(m+ 1)(1 + (r + s)x̄+ tx)]

− TV 2[4mt(p+ qx) + 2m2t(p+ qx)]− T 2V [2mt(1 + (r + s+ t)x)2

+ 4t(1 + (r + s+ t)x)2]− 2m2(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

− V [qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

+ 2tm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2]

=−2mT 2V 2 − TV 2[m2(2pt+ 2qtx+ q(1 + (r + s)x̄+ tx))

+m(2pt+ 2qtx+ q(1 + (r + s)x̄+ tx))]− TV 2[4mt(p+ qx) + 2m2t(p+ qx)]

− T 2V [2mt(1 + (r + s+ t)x)2 + 4t(1 + (r + s+ t)x)2]

− 2m2(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

− V [qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

+ 2tm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2]

=−2mT 2V 2 − TV 2[m2(2pt− 2q(1 + (r + s)x̄) + 3q(1 + (r + s)x̄) + 3qtx)

+m(2pt− 2q(1 + (r + s)x̄) + 3q(1 + (r + s)x̄) + 3qtx)]

− TV 2[4mt(p+ qx) + 2m2t(p+ qx)]− T 2V [2mt(1 + (r + s+ t)x)2

+ 4t(1 + (r + s+ t)x)2]− 2m2(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

− V [qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

+ 2tm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2]

=−2mT 2V 2 − TV 2[m2(2T + 3q(1 + (r + s)x̄+ tx))

+m(2T + 3q(1 + (r + s)x̄+ tx))]− TV 2[4mt(p+ qx) + 2m2t(p+ qx)]
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− T 2V [2mt(1 + (r + s+ t)x)2 + 4t(1 + (r + s+ t)x)2]

− 2m2(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

− V [qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

+ 2tm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2]

=−2mT 2V 2 − 2m2T 2V 2 − 2mT 2V 2 − 3qm(1 + (r + s)x̄+ tx)(m+ 1)TV 2

− TV 2[4mt(p+ qx) + 2m2t(p+ qx)]− T 2V [2mt(1 + (r + s+ t)x)2

+ 4t(1 + (r + s+ t)x)2]− 2m2(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

− V [qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

+ 2tm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2]

= −2m(m+ 2)T 2V 2 − T 2V [2mt(1 + (r + s+ t)x)2 + 4t(1 + (r + s+ t)x)2]

− TV 2[3qm(1 + (r + s)x̄+ tx)(m+ 1) + 4mt(p+ qx) + 2m2t(p+ qx)]

− 2m2(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

− V [qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

+ 2tm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2]
and

Q = −1/2m(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx) · 2mTV

− 1/2m(m− 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2 ·m(m+ 1)

− 1/2m(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx) · 2t(1 + (r + s+ t)x)2T

+ (m+ 2)TV · 2mTV + (m+ 2)TV · 2t(1 + (r + s+ t)x)2T

+ (m+ 2)TV ·m(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)

+ 3qm(1+ (r+s)x̄+tx)V · 2mTV +3qm(1+ (r+s)x̄+tx)V · 2t(1+(r+s+t)x)2T

+ 3qm(1 + (r+s)x̄+ tx)V ·m(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)

= −m2(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2

−mt(m− 1)(p+ qx)TV 2 + 2m(m+ 2)T 2V 2

+m(m+ 1)(m+ 2)(p+ qx)(r + s+ t)2(1 + (r + s)x̄+ tx)2TV

+ 2t(m+ 2)(1 + (r + s+ t)x)2T 2V + 6qm2(1 + (r + s)x̄+ tx)TV 2

+ 3qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)V

+ 6qmt(1 + (r + s+ t)x)2(1 + (r + s)x̄+ tx)TV.

Combine H and Q to obtain

Φ=T 2V 2[2m(m+ 2)− 2m(m+ 2)] + T 2V [2t(m+ 2)(1 + (r + s+ t)x)2

− 2mt(1 + (r + s+ t)x)2 − 4t(1 + (r + s+ t)x)2]

+ TV 2[6qm2(1 + (r + s)x̄+ tx)−mt(m− 1)(p+ qx)

− 3qm(1 + (r + s)x̄+ tx)(m+ 1)− 4mt(p+ qx)− 2m2t(p+ qx)]
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+ TV [m(m+ 1)(m+ 2)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)

+ 6qmt(1 + (r + s+ t)x)2(1 + (r + s)x̄+ tx)

− 2m2(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)

−m2(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)]

+ V [3qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

− qm2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)3(p+ qx)

− 2m2(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)2]

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2

= TV 2[3qm2(1 + (r + s)x̄+ tx)− 3qm(1 + (r + s)x̄+ tx)

−m2pt−m2qtx+mpt+mqtx− 2m2(p+ qx)− 4mt(p+ qx)]

+ TV · 2m(m+ 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)

+ TV · 6qmt(1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2

+ V [2m2(m+1)(r+s+t)2(1+ (r+s)x̄+tx)2(p+qx)[q(1+ (r+s)x̄+tx)−t(p+qx)]]

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2

= TV 2[m2(3q(1+ (r+s)x̄+ tx)−pt−qtx)−m(3q(1+ (r+s)x̄+ tx)−pt−qtx)

− 2m2(p+ qx)− 4mt(p+ qx)] + 6qmt(1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2TV

− 2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2

= TV 2[m2(2q(1 + (r + s)x̄+ tx) + qtx+ q(1 + (r + s)x̄)− pt− qtx)

−m(2q(1 + (r + s)x̄+ tx) + qtx+ q(1 + (r + s)x̄)− pt− qtx)

− 2m2(p+qx)−4mt(p+qx)]+6qmt(1 + (r + s)x̄+ tx)(1+(r + s)x)2TV

− 2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2.

= TV 2[−m2T +mT + 2m2[q(1 + (r + s)x̄+ tx)− t(p+ qx)]

− 2m[q(1+ (r+s)x̄+tx) + 2t(p+ qx)]]

+ 6qmt(1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2TV

− 2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2

= (−m2 +m)T 2V 2 + TV 2[2m2(−T )− 2m(q(1 + (r + s)x̄) + qtx− pt+ 3pt+ 2qtx)]

+ 6qmt(1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)2TV

− 2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2

= −3m(m−1)T 2V 2−6mt(p+qx)TV 2+6qmt(1+ (r+s)x̄+tx)(1+(r+s+t)x)2TV
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−2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2.

= 6mt(1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)TV [q(1 + (r + s+ t)x− (p+ qx)(r + s+ t)]

− 3m(m− 1)T 2V 2 − 2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2.

= −3m(m− 1)T 2V 2

− 6mt(1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)(q(r + s)x̄+ T + p(r + s))TV

− 2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2.
Namely, eventually, one has

Φ = −3m(m− 1)T 2V 2

− 2m(m+ 1)(m− 1)(r + s+ t)2(1 + (r + s)x̄+ tx)2(p+ qx)TV

− 6mt(1 + (r + s)x̄+ tx)(1 + (r + s+ t)x)(q(r + s)x̄+ T + p(r + s))TV

− 1/2m2(m2 − 1)(r + s+ t)4(1 + (r + s)x̄+ tx)4(p+ qx)2.

Noticing that m > 1 is a positive integer, it is easy to see Φ < 0. Therefore, in lihgt of

(13), one sees SF (x) < 0. Accordingly, Lemma 4.3 reads that x̄ is a global attractor of all

positive solutions of Eq.(24). In turn, according to Lemma 4.2, x̄ is the only fixed point of F 2

in (0,∞). Then, using Lemma 4.1 (b), it has been shown that x̄ is a global attractor for all

positive solutions of Eq.(21), hence Eq.(5) and so Eq.(4).

Case II: q > pt
1+(r+s)x̄ .

In this case, in view of (22), one can easily derive

F (x) = [
1 + (r + s+ t)x̄

1 + (r + s+ t)x
]m

p+ qx̄

1 + (r + s)x̄+ tx̄
=

B

[1 + (r + s+ t)x]m
, (15)

where x̄, x ∈ (0,∞), B =: (p+ qx̄)(1 + (r + s+ t)x̄)m−1.

Now verify that the function F has no nontrivial periodic points of prime period 2. In order

to arrive at this, let L = F (M) andM > 0 be the fixed point of F 2(x), i.e.,M = F 2(M) = F (L).

From L = B
[1+(r+s+t)M ]m and M = B

[1+(r+s+t)L]m , one has

[1 + (r + s+ t)M ]m

M
=

[1 + (r + s+ t)L]m

L
. (16)

It is easy to see from (15) that 0 < F (x) < F (0) = limx→0+F (x) = B. Take I = [0, B],

then, F (I) ⊂ I. In order to apply Lemma 4.3, it next suffices to show that the Schwarzian

derivative of the function F is negative.

Some calculations display

F ′(x) = − Bm(r + s+ t)

[1 + (r + s+ t)x]m+1
, F ′′(x) =

Bm(m+ 1)(r + s+ t)2

[1 + (r + s+ t)x]m+2
.

Accordingly,

F ′′(x)

F ′(x)
= − (m+ 1)(r + s+ t)

1 + (r + s+ t)x
,

[
F ′′(x)

F ′(x)

]′
=

(m+ 1)(r + s+ t)2

[1 + (r + s+ t)x]2
.
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Thus,

SF (x) =

[
F ′′(x)

F ′(x)

]′
− 1

2

[
F ′′(x)

F ′(x)

]2

=
(m+ 1)(r + s+ t)2

[1 + (r + s+ t)x]2
− 1

2

(m+ 1)2(r + s+ t)2

[1 + (r + s+ t)x]2

=
(m+ 1)(1−m)(r + s+ t)2

2[1 + (r + s+ t)x]2
.

(17)

Because m > 1 is a positive integer, it follows from (17) that SF (x) < 0. By Lemma 4.3,

x̄ is a global attractor of all positive solutions of Eq.(21). Thereout, in view of Lemma 4.2, x̄

is the only fixed point of F 2 in (0,∞). Then Lemma 4.1 (b) says that the unique nonnegative

fixed point x̄ of Eq.(5), hence Eq.(4), is a global attractor of all of its positive solutions.

Up to here, Cases I and II together finish the proof of the theorem.

Remark 2.1 Eq.(4) is equivalent to the following difference equation

xn+1 =
p+ qxn

A+ rxn−k + sxn−l + txn−m
, n = 0, 1, · · · , (18)

where the parameters A > 0, p, q, r, s, t ∈ [0,∞) with p + q > 0 and r + s + t > 0, k, l and m

are positive integers with k < l < m, and the initial conditions x−m, ..., x−1, x0 ∈ (0,∞).

In fact, when A > 0, the parameter changes (p, q, r, s, t) → (Ap,Aq,Ar,As,At) in Eq.(18)

transform Eq.(18) into Eq.(4). So, according to Theorem 2.1, we have the following result.

Corollary 2.1 Consider Eq.(18). Assume that the parameters A > 0, p, q, r, s, t ∈ [0,∞)

with p + q > 0 and r + s + t > 0, and the paramenters k, l and m are positive integers with

k < l < m. Then the unique nonnegative fixed point x̄ of Eq.(18) is a global attractor of all of

its positive solutions.

Remark 2.2 Because the results derived in [16] are special cases of our result, namely,

Theorem 2.1 with t = 0, those “Open Problems and Conjectures” ( nubered as Conjecture

1.1 and Conjecture 1.2 in [16] and “Open Problemss and Conjectures” given by Ladas, Kocic,

Kulenovic and Camzious, et al. in [1–3, 22] ) are also solved by our Theorem 2.1. Moreover,

our results also improve and generalize corresponding results in [1–3,17–22].

§3 Applications

In the section we formulate some new applications of our results, namely, Theorem 2.1 and

Corollary 2.1.

Example 1. Consider the following different equation [3, Equation♯189]

xn+1 =
p+ xn

A+ xn + sxn−1 + txn−2
, n = 0, 1, ... (19)

with positive parameters p,A, s, t and arbitrary nonnegative initial conditions x−2, x−1, x0.

Professors Camouzis and Ladas in [3] stated, for A ≥ 1, the equilibrium

x̄(=
1−A+

√
(1−A)2+4p(1+s+t)

2(1+s+t) ) of Eq.(3.1) is globally asymptotically stable.

But, by our Corollary 2.1, one can see that the fixed point x̄ of Eq.(19) is globally asymp-
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totically stable for A > 0. So our result improves the corresponding result in [3].

In addition, the authors of [3] presented the following Conjecture.

Conjecture 3.1 [3, Conjecture 5.189.2, P399] Show that Eq.(19) has solutions that do

not converge to the equilibrium point x̄ or to a periodic solution when A < 1.

In view of our Corollary 2.1, the unique fixed point x̄ of Eq.(19) is a global attractor of all

of its positive solutions. That is to say, all solutions of Eq.(19) converge to x̄ for A > 0. So the

Conjecture 3.1 is incorrect.

Example 2. Consider the following different equation [3, Equation♯134]

xn+1 =
qxn

A+ rxn + sxn−1 + txn−2
, n = 0, 1, ... (20)

with positive parameters q,A, r, s, t and arbitrary nonnegative initial conditions x−2, x−1, x0.

The authors of [3] argued, for A ≥ 1, the fixed point x̄(= q−A
r+s+t ) of Eq.(20) is globally

asymptotically stable.

But, according to our Corollary 2.1, when A > 0, the equilibrium x̄ of Eq.(20) is globally

asymptotically stable. So our result improves the corresponding result in [3].

In addition, Professors Camouzis and Ladas in [3] presented the following Conjecture.

Conjecture 3.2 [3, Conjecture 5.134.2, P320] Show that Eq.(20) has solutions that do

not converge to the equilibrium point x̄ or to a periodic solution.

According to our Corollary 2.1, the unique fixed point x̄ of Eq.(20) is a global attractor

of all of its positive solutions. In other words, all solutions of Eq.(20) tend to the equilibrium

point x̄ of Eq.(20) for A > 0. So the Conjecture 3.2 is incorrect.

§4 Conclusion and discussion

We investigate in this note the global attractity of unique nonnegative equilibrium solution

for a rational difference equation with higher order. By some lengthy and difficult computations,

we eventually demonstrate that the unique nonnegative fixed point of the rational difference

equation is globally attractive. As application, our results not only improve and generalize

many known results [1–3,17–22], but also solve many “Open Problems and Conjectures” given

in [1–3,22] by famous professors Ladas, Kocic, Kulenovic and Camzious, et al.

Although the forms of RDEs look very simple, generally speaking, it is extremely difficult

for one to derive a complete result for some characters in their entire parameter space because

such RDEs generally contain many parameters, such as 8 paramerters in Eq.(1.4), and some

calculations to derive such properties which look vey simle are actually very complex and

fritter one’s patience. Hence, one often only obtains part results in the entire parameter space.

However, RDEs possess many fascinating properties, such as dichotomy [23,24], trichotomy [25],

bifurcation [26–31], and chaos [26, 32]. Up to now, one has not found any effective methods or

ways to deal with such problems yet. One always tries to look for effective methods or ways to

deal with such problems. This just is the charm for one to like investigating RDEs.
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§5 Appendix

For readers’ convenience, several key lemmas used in this paper to prove our main result

are presented here.

Lemma 4.1 [1, Theorem 2.3.1, P40 ] Consider the difference equation

xn+1 = xnf(xn, xn−k1 , · · · , xn−kr ), (21)

where k1, k2, · · · , kr are positive integers. Denote by k the maximum of k1, k2, · · · , kr. Also,

assume that the function f satisfies the following hypotheses:

(H1) f ∈ C[(0,∞)×[0,∞)r, (0,∞)] and g ∈ C[[0,∞)r+1, (0,∞)], where g(u0, u1, · · · , ur) =

u0f(u0, u1, · · · , ur) for u0 ∈ (0,∞) and u1, · · · , ur ∈ [0,∞), g(0, u1, · · · , ur) = limu0→0+ g(u0, u1,

· · · , ur);

(H2) f(u0, u1, · · · , ur) is nonincreasing in u1, · · · , ur;

(H3) The equation f(x, x, · · · , x) = 1 has a unique positive solution x;

(H4) Either the function f(u0, u1, · · · , ur) does not depend on u0 or for every x > 0 and

u ≥ 0,

[f(x, u, · · · , u)− f(x, u, · · · , u)](x− x) ≤ 0

with

[f(x, x, · · · , x)− f(x, x, · · · , x)](x− x) < 0 for x ̸= x.

Define a new function F given by

F (x) =

{
maxx≤y≤xG(x, y), for 0 ≤ x ≤ x,

minx≤y≤xG(x, y), for x > x,
(22)

where

G(x, y) = yf(y, x, · · · , x)f(x, x, · · · , x, y)[f(x, x, · · · , x)]k−1. (23)

Then

(a) F ∈ C[(0,∞), (0,∞)] and F is nonincreasing in [0,∞);

(b) Assume that the function F has no periodic points of prime period 2. Then x is a global

attractor of all positive solutions of Eq.(21).

Lemma 4.2 [1, Lemma 1.6.3 (a) and (d)] Let F ∈ [[0,∞), (0,∞)] be a nonincreasing func-

tion and let x denote the unique fixed point of F , then the following statements are equivalent:

(a) x is the only fixed point of F 2 in (0,∞);

(b) x is a global attractor of all positive solutions of the difference equation

xn+1 = F (xn), n = 0, 1, · · · (24)

with x0 ∈ [0,∞).

Lemma 4.3 [1,5] Consider Eq.(24), where F is a nonincreasing function which maps some

interval I into itself. Assume that F has a negative Schwarzian derivative

SF (x) =
F ′′′(x)

F ′(x)
− 3

2
(
F ′′(x)

F ′(x)
)2 =

[
F ′′(x)

F ′(x)

]′
− 1

2
(
F ′′(x)

F ′(x)
)2 < 0,

everywhere on I, except for point x, where F ′(x) = 0. Then the positive equilibrium x of

Eq.(24) is a global attractor of all positive solutions of Eq.(24).
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