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Pseudo weak-demicompactness for 2× 2 block operator

matrices and some perturbation properties

Ines Chtourou Bilel Krichen

Abstract. In this paper, we give some properties for the so-called ε-pseudo weakly demicom-

pact linear operators acting on Banach spaces with respect to a closed linear operator. Some

sufficient conditions on the entries of an unbounded 2 × 2 block operator matrix L0 ensuring

its ε-pseudo weak demicompactness are provided. In addition, we apply the obtained results to

discuss the incidence of some perturbation results on the behavior of essential pseudospectra of

L0. The results are formulated in terms of some denseness conditions on the topological dual

space.

§1 Introduction

Many problems arising in mathematical physics can be first formulated by systems of par-

tial or ordinary differential equations. In particular, systems of time evolution equations are

governed by block operator matrices. When studying the asymptotic behavior of solutions to

these systems, the spectral theory for the involved matrices plays a crucial role. Such studies

have been discussed by different authors (see for instance, [13,25,26]).

This paper is devoted to some spectral properties related to the so-called ε-pseudo weak

demicompactness, for a 2× 2 block operator matrix (in short B.O.M) with domain dom(L0) =

(dom(A) ∩ dom(C))× (dom(B) ∩ dom(D)) and represented in the following form

L0 =

(
A B

C D

)
.

The operator L0 acts on the product of Banach spaces X × Y with entries A, B, C and

D. The operators A, B, C and D are linear densely defined and their domains are denoted by

dom(A), dom(B), dom(C) and dom(D), respectively.

A pivotal focus lies on the concept of demicompactness, initially introduced by Petryshyn in

1966 [22, 23] to explore a novel approach to construct fixed points for this family of operators.
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In essence, a linear operator T on a Banach space X is called demicompact if, for every bounded

sequence (xn)n in dom(T ) such that the sequence (IdX−T )xn converges inX, there exists a con-

vergent subsequence of (xn)n. The familly of linear demicompact operators on X is denoted by

DC(X). In Fredholm theory, the first two old papers were developed by Petryshyn in 1972 [24]

and by Akashi in 1984 [3]. Note that the demicompactness class plays an important role in the

theory of perturbations since it contains compact and more general Fredholm perturbation oper-

ators. Recent research has furthered this direction. Noteworthy contributions include the work

of Chaker, Jeribi and Krichen [6], who employed demicompact operators to probe the essential

spectra of linear operators. In 2014, Krichen [14] extended the notion of demicompactness,

introducing the class of relative demicompact linear operators with respect to a given linear op-

erator S0. This definition asserts that if T : dom(T ) ⊂ X −→ X and S0 : dom(S0) ⊂ X −→ X

are two linear operators with dom(T ) ⊂ dom(S0), then T is said to be S0-demicompact (or

relatively demicompact with respect to S0), if every bounded sequence (xn)n in dom(T ) such

that (S0xn − Txn)n converges in X, has a convergent subsequence. In 2018, Krichen and

O’Regan [16] elaborated the class of relative weak demicompactness. If T : dom(T ) ⊂ X −→ X

and S0 : dom(S0) ⊂ X −→ X are two linear operators with dom(T ) ⊂ dom(S0), T is said

to be weakly S0-demicompact (or weakly relatively demicompact with respect to S0), if for

every bounded sequence (xn)n in dom(T ) such that (S0xn − Txn)n converges weakly in X,

then there is a weakly convergent subsequence of (xn)n. The symbol WDC(S0)(X) denotes the

family of all weakly S0-demicompact operators on X, and WDC(IdX)(X) = WDC(X). Note

that, the class of demicompact operators acting on a Banach space contains the class of weakly

compact operators. Lately, Ben Brahim, Jeribi and Krichen [5] developed the notion of pseudo

demicompactnesss. For ε > 0, T : dom(T ) ⊂ X −→ X is said to be pseudo demicompact if for

all bounded linear operator D acting on X such that ∥D∥ < ε and for every bounded sequence

(xn)n in dom(T ) such that ((IdX − T − D)xn)n converges in X, there exists a convergent

subsequence of (xn)n. Newly, Chtourou and Krichen [7] introduced the notion of a relatively

ε-pseudo weakly demicompact operator as follows: Let ε > 0 and let T : dom(T ) ⊂ X → X,

S0 : dom(S0) ⊂ X → X be two linear operators with dom(T ) ⊂ dom(S0), then T is said to

be ε-pseudo weakly S0-demicompact (relative ε-pseudo weakly demicompact with respect to

S0), if for all bounded linear operator D acting on X such that ∥D∥ < ε and for all bounded

sequences (xn)n in dom(T ) such that (S0 − T −D)xn converges weakly in X, then (xn)n has

a weakly convergent subsequence. We denote by WDCε(S0)(X) the family of ε-pseudo weakly

S0-demicompact operators on X. When S0 = IdX , T is simply said ε-pseudo weakly demi-

compact. This project aims to provide characterizations related to this concept, particularly

focusing on describing this class through ε-pseudo Fredholm and upper ε-pseudo semi-Fredholm

operators.

This paper also delves into the study of pseudo-spectra, which provide richer informations

compared to spectra, particularly regarding transient behavior rather than just asymptotic

behavior of dynamical systems. Historically, this concept was firstly introduced by Varah [27]

in 1967 and has since been utilized by other mathematicians such as Landau [17], Trefethen [25]
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and Davies [8]. Specifically, the definition of pseudo-spectrum of a closed linear operator T is

given for every ε > 0 by:

σε(T ) := σ(T ) ∪
{
λ ∈ C such that ∥(λ− T )−1∥ >

1

ε

}
.

By convention, we write ∥(λ − T )−1∥ = ∞ if λ ∈ σ(T ) (spectrum of T ). In [8], Davies has

defined equivalently the pseudo-spectrum of any closed operator T as follows: for every ε > 0,

σε(T ) :=
∪

∥D∥<ε

σ(T +D).

Similarly to the Schechter essential spectrum, the authors in [4], studied some properties of the

essential pseudo-spectrum of a densely defined, closed linear operator T acting on a Banach

space X. This essential pseudo-spectrum is given by

σe5,ε(T ) =
∩

K∈K(X)

σε(T +K), where K(X) is the ideal of compact linear operators acting on

X. In the following, we recall some useful results related with σe5,ε(T ) and the class of Fredholm

perturbation F(X).

Theorem 1.1. [18] Let X be a Banach space, T closed linear operator and ε > 0. Then,

σe5,ε(T ) =
∩

K∈F(X)

σε(T +K). ♢

Proposition 1.1. [4] Let X be a Banach space, T closed linear operator and ε > 0. Then,

λ /∈ σe5,ε(T ) if and only if for all D ∈ L(X) such that ∥D∥ < ε, we have

λ− T −D ∈ Φ(X) and i(λ− T −D) = 0.

This paper is organized as follows. In section 2, we recall some definitions and results

which will be used in our work in subsequent sections. In section 3, we establish some results

concerning the class of relatively ε-pseudo weakly demicompact operators. In section 4, we

provide some sufficient conditions on the inputs of the block operator matrix L0 to ensure the

ε-pseudo weak demicompactness. In section 5, we introduce some perturbation classes and

determinate the stability of some essential pseudospectra involving the class of perturbations.

§2 Preliminary results

In this section, we will give some notations, definitions and preliminary results that are

necessary in the sequel.

First, let us recall some standard definitions and notations from Fredholm theory. Let X

and Y be two Banach spaces. In what follows, we denote → for the strong convergence (i.e.

norm convergence in X) and ⇀ for the weak convergence (with respect to the weak topology

of X). Throughout this paper, we consider V : dom(V ) ⊂ X −→ Y as a linear operator with

domain dom(V ) and range R(V ) ⊂ Y . If the graph of V is a closed subset of X × Y , then

V is closed. The set of all closed (resp. bounded) linear operators acting from X into Y is

denoted by C(X,Y ) (resp. L(X,Y )). We denote by K(X,Y ) the subset of compact operators
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of L(X,Y ). For V ∈ C(X,Y ), we use notations α(V ) for the dimension of the kernel N (V ) and

β(V ) for the codimension of the range R(V ) in Y . The graph norm of x ∈ dom(V ) is defined

by

∥x∥V := ∥x∥+ ∥V x∥.
It follows from the closedness of V that XV := (dom(V ), ∥.∥V ) is a Banach space. Clearly, we

have

∥V x∥ ≤ ∥x∥V , for every x ∈ dom(V ),

and consequently,

V ∈ L(XV , X).

Definition 2.1. Let X, Y and Z be three Banach spaces. Let V : dom(V ) ⊂ X −→ Y and U :

dom(U) ⊂ X −→ Z be two linear operators. U is said to be V -bounded, if dom(V ) ⊂ dom(U)

and there exist constants a, b ≥ 0 such that

∥Ux∥ ≤ a∥x∥+ b∥V x∥, for all x ∈ dom(V ).

The greatest lower bound of all possible values b ≥ 0 is called the relative bound of U with

respect to V or the V -bound of U .

A linear operator U : X −→ Y is said to be V -defined if dom(V ) ⊂ dom(U). We denote by

Û the restriction of U to dom(V ). Besides, if Û is bounded from XV into Y , we say that U

is V -bounded. We can see that, if U is closed, then U is V -bounded. Therefore, we have the

obvious relations:

(i) α(V̂ ) = α(V ), β(V̂ ) = β(V ), R(Û) = R(U),

(ii) α(V̂ + Û) = α(T + U), β(V̂ + Û) = β(V + U), R(Û + V̂ ) = R(U + V ).

Definition 2.2. Let X be a Banach space. An operator V ∈ L(X,Y ) is said to be weakly

compact if V (B) is relatively weakly compact in Y for every bounded set B ⊂ X.

The family of weakly compact operators from X into Y is denoted by W(X,Y ). If X = Y ,

the family of weakly compact operators on X is simply denoted by W(X) := W(X,X). The

set W(X) is a closed two-sided ideal of L(X) containing K(X) (see [9, 11]).

Now, we define the sets of upper semi-Fredholm, lower semi-Fredholm, Fredholm and semi-

Fredholm operators from X into Y , respectively, by

Φ+(X,Y ) = {V ∈ C(X,Y ) such that α(V ) < ∞ and R(V ) closed in Y },

Φ−(X,Y ) = {V ∈ C(X,Y ) such that β(V ) < ∞ and R(V ) closed in Y },

Φ(X,Y ):= Φ−(X,Y ) ∩ Φ+(X,Y ),

and

Φ±(X,Y ):= Φ−(X,Y ) ∪ Φ+(X,Y ).

For V ∈ Φ±(X,Y ), we define the index of V by the following difference

i(V ) := α(V )− β(V ).
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By the index theorem we have

i(UV ) = i(U) + i(V ).

If X = Y , then L(X,Y ), C(X,Y ), K(X,Y ), W(X,Y ), Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ) and

Φ±(X,Y ) are replaced by L(X), C(X), K(X), W(X), Φ(X), Φ+(X), Φ−(X) and Φ±(X),

respectively. If V ∈ C(X), ρ(V ) denotes the resolvent set of V , σ(V ) the spectrum of V .

Definition 2.3. [12] Let X and Y be two Banach spaces and let U ∈ L(X,Y ). The operator

U is called:

(i) Fredholm perturbation if V + U ∈ Φ(X,Y ), whenever V ∈ Φ(X,Y );

(ii) Upper semi-Fredholm perturbation if V + U ∈ Φ+(X,Y ), whenever V ∈ Φ+(X,Y );

(iii) Lower semi-Fredholm perturbation if V + U ∈ Φ−(X,Y ), whenever V ∈ Φ−(X,Y ).

The set of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are denoted

by F(X,Y ), F+(X,Y ) and F−(X,Y ), respectively.

In general, we have

K(X,Y ) ⊂ F+(X,Y ) ⊂ F(X,Y ),

K(X,Y ) ⊂ F−(X,Y ) ⊂ F(X,Y ).

If X = Y , F(X,Y ), F+(X,Y ) and F−(X,Y ) are replaced by F(X), F+(X) and F−(X),

respectively.

Definition 2.4. Let X and Y be two Banach spaces and let V ∈ C(X,Y ).

(i) An operator V is said to have a left Fredholm inverse if there exists Vl ∈ L(Y,XV ) such

that IdXV − VlV̂ ∈ K(XV ). The operators Vl is called left Fredholm inverse of V .

(ii) An operator V is said to have a right Fredholm inverse if there exists Vr ∈ L(Y,XV ) such

that IdY − V̂ Vr ∈ K(Y ). The operators Vr is called right Fredholm inverse of V .

The sets of all left and right Fredholm inverse are, respectively, denoted by Φl(X,Y ) and

Φr(X,Y ).

If X = Y , the sets Φl(X,Y ) and Φr(X,Y ) are replaced by Φl(X) and Φr(X), respectively.

According to [20], it can be inferred that

Φl(X,Y ) = {V ∈ Φ+(X,Y ) such that R(V ) is complemented},

and

Φr(X,Y ) = {V ∈ Φ−(X,Y ) such that N (V ) is complemented}.

Recall that a subspace N ⊂ X is called complemented if there exists a closed subspace M ⊂ X

such that N ⊕M = X.

We have the following inclusions:

Φ(X,Y ) ⊂ Φl(X,Y ) ⊂ Φ+(X,Y ),

Φ(X,Y ) ⊂ Φr(X,Y ) ⊂ Φ−(X,Y ).

Definition 2.5. [20] Let X and Y be two Banach spaces. We define by
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Fl(X,Y ) = {V ∈ L(X,Y ) such that V + U ∈ Φl(X,Y ), for all U ∈ Φl(X,Y )},
and

Fr(X,Y ) = {V ∈ L(X,Y ) such that V + U ∈ Φr(X,Y ), for all U ∈ Φr(X,Y )}.

If X = Y , the sets Fl(X,Y ) and Fr(X,Y ) are replaced by Fl(X) and Fr(X), respectively.

Remark 2.1. Fl(X) and Fr(X) are two-sided ideals of L(X).

Proposition 2.1. Let X and Y be two Banach spaces. If the set Φ(X,Y ) is not empty, then:

(i) K(X,Y ) ⊂ Fl(X,Y ) ⊂ F(X,Y );

(ii) K(X,Y ) ⊂ Fr(X,Y ) ⊂ F(X,Y ).

Theorem 2.1. [2] Let X, Y and Z be three Banach spaces, V ∈ L(Y,Z) and U ∈ L(X,Y ).

(i) If U ∈ Φl(Y, Z) and V ∈ Φl(X,Y ), then UV ∈ Φl(X,Z);

(ii) If U ∈ Φr(Y,Z) and V ∈ Φr(X,Y ), then UV ∈ Φr(X,Z);

(iii) If UV ∈ Φl(X,Z), then V ∈ Φl(X,Y );

(iv) If UV ∈ Φr(X,Z), then U ∈ Φr(Y, Z).

Lemma 2.1. Let X, Y be two Banach spaces, U ∈ L(X), V ∈ L(Y ) and let the 2× 2 operator

matrix MT =

(
U T

0 V

)
for all T ∈ L(Y,X). Then:

(i) If U ∈ Φl(X) and V ∈ Φl(Y ), then MT ∈ Φl(X × Y );

(ii) If U ∈ Φr(X) and V ∈ Φr(Y ), then MT ∈ Φr(X × Y );

(iii) If MT ∈ Φl(X × Y ), then U ∈ Φl(X);

(iv) If MT ∈ Φr(X × Y ), then V ∈ Φr(Y ).

Proof. (i) We can write MT in the following form

MT =

(
IdX 0

0 V

)(
IdX T

0 IdY

)(
U 0

0 IdY

)
. (1)

Since U ∈ Φl(X) and V ∈ Φl(Y ), then

(
U 0

0 IdY

)
∈ Φl(X × Y ) and

(
IdX 0

0 V

)
∈

Φl(X × Y ). Since

(
IdX T

0 IdY

)
is invertible, then MT ∈ Φl(X × Y ).

(ii) can be checked in the same way as (i).

(iii) Using Theorem 2.1 (iii) in Eq. (1), we have

(
U 0

0 IdY

)
∈ Φl(X×Y ) and so U ∈ Φl(X).

(iv) can be checked in the same way as (iii). �

Definition 2.6. Let X and Y be two Banach spaces and let V ∈ C(X,Y ) and ε > 0.

(i) V is called a ε-pseudo upper (resp. lower) semi-Fredholm operator if V + D is an upper

(resp. lower) semi-Fredholm operator for all D ∈ L(X,Y ) such that ∥D∥ < ε;
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(ii) V is called a ε-pseudo semi-Fredholm operator if V +D is a semi-Fredholm operator for all

D ∈ L(X,Y ) such that ∥D∥ < ε;

(iii) V is called a ε-pseudo Fredholm operator if V + D is a Fredholm operator for all D ∈
L(X,Y ) such that ∥D∥ < ε.

The sets of all ε-pseudo Fredholm, ε-pseudo upper Fredholm and ε-pseudo lower Fredholm are,

respectively, denoted by Φε(X,Y ), Φε
+(X,Y ) and Φε

−(X,Y ).

If X = Y , the sets Φε(X,Y ), Φε
+(X,Y ) and Φε

−(X,Y ) are replaced by Φε(X), Φε
+(X) and

Φε
−(X), respectively.

Moreover, we have the following inclusions

Φε
+(X,Y ) ( Φ+(X,Y ),

Φε
−(X,Y ) ( Φ−(X,Y ), and

Φε(X,Y ) ( Φ(X,Y ).

Lemma 2.2. Let X be a Banach space and ε > 0. Let V ∈ L(X) and U ∈ L(X).

(i) If V ∈ Φ(X), U ∈ Φε(X) and (IdX − V ) ∈ F(X), then V U ∈ Φε(X) and i(V U + D) =

i(V ) + i(U +D) for all D ∈ L(X) satisfying ∥D∥ < ε;

(ii) If V ∈ Φ+(X), U ∈ Φε
+(X) and (IdX − V ) ∈ F+(X), then V U ∈ Φε

+(X).

Proof. (i) For each D ∈ L(X) satisfying ∥D∥ < ε, we have

V U +D = V (U +D) + (IdX − V )D. (2)

Since V ∈ Φ(X) and U +D ∈ Φ(X), then using [21] and the fact that (IdX − V )D ∈ F(X),

we get V U ∈ Φε(X) and i(V U +D) = i(V ) + i(U +D).

(ii) We reason in the same way as the proof of (i). �

Definition 2.7. Let X and Y be two Banach spaces and let U ∈ L(X,Y ) and ε > 0.

(i) U is said to have an ε-pseudo left Fredholm inverse if there exists U ∈ L(Y,X) andK ∈ K(X)

such that Ul(U +D) = IdX −K, for all D ∈ L(X,Y ) such that ∥D∥ < ε. The operator Ul is

called ε-pseudo left Fredholm inverse of U ;

(ii) U is said to have an ε-pseudo right Fredholm inverse if there exists Ur ∈ L(Y,X) and

K ∈ K(Y ) such that (U + D)Ur = IdY − K, for all D ∈ L(X,Y ) such that ∥D∥ < ε. The

operator Ur is said an ε-pseudo right Fredholm inverse of U .

The sets of all ε-pseudo left and ε-pseudo right Fredholm inverse are, respectively, denoted by

Φε
l (X,Y ) and Φε

r(X,Y ).

If X = Y , the sets Φε
l (X,Y ) and Φε

r(X,Y ) are replaced by Φε
l (X) and Φε

r(X), respectively.

Lemma 2.3. Let X be a Banach space and ε > 0. Let V ∈ L(X) and U ∈ L(X).

(i) If V ∈ Φl(X), U ∈ Φε
l (X) and (IdX − V ) ∈ Fl(X), then V U ∈ Φε

l (X);

(ii) If V ∈ Φr(X), U ∈ Φε
r(X) and (IdX − V ) ∈ Fr(X), then V U ∈ Φε

r(X).

Proof. (i) For each D ∈ L(X) satisfying ∥D∥ < ε, we have

V U +D = V (U +D) + (IdX − V )D. (3)
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Since V ∈ Φl(X) and U +D ∈ Φl(X), then applying Theorem 2.1 (i) on Eq. (3) and using the

fact that (IdX − V )D ∈ Fl(X), we get V U ∈ Φε
l (X).

(ii) We reason in the same way as the proof of (i). �

Definition 2.8. Let X and Y be two Banach spaces and let U ∈ C(X,Y ) and ε > 0.

(i) U is said to have an ε-pseudo left weak-Fredholm inverse if there exists Uw
l ∈ L(Y,XU ) and

W ∈ W(XU ) such that Uw
l (U +D) = IdXU

−W , for all D ∈ L(X,Y ) such that ∥D∥ < ε. The

operator Uw
l is called ε-pseudo left weak-Fredholm inverse of U ;

(ii) U is said to have an ε-pseudo right weak-Fredholm inverse if there exists Uw
r ∈ L(Y,XU )

and W ∈ W(Y ) such that (U + D)Uw
r = IdY − W , for all D ∈ L(X,Y ) such that ∥D∥ < ε.

The operator Uw
r is said an ε-pseudo right weak-Fredholm inverse of U .

In this research work, we are basically interested in the following essential pseudo-spectra

σe1,ε(V ) := {λ ∈ C such that λ− V /∈ Φε
+(X)},

σe2,ε(V ) := {λ ∈ C such that λ− V /∈ Φε
−(X)},

σe3,ε(V ) := {λ ∈ C such that λ− V /∈ Φε
±(X)},

σe4,ε(V ) := {λ ∈ C such that λ− V /∈ Φε(X)},

σe5,ε(V ) :=
∩

K∈K(X)

σε(V +K),

σe6,ε(V ) := {λ ∈ C such that λ− V /∈ Φε
l (X)},

σe7,ε(V ) := {λ ∈ C such that λ− V /∈ Φε
r(X)}.

Note that if ε tends to 0, we recover the well-known definitions of essential spectra of V (see,

for instance [10,15,19,21,28]).

§3 Main result

Definition 3.1. Let (Y, ∥.∥Y ) be a Banach space and let X be a subspace of Y endowed with

a norm ∥.∥X such (X, ∥.∥X) is a Banach space. Let T : dom(T ) ⊂ X → Y be a closed linear

operator, S0 : X → Y be a bounded linear operator and ε > 0. Then, T is called ε-pseudo

weakly S0-demicompact if for every sequence (xn)n in dom(T ) and D ∈ L(Y ) with ∥D∥Y < ε

such that (S0xn − Txn −Dxn)n converges weakly in Y , then there exists a weakly convergent

subsequence of (xn)n in X.

We denote by WDCε(S0)(X,Y ), the set of all ε-pseudo weakly S0-demicompact operators

from X into Y . If S0 = IdX , we simply denote by WDCε(X,Y ). If (X, ∥.∥X) = (Y, ∥.∥Y ), we
simply denote by WDCε(S0)(X).

Theorem 3.1. Let X be a Banach space and let T ∈ C(X) and S0 ∈ L(X) such that S0 ̸= 0.

Assume that X∗ + X∗ ◦ T is dense in (XT )
∗, where X∗ and (XT )

∗ denote the topological

dual spaces of X and XT = (dom(T ), ∥.∥T ), respectively. Then, for every ε > 0 the following
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equivalence holds

T ∈ WDCε(S0)(X) if and only if T̂ ∈ WDCε(S0)(XT , X).

Proof. Let ε > 0, D ∈ L(X) such that ∥D∥ < ε and let (xn)n be a bounded sequence of XT

such that S0xn−T̂ xn−Dxn ⇀ y, inX. Clearly, (xn)n is bounded inX and S0xn−Txn−Dxn ⇀

y. Since T ∈ WDCε(S0)(X), then there exists a subsequence (xφ(n))n ⊂ dom(T ) such that

xφ(n) ⇀ x, x ∈ X. We have to show that xφ(n) ⇀ x in XT . For this purpose, let f ∈ (XT )
∗,

it follows that there exists (fm)m with fm = gm + hm ◦ T , m ∈ N. Where (gm)m ⊂ X∗,

(hm)m ⊂ X∗ and ∥fm − f∥(XT )∗ → 0, as m → +∞. Clearly, gm(xφ(n)) → gm(x) for all m ∈ N.
Now,

Txφ(n) = Txφ(n) +Dxφ(n) − S0xφ(n) −Dxφ(n) + S0xφ(n) ⇀ −y + S0x−Dx.

It follows from the closedness of T that x ∈ dom(T ) and S0x − Dx − y = Tx. Consequently,

Txφ(n) ⇀ Tx in X. Which implies that hm(Txφ(n)) ⇀ hm(Tx) for all m ∈ N.
It follows that fm(xφ(n)) → fm(x), for all m ∈ N. Now, write

|f(xφ(n))− f(x)| ≤ |f(xφ(n))− fm(xφ(n))|+ |fm(xφ(n))− fm(x)|+ |fm(x)− f(x)|

≤ ∥f − fm∥X∗
T
∥xφ(n)∥T + |fm(xφ(n))− fm(x)|+ ∥fm − f∥X∗

T
∥x∥T .

Since (xn)n is a bounded sequence of XT , then there exists M > 0 such that ∥xφ(n)∥ ≤ M and

∥Txφ(n)∥ ≤ M . Let δ > 0 then there exists m0 ∈ N such that for all m ≥ m0,

∥f − fm∥X∗
T
<

δ

3M
.

It follows that

|fm(xφ(n))− f(x)| ≤ δ

3
+ |fm0(xφ(n))− fm0(x)|+

δ

3
.

Now, from the fact that fm0(xφ(n)) → fm0(x), as n → +∞, we deduce that there exists n0 ∈ N
such that for all n ≥ n0,

|fn0(xφ(n))− fn0(x)| ≤
δ

3
.

Consequently,

|f(xφ(n))− f(x)| < δ

3
+

δ

3
+

δ

3
< δ.

Hence, xφ(n) ⇀ x in XT .

Conversely, let D ∈ L(X) such that ∥D∥ < ε, S0 ∈ L(X) and (xn)n be a bounded sequence of

X such that S0xn − Txn − Dxn ⇀ y in X. Then, there exists M > 0 such that ∥xn∥ ≤ M ,

∥S0xn∥ ≤ M and ∥Txn − S0xn +Dxn∥ ≤ M for all n ≥ 0. It follows that

∥xn∥T = ∥Txn∥+ ∥xn∥ ≤ (3 + ε)M.

Then (xn)n is bounded in XT . Since S0xn − T̂ xn − Dxn ⇀ y in X and T̂ ∈ WDCε(XT , X),

then there exists a subsequence (xφ(n))n of (xn)n and x ∈ X such that xφ(n) ⇀ x in XT , which

achieves the proof. �

Theorem 3.2. Let X be a Banach space and let T ∈ C(X) and S0 ∈ L(X) such that S0 ̸= 0.

Assume that X∗ +X∗ ◦ T is dense in (XT )
∗. Fix ε > 0 and S ∈ L(X). If T ∈ WDCε(X) and

the operator S0 − T has a left (resp. right) ε-pseudo weakly Fredholm inverse Tl (resp. Tr)
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such that STl (resp. TrS) ∈ WDC(X), then T + S ∈ WDCε(S0)(X).

Proof. Let D ∈ L(X) such that ∥D∥ < ε, then there exist Tl ∈ L(X,XT ) (resp. Tr ∈
L(X,XT )) and K ∈ W(XT ) (resp. K

′ ∈ W(X)) such that

Tl(S0 − T̂ −D) = IdX −K on XT .

(resp. (S0 − T̂ −D)Tr = IdY −K ′, on Y ).

Then, the operator S0 − T̂ − S −D can be written as follows

S0 − T̂ − S −D = (IdX − STl)(S0 − T̂ −D)− SK. (4)

(resp. S0 − T̂ − S −D = (S0 − T̂ −D)(IdY − TrS)−K ′S). (5)

Now, let (xn)n be a bounded sequence of XT satisfying (S0− T̂ −S−D)xn converges weakly to

an element of X. It follows from Eq. (4) (resp. Eq. (5)) together with the weak compactness

of SK (resp. K ′S), the weak demicompactness of STl (resp. TrS) and the boundedness of

(S0 − T̂ − D)xn that (S0 − T̂ − D)xn has a weakly convergent subsequence. Since T is ε-

pseudo weakly S0-demicompact, according to Theorem 3.1, T̂ is ε-pseudo weakly demicompact.

Therefore, (xn)n admits a weakly convergent subsequence in XT and this shows that T̂ +

S is ε-pseudo weakly S0-demicompact operator and consequently, T + S is ε-pseudo weakly

demicompact operator. �

§4 ε-Pseudo weak-demicompactness for B.O.M

Throughout this section, we denote by I :=

(
IdX 0

0 IdX

)
the identity matrix.

Proposition 4.1. Let X be a Banach space, ε > 0 and A: dom(A) ⊂ X −→ X be a closed

linear operator and D: X −→ X be a bounded linear operator. Let A =

(
A 0

0 D

)
:= Ã+ D̃

with Ã =

(
A 0

0 0

)
, D̃ =

(
0 0

0 D

)
. Assume that X∗ + X∗ ◦ A is dense in X∗

A. If Ã

is ε-pseudo weakly demicompact matrix and I − Ã has a left (resp. right) ε-pseudo weakly

Fredholm inverse Ãl (resp. Ãr) such that D̃Ãl ∈ DC(X ×X). Then A ∈ WDCε(X ×X).

Proof. First, let us prove that (X × X)∗ + (X × X)∗ ◦ Ã is dense in (X × X)∗
Ã
. Let

f : (dom(A) × X, ∥.∥Ã) −→ R a bounded linear form. Then there exist f1 : XA −→ R and

f2 : X −→ R two bounded linear forms such that f(x, y) = f1(x) + f2(y) ( put f1(x) = f(x, 0)

and f2(y) = f(0, y)). Since X∗+X∗ ◦A is dense in X∗
A, there exist two sequence (h1n)n, (k1n)n

in X∗ such that h1n + k1n ◦ A → f1. Set Hn(x, y) = h1n(x) + f2(y) and Kn(x, y) = k1n(x) for

all (x, y) ∈ X ×X. Observe that Hn and Kn are linear. Moreover,

|Hn(x, y)| ≤ ∥h1n∥∥x∥+ ∥f2∥∥y∥

≤ (∥h1n∥+ ∥f2∥)∥(x, y)∥,
and
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|Kn(x, y)| ≤ ∥k1n∥∥x∥.

Since Hn(x, y) +Kn ◦ Ã(x, y) = h1n(x) + f2(y) + k1n(Ax). Then,

Hn +Kn ◦ Ã → f.

Consequently, (X ×X)∗ + (X ×X)∗ ◦ Ã is dense in (X ×X)∗
Ã
.

Let P ∈ L(X ×X) such that ∥P∥ < ε, then there exist K ∈ W((X ×X)Ã) and Ãl ∈ L(X ×
X, (X ×X)Ã) such that:

Ãl(I −
̂̃A−P) = I −K.

Then, the matrix I − Â − P can be written as follows

I − Â − P = (I − D̃Ãl)(I −
̂̃A−P)− D̃K. (6)

Now, let (xn, yn)n be a bounded sequence of (X × X)Ã such that (I − A − P)(xn, yn)n

converges weakly to an element of X × X. It follows from Eq. 6 together with the weak

compactness of D̃K, the weak demicompactness of D̃Ãl and the boundedness of (I − ̂̃A −
P)(xn, yn) that (I − ̂̃A − P)(xn, yn)n admits a weakly convergent subsequence. Since Ã is ε-

pseudo weakly demicompact, then by applying Theorem 3.1, we infer that
̂̃A is ε-pseudo weakly

demicompact. Therefore, (xn, yn)n admits a weakly convergent subsequence in (X ×X)Ã and

this shows the ε-pseudo weak demicompactness of Â. So, A ∈ WDCε(X ×X). �

Proposition 4.2. Let X be a Banach space, ε > 0. Let A: dom(A) ⊂ X −→ X and D:

dom(D) ⊂ X −→ X be two closed linear operators. Let B: X −→ X and C: X −→ X be two

bounded linear operators.

Let B =

(
A B

C D

)
:= Ã + B̃ with Ã =

(
A 0

0 D

)
, B̃ =

(
0 B

C 0

)
. Assume that

X∗ + X∗ ◦ A is dense in X∗
A and X∗ + X∗ ◦ D is dense in X∗

D. If Ã is ε-pseudo weakly

demicompact matrix and I − Ã has a left (resp. right) ε-pseudo weakly Fredholm inverse Ãl

(resp. Ãr) such that B̃Ãl ∈ DC(X ×X). Then B ∈ WDCε(X ×X).

Proof. First, let us prove that (X × X)∗ + (X × X)∗ ◦ Ã is dense in (X × X)∗
Ã
. Let

f : (dom(A) × X, ∥.∥Ã) −→ R a bounded linear form. Then there exist f1 : XA −→ R and

f2 : X −→ R two bounded linear forms such that f(x, y) = f1(x) + f2(y) ( put f1(x) = f(x, 0)

and f2(y) = f(0, y)). Since X∗+X∗ ◦A is dense in X∗
A, there exist two sequence (h1n)n, (k1n)n

in X∗ such that h1n + k1n ◦A → f1 and X∗ +X∗ ◦D is dense in X∗
D, there exist two sequences

h2n, k2n in X∗ such that h2n + k2n ◦ D → f2. Set Wn(x, y) = Hn(x, y) + Kn ◦ Ã(x, y) where

Hn(x, y) = h1n(x) + h2n(y) and Kn(x, y) = k1n(x) + k2n(y) for all (x, y) ∈ X × X. Observe

that Wn, Hn and kn are linear. Moreover,

|Hn(x, y)| ≤ ∥h1n∥∥x∥+ ∥h2n∥∥y∥

≤ (∥h1n∥+ ∥h2n∥)∥(x, y)∥,
and

|Kn(x, y)| ≤ ∥k1n∥∥x∥+ ∥k2n∥∥y∥

≤ (∥k1n∥+ ∥k2n∥)∥(x, y)∥,
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Therefore,

Wn(x, y) = h1n(x) + h2n(y) + k1n(Ax) + k2n(Dx) → f1(x) + f2(y) = f(x, y).

Consequently, (X ×X)∗ + (X ×X)∗ ◦ Ã is dense in (X ×X)∗
Ã
.

Let P =

(
P1 P2

P3 P4

)
∈ L(X×X) such that ∥P∥ < ε, then there exist K ∈ W((X×X)Ã) and

Ãl ∈ L(X ×X, (X ×X)Ã) such that

Al(I −
̂̃A−P) = I −K.

Then, the matrix I − B̂ − P can be written as follows

I − B̂ − P = (I − D̃Ãl)(I −
̂̃A−P)− D̃K. (7)

Now, let (xn, yn)n be a bounded sequence of (X×X)Ã such that (I−B̂−P)(xn, yn)n converges

weakly to an element of X ×X. It follows from Eq. (7) together with the weak compactness of

D̃K, the weak demicompactness of D̃Ãl and the boundedness of (I − ̂̃A − P)(xn, yn) we infer

that (I− ̂̃A−P)(xn, yn)n admits a weakly convergent subsequence. Since Ã is ε-pseudo weakly

demicompact, then by applying Theorem 3.1, we infer that
̂̃A is ε-pseudo weakly demicompact.

Therefore, (xn, yn)n admits a weakly convergent subsequence in (X ×X)Ã and this shows the

ε-pseudo weak demicompactness of B̂. So, B ∈ WDCε(X ×X). �

§5 Some perturbation properties

Definition 5.1. Let X and Y be two Banach spaces. We define by

Fε
l (X,Y ) = {V ∈ L(X,Y ) : V +D ∈ Fε

l (X,Y ), for all D ∈ L(X,Y ) such that ∥D∥ < ε}
and

Fε
r (X,Y ) = {V ∈ L(X,Y ) : V +D ∈ Fε

r (X,Y ), for all D ∈ L(X,Y ) such that ∥D∥ < ε}.

If X = Y , the sets Fε
l (X,Y ) and Fε

r (X,Y ) are replaced by Fε
l (X) and Fε

r (X), respectively.

Moreover, we have the following inclusions

Fε
l (X,Y ) ( Fl(X,Y ) and

Fε
r (X,Y ) ( Fr(X,Y ).

Theorem 5.1. Let X and Y be two Banach spaces and let T ∈ C(X,Y ) and F : X → Y be a

linear operator. Then

(i) T + F ∈ Φε
l (X,Y ) whenever T ∈ Φε

l (X,Y ) and F ∈ Fε
l (X,Y );

(ii) T + F ∈ Φε
r(X,Y ) whenever T ∈ Φε

r(X,Y ) and F ∈ Fε
r (X,Y ).

Lemma 5.1. Let X1 and X2 be two Banach spaces. Let

F =

(
F11 F12

F21 F22

)
,
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where Fij ∈ L(Xi, Xj), with i, j = 1, 2. Then

(i) F ∈ Fε
l (X1 ×X2) if and only if Fij ∈ Fε

l (Xi, Xj), with i, j = 1, 2;

(ii) F ∈ Fε
r (X1 ×X2) if and only if Fij ∈ Fε

r (Xi, Xj) with i, j = 1, 2.

Proof. (i) Suppose that Fij ∈ Fε
l (Xi, Xj) with i, j = 1, 2 and we will prove that F ∈

Fε
l (X1 ×X2).

Let P =

(
P11 P12

P21 P22

)
∈ L(X1 ×X2) such that ∥P∥ < ε. First, let us consider the following

decomposition

F +P =

(
F11 + P11 0

0 0

)
+

(
0 F12 + P12

0 0

)
+

(
0 0

F21 + P21 0

)
+

(
0 0

0 F22 + P22

)
.

It is sufficient to prove that Fij ∈ Fε
l (Xi, Xj) with i, j = 1, 2, then each operator in the right

side of the previous equality is ε-pseudo Fredholm perturbation on X1 ×X2. For example, we

will prove the result for the first operator. The proof for the other operators will be similarly

achieved. Let L =

(
A B

C D

)
∈ Φ(X1×X2) and let us denote F̃ :=

(
F11 + P11 0

0 0

)
. From

Atkinson Theorem [20] , it follows that there exist

L0 =

(
A0 B0

C0 D0

)
∈ L(X1 ×X2)

and

K =

(
K11 K12

K21 K22

)
∈ K(X1 ×X2),

such that

L0L = I −K on X1 ×X2.

Then

L0(L+ F̃ ) = I −K + L0F̃ =

(
I −K11 +A0(F11 + P11) K12 +B0(F11 + P11)

−K21 I −K22

)
.

Since F11 ∈ Fε
l (X1), then F11 + P11 ∈ Fl(X1). Using the fact that Fl(X1) is two-sided ideal of

L(X1), we have

IdX1 −K11 +A0(F11 + P11) ∈ Φl(X1).

So, there exist an operator S ∈ L(X1) and K0 ∈ K(X1) such that

S(IdX1 −K11 +A0(F11 + P11)) = IdX1 −K0.

Therefore,(
S 0

0 IdX1

)
(L+ F̃ )L0 = I −

(
K0 K12

K21 K22

)
+

(
0 S(F11 + P11)

0 0

)
.

Using Remark 2.1, Proposition 2.1 and Theorem 2.4 in [1], we deduce that

(
0 S(F11 + P11)

0 0

)
∈

F(X1×X2), and so,

(
S 0

0 IdX1

)
(L+ F̃ )L0 ∈ Φ(X1×X2), then there exist S ∈ L(X1×X2)
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and K̃ ∈ K(X1 ×X2) such that

S

(
S 0

0 IdX1

)
(L+ F̃ )L0 = I − K̃,

which implies L+ F̃ ∈ Φl(X1 ×X2).

Conversely, assume that F ∈ Fε(X1×X2), so F + P ∈ F(X1×X2) for all P :=

(
P12 P12

P21 P22

)
∈

L(X ×Y ) such that ∥P∥ < ε and we will prove that F11 +P11 ∈ F(X1). Let A ∈ Φ(X) and let

define the operator

L1 :=

(
A −F12 − P12

0 IdX2

)
.

From Proposition 2.1 (i) in [1], it follows that

L1 ∈ Φ(X1 ×X2).

Hence,

F + P + L1 =

(
A+ F11 + P11 0

F21 + P21 IdX2 + F22 + P22

)
∈ Φ(X1 ×X2).

Using Proposition 2.2 (iii) in [1], we have

A+ F11 + P11 ∈ Φ−(X1). (8)

In the same way, we may consider the Fredholm operator(
A 0

−F21 − P21 IdX2

)
∈ Φ(X1 ×X2).

Using Proposition 2.1 and 2.2 in [1], it is easy to deduce that

A+ F11 + P11 ∈ Φ+(X1). (9)

From Eqs. (8) and (9), it follows that A + F11 + P11 ∈ Φ(X1) ⊂ Φl(X1) and consequently,

F11 + P11 ∈ Fl(X1). In the same way, we can prove that

F22 ∈ Fε
l (X2).

Now, we have to prove that F12 ∈ Fε(X2, X1) and F21 ∈ Fε(X1, X2). For this, let us consider

A ∈ Φ(X2, X1) and B ∈ Φ(X1, X2). Then,(
0 A+ P12

B + P21 0

)
∈ Φ(X1×X2), for all P =

(
P11 P12

P21 P22

)
∈ L(X×Y ) such that ∥P∥ < ε.

Using the fact that F11 + P11 ∈ F(X1) and F22 + P22 ∈ F(X2), we can deduce that

F + P +

(
−F11 − P11 0

0 −F22 − P22

)
∈ F(X1 ×X2).

Hence, (
0 A+ F12 + P12

B + F21 + P21 0

)
∈ Φ(X1 ×X2).

So,

A+ F12 ∈ Φε(X2, X1) ⊂ Φε
l (X2, X1)
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and

B + F21 ∈ Φε(X1, X2) ⊂ Φε
l (X2, X1). �

Theorem 5.2. Let X be a Banach space, ε > 0 and A: X −→ X, B: X −→ X, C: X −→ X

and D: X −→ X are four bounded linear operators. Let L :=

(
A B

C D

)
.

(i) If CA ∈ Fε
l (X), CB ∈ Fε

l (X) and C ∈ Fl(X) then,

σe6,ε(L)\{0} ⊂ [σe6,ε(A) ∪ σe6,ε(D)]\{0};
(ii) If CA ∈ Fε

r (X), CB ∈ Fε
r (X) and C ∈ Fr(X) then,

σe7,ε(L)\{0} ⊂ [σe7,ε(A) ∪ σe7,ε(D)]\{0}.

Proof. (i) Let λ ∈ C\{0}. Then, we have

λ− L =

(
λ−A −B

−C λ−D

)

=
1

λ

(
0 0

−CA −CB

)
+

(
IdX 0
−C
λ IdX

)(
λ−A −B

0 λ−D

)
.

Suppose λ ̸∈ [σe6,ε(A) ∪ σe6,ε(D)]\{0}, then by Lemma 2.1,(
λ−A −B

0 λ−D

)
∈ Φε

l (X ×X).

Since

(
IdX 0
−C
λ IdX

)
is invertible then the operator matrix(

IdX 0
−C
λ IdX

)
is left Fredholm inverse.

Moreover by hypothesis and by applying Theorem 2.4 in [1], we get(
IdX 0

0 IdX

)
−

(
IdX 0
−C
λ IdX

)
=

(
0 0

−C
λ 0

)
∈ Fl(X).

Consequently, by using Lemma 2.3, we get(
IdX 0
−C
λ IdX

)(
λ−A −B

0 λ−D

)
∈ Φε

l (X ×X).

On the other hand, since CA ∈ Fε
l (X), CB ∈ Fε

l (X), it follows from the Lemma 5.1 that(
0 0

−CA −CB

)
∈ Fε

l (X ×X).

So, applying Theorem 5.1, we get

λ− L ∈ Φε
l (X ×X).

Thus,

λ ̸∈ σe6,ε(L)\{0}.



Ines Chtourou, Bilel Krichen. Pseudo weak-demicompactness for block operator matrices... 883

Hence,

σe6,ε(L)\{0} ⊂ [σe6,ε(A) ∪ σe6,ε(D)]\{0}.

The proof of (ii) may be checked in the same way as the proof of (i). �

Theorem 5.3. Let X,Y be two Banach spaces, ε > 0 and A:X −→ X, B: Y −→ X, C:

X −→ Y and D: Y −→ Y are four bounded operators. Let L :=

(
A B

C D

)
.

(i) If C ∈ Fε
l (X,Y ) then,

σe6,ε(L)\{0} ⊂ [σe6,ε(A) ∪ σe6,ε(D)]\{0};
(ii) If C ∈ Fε

r (X,Y ) then,

σe6,ε(L)\{0} ⊂ [σe6,ε(A) ∪ σe6,ε(D)]\{0}.

Proof. (i) Let P =

(
P1 P2

P3 P4

)
∈ L(X × Y ) such that ∥P∥ < ε. Then, for all λ ∈ C\{0},

we have

λ− L−P =

(
λ−A− P1 −B − P2

−C − P3 λ−D − P4

)

=
1

λ

(
0 0

−(C + P3)(A+ P1) −(C + P3)(B + P2)

)

+

(
IdX 0

−(C+P3)
λ IdY

)(
λ−A− P1 −B − P2

0 λ−D − P4

)
.

Suppose λ ̸∈ [σe6,ε(A) ∪ σe6,ε(D)]\{0}, then by Lemma 2.1,(
λ−A− P1 −B − P2

0 λ−D − P4

)
∈ Φl(X × Y ).

Since

(
IdX 0

−(C+P3)
λ IdY

)
is invertible then

(
IdX 0

−(C+P3)
λ IdY

)(
λ−A− P1 −B − P2

0 λ−D − P4

)
is a left Fredholm inverse matrix.

On the other hand, it follows from the hypothesis that (C + P3)(B + P2) ∈ Fl(Y ) and

(C + P3)(A+ P1) ∈ Fl(X,Y ) and so, by using Lemma 5.1(
0 0

−(C + P3)(A+ P1) −(C + P3)(B + P2)

)
∈ Fl(X × Y ).

So, λ− L− P ∈ Φl(X × Y ). Thus, λ ̸∈ σe6,ε(L)\{0}. Hence,
σe6,ε(L)\{0} ⊂ [σe6,ε(A) ∪ σe6,ε(D)]\{0}.

(ii) The proof of (ii) may be checked in the same way as the proof of (i). �
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