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Regular control surfaces of a toric patch and integer

programming

WANG Han' ZHU Chun-gang®*

Abstract. Toric patch is a kind of rational multisided patch, which is associated with a finite
integer lattice points set A. A set of weights is defined which depend on a parameter according
to regular decomposition of .A. When all weights of the patch tend to infinity, we obtain the
limiting form of toric patch which is called its regular control surface. The different weights
may induce the different regular control surfaces of the same toric patch. It prompts us to
consider that how many regular control surfaces of a toric patch. In this paper, we study the
regular decompositions of A by using integer programming method firstly, and then provide
the relationship between all regular decompositions of A and corresponding state polytope.
Moreover, we present that the number of regular control surfaces of a toric patch associated
with A is equal to the number of regular decompositions of A. An algorithm to calculate the
number of regular control surfaces of toric patch is provided. The algorithm also presents a
method to construct all of the regular control surfaces of a toric patch. At last, the application

of proposed result in shape deformation is demonstrated by several examples.

81 Introduction

In the early 1970s, toric varieties were introduced and developed in algebraic geometry. The
theory of toric varieties plays an important role at the crossroads of geometry, algebra and
combinatorics. It provides a fertile testing ground for general theories in algebraic geometry.
So, toric varieties are an important area of research in algebraic geometry and feature in many
applications [2]. The theory of toric varieties is associated with combinatorics of convex poly-
topes [9]. And the toric variety of convex polytope is the variety of its fan. Hence the geometry

of a toric variety is fully determined by the combinatorics of its associated fan.
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In [13], Warren proposed the real toric variety, which can be applied in CAGD. In 2002,
Krasauskas [6] defined toric patch, which is a kind of rational multisided patch. The classical
rational Bézier curve,the classical Bézier triangle, tensor-product Bézier patch, and Warren’s
hexagonal patch [1,13] are also special cases of the toric patch, while the corresponding polygons
are line segment, triangle, rectangle and hexagon [6]. Since the classical rational Bézier curve
is the special case of toric patch, it is also called toric Bézier curve.

It is well known that the shape of patch is controlled by not only control structure but also
the weights. If there exists an enough large weight, then the patch is pulled to the corresponding
control point. We call it the geometric meaning of a single weight [7]. In 2011, Garcia-Puente,
Sottile and Zhu [3] explained the limiting surface of toric patch when all weights tend to infinity,
which is called the regular control surface, and generalized the geometric meaning of a single
weight of rational Bézier patch[7]. That is to say, there exists a sequence of weights, which
depend on a parameter, pull the patch towards the corresponding control structure when the
parameter tend to infinity [15,16]. For example, for a biquadratic rational Bézier patch (Fig.
1(a) is the points configuration and Fig. 1(b) is the original patch), the patch will be pulled to
the central control point if its central weight tends to infinity (see Fig. 1(c)). This is also an
explanation of the geometric meaning of single weight in [7]. And if different weights, which
depend to a parameter, tends to infinity, the patch in Fig. 1(b) can also deform into different
structures (see Fig. 1(d) to Fig. 1(f)).
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Figure 1. The geometric meaning of weights.

This phenomenon tells us that the different weights with a parameter may induce different
regular control surfaces of the same toric patch. Thus a natural question is how many regular
control surfaces of a toric patch? And how to construct these regular control surfaces is another
interesting question. In fact, there are 4279 regular control surfaces for the biquadratic rational
Bézier patch above mentioned. The specific calculation process and explanation are shown in
Example 6.

Reference [14] presented a method to calculate the number of regular control surfaces of a
toric patch and then answered the first question. They also provided the relationship between
regular decompositions of A and corresponding secondary polytope. But the result for the
patch is unsatisfied compared with the curve. Due to complexity of points configuration, the
explicit formula only can calculate the number of regular control surfaces of toric patch for
#(A) <9 (i.e., the number of elements of A is less than or equal to 9 ). Not enough, we want to
calculate the number of regular control surfaces of toric patch associated with arbitrary points
configuration A.

Since the definition of toric patch is associated with toric variety and toric ideal, and the
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methods in integer programming can be applied to study the toric varieties and toric ideals
[4,9]. In references [3,14], the regular control surface is defined by the lifting function. It is
interesting that the lifting function is the cost function of integer programming. Hence, we aim
to present another new method to study the regular control surfaces of a toric patch for the
arbitrary finitely integer lattice points set A in this paper. Unlike reference [14], we present
a method to calculate the number of regular decompositions of A by using the theories of
integer programming and universal Grobner bases. And all regular decompositions of A can
be constructed at the same time. We get the conclusion that each regular control surface of
toric patch defined by A is associated to a regular decomposition by a rational map, which
means the number of regular control surfaces of a toric patch is equal to the number of regular
decompositions of A. An algorithm is also provided to calculate the number of regular control
surfaces of a toric patch and all of these regular control surfaces can be constructed too. So,we
can answer two questions raised above accurately. At last, the application of proposed result

in shape deformation is demonstrated by several examples.

82 Cost functions of linear programming in regular decomposition

Let cone(A) = cone({a1, as, ..., a,}) replace the closed convex polyhedral d-cone {Ax : x €
RL,}. A polyhedral subdivision of cone(A) is a collection of subsets cone({a;,, ..., a;, }), where
these subsets are called cells (or faces) of the subdivision. These cells construct a polyhedral fan
covering cone(A). If dim(cone({a;,, ..., a;. })) = k, then cone({a;,, ..., a;, }) denotes a k-cell of
the subdivision of \A. A subdivision of cone(A) is a triangulation A if each d-cell of the complex
is simplicial. In 1969, Walkup and Wets [12] provided the Basis Decomposition Theorem for

Linear Programming as follows: the general parametric linear programming problem is
LPy,(b) =min{p -x: Ax =b,x > 0}, (1)

where cost function ¢ € R” is fixed and A is a fixed d x n-matrix of rank d. LP4 ,(b) is feasible
if and only if b lies in cone(A); LP4,,(b) is bounded for all b € cone(A) and all p € R™ if
and only if ker(A) NR%, = {0}; If LP4,(b) is bounded, then there exist a triangulation A
of cone(A) such that the d-dimensional cells of A is C = cone({ay,,...,a;,}), and the column
a;,,...,a;, construct an optimal basis for arbitrary b in the cell C.

Denote LPy4 ,, be the family of LPy4 ,(b) obtained by varying b € cone(A) and fixed A, p,
and LP4 be the family obtained by keeping only A fixed.

It is well known that every sufficiently generic vector ;1 € R™ defines a triangulation A, as

follows: a cone({a;,,..., a;,}) is a cell of A, if there exists a vector w = (wy,...,wq) € R?

")
such that w-a; = p; if j € {i1,...,ix} and w-a; < p; if 7 € {1,2,...,n}\ {i1,..., ik}
Then the triangulation obtained in this way are called regular. We call p is generic, if A, is
regular triangulation. If we find x € R™ such that Ax = b,x > 0, and supp(x) is a subset of
a cell of A, then the optimal solutions x of LP4 ,(b) are the solutions to the problem. The
set of feasible solutions to LP4 ,(b) is the polyhedron P, = conv{x > 0 : Ax = b}. B is

non-empty if and only if b € cone(A). Consider linear map 74 : RY, — R% x — Ax, we



856 Appl. Math. J. Chinese Univ. Vol. 40, No. 4

have P, = vall(b). Py is the b-fiber of m4. If p is generic, then p supports a vertex in each
fiber P, of LPy4.

Now, we have a question if p is not generic, are these conclusions still valid? If p is non-
generic, then the cell cone({a;,,...,a;, }) of ¢, is polygon. And the decomposition of A is a
collection of subsets {a;,,...,a; } of A. We call p is non-generic, if subdivision of cone(A)
is polyhedral subdivision denoted by <,. We mainly discuss the problem of non-generic cost

functions in linear programming.

Definition 1. We define a new linear programming problem:

LP.Z,e:](b):mln{/J’yu AyH:bvyH:Xcaéyu:()vZCZ:L yp,zov]-zclzo}v
i=1

op
(1) )

mZIZ”} be an n X r matriz, where :1::’(’) is the optimal solution of LP, ,(b). What’s more, p®

where non-generic cost function p € R™ is fized and € € R™ is a row vector. X = {

is generic and <, is subdivided by A,y (i=1,...,7).

Remark 1. Because of (9 is generic and Qp is subdivided by AN, (i = 1,...,7), we can
obtain the form of {,. If we substitute y, = X - ¢ into A-y, = b and Soi_ici =1, then
A (X-¢)=A- (113:1;1)7~-~7ZB;1()T)) e = (A a:;’fl),...,A . :cloﬁr)) ¢ = b. The support of y,,

supp(y,,), is a subset of index set {1,2,...,n} of A. Besides, the points of this subset are linear
dependence. Hence, there exists a row vector & such that § -y, = 0. We have & X)-c=0

after substituting Yy, = X-cinto§-y, =0. So, we construct a coefficient integer matrizx

llxr
M= [(s-)om]'

At last, Equation (1) with unknown c is simplified as
LPphu(b) =min{p- (X -c): M-c=(1,014)",1>¢; >0} (2)
In conclusion, for every b € cone(A), LPx has a unique optimal solution. Moveover, non-
generic p supports a point y, = X - ¢ in each fiber Py, of LPy and y,, € conv(xff(’l) yees ,ijf,,.)).

According to Definition 1 and Remark 1, we have two definitions as follows:

Definition 2. Polyhedral subdivision <, is called reqular, if LPay ,(b) have a unique optimal
solution.

Definition 3. A decomposition D,, of A is called regular, if each subset of D,, lies in the cell
of Q-

To be sure, a regular polyhedral subdivision <, is a decomposition of cone(A), and a regular

decomposition D,, is collection of subsets of A. They have an essential difference.

Example 1. This example shows how to find a unique optimal solution of LPay,(b). Let
A=1{(1,0),(1,1),(1,2),(1,3)} be affine points set with index set {1,2,3,4}. In fact, the set A
has four regular triangulations [8]. It needs to be emphasized that every regular triangulation

are unique, but the gemeric cost function is not unique. So, for every regular triangulation,
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we list a representative generic cost function p(9 € R* (i = 1,2,3,4) respectively as TAWEORES
{{1,2},{2,3},{3,4}}, p = (2,1,1,2); A, = {{1,3}.{3,4}}, u® = (3,3,1,2); A0 =
{1, 4}}, /‘(3) =(1,2,2,1); Au(4> ={{1,2},{2,4}}, /1'(4) =(2,1,3,3).

The non-generic cost function py = (2,1,2,3) and b = (18,11) are fivzed. We obtain a
fiber Py which is a quadrangle. The optimal solutions a:lof(’l) = (0,4,7,0) of LP4 ) (b) and
:1::’()4) =(0,15/2,0, 7/2) of LP4 4 (b) can be obtained by using simplex algorithm, respectively.
And the solutions :BZZ;D and :132’(’4) are the vertices of the fiber Py. Because of ., is subdivided
by Aoy and Ay, we have $p, = {{1,2},{2,4}} and Dy, = {{1,2},{2,3,4}}. According to
Equation (1), y,, = :lezl)q—i-wzz(j@ c2 = (0,4c1+22¢9,7c1, Zeo). Obviously, index set {2,3,4} is a
subset of index set {1,2,...,n} of A. Besides, the points of this subset are linear dependence as
follows: 2x Tey —4eq — %cz — %62 = 10¢; —11eg = 0. That is to say, we take € = {0,—1,2, -1},
1 1
10 —11|
M-ec=(1,00",1 > ¢; > 0}. We have the optimal solution (31, 37) and y,, = (0, L5y e
face,,[(0,4,7,0),(0,15/2,0,7/2)]. Similarly, given po = (3,2,1,3), we have D,,, = {{1,2,3},
{3,4}} and y,, = (2,5,4,0). Given pz = (1,3,1,1), we have D,, = {1,3,4} and Yyuy =

) 9

(32,0,4,%). Given py = (1,1,3,1), we have Dy, = {1,2,4} and y,, = (3},4,0,%).

then we have M = [ Therefore LPaq,u, (b) = min{(0,4c + 1 CQ, 14cy, 162) :

If 1) is generic, then a test set [10,11] for the family LP, , is any finite subset V)

of ker(A) such that p( - v > 0 for all v € V),

Py, either x is the optimal solution of LP, ) (b) or there exists v € Vi and € > 0 such

pr i F C {1,...,n} is not

a face of A, but every proper subset of F is a face of A, then F is a minimal non-face

), and for every b € cone(A) and every x €
that x —ev > 0. Moreover, the definition of minimal non-face of /A

of A, . For non-generic y, we introduce three definitions as follows:

Definition 4. F is called minimal non-face of ¢, if F C {1,...,n} is not a face of &, but
every proper subset of F is a face of &y, and F is not included in any face of .

Definition 5. V), is called a test set for the family LP4 ., if $p is subdivided by A, (i =
1,...,7).

Definition 6. For non-generic , a finite subset V/, is called regular set if Vi, = {U;_y Vo } \
Vy.

The vector v € VL can be written as coordinate representation, denoted by u. It is conve-
nient to consider u as a line segment [u™, u~], where u = ut —u~. We define that [u™,u™] is

directed from u™ to u™ since p-ut > p-u".

Lemma 1. :132’(’1) sy mZ’(’,,.) move to the unique point y,, in Py along directed segments of reqular

set V), respectively.

Proof. The optimal solution c is obtained by solving L P ,(b) and y, = {X/Oi”’ . ,X;Z()T)} -C.
The directed segments of regular set V,, trace r monotone paths from the x:’(’l) Yo ,xff(’r) t0 y,,-

Due to optimal solution ¢ is unique, the point y, on the P is unique. O
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Example 1 cont. According to regular polyhedral subdivisions of A in Example 1, the regular

set can be obtained. We obtain ]:Au,(l) = {1,3},{1, 4},{2,4}, ]:Au@) = {2},{1,4}, ]:Au@ =

{2},{3}, and Fa ., = {3}, {1,4}. According to Definition 4, we obtain Fe,, = {1,3},{1,4}.
w

So, V;Iu = {Vu“) U Vu(@}\VM1 = {2e3 —eg —e4,e2+e4 —2e3}. According to Lemma 1, we have

17 11 5 15 7 I2I4*I§ 17 11

H xy xg xf. Similarly, V),

2
T3 —T2T4 = = 2 22

xhal 25 x3 xd a3 Tt x}
293 5 2 +3 %4 2 4
3 times & times

es — 2es}, VZLS = {3e3 — e1 — 2e4,€1 + 2e4 — 3es}, and V:M = {3eq — 2e1 — e4,2e1 + e4 — 3ea}.

. = {262761 763,614’

83 Integer programming and universal Grobner bases

We recall the general integer programming problem [5]

IP4,(b) =min{p-x: Ax =b,x € N"}. (3)
IP4,(b) is feasible if and only if b € conen(A). And P conv{x € N* : Ax = b} is a polytope
for each b € conen(A). P/ is the fiber of b where 7% : N* — Z%, x — Ax. We call P! the b-
fiber of 7%. Denote IP4,, be the family of P4 ,(b) which obtained by varying b € coney(A)
and fixed A, u, and I P4 be the family obtained by keeping only A fixed.

Given p = (g1, ..., tn) € R™, we define the initial form in,(f) to be the sum of all terms ;-
x? guch that u - a; is maximal for any polynomials f = Y (; - x. For an ideal I, we define
the initial ideal to be the ideal generated by all initial forms in,(I) = (in,(f) : f € I). A finite
subset G, C I is a Grébner basis for I with respect to p if in,(I) = (in,(g9) : g € G,). It is
called reduced if, for any two distinct elements g;, g; € G, no term of g; is divisible by in,(g;).

It is clear that toric ideal I 4 needs not be a monomial ideal. If x is non-generic cost function
for IP4 ,, then the ideal in, (1 4) is a binomial ideal, and x" ¢ in,(I4) for each b € conex(.A).
So, if cost function p € R™ is non-generic with respect to P4 ,, then p-ut = p-u~ which
implies that the form x*  — x* € in,(l4), and vice versa. Thus initial ideal in,(I4) is a
binomial ideal. And the radical of the binomial ideal in,(I4) contains binomial whose index

set is a subset of D,

rad(in,(I14)) =(zi, ;, - - 'xis,x“+ —x" :{iy,do,...,is} is a minimal @
non — face of $,, and binomial X" o x" e in,(La)).

The monomial x;, x;, ---2;, is a square-free monomial, and the minimal non-face of ¢, is

{i1,12,...,is}. So, the decomposition form of A4 obtained in this way are called regular decom-
position D,,.
Example 1 cont. We continue with the previous example. Regular decomposition form of
A can be obtained by the theories of integer programming. Using software Macaulay 2, we
obtain the toric ideal 14 = (x173 — 23, 7914 — 22,1124 —2273). The cost function py =
(2,1,2,3) is fized. We obtain initial ideal in,, (I4) = (z173, 2124, 173, 2324, D224 — 23)
and rad(in,, (I14)) = (v123, 2124, T274 — 2%). By Equation (4), the minimal non-faces of .,
are {1,3}, {1,4}, and {2,3,4} is a subset of D,,. So, D, = {{1,2},{2,3,4}}.

According to Definition 6, it is clear that the elements of VL are directed segments. Besides,

all of directed segments come in pairs, with each pair in the opposite direction (i.e., [u™,u~] =
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—[u™,ut]). Now, if we ignore the direction, directed segments become common line segments.

. . + - . - + .
Hence, binomial x" — x" is equal to x* —x" . We introduce a new term, named reduced

path RP,,.

Definition 7. Reduced path RP, is a finite set of binomials v — ¥ , where the binomials

without direction are supported by V;L,

Example 1 cont. According to reqular sets obtained above, it is easy to get reduced path. We
have obtained Vl’“ = {2e3 — ey —eg,e2 +e4 —2e3}, VIILZ = {2ey —e; —e3,e1 +e3—2es}, V/’M =
{3e3—e1—2e4,e1+2e4—3e3}, and V;M = {3ea—2e1 —eq,2e1+e4—3ea}. According to Definition
7, we can easily obtain RP,, = {z3 — xox4}, RP,, = {23 — 123}, RP,, = {z12] — 23}, and
RP,, = {zjzys—x3}. For us = (1,1,1,1), we have V,,, = 0. Hence V), = Ule V.- Obuiously,
RP,, = U?Zl RP,, = {2} — mowy, 23 — x123, 2125 — 23, 2314 — 23} is a combined reduced path,
and D,,, = {1,2,3,4}. Besides, reqular decomposition D, which is A itself is subdivided by
regular decompositions D, ,D,,,D,,, and D,,.

According to Lemma 1, we have a conclusion that the optimal solutions XZZ()l) . ,x;’ér) for
LP,4p move towards the unique point y, in P}, along directed segments of regular set V;/r Hence,
we hope that the integer programming can have similar result. Now, we define that the integer
solution x*" is the optimum of IP, . (b) for all integer points on the conv(x:’(’l) - ,XZI(JT)).

That is to say, the solution x*" of IP, ) (b) depends on the optimal solution xZ’fi) of LP4 i) (b).

(1)

1
Moreover, we have conv(x* ... x* °op

(r)
) )

C conv(xff(’l),... , x°P ). Hence, we obtain following

lemma.

(1)

Lemma 2. zV ,...,ac“(T) move towards the unique point ny m PbI along reduced paths RP,,

respectively.

Proof. According to Lemma 1 and Definition 7, there must exist monotone paths from the

integer solutions xr sy x*" to the unique optimum yﬁ, respectively. O

Notice that there is no integer lattice in |yﬁ —¥,l- Then yﬂ € face,(PL), and the support
of yﬂ, supp(yﬁ), is a subset of D,. Finally, we can find the position of point with respect to
non-generic cost function p in Pé.

Example 1 cont. The unique point y;I“ can be obtained by reduced path. By the above, we
obtain reduced path RP,, = {23 — zox4}. And = (0,4,7,0), Y = (0,7,1,3). Then, we

2 2
4,7 F37TT2Ta 6 3 .2 7 3 T2Ta7T3 6,.3,.2 ; ; _
have 524 S ot TaTETY,  Tp¥aTy ——— TpTETY That is to say, the point yﬁl =(0,6,3,2)

with respect to py = (2,1,2,3) lies in the face,, (P{) = [(0,4,7,0),(0, 7,1,3)]. Besides, there
is no integer lattice in |ny1 — Y, |, and the supp(yf“) = {2,3,4} is a subset of D,,,, The precise
positions of the points yil with respect to py.

We define the universal Grobner basis U4 to be the union of all reduced Grdobner basis G,
of the toric ideal I 4 when p runs over all term orders. And U4 is a finite set that consists of
binomials X" — x" | where u = u* — u~ € kerz(A). Thus the line segment [u*,u~] is an
edge of the Aut-fiber of IP4. We shall view polytope Pj‘ﬁ as the fiber of u. The definition
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of Grébner fiber of IP4 is the fiber of an element u € Uy4. The symbol St(A) denotes the
Minkowski sum of all Grobner fibers, and this polytope is called the state polytope of A [3,8].

Definition 8. If a reduced path RP, induces s different reqular decompositions, then we call s
the multiple number of RP,,, denoted by |RP,| = s. Especially, RP, is single when s = 1.

Proposition 1. The elements of reduced path are contained in the universal Grobner basis U, .

Proof. According to the definition of reduced path, the result holds. O

Proposition 2. The binomial " — 2% s an element of reduced path if and only if an edge
of St(A) is given by this binomial.

Proof. The elements of reduced path are the elements in U4, and each edge of St(A) is given
by an element in U4 according to reference [10]. So a binomial xtT—xu € RP, if and only
if an edge of St(A) is given by this binomial. O

Example 1 cont. We can construct state polytope by using universal Grébner basis, and the
relationship is clear between the state polytope and all reduced paths. By the above, there are
5 reduced paths in total. Using software Macaulay 2, the universal Grobner basis is Uyg =
{z123— x%, T1T4 — ToX3, LTy — mg, xlxi — x%, x%u — x%} Fig. 2 shows the relationship between
the state polytope St(A) and these five reduced paths, where the solid lines represent the reduced
paths.

Figure 2. St(A) and the reduced paths.

Theorem 1. The number of reqular triangulations plus the sum of multiple numbers for all

reduced paths equals the number of reqular decompositions of A.

Proof. By the above analysis, the regular triangulation is a special case of the regular decom-
positions. Besides, reduced paths are supported by all non-generic cost functions. Hence, the
number of regular triangulations and the sum of multiple numbers for all reduced paths is equal
to the number of regular decompositions of A. O

Example 1 cont. There are four regular triangulations and five reduced paths in total. So,
the number of reqular decompositions of A is 4+5=9.
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84 Regular control surfaces of toric patch

4.1 Regular control surfaces and regular decompositions
Definition 9. (/6]) A toric patch associated with a finite points set A is a patch parameterized
by the rational map Py :U — R3

aba a.
Pos(s) = > et Wabata,a(z) cel, (5)

ZaeA wana,A(x) ’
where U = conv(A) C R, weights w = {w, > 0la € A}, control points B = {bs|a € A} C

R3, toric-Bernstein basis functions ne a(z) = cofi(z)1(@ . f,.(2)7(9 and positive coefficients
cq > 0 indexed by lattice points of A.

The image of P 4., s(x) on U is called toric patch of shape of A, denoted by P 4 ., 5. Using
cost function p and weight w = {wala € A} € R4, a set of weights is defined which depends
on a parameter w,(t) = {t*®w,|a € A}. So we can define toric patch parameterized by t as
Y aca " wabana a(z)

Yaca t"®wala a(7)
Similarly, let P 4, 5,,,(t) be the image of P 4, 5., (x;t) on U with some t € R.. Fix A, weights

Puwpu(zit) = , vel. (6)

w and control points B for a toric patch P 4, 5 of shape A. Given a regular decomposition
D,, induced by cost function p, we consider the weights w and control points B indexed by
elements of a facet I of D, as weights and control points for a toric patch of shape I, denoted
by Py ;.5 The union

PA,w,B(DM) = U PI,wII,B\I (7)
I€D,
of these patches is called the regular control surface of P 4, 5 induced by the regular decom-

position D,, [3]. This procedure is called toric degeneration of toric patch.

Theorem 2. (/3])
lim P.A,w,B,u(t) = PA,u,B(Dp,)-

t—+oo

This result explains the geometric meaning of the limiting form of toric patch is the regular
control surface by a regular decomposition D,, of A when all weights tend to infinity. The

specific degeneration methods of toric patch can be found in [3].

Theorem 3. The number of regular control surfaces of a toric patch P4, g is equal to the

number of reqular decompositions of A.

Proof. Each regular control surface of the patch is associated to one of regular decompositions
of A by a rational map. In other words, for arbitrary given weights w and control points B,
the number of regular control surfaces of a toric patch P 4, 5 is equal to the number of the

regular decompositions of A. O

By the above analysis and results, we present an algorithm to calculate the number of regular

control surfaces of a toric patch. And we use N to be the number of regular decompositions of
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A in total, T' to be the number of regular triangulations of A and S to be the sum of multiple

numbers for all reduced paths.

Algorithm 1.
Input: A,w,B,N:=T,M :=0,5:=0.
Output: The number of regular control surfaces of toric patch R4 . 5.

1 Calculate the toric ideal I 4 and the universal Grobner basis Uy of A.
2 Calculate the number of reqular decompositions of A by U4 and integer programming method.

2.1 IfUs = 0 then go to Step 3. Else select w € Uy and set Uy := U\{}.

2.2 If 4w € Uy is a reduced path, then we can conclude cost function p and the reqular

decompositions D,, of A by Equation (4).

2.2.1 Gather the counts of multiple numbers s of the reduced path by Definition 8, denoted
by S := 85 +s.
2.2.2 According to the Theorem 1, compute N := N + S and return to Step 2.1.

2.8 Else w € Uy is a non-reduced path, then return to Step 2.1.
8 Output N according to Theorem 3.

Remark 2. This algorithm not only can calculate the number of regular control surfaces of a
toric patch, but also provides an method to construct all the regular control surfaces. In Step
2.2, we get all regular decompositions of A, and then we can construct every regular control
surface P g 5(Dy) of the toric patch Py o, 5 induced by D, according to Equation (7).

4.2 Examples

Example 1 cont. According the theories and results raised above, we obtain the number and
all the forms of reqular decompositions of A. So, the number and all the form of reqular control
surfaces of a toric patch can be obtained by Theorem 3 and Algorithm 1. Since there are 9
different reqular decompositions of A, the number of the reqular control curves of the cubic
Bézier curve P, 5 is9. We can construct all reqular control curves of this curve P, (see
Fig. 3) by these regular decompositions of A and Equation (7) as below.

In Definition 9, we don’t need to fix the coefficients c, of the basis function 7, 4, as they

can vary from case to case.

Example 2. We set a 5 point configuration A with index set {1,2,3,4,5}, which is shown
in Fig. 5(a). Fig. 5(b) also shows the toric patch Pa ., g associated by A for given control
points B and weights w. There are five reqular triangulations of A. Using Algorithm 1, we have
universal Grobner basis Us = {x123 — m%, T1T4 — ToT5, xlxi — xgacg, Xoxy — 375 }. Exactly, the
elements of U4 are the reduced paths of A, where |r123 — 23| = 2 and the rest is single. Fig
4(a) shows the relationship between these 11 regular decompositions of A. Using Theorem 1, the
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Figure 3. Regular control curves of cubic rational Bézier curve.
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Figure 4. Regular decompositions and state polytope St(.A).
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Figure 5. Regular control surfaces of toric patch associated with a 5 points configuration.

number of reqular decompositions of A is 11. The relationship between reduced paths and state
polytope St(A) is shown in Fig 4(b), where the solid lines represent the reduced paths. According
to Theorem 3 and Remark 2, the number of the regular control surfaces of toric patch P ., 5
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associated by 5 point configuration is 11 too. In Fig. 5, there are 11 regular decompositions of

A can induce 11 regular control surfaces of the toric patch Py . 3.

(2) (h) (i) ()

Figure 6. Regular control surfaces of a quadratic rational Bézier triangle.

Example 3. Let A be an affine points set, where index set is {1,2,3,4,5, 6}. Fig. 6(a) indicates
the structure of A and the convex hull U. A triangular Bézier patch P4, g defined by A for
given control points B and weights w is shown in Fig. 6(b). There are 14 regular triangulations
of A. Using Algorithm 1, we have universal Grébner basis U = {w123 — 13, 1125 — x& T3x5 —
xZ, ToTs — T4Tg, ToLg — T1T4, T3Tg — T2y, x%a% — xla:i, 1’31‘(25 — xlxi, x%xs — .’1731‘%}. FEzactly, the
elements of U are the reduced paths of A , where |v1x3 — 23| = |v1205 — 23| = |23205 — 23| =5
and the rest is single. Besides, they are 10 combined reduced paths. So, the number of regular
decompositions of A is 45. It means that the patch associated with A have 45 regular control
surfaces by Remark 2. Fig. 6 shows some of these regular control surfaces of P4, 5. Likewise,

we provide 10 of those 45 regular control surfaces from Fig. 6(c) to Fig. 6(1).

Example 4. In this example, we introduce the method to calculate the number of reqular control
surfaces of a biquadratic rational Bézier patch. In general, the patches of bidegree (m,n) can be
dealt with in the same way. Let A be affine points set, where {1,2,3,4,5,6, 7,8,9} is index set.
There are 9 points in configuration A as Fig. 1(a) shown, which defines a biquadratic rational
Bézier patch P4, g for given control points B and weights w (see Fig. 1(b)). There exist 429
reqular triangulations of A. Surprisingly, the number of reqular decompositions is 4279. So
there are 4279 regular control surfaces of biquadratic rational Bézier patch. In Fig. 1(d) - Fig.
1(f) show three of those regular control surfaces of P4, 3.

4.3 Application to shape deformation

In this section, a toric patch P 4., 5 can be deformed into a target surface based on the
theories we raised. According to Equation (7), the regular control surface is the union of
some patches which is induced by the subsets of regular decomposition. So, the shape of the

regular control surface is predictable, if the regular decomposition is known. In this way, the
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regular control surface of the toric patch can be generated by selecting an appropriate regular
decomposition and cost function. And this regular control surface is the desired target surface.

o1 2 35 %

(a) (b) (c) (d) (e)

T

(£) (=) (h) (@) (i)

Figure 7. Handwritten Arabic numerals.

C oLl

(a) Original curve. (b) (c) (d) (e) Target curve.

Figure 8. The procedure of shape deformation when ¢ — +oo.

Example 5. In this example, we want to construct ten target curves which are ten handwritten
Arabic numerals. Chosen ten toric Bézier curves, also called original curves, we want to deform
them into handwritten Arabic numerals by using the theories we raised above(see Fig. 7). Take
the handwritten Arabic numeral two as an example, and other numbers can be dealt with in the
same way. According to the characteristics of handwritten Arabic numeral two, a toric Bézier
curve of degree 5 Pa ., g (see Fig. 8(a)) is chosen, which is associated with a finite integer
lattice points set A = {1,...,6}. It can be deformed into handwritten Arabic numeral two (see
Fig. 8(e)). According to Algorithm 1, the regular decomposition is D, = {{1,3,5},{5,6}} and
corresponding cost function is p = (2,3,2,3,2,5). So, the reqular control curve P4 o, 5(D,,) is
the union of a toric Bézier curve of degree 2 and a line segment, where the toric Bézier curve
of degree 2 is associated with the subset {1,3,5} of D, and the line segment is associated with
the subset {5,6} of D,,. Finally, the reqular control curve P4 ., g(D,) is the target curve. And
the final representations validate by the algebra expressions when t — +oo. Fig. 8(a) - Fig.
8(e) show the procedure of shape deformation.

Example 6. Given a sphere surface, we obtain the regular control surface by proposed result.

The sphere surface is combined by eight patches. Using the result we raised, the sphere surface
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in Fig. 9(a) can be deformed into a cube shown in Fig. 9(b) and an octahedron shown in Fig.

9(c). What’s more, all final target surfaces are one-step forming.

o v

(a) (b) (c)

Figure 9. Shape deformation of a sphere surface.

Example 7. Similar to Example 8, given a vase surface, we obtain its reqular control surface.
The vase surface is combined by four patches which bidegree is (2,5). Using the resull we raised,
vase surface in Fig. 10(a) can be deformed into target surfaces shown in Fig. 10(b) and Fig.
10(c). And, all final target surfaces are one-step forming.

I 3

(a) (b) (©)

Figure 10. Shape deformation of a vase surface.

85 Conclusions

In this paper, we get the conclusion that each regular control surface of toric patch defined
by A is associated to a regular decomposition by a rational map, which means the number of
regular control surfaces of a toric patch is equal to the number of regular decompositions of A.
By the theories of integer programming and universal Grobner bases, we present a method to
calculate the number of regular decompositions of A. And all regular decompositions of A can
be constructed at the same time. An algorithm is provided to calculate the number of regular
control surfaces of a toric patch and all of these regular control surfaces can be constructed
too. At the end, the paper show three examples of shape deformation by the proposed result.
The final target curve/surface can be viewed as a regular control curve/surface of original

curve/surface. And the final target curve/surface is one-step forming.

Declarations

Conflict of interest The authors declare no conflict of interest.



WANG Han, Zhu Chun-gang. Regular control surfaces of a toric patch and integer ... 867

References

[1] D Ahmad, S Naeem. Quasi-Harmonic constraints for toric bézier surfaces, 2018, DOI: 10.48550//-
arXiv.1803.09328.

[2] D A Cox, J Little, D O’Shea. Using algebraic geometry, New York: Springer, 2006.

[3] L D Garcia-Puente, F Sottile, C Zhu. Toric degenerations of bézier patches, ACM Transactions
on Graphics (TOG), 2011, 30(5): 110.

[4] T M Gelfand, M M Kapranov, A V Zelevinsky. Discriminants, resultants, and multidimensional
determinants, Boston, MA: Birkh&user, 1994.

[5] S Hosten, R R Thomas. Gomory integer programs, Mathematical Programming, 2003, 96(2):
271-292.

[6] R Krasauskas. Toric surface patches, Advances in Computational Mathematics, 2002, 17(1):
89-113.

[7] L Piegl, W Tiller. The NURBS book, New York: Springer, 1997.

[8] B Sturmfels. Grobner bases of toric varieties, Tohoku Mathematical Journal, Second Series,
1991, 43 (2): 249-261.

[9] B Sturmfels. Grdbner bases and convex polytopes, Providence, RI: American Mathematical

Society, 1996.

[10] B Sturmfels, R R Thomas. Variation of cost functions in integer programming, Mathematical
Programming, 1997, 77(2): 357-387.

[11] R R Thomas. Grébner Bases in Integer Programming, New York: Springer, 1997.

[12] D W Walkup, R J B Wets. Lifting projections of convex polyhedra, Pacific Journal of Mathe-
matics, 1969, 28 (2): 465-475.

[13] J Warren. Creating multisided rational Bézier surfaces using base points, ACM Transactions on
Graphics, 1992, 11(2): 127-139.

[14] H Wang, C G Zhu, X Y Zhao. The number of regular control surfaces of toric patch, Journal
of Computational and Applied Mathematics, 2018, 329: 280-293.

u, 1, u. An tmproved algorithm for checking the injectivity o toric surface
15 YY Yu, Y Ji, C G Zhu. An i d algorithm for checki he injectivity of 2D ; f
patches, Computers & Mathematics with Applications, 2020, 79(10): 2973-2986.

[16] X F Zhu, Y Ji, C G Zhu, et al. Isogeometric analysis for trimmed CAD surfaces using multi-
sided toric surface patches, Computer Aided Geometric Design, 2020, 79: 101847.

1School of Computer Science and Technology, Shandong Technology and Business University, Yantai
264005, China.

Email: wanghan19881214@126.com
2School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China.

Email: cgzhu@dlut.edu.com



