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Regular control surfaces of a toric patch and integer

programming

WANG Han1 ZHU Chun-gang2,∗

Abstract. Toric patch is a kind of rational multisided patch, which is associated with a finite

integer lattice points set A. A set of weights is defined which depend on a parameter according

to regular decomposition of A. When all weights of the patch tend to infinity, we obtain the

limiting form of toric patch which is called its regular control surface. The different weights

may induce the different regular control surfaces of the same toric patch. It prompts us to

consider that how many regular control surfaces of a toric patch. In this paper, we study the

regular decompositions of A by using integer programming method firstly, and then provide

the relationship between all regular decompositions of A and corresponding state polytope.

Moreover, we present that the number of regular control surfaces of a toric patch associated

with A is equal to the number of regular decompositions of A. An algorithm to calculate the

number of regular control surfaces of toric patch is provided. The algorithm also presents a

method to construct all of the regular control surfaces of a toric patch. At last, the application

of proposed result in shape deformation is demonstrated by several examples.

§1 Introduction

In the early 1970s, toric varieties were introduced and developed in algebraic geometry. The

theory of toric varieties plays an important role at the crossroads of geometry, algebra and

combinatorics. It provides a fertile testing ground for general theories in algebraic geometry.

So, toric varieties are an important area of research in algebraic geometry and feature in many

applications [2]. The theory of toric varieties is associated with combinatorics of convex poly-

topes [9]. And the toric variety of convex polytope is the variety of its fan. Hence the geometry

of a toric variety is fully determined by the combinatorics of its associated fan.
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In [13], Warren proposed the real toric variety, which can be applied in CAGD. In 2002,

Krasauskas [6] defined toric patch, which is a kind of rational multisided patch. The classical

rational Bézier curve,the classical Bézier triangle, tensor-product Bézier patch, and Warren’s

hexagonal patch [1,13] are also special cases of the toric patch, while the corresponding polygons

are line segment, triangle, rectangle and hexagon [6]. Since the classical rational Bézier curve

is the special case of toric patch, it is also called toric Bézier curve.

It is well known that the shape of patch is controlled by not only control structure but also

the weights. If there exists an enough large weight, then the patch is pulled to the corresponding

control point. We call it the geometric meaning of a single weight [7]. In 2011, Garćıa-Puente,

Sottile and Zhu [3] explained the limiting surface of toric patch when all weights tend to infinity,

which is called the regular control surface, and generalized the geometric meaning of a single

weight of rational Bézier patch[7]. That is to say, there exists a sequence of weights, which

depend on a parameter, pull the patch towards the corresponding control structure when the

parameter tend to infinity [15,16]. For example, for a biquadratic rational Bézier patch (Fig.

1(a) is the points configuration and Fig. 1(b) is the original patch), the patch will be pulled to

the central control point if its central weight tends to infinity (see Fig. 1(c)). This is also an

explanation of the geometric meaning of single weight in [7]. And if different weights, which

depend to a parameter, tends to infinity, the patch in Fig. 1(b) can also deform into different

structures (see Fig. 1(d) to Fig. 1(f)).

Figure 1. The geometric meaning of weights.

This phenomenon tells us that the different weights with a parameter may induce different

regular control surfaces of the same toric patch. Thus a natural question is how many regular

control surfaces of a toric patch? And how to construct these regular control surfaces is another

interesting question. In fact, there are 4279 regular control surfaces for the biquadratic rational

Bézier patch above mentioned. The specific calculation process and explanation are shown in

Example 6.

Reference [14] presented a method to calculate the number of regular control surfaces of a

toric patch and then answered the first question. They also provided the relationship between

regular decompositions of A and corresponding secondary polytope. But the result for the

patch is unsatisfied compared with the curve. Due to complexity of points configuration, the

explicit formula only can calculate the number of regular control surfaces of toric patch for

#(A) ≤ 9 (i.e., the number of elements of A is less than or equal to 9 ). Not enough, we want to

calculate the number of regular control surfaces of toric patch associated with arbitrary points

configuration A.

Since the definition of toric patch is associated with toric variety and toric ideal, and the
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methods in integer programming can be applied to study the toric varieties and toric ideals

[4,9]. In references [3,14], the regular control surface is defined by the lifting function. It is

interesting that the lifting function is the cost function of integer programming. Hence, we aim

to present another new method to study the regular control surfaces of a toric patch for the

arbitrary finitely integer lattice points set A in this paper. Unlike reference [14], we present

a method to calculate the number of regular decompositions of A by using the theories of

integer programming and universal Gröbner bases. And all regular decompositions of A can

be constructed at the same time. We get the conclusion that each regular control surface of

toric patch defined by A is associated to a regular decomposition by a rational map, which

means the number of regular control surfaces of a toric patch is equal to the number of regular

decompositions of A. An algorithm is also provided to calculate the number of regular control

surfaces of a toric patch and all of these regular control surfaces can be constructed too. So,we

can answer two questions raised above accurately. At last, the application of proposed result

in shape deformation is demonstrated by several examples.

§2 Cost functions of linear programming in regular decomposition

Let cone(A) = cone({a1,a2, . . . ,an}) replace the closed convex polyhedral d-cone {Ax : x ∈
Rn

≥0}. A polyhedral subdivision of cone(A) is a collection of subsets cone({ai1 , . . . , aik }), where
these subsets are called cells (or faces) of the subdivision. These cells construct a polyhedral fan

covering cone(A). If dim(cone({ai1 , . . . , aik})) = k, then cone({ai1 , . . . ,aik}) denotes a k-cell of
the subdivision of A. A subdivision of cone(A) is a triangulation △ if each d-cell of the complex

is simplicial. In 1969, Walkup and Wets [12] provided the Basis Decomposition Theorem for

Linear Programming as follows: the general parametric linear programming problem is

LPA,µ(b) = min{µ · x : Ax = b,x ≥ 0}, (1)

where cost function µ ∈ Rn is fixed and A is a fixed d×n-matrix of rank d. LPA,µ(b) is feasible

if and only if b lies in cone(A); LPA,µ(b) is bounded for all b ∈ cone(A) and all µ ∈ Rn if

and only if ker(A) ∩ Rn
≥0 = {0}; If LPA,µ(b) is bounded, then there exist a triangulation △

of cone(A) such that the d-dimensional cells of △ is C = cone({ai1 , . . . ,aid}), and the column

ai1 , . . . ,aid construct an optimal basis for arbitrary b in the cell C.
Denote LPA,µ be the family of LPA,µ(b) obtained by varying b ∈ cone(A) and fixed A, µ,

and LPA be the family obtained by keeping only A fixed.

It is well known that every sufficiently generic vector µ ∈ Rn defines a triangulation △µ as

follows: a cone({ai1 , . . . , aik}) is a cell of △µ, if there exists a vector w = (w1, . . . , wd) ∈ Rd

such that w · aj = µj if j ∈ {i1, . . . , ik} and w · aj < µj if j ∈ {1, 2, . . . , n} \ {i1, . . . , ik}.
Then the triangulation obtained in this way are called regular. We call µ is generic, if △µ is

regular triangulation. If we find x ∈ Rn such that Ax = b,x ≥ 0, and supp(x) is a subset of

a cell of △µ, then the optimal solutions x of LPA,µ(b) are the solutions to the problem. The

set of feasible solutions to LPA,µ(b) is the polyhedron Pb = conv{x ≥ 0 : Ax = b}. Pb is

non-empty if and only if b ∈ cone(A). Consider linear map πA : Rn
≥0 → Rd,x 7→ Ax, we
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have Pb = π−1
A (b). Pb is the b-fiber of πA. If µ is generic, then µ supports a vertex in each

fiber Pb of LPA.

Now, we have a question if µ is not generic, are these conclusions still valid? If µ is non-

generic, then the cell cone({ai1 , . . . ,aik}) of ♢µ is polygon. And the decomposition of A is a

collection of subsets {ai1 , . . . ,aik} of A. We call µ is non-generic, if subdivision of cone(A)

is polyhedral subdivision denoted by ♢µ. We mainly discuss the problem of non-generic cost

functions in linear programming.

Definition 1. We define a new linear programming problem:

LPnew
A,µ (b) = min{µ · yµ :A · yµ = b,yµ = X · c, ξ · yµ = 0,

r∑
i=1

ci = 1, yµ ≥ 0, 1 ≥ ci ≥ 0},

where non-generic cost function µ ∈ Rn is fixed and ξ ∈ Rn is a row vector. X = {xop
µ(1) , . . . ,

xop
µ(r)} be an n× r matrix, where xop

µ(i) is the optimal solution of LPA,µ(i)(b). What’s more, µ(i)

is generic and ♢µ is subdivided by △µ(i) (i = 1, . . . , r).

Remark 1. Because of µ(i) is generic and ♢µ is subdivided by △µ(i) (i = 1, . . . , r), we can

obtain the form of ♢µ. If we substitute yµ = X · c into A · yµ = b and
∑r

i=1 ci = 1, then

A · (X · c) = A · (xop
µ(1) , . . . ,x

op
µ(r)) · c = (A· xop

µ(1) , . . . ,A · xop
µ(r)) · c = b. The support of yµ,

supp(yµ), is a subset of index set {1, 2, . . . , n} of A. Besides, the points of this subset are linear

dependence. Hence, there exists a row vector ξ such that ξ · yµ = 0. We have (ξ ·X) · c = 0

after substituting yµ = X · c into ξ · yµ = 0. So, we construct a coefficient integer matrix

M =

[
11×r

(ξ ·X)l×r

]
.

At last, Equation (1) with unknown c is simplified as

LPM,µ(b) = min{µ · (X · c) : M · c = (1,01×l)
T, 1 ≥ ci ≥ 0}. (2)

In conclusion, for every b ∈ cone(A), LPM has a unique optimal solution. Moveover, non-

generic µ supports a point yµ = X · c in each fiber Pb of LPM and yµ ∈ conv(xop
µ(1) , . . . ,x

op
µ(r)).

According to Definition 1 and Remark 1, we have two definitions as follows:

Definition 2. Polyhedral subdivision ♢µ is called regular, if LPM,µ(b) have a unique optimal

solution.

Definition 3. A decomposition Dµ of A is called regular, if each subset of Dµ lies in the cell

of ♢µ.

To be sure, a regular polyhedral subdivision ♢µ is a decomposition of cone(A), and a regular

decomposition Dµ is collection of subsets of A. They have an essential difference.

Example 1. This example shows how to find a unique optimal solution of LPM,µ(b). Let

A = {(1, 0), (1, 1), (1, 2), (1, 3)} be affine points set with index set {1, 2, 3, 4}. In fact, the set A
has four regular triangulations [8]. It needs to be emphasized that every regular triangulation

are unique, but the generic cost function is not unique. So, for every regular triangulation,
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we list a representative generic cost function µ(i) ∈ R4 (i = 1, 2, 3, 4) respectively as △µ(1) =

{{1, 2}, {2, 3}, {3, 4}}, µ(1) = (2, 1, 1, 2); △µ(2) = {{1, 3}, {3, 4}}, µ(2) = (3, 3, 1, 2); △µ(3) =

{{1, 4}}, µ(3) = (1, 2, 2, 1); △µ(4) = {{1, 2}, {2, 4}}, µ(4) = (2, 1, 3, 3).

The non-generic cost function µ1 = (2, 1, 2, 3) and b = (18, 11) are fixed. We obtain a

fiber Pb which is a quadrangle. The optimal solutions xop
µ(1) = (0, 4, 7, 0) of LPA,µ(1)(b) and

xop
µ(4) = (0, 15/2, 0, 7/2) of LPA,µ(4)(b) can be obtained by using simplex algorithm, respectively.

And the solutions xop
µ(1) and xop

µ(4) are the vertices of the fiber Pb. Because of ♢µ1 is subdivided

by △µ(1) and △µ(4) , we have ♢µ1 = {{1, 2}, {2, 4}} and Dµ1 = {{1, 2}, {2, 3, 4}}. According to

Equation (1), yµ1
= xop

µ(1)c1+xop
µ(4)c2 = (0, 4c1+

15
2 c2, 7c1,

7
2c2). Obviously, index set {2, 3, 4} is a

subset of index set {1, 2, . . . , n} of A. Besides, the points of this subset are linear dependence as

follows: 2×7c1−4c1− 15
2 c2− 7

2c2 = 10c1−11c2 = 0. That is to say, we take ξ = {0,−1, 2,−1},

then we have M =

[
1 1

10 −11

]
. Therefore LPM,µ1(b) = min{(0, 4c1 + 15

2 c2, 14c1,
21
2 c2) :

M · c = (1, 0)T, 1 ≥ ci ≥ 0}. We have the optimal solution ( 1121 ,
10
21 ) and yµ1

= (0, 17
3 , 11

3 , 5
3 ) ∈

faceµ1 [(0, 4, 7, 0), (0, 15/2, 0, 7/2)]. Similarly, given µ2 = (3, 2, 1, 3), we have Dµ2 = {{1, 2, 3},
{3, 4}} and yµ2

= ( 92 , 5,
11
2 , 0). Given µ3 = (1, 3, 1, 1), we have Dµ3 = {1, 3, 4} and yµ3

=

( 539 , 0, 13
3 , 25

9 ). Given µ4 = (1, 1, 3, 1), we have Dµ4 = {1, 2, 4} and yµ4
= ( 349 , 13

3 , 0, 44
9 ).

If µ(i) is generic, then a test set [10,11] for the family LPA,µ(i) is any finite subset Vµ(i)

of ker(A) such that µ(i) · v > 0 for all v ∈ Vµ(i) , and for every b ∈ cone(A) and every x ∈
Pb, either x is the optimal solution of LPA,µ(i)(b) or there exists v ∈ Vµ(i) and ϵ > 0 such

that x− ϵv ≥ 0. Moreover, the definition of minimal non-face of △µ(i) : if F ⊂ {1, . . . , n} is not

a face of △µ(i) but every proper subset of F is a face of △µ(i) , then F is a minimal non-face

of △µ(i) . For non-generic µ, we introduce three definitions as follows:

Definition 4. F is called minimal non-face of ♢µ, if F ⊂ {1, . . . , n} is not a face of ♢µ but

every proper subset of F is a face of ♢µ, and F is not included in any face of ♢µ.

Definition 5. Vµ is called a test set for the family LPA,µ, if ♢µ is subdivided by △µ(i)(i =

1, . . . , r).

Definition 6. For non-generic µ, a finite subset V ′
µ is called regular set if V ′

µ = {
∪r

i=1 Vµ(i)} \
Vµ.

The vector v ∈ V ′
µ can be written as coordinate representation, denoted by u. It is conve-

nient to consider u as a line segment [u+,u−], where u = u+ − u−. We define that [u+,u−] is

directed from u+ to u− since µ · u+ ≥ µ · u−.

Lemma 1. xop
µ(1) , . . . ,x

op
µ(r) move to the unique point yµ in Pb along directed segments of regular

set V ′
µ, respectively.

Proof. The optimal solution c is obtained by solving LPM,µ(b) and yµ = {xop
µ(1) , . . . ,x

op
µ(r)} · c.

The directed segments of regular set V ′
µ trace r monotone paths from the xop

µ(1) , . . . ,x
op
µ(r) to yµ.

Due to optimal solution c is unique, the point yµ on the Pb is unique.
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Example 1 cont. According to regular polyhedral subdivisions ofA in Example 1, the regular

set can be obtained. We obtain F△
µ(1)

= {1, 3}, {1, 4}, {2, 4}, F△
µ(2)

= {2}, {1, 4}, F△
µ(3)

=

{2}, {3}, and F△
µ(4)

= {3}, {1, 4}. According to Definition 4, we obtain F♢µ1
= {1, 3}, {1, 4}.

So, V ′
µ1

= {Vµ(1)

∪
Vµ(4)}\Vµ1 = {2e3−e2−e4, e2+e4−2e3}. According to Lemma 1, we have

x4
2x

7
3

x2
3−x2x4−−−−−−→

5
3 times

x
17
3
2 x

11
3
3 x

5
3
4 , x

15
2
2 x

7
2
4

x2x4−x2
3−−−−−−→

11
6 times

x
17
3
2 x

11
3
3 x

5
3
4 . Similarly, V ′

µ2
= {2e2 − e1 − e3, e1 +

e3 − 2e2}, V ′
µ3

= {3e3 − e1 − 2e4, e1 + 2e4 − 3e3}, and V ′
µ4

= {3e2 − 2e1 − e4, 2e1 + e4 − 3e2}.

§3 Integer programming and universal Gröbner bases

We recall the general integer programming problem [5]

IPA,µ(b) = min{µ · x : Ax = b,x ∈ Nn}. (3)

IPA,µ(b) is feasible if and only if b ∈ coneN(A). And P I
b conv{x ∈ Nn : Ax = b} is a polytope

for each b ∈ coneN(A). P I
b is the fiber of b where πI

A : Nn → Zd, x 7→ Ax. We call P I
b the b-

fiber of πI
A. Denote IPA,µ be the family of IPA,µ(b) which obtained by varying b ∈ coneN(A)

and fixed A, µ, and IPA be the family obtained by keeping only A fixed.

Given µ = (µ1, . . . , µn) ∈ Rn, we define the initial form inµ(f) to be the sum of all terms ζi ·
xai such that µ · ai is maximal for any polynomials f =

∑
ζi · xai . For an ideal I, we define

the initial ideal to be the ideal generated by all initial forms inµ(I) = ⟨inµ(f) : f ∈ I⟩. A finite

subset Gµ ⊂ I is a Gröbner basis for I with respect to µ if inµ(I) = ⟨inµ(g) : g ∈ Gµ⟩. It is

called reduced if, for any two distinct elements gi, gj ∈ Gµ, no term of gj is divisible by inµ(gi).

It is clear that toric ideal IA needs not be a monomial ideal. If µ is non-generic cost function

for IPA,µ, then the ideal inµ(IA) is a binomial ideal, and xu /∈ inµ(IA) for each b ∈ coneN(A).

So, if cost function µ ∈ Rn is non-generic with respect to IPA,µ, then µ · u+ = µ · u− which

implies that the form xu+ − xu− ∈ inµ(IA), and vice versa. Thus initial ideal inµ(IA) is a

binomial ideal. And the radical of the binomial ideal inµ(IA) contains binomial whose index

set is a subset of Dµ:

rad(inµ(IA)) =⟨xi1xi2 · · ·xis ,x
u+

− xu−
: {i1, i2, . . . , is} is a minimal

non− face of ♢µ and binomial xu+

− xu−
∈ inµ(IA)⟩.

(4)

The monomial xi1xi2 · · ·xis is a square-free monomial, and the minimal non-face of ♢µ is

{i1, i2, . . . , is}. So, the decomposition form of A obtained in this way are called regular decom-

position Dµ.

Example 1 cont. We continue with the previous example. Regular decomposition form of

A can be obtained by the theories of integer programming. Using software Macaulay 2, we

obtain the toric ideal IA = ⟨x1x3 − x2
2, x2x4 − x2

3, x1x4 −x2x3⟩. The cost function µ1 =

(2, 1, 2, 3) is fixed. We obtain initial ideal inµ1(IA) = ⟨x1x3, x1x4, x1x
2
4, x

2
1x4, x2x4 − x2

3⟩
and rad(inµ1(IA)) = ⟨x1x3, x1x4, x2x4 − x2

3⟩. By Equation (4), the minimal non-faces of ♢µ1

are {1, 3}, {1, 4}, and {2, 3, 4} is a subset of Dµ1 . So, Dµ1 = {{1, 2}, {2, 3, 4}}.
According to Definition 6, it is clear that the elements of V ′

µ are directed segments. Besides,

all of directed segments come in pairs, with each pair in the opposite direction (i.e., [u+,u−] =
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−[u−,u+]). Now, if we ignore the direction, directed segments become common line segments.

Hence, binomial xu+ − xu−
is equal to xu− − xu+

. We introduce a new term, named reduced

path RPµ.

Definition 7. Reduced path RPµ is a finite set of binomials xu
+ − xu

−
, where the binomials

without direction are supported by V ′
µ.

Example 1 cont. According to regular sets obtained above, it is easy to get reduced path. We

have obtained V ′
µ1

= {2e3 − e2 − e4, e2 + e4 − 2e3}, V ′
µ2

= {2e2 − e1 − e3, e1 + e3 − 2e2}, V ′
µ3

=

{3e3−e1−2e4, e1+2e4−3e3}, and V ′
µ4

= {3e2−2e1−e4, 2e1+e4−3e2}. According to Definition

7, we can easily obtain RPµ1 = {x2
3 − x2x4}, RPµ2 = {x2

2 − x1x3}, RPµ3 = {x1x
2
4 − x3

3}, and
RPµ4 = {x2

1x4−x3
2}. For µ5 = (1, 1, 1, 1), we have Vµ5 = ∅. Hence V ′

µ5
=

∪4
i=1 V ′

µi
. Obviously,

RPµ5
=

∪4
i=1 RPµi

= {x2
3 − x2x4, x

2
2 − x1x3, x1x

2
4 − x3

3, x
2
1x4 − x3

2} is a combined reduced path,

and Dµ5 = {1, 2, 3, 4}. Besides, regular decomposition Dµ5 which is A itself is subdivided by

regular decompositions Dµ1 ,Dµ2 ,Dµ3 , and Dµ4 .

According to Lemma 1, we have a conclusion that the optimal solutions xop
µ(1) . . . ,x

op
µ(r) for

LPA,b move towards the unique point yµ in Pb along directed segments of regular set V ′
µ. Hence,

we hope that the integer programming can have similar result. Now, we define that the integer

solution xµ(i)

is the optimum of IPA,µ(i)(b) for all integer points on the conv(xop
µ(1) , . . . ,x

op
µ(r)).

That is to say, the solution xµ(i)

of IPA,µ(i)(b) depends on the optimal solution xop
µ(i) of LPA,µ(i)(b).

Moreover, we have conv(xµ(1)

, . . . ,xµ(r)

) ⊂ conv(xop
µ(1) , . . . , x

op
µ(r)). Hence, we obtain following

lemma.

Lemma 2. xµ
(1)

, . . . ,xµ
(r)

move towards the unique point yIµ in P I
b along reduced paths RPµ,

respectively.

Proof. According to Lemma 1 and Definition 7, there must exist monotone paths from the

integer solutions xµ(1)

, . . . , xµ(r)

to the unique optimum yI
µ, respectively.

Notice that there is no integer lattice in |yI
µ − yµ|. Then yI

µ ∈ faceµ(P
I
b), and the support

of yI
µ, supp(y

I
µ), is a subset of Dµ. Finally, we can find the position of point with respect to

non-generic cost function µ in P I
b .

Example 1 cont. The unique point yIµ1
can be obtained by reduced path. By the above, we

obtain reduced path RPµ1 = {x2
3 − x2x4}. And xµ

(1)

= (0, 4, 7, 0), xµ
(4)

= (0, 7, 1, 3). Then, we

have x4
2x

7
3

x2
3−x2x4−−−−−−→
2 times

x6
2x

3
3x

2
4, x7

2x3x
3
4

x2x4−x2
3−−−−−−→

1 time
x6
2x

3
3x

2
4. That is to say, the point yIµ1

= (0, 6, 3, 2)

with respect to µ1 = (2, 1, 2, 3) lies in the faceµ1(P
I
b ) = [(0, 4, 7, 0), (0, 7, 1, 3)]. Besides, there

is no integer lattice in |yIµ1
−yµ1

|, and the supp(yIµ1
) = {2, 3, 4} is a subset of Dµ1 , The precise

positions of the points yIµ1
with respect to µ1.

We define the universal Gröbner basis UA to be the union of all reduced Gröbner basis Gµ

of the toric ideal IA when µ runs over all term orders. And UA is a finite set that consists of

binomials xu+ − xu−
, where u = u+ − u− ∈ kerZ(A). Thus the line segment [u+,u−] is an

edge of the Au+-fiber of IPA. We shall view polytope P I
Au+ as the fiber of u. The definition
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of Gröbner fiber of IPA is the fiber of an element u ∈ UA. The symbol St(A) denotes the

Minkowski sum of all Gröbner fibers, and this polytope is called the state polytope of A [3,8].

Definition 8. If a reduced path RPµ induces s different regular decompositions, then we call s

the multiple number of RPµ, denoted by |RPµ| = s. Especially, RPµ is single when s = 1.

Proposition 1. The elements of reduced path are contained in the universal Gröbner basis UA.

Proof. According to the definition of reduced path, the result holds.

Proposition 2. The binomial xu
+ − xu

−
is an element of reduced path if and only if an edge

of St(A) is given by this binomial.

Proof. The elements of reduced path are the elements in UA, and each edge of St(A) is given

by an element in UA according to reference [10]. So a binomial xu+ − xu− ∈ RPµ if and only

if an edge of St(A) is given by this binomial.

Example 1 cont. We can construct state polytope by using universal Gröbner basis, and the

relationship is clear between the state polytope and all reduced paths. By the above, there are

5 reduced paths in total. Using software Macaulay 2, the universal Gröbner basis is UA =

{x1x3−x2
2, x1x4−x2x3, x2x4−x2

3, x1x
2
4−x3

3, x
2
1x4−x3

2}. Fig. 2 shows the relationship between

the state polytope St(A) and these five reduced paths, where the solid lines represent the reduced

paths.

Figure 2. St(A) and the reduced paths.

Theorem 1. The number of regular triangulations plus the sum of multiple numbers for all

reduced paths equals the number of regular decompositions of A.

Proof. By the above analysis, the regular triangulation is a special case of the regular decom-

positions. Besides, reduced paths are supported by all non-generic cost functions. Hence, the

number of regular triangulations and the sum of multiple numbers for all reduced paths is equal

to the number of regular decompositions of A.

Example 1 cont. There are four regular triangulations and five reduced paths in total. So,

the number of regular decompositions of A is 4 + 5 = 9.
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§4 Regular control surfaces of toric patch

4.1 Regular control surfaces and regular decompositions

Definition 9. ([6]) A toric patch associated with a finite points set A is a patch parameterized

by the rational map PA,ω,B : U → R3

PA,ω,B(x) =

∑
a∈A ωabaηa,A(x)∑
a∈A ωaηa,A(x)

, x ∈ U, (5)

where U = conv(A) ⊂ Rd, weights ω = {ωa > 0|a ∈ A}, control points B = {ba|a ∈ A} ⊂
R3, toric-Bernstein basis functions ηa,A(x) = caf1(x)

f1(a) · · · fr(x)fr(a) and positive coefficients

ca > 0 indexed by lattice points of A.

The image of PA,ω,B(x) on U is called toric patch of shape of A, denoted by PA,ω,B. Using

cost function µ and weight ω = {ωa|a ∈ A} ∈ RA
>, a set of weights is defined which depends

on a parameter ωµ(t) = {tµ(a)ωa|a ∈ A}. So we can define toric patch parameterized by t as

PA,ω,B,µ(x; t) =

∑
a∈A tµ(a)ωabaηa,A(x)∑
a∈A tµ(a)ωaηa,A(x)

, x ∈ U. (6)

Similarly, let PA,ω,B,µ(t) be the image of PA,ω,B,µ(x; t) on U with some t ∈ R>. Fix A, weights

ω and control points B for a toric patch PA,ω,B of shape A. Given a regular decomposition

Dµ induced by cost function µ, we consider the weights ω and control points B indexed by

elements of a facet I of Dµ as weights and control points for a toric patch of shape I, denoted

by PI,ω|I,B|I . The union

PA,ω,B(Dµ) =
∪

I∈Dµ

PI,ω|I,B|I (7)

of these patches is called the regular control surface of PA,ω,B induced by the regular decom-

position Dµ [3]. This procedure is called toric degeneration of toric patch.

Theorem 2. ([3])

lim
t→+∞

PA,ω,B,µ(t) = PA,ω,B(Dµ).

This result explains the geometric meaning of the limiting form of toric patch is the regular

control surface by a regular decomposition Dµ of A when all weights tend to infinity. The

specific degeneration methods of toric patch can be found in [3].

Theorem 3. The number of regular control surfaces of a toric patch PA,ω,B is equal to the

number of regular decompositions of A.

Proof. Each regular control surface of the patch is associated to one of regular decompositions

of A by a rational map. In other words, for arbitrary given weights ω and control points B,
the number of regular control surfaces of a toric patch PA,ω,B is equal to the number of the

regular decompositions of A.

By the above analysis and results, we present an algorithm to calculate the number of regular

control surfaces of a toric patch. And we use N to be the number of regular decompositions of
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A in total, T to be the number of regular triangulations of A and S to be the sum of multiple

numbers for all reduced paths.

Algorithm 1.

Input: A,ω,B, N := T,M := 0, S := 0.

Output: The number of regular control surfaces of toric patch RA,ω,B.

1 Calculate the toric ideal IA and the universal Gröbner basis UA of A.

2 Calculate the number of regular decompositions of A by UA and integer programming method.

2.1 If UA = ∅ then go to Step 3. Else select u̇ ∈ UA and set UA := UA\{u̇}.

2.2 If u̇ ∈ UA is a reduced path, then we can conclude cost function µ and the regular

decompositions Dµ of A by Equation (4).

2.2.1 Gather the counts of multiple numbers s of the reduced path by Definition 8, denoted

by S := S + s.

2.2.2 According to the Theorem 1, compute N := N + S and return to Step 2.1.

2.3 Else u̇ ∈ UA is a non-reduced path, then return to Step 2.1.

3 Output N according to Theorem 3.

Remark 2. This algorithm not only can calculate the number of regular control surfaces of a

toric patch, but also provides an method to construct all the regular control surfaces. In Step

2.2, we get all regular decompositions of A, and then we can construct every regular control

surface PA,ω,B(Dµ) of the toric patch PA,ω,B induced by Dµ according to Equation (7).

4.2 Examples

Example 1 cont. According the theories and results raised above, we obtain the number and

all the forms of regular decompositions of A. So, the number and all the form of regular control

surfaces of a toric patch can be obtained by Theorem 3 and Algorithm 1. Since there are 9

different regular decompositions of A, the number of the regular control curves of the cubic

Bézier curve PA,ω,B is 9. We can construct all regular control curves of this curve PA,ω,B (see

Fig. 3) by these regular decompositions of A and Equation (7) as below.

In Definition 9, we don’t need to fix the coefficients ca of the basis function ηa,A, as they

can vary from case to case.

Example 2. We set a 5 point configuration A with index set {1, 2, 3, 4, 5}, which is shown

in Fig. 5(a). Fig. 5(b) also shows the toric patch PA,ω,B associated by A for given control

points B and weights ω. There are five regular triangulations of A. Using Algorithm 1, we have

universal Gröbner basis UA = {x1x3−x2
2, x1x4−x2x5, x1x

2
4−x3x

2
5, x2x4−x3x5}. Exactly, the

elements of UA are the reduced paths of A, where |x1x3 − x2
2| = 2 and the rest is single. Fig

4(a) shows the relationship between these 11 regular decompositions of A. Using Theorem 1, the
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Figure 3. Regular control curves of cubic rational Bézier curve.

(a) Regular decompositions. (b) St(A) and RPµ.

Figure 4. Regular decompositions and state polytope St(A).

Figure 5. Regular control surfaces of toric patch associated with a 5 points configuration.

number of regular decompositions of A is 11. The relationship between reduced paths and state

polytope St(A) is shown in Fig 4(b), where the solid lines represent the reduced paths. According

to Theorem 3 and Remark 2, the number of the regular control surfaces of toric patch PA,ω,B
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associated by 5 point configuration is 11 too. In Fig. 5, there are 11 regular decompositions of

A can induce 11 regular control surfaces of the toric patch PA,ω,B.

Figure 6. Regular control surfaces of a quadratic rational Bézier triangle.

Example 3. Let A be an affine points set, where index set is {1, 2, 3, 4, 5, 6}. Fig. 6(a) indicates
the structure of A and the convex hull U . A triangular Bézier patch PA,ω,B defined by A for

given control points B and weights ω is shown in Fig. 6(b). There are 14 regular triangulations

of A. Using Algorithm 1, we have universal Gröbner basis UA = {x1x3 − x2
2, x1x5 − x2

6, x3x5 −
x2
4, x2x5−x4x6, x2x6−x1x4, x3x6−x2x4, x

2
2x5−x1x

2
4, x3x

2
6−x1x

2
4, x

2
2x5−x3x

2
6}. Exactly, the

elements of UA are the reduced paths of A , where |x1x3 − x2
2| = |x1x5 − x2

6| = |x3x5 − x2
4| = 5

and the rest is single. Besides, they are 10 combined reduced paths. So, the number of regular

decompositions of A is 45. It means that the patch associated with A have 45 regular control

surfaces by Remark 2. Fig. 6 shows some of these regular control surfaces of PA,ω,B. Likewise,

we provide 10 of those 45 regular control surfaces from Fig. 6(c) to Fig. 6(l).

Example 4. In this example, we introduce the method to calculate the number of regular control

surfaces of a biquadratic rational Bézier patch. In general, the patches of bidegree (m,n) can be

dealt with in the same way. Let A be affine points set, where {1, 2, 3, 4, 5, 6, 7, 8, 9} is index set.

There are 9 points in configuration A as Fig. 1(a) shown, which defines a biquadratic rational

Bézier patch PA,ω,B for given control points B and weights ω (see Fig. 1(b)). There exist 429

regular triangulations of A. Surprisingly, the number of regular decompositions is 4279. So

there are 4279 regular control surfaces of biquadratic rational Bézier patch. In Fig. 1(d) - Fig.

1(f) show three of those regular control surfaces of PA,ω,B.

4.3 Application to shape deformation

In this section, a toric patch PA,ω,B can be deformed into a target surface based on the

theories we raised. According to Equation (7), the regular control surface is the union of

some patches which is induced by the subsets of regular decomposition. So, the shape of the

regular control surface is predictable, if the regular decomposition is known. In this way, the
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regular control surface of the toric patch can be generated by selecting an appropriate regular

decomposition and cost function. And this regular control surface is the desired target surface.

Figure 7. Handwritten Arabic numerals.

Figure 8. The procedure of shape deformation when t → +∞.

Example 5. In this example, we want to construct ten target curves which are ten handwritten

Arabic numerals. Chosen ten toric Bézier curves, also called original curves, we want to deform

them into handwritten Arabic numerals by using the theories we raised above(see Fig. 7). Take

the handwritten Arabic numeral two as an example, and other numbers can be dealt with in the

same way. According to the characteristics of handwritten Arabic numeral two, a toric Bézier

curve of degree 5 PA,ω,B (see Fig. 8(a)) is chosen, which is associated with a finite integer

lattice points set A = {1, ..., 6}. It can be deformed into handwritten Arabic numeral two (see

Fig. 8(e)). According to Algorithm 1, the regular decomposition is Dµ = {{1, 3, 5}, {5, 6}} and

corresponding cost function is µ = (2, 3, 2, 3, 2, 5). So, the regular control curve PA,ω,B(Dµ) is

the union of a toric Bézier curve of degree 2 and a line segment, where the toric Bézier curve

of degree 2 is associated with the subset {1, 3, 5} of Dµ and the line segment is associated with

the subset {5, 6} of Dµ. Finally, the regular control curve PA,ω,B(Dµ) is the target curve. And

the final representations validate by the algebra expressions when t → +∞. Fig. 8(a) - Fig.

8(e) show the procedure of shape deformation.

Example 6. Given a sphere surface, we obtain the regular control surface by proposed result.

The sphere surface is combined by eight patches. Using the result we raised, the sphere surface
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in Fig. 9(a) can be deformed into a cube shown in Fig. 9(b) and an octahedron shown in Fig.

9(c). What’s more, all final target surfaces are one-step forming.

(a) (b) (c)

Figure 9. Shape deformation of a sphere surface.

Example 7. Similar to Example 8, given a vase surface, we obtain its regular control surface.

The vase surface is combined by four patches which bidegree is (2, 5). Using the result we raised,

vase surface in Fig. 10(a) can be deformed into target surfaces shown in Fig. 10(b) and Fig.

10(c). And, all final target surfaces are one-step forming.

(a) (b) (c)

Figure 10. Shape deformation of a vase surface.

§5 Conclusions

In this paper, we get the conclusion that each regular control surface of toric patch defined

by A is associated to a regular decomposition by a rational map, which means the number of

regular control surfaces of a toric patch is equal to the number of regular decompositions of A.

By the theories of integer programming and universal Gröbner bases, we present a method to

calculate the number of regular decompositions of A. And all regular decompositions of A can

be constructed at the same time. An algorithm is provided to calculate the number of regular

control surfaces of a toric patch and all of these regular control surfaces can be constructed

too. At the end, the paper show three examples of shape deformation by the proposed result.

The final target curve/surface can be viewed as a regular control curve/surface of original

curve/surface. And the final target curve/surface is one-step forming.
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[11] R R Thomas. Gröbner Bases in Integer Programming, New York: Springer, 1997.

[12] D W Walkup, R J B Wets. Lifting projections of convex polyhedra, Pacific Journal of Mathe-

matics, 1969, 28 (2): 465-475.
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