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Progressive explicit formulae for root-finding problems

based on reparameterization

WANG Hui QIAN Cheng CHEN Xiao-diao∗

Abstract. This paper presents an explicit formula based on reparameterization technique for

progressively computing a simple root of a smooth function, which may have wide applications

in robotics, geomagnetic navigation, geometric processing and computer graphics. Comparing

with Newton-like method, it can achieve convergence rate 2 by adding one more functional eval-

uation, improve the computational stability and ensure the convergence, and also obtain higher

convergence rate and higher efficiency index. Compared with clipping methods for polynomials,

it doesn’t need to bound the polynomials, directly bound the roots and can also work well for

non-polynomial functions with much higher computational efficiency. Comparing with previ-

ous progressive methods, it achieves a much higher computational efficiency and is extended

to solve bivariate equation system. Numerical examples show its much better performance on

approximation error, computational efficiency and computational stability.

§1 Introduction

The root-finding problem is a common and important problem in science and engineering

and it has wide applications in robotics [8], geomagnetic navigation, computer aided geometric

design [17] and computer graphics [1, 3].

There are so many references on the root-finding problems. For the root-finding problem of a

univariate equation, there are Newton-like methods [9, 15, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33],

clipping methods based on Bernstein-Bézier form [2, 4, 5, 13, 14, 17, 18, 21, 29], interval

methods [19, 20] and progressive methods [6, 7]. The works on solving a system of non-linear

equations are referred to [1, 3, 12, 24] and the references therein.

The progressive method in [7] provides explicit derivative-free formula for the root-finding

problem of a univariate equation, which achieves the optimal efficiency index in the conjecture
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[15] and obtains much better robustness than Newton-like methods. At the moment, it seems

to be difficult to extend the progressive method in [7] to the bivariate equation system case,

partially because that the root-finding problem of two approximation bivariate equations itself

is not easy to be solved. Moreover, for a multiple root case, it is necessary to speed up the

convergence rate by using the derivatives, which is not considered in [7].

This paper presents a reparameterization-based method (RBM) to construct explicit for-

mulae of the root-finding problems of both univariate cases and bivariate cases. It achieves the

same robustness as that of the progressive method in [7]; at the same time, it also provides

the corresponding explicit formula by using the derivatives. Numerical examples show that the

RBM achieves much better computational efficiency than that of the progressive method in [7].

§2 The RBM method for univariate cases

2.1 Preliminary theory

For the sake of convenience, we also introduce Theorem 3.5.1 in Page 67, Chapter 3.5 of

[10] as follows.

Theorem 1. Let w0, w1, · · · , wr be r + 1 distinct points in [a, b], and n0, · · · , nr be r + 1

integers ≥ 1. Let N = n0 + n1 + · · ·+ nr. Suppose that g(t) is a polynomial of degree N such

that g(i)(wj) = f (i)(wj), i = 0, · · · , nj − 1, j = 0, · · · , r. There exists ξ0(t) ∈ [a, b] such that

f(t)− g(t) =
f (N)(ξ0(t))

N !

r∏
i=0

(t− wi)
ni .

From Theorem 1, if a function g(s) interpolates another function f(t) at several points such

that f(tj) = g(sj), tj , sj ∈ [a, b], j = 0, 1, · · · , r, and suppose that ϕ(s) is a monotonous

function such that tj = ϕ(sj), j = 0, 1, · · · , r, ∀s ∈ [a, b], there exists ξ1(s) ∈ [a, b] such that

f(tj) = f(ϕ(sj)) = f̄(sj) = g(sj), j = 0, 1, · · · , r,

f(ϕ(s))− g(s) =
(f̄ − g)(r+1)(ξ1(s))

(r + 1)!

r∏
j=0

(s− sj),

which means that the error f(ϕ(s))− g(s) can be of O((b− a)r+1).

Furthermore, by selecting a suitable monotonous function ϕ̂(s) such that

ϕ̂(sj) = tj and ϕ̂′(sj) =
g′(sj)
f ′(tj)

, j = 0, 1, · · · , r,

it can be verified that f̂(sj) = g(sj), f̂ ′(sj) = g′(sj), j = 0, 1, · · · , r, where f̂(s) = f(ϕ̂(s)).

From Theorem 1, there exists ξ2(s) ∈ [a, b] such that

f̂(s)− g(s) =
(f̂ − g)(2r+2)(ξ2(s))

(2r + 2)!

r∏
j=0

(s− sj)
2,

which means that the error f(ϕ̂(s)) − g(s) can be of O((b − a)2r+2). Both ϕ(s) and ϕ̂(s) are

called reparameterization functions. Fig. 1 shows an example of sin(t). In Fig. 1(b), the

errors sin(t) − p(t) and sin(t) − p̄(t) are plotted in solid black and in dashed red, respectively,

where p̄(t) = p(ϕ(t)), p(t) is the quadratic polynomial interpolating sin(t) at three points

t1 = 0,t2 = π/4,t3 = π/2, and ϕ(t) is a quintic polynomial satisfying ϕ(ti) = ti and p̄′(ti) =
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sin′(ti), i = 1, 2, 3. In principle, p(t) interpolates position of sin(t) at three points and achieves

approximation order 3, while while p̄(t) = p(ϕ(t)) interpolates both position and derivative

of sin(t) at three points and achieves approximation order 6, which means that p(ϕ(t)) is

expected to have much better approximation error than that of p(t). As shown in Fig. 1(b),

the approximation error can be improved by using reparameterization.

Figure 1. Improve the approximation error by using reparameterization: (a) The plots of sin(t)
in solid blue, p(t) in dashed red and p(ϕ(t)) in solid black; and (b)the curves in solid black and
in dashed red are the errors sin(t)− p(t) and sin(t)− p(ϕ(t)), respectively.

Let s⋆ be the root satisfying g(s⋆) = 0, one has that f(ϕ(s⋆)) = f(ϕ(s⋆))− g(s⋆) ≈ 0, which

means that ϕ(s⋆) can be used to approximate the root t⋆ satisfying f(t⋆) = 0. So it is the same

with ϕ̂(s⋆).

Suppose that κ1 and κ2 are two real numbers within [a, b]. We have the following lemma

for bounding the root t⋆ of f(t).

Lemma 1. If |κ2 − t⋆| < θ

1 + θ
· |κ1 − t⋆|, where θ > 0, we have κ2 + θ(κ2 − κ1) and κ1

bound t⋆.

Proof. Without loss generality, assume that κ1 < κ2.

(1) Firstly, we claim that κ1 < t⋆. Otherwise, suppose that κ1 ≥ t⋆, one has that |κ2− t⋆| ≥

|κ1 − t⋆|, which conflicts with the assumption that |κ2 − t⋆| < θ

1 + θ
· |κ1 − t⋆| ≤ |κ1 − t⋆|.

(2) Secondly, if κ2 ≥ t⋆, one has κ2 + θ(κ2 − κ1) ≥ κ2 ≥ t⋆, combining with κ1 < t⋆, we

have κ2 + θ(κ2 − κ1) and κ1 bound t⋆.

(3) Finally, if κ2 < t⋆, we will prove that κ2 + θ(κ2 − κ1) and κ1 bound t⋆. Combining with

the assumption |κ2 − t⋆| < θ

1 + θ
· |κ1 − t⋆|, we have

0 > (1 + θ) · (t⋆ − κ2)− θ · (t⋆ − κ1) = t⋆ − (κ2 + θ · (κ2 − κ1)).

Combining with κ1 < t⋆, we have

κ1 < t⋆ < κ2 + θ · (κ2 − κ1),

which means κ2 + θ(κ2 − κ1) and κ1 bound t⋆.

From the above discussions, the proof has been completed.
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2.2 The idea and the algorithm of RBM for a derivative-free case

Given a smooth function f(t) and the interval [a, b] as well. For the case that f(t) is a

polynomial, one can isolate the multiple roots by using the clipping methods such as the ones

in [5, 17]. While for a case that f(t) is a non-polynomial function, this section also provides

an alternative way for isolating the roots as follows. Let ri be the root of Fi(t), i = 2, 3, where

Fi(t) is a polynomial of degree i and interpolates f(t) at i + 1 points (or derivatives as well),

and note that the condition 2|r3 − t⋆| < |r2 − t⋆| can be satisfied, from Lemma 1, one has that

2r3 − r2 and r2 can bound t⋆. The root isolation can be done in the above way.

After the above root isolation process, this paper assumes that f(t) has a unique root t⋆

within [a, b].

In [7], f(t) is approximated by a rational polynomial P (t) = (αi,1t+αi,0)/(1+
i∑

j=1

αi,j+1t
j),

where αi,j are i + 2 real numbers determined by the i + 2 constraints f(tj) = P (tj), j =

0, 1, · · · , i+1. Then the root t = −αi,0/αi,1 is used to progressively approximate the root t⋆ of

f(t), i = 1, 2, · · · .
In this paper, the RBM method utilizes Ai(s) = (s,L(s))

gi(s)
instead to interpolate C(t) =

(t, f(t)) at several points t = tj , j = 0, 1, · · · , i, where L(s) = α + βs is a linear function

satisfying

α =
f(a)b− f(b)a

b− a
, β =

f(b)− f(a)

b− a
, L(a) = f(a) and L(b) = f(b), (1)

which has a root s⋆ ∈ [a, b] such that L(s⋆) = 0.

Similarly as the one in [7], all of the points tj are nearby or close to the root t⋆, j = 0, 1, · · · , i.
For the case that f(t) is a polynomial, the more interpolation points {tj}ij=0, the smaller

approximation error |L(s)/gi(s) − f(ϕi(s))|, especially for the place nearby t⋆. It means that

f(ϕi(s
⋆) ≈ L(s⋆)/gi(s

⋆) = 0, and ϕi(s
⋆) can be used to approximate the root t⋆ of f(t).

The RBM provides an explicit formula for directly computing the value of si for any given

ti ∈ (a, b), and it does not need to compute the expression of gi(s) at all, which achieves

much better computational efficiency than those of the progressive methods in [6, 7]. With the

values of si, both the polynomial gi(s) and the reparameterization function ϕi(s) =
s

gi(s)
can

be determined by using the corresponding explicit formulas. The details are as follows.

From Theorem 1, both ϕi(s) =
s

gi(s)
and Gi(s) =

L(s)
gi(s)

can be used to approximate t and

f(t), respectively, i.e.,

t ≈ ϕi(s) and f(t) ≈ Gi(s) and f(ϕi(s)) ≈ Gi(s). (2)

From Eq. (2), one has f(ϕi(s
⋆)) ≈ Gi(s

⋆) = 0, which leads to

ϕi(s
⋆) ≈ t⋆. (3)

Given tj , j = 0, 1, · · · , i, we determine the values of gi(s
⋆) and ti+1 = ϕi(s

⋆) = s⋆

gi(s⋆)
as

follows. Firstly, from
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C(tj) = Ai(sj), j = 0, 1, · · · , i, (4)

one has C(tj)×Ai(sj) = 0, which leads to

tjL(sj)− f(tj)sj = 0, j = 0, 1, · · · , i. (5)

By solving the linear Eq. (5), we obtain the value of sj .

Secondly, by using tj = ϕi(sj) =
sj

gi(sj)
, one has

gi(sj) =
sj
tj

= γj , j = 0, 1, · · · , i. (6)

From Eq. (6), the unique polynomial gi(s) of degree i can be explicitly expressed by the

following progressive formula

g1(s) = 1, gi(s) = gi−1(s) +
si
ti
− gi−1(si)

i−1

Π
j=0

(si − sj)

i−1

Π
j=0

(s− sj), i ≥ 2, (7)

and then, ti+1 = s⋆

gi(s⋆)
is obtained.

The outline of the algorithm is described as follows.

Algorithm 1. The RBM method for solving the unique root t⋆ ∈ [a, b] of f(t).

Input: The given smooth function f(t), the interval [a, b] and the toler-

ance ε.

Output: The approximation of t⋆.

(1) Begin: Let i = 2, g1(s) = s, t0 = s0 = a, t1 = s1 = b and t2 = a+b
2 ;

Compute α, β and s⋆ = −α
β .

(2) If |ti − ti−1| < ε, go to Step (6); Otherwise, go to Step (3).

(3) By solving Eq. (2), one obtains the values of si and γi.

(4) By using Eq. (4), one obtains ti+1 = s⋆

gi(s⋆)
.

(5) By setting i = i+ 1, go to Step (2).

(6) End: Output ti as the approximation of t⋆.

2.3 The idea and the algorithm of RBM by using derivatives

In this section, it uses Âi(s) = (s,L(s))
ĝi(s)

instead which is tangent with C(t) = (t, f(t)) at

several points C(tj), j = 0, 1, · · · , i, where L(s) = α + βs is determined by Eq. (1). Similarly,

one has

t ≈ ϕ̂i(s) =
s

ĝi(s)
and f̂(s) = f(ϕ̂i(s)) ≈ Ĝi(s) =

L(s)

ĝi(s)
. (8)

From Eq. (8), one has f(ϕ̂i(s
⋆)) ≈ Ĝi(s

⋆) = 0, which leads to

ϕ̂i(s
⋆) ≈ t⋆. (9)
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Given tj , j = 0, 1, · · · , i, we determine the values of gi(s
⋆) and t̂i+1 = ϕ̂i(s

⋆) = s⋆

ĝi(s⋆)
as

follows.

Firstly, from C(t̂j) = Âi(sj), one obtains the linear Eq. (2) for determining the value of sj ,

j = 0, 1, · · · , i.
Secondly, by using t̂j = ϕ̂i(sj) =

sj
ĝi(sj)

, one has

ĝi(sj) =
sj
t̂j

= γj , j = 0, 1, · · · , i. (10)

Thirdly, combining Eq. (7) with f̂ ′(sj) = Ĝ′
i(sj), j = 0, 1, · · · , i, one has

f̂ ′(sj) = f ′(t̂j) · ( 1
γj

− sj ·ĝ′
i(sj)

γ2
j

) = Ĝ′
i(sj) =

L′(sj)
γj

− L(sj)·ĝ′
i(sj)

γ2
j

, (11)

which leads to

ĝ′i(sj) =
(f ′(t̂j)−L′(sj))·γj

f ′(t̂j)sj−L(sj)
= κj , j = 0, 1, · · · , i. (12)

Finally, let hi(s) =
i

Π
j=0

(s− sj)
2, combining Eq. (10) with Eq. (12), the unique polynomial

ĝi(s) of degree 2i+ 1 can be explicitly expressed by the following progressive formula

ĝ0(s) = κ0s+ (γ0 − κ0s0),

ĝi(s) = ĝi−1(s) + (λ1,is+ λ2,i)hi−1(s), i ≥ 1,
(13)

where  λ1,i =
−ĝ′

i−1(si)+κi

hi−1(si)
− h′

i−1(si)(γi−ĝi−1(si))

hi−1(si)2
,

λ2,i =
ĝ′
i−1(si)si−κisi+γi−ĝi−1(si)

hi−1(si)
+

h′
i−1(si)si(γi−ĝi−1(si))

hi−1(si)2
.

And t̂i+1 = s⋆

ĝi(s⋆)
is obtained.

The corresponding algorithm is similar to Algorithm 1, which uses ĝi(s
⋆) instead of gi(s

⋆)

for computing the value of t̂i+1.

2.4 Discussions on the convergence order

Let Di(s) = f(ϕi(s))−Gi(s). Combining Eq. (2), Eq. (4) with Eq. (6), one has

Di(sj) = f(ϕi(sj))−Gi(sj) = 0, j = 0, 1, · · · , i. (14)

Theorem 2. For ∀s ∈ [a, b], if |D(i+1)
i (s)| < M1, where M1 is a positive real number and

i > 2, we have

|Di(s)| < M1

(i+1)!

i

Π
j=0

|(s− sj)|. (15)

Proof. Combining Eq. (14) with Theorem 1, there exists ξ3(s) ∈ [a, b] such that

Di(s) = f(ϕi(s))−Gi(s) =
D

(i+1)
i (ξ3(s))

(i+1)!

i

Π
j=0

(s− sj). (16)

Combining Eq. (16) with |D(i+1)
i (s)| < M1, we obtain Eq. (15), and the proof is completed.

Let D̂i(s) = f(ϕ̂i(s))− Ĝi(s). Combining Eq. (5), Eq. (7) with Eq. (8), one has

D̂i(sj) = D̂′
i(sj) = 0, j = 0, 1, · · · , i. (17)

Theorem 3. For ∀s ∈ [a, b], if |D̂(2i+2)
i (s)| < M2, where M2 is a positive real number and

i > 2, we have
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|D̂i(s)| = |f(ϕ̂i(s))− Ĝi(s)| < M2

(2i+2)!

i

Π
j=0

(s− sj)
2. (18)

Proof. Combining Eq. (17) with Theorem 1, there exists ξ4(s) ∈ [a, b] such that

D̂i(s) =
D̂

(2i+2)
i (ξ4(s))

(2i+2)!

i

Π
j=0

(s− sj)
2. (19)

Combining Eq. (19) with |D̂(2i+1)
i (s)| < M2, we obtain Eq. (18), and the proof is completed.

From Theorems 2 and 3, we have the following corollaries, and similar method for their

proofs can be referred to [11].

Corollary 1. Suppose that for ∀s ∈ [a, b], when f(t) is a polynomial such that |D(i+1)
i (s)| <

M1, where M1 is a constant number, t⋆ is a unique but simple root of f(t) within [a,b] and

G(s⋆) = 0, we have

|ϕi(s
⋆)− t⋆| = O(|ϕi−1(s

⋆)− t⋆|3), i ≥ 3.

Proof. Note that ϕi(s) is a reparameterization function, combining Theorem 2, tj = ϕi(sj),

ti+1 = ϕi(s
⋆) with the assumption, one has

|ti+1 − t⋆| = |ϕi(s
⋆)− t⋆|

= O(|f(ϕi(s
⋆))− f(t⋆)|) = O(|f(ϕi(s

⋆))|)

= O(|f(ϕi(s
⋆))−G(s⋆)|) = O(

i

Π
j=0

|s⋆ − sj |)

= O(
i

Π
j=0

|ϕi(s
⋆)− ϕi(sj)|) = O(

i

Π
j=0

|ti+1 − tj |)

= O(
i

Π
j=0

|(ti+1 − t⋆)− (tj − t⋆)|) = O(
i

Π
j=0

|tj − t⋆|)

= O(
i−1

Π
j=0

|tj − t⋆|) · |ti − t⋆| = O(|ti − t⋆|2),

(20)

and the proof is completed.

Corollary 2. Suppose that for ∀s ∈ [a, b], when f(t) is a polynomial such that |D̂(2i+2)
i (s)| <

M2, where M2 is a constant number, t⋆ is a unique but simple root of f(t) within [a,b] and

Ĝ(s⋆) = 0, we have

|ϕ̂i(s
⋆)− t⋆| = O(|ϕ̂i−1(s

⋆)− t⋆|3), i ≥ 3.

Proof. Note that ϕ̂i(s) is a reparameterization function, combining Theorem 3, t̂j = ϕ̂i(sj),

t̂i+1 = ϕ̂i(s
⋆) with the assumption, one has

|t̂i+1 − t⋆| = |ϕ̂i(s
⋆)− t⋆|

= O(|f(ϕ̂i(s
⋆))− f(t⋆)|) = O(|f(ϕ̂i(s

⋆))|)

= O(|f(ϕ̂i(s
⋆))− Ĝ(s⋆)|) = O(

i

Π
j=0

|s⋆ − sj |2)

= O(
i

Π
j=0

|ϕ̂i(s
⋆)− ϕ̂i(sj)|) = O(

i

Π
j=0

|t̂i+1 − t̂j |2)

= O(
i

Π
j=0

|(t̂i+1 − t⋆)− (t̂j − t⋆)2|) = O(
i

Π
j=0

|t̂j − t⋆|2)

= O(
i−1

Π
j=0

|t̂j − t⋆|) · |t̂i − t⋆|2 = O(|t̂i − t⋆|3),

(21)

and the proof is completed. From Corollaries 1 and 2, the algorithms by computing ti and t̂i
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can achieve convergence order 2 and 3, respectively.

Remark 1. For a large i, the curves interpolating i + 1 points of C(t) (with the order

0, 1, · · · , i) may cause Runge oscillation phenomenon. Thus, for i ≥ 6, one may use three points

(with the order i − 2, i − 1, i) instead for avoiding the Runge oscillation phenomenon, whose

convergence orders are p0 ≈ 1.839 and p1 ≈ 2.919, which satisfy 1 + p0 + p20 − p30 = 0 and

2 + 2p1 + 2p21 − p31 = 0.

Remark 2. When a given polynomial f(t) has a unique root with an interval [a, b], the

convergence of the corresponding progressive method by using another polynomial a(t) inter-

polating f(t) within [a, b] has been discussed and proved [7, 10]. In principle, the progressive

method in this paper uses a rational interpolation polynomial Gi(s) to approximate f(ϕi(s))

with s ∈ [a, b], whose convergence is equivalent to that by using a rational interpolating polyno-

mial Ḡ(t) to approximate f(t), and it has similar convergence within [a, b] containing a unique

root.

2.5 Illustration of the RBM method for a univariate case

Table 1. Approximation errors ek and êk of Example 1 for different k.

k 2 3 4 5 6 7 8

ek 1.0e-1 1.7e-3 2.3e-6 6.3e-12 4.2e-23 2.1e-45 5.3e-90
êk 1.0e-1 7.6e-5 6.7e-13 4.9e-37 1.9e-109 1.2e-326 3.1e-978

Example 1. Let f1(t) = (5t − 2)(4 − t)(t + 10)2/40, t ∈ [0, 1], which has a simple root

t⋆ = 0.4 ∈ [0, 1]. At the beginning, we obtain the linear function L(s) = −10 + 23.6125s,

t0 = s0 = 0, t1 = s1 = 1 and s⋆ = 800/1889 ≈ 0.4235. And then, let t2 = 0.5 and i = 2,

we obtain s2 ≈ 0.532224 by using Eq. (2), and obtain t3 ≈ 0.398328 (or t̂3 ≈ 0.399923) from

Eq.(4) (or Eq. (10)). Later, one can obtain the values of ti and t̂i in a similar way, i = 4, 5, · · · .
More details of the errors ek = |tk − t⋆| and êk = |t̂k − t⋆| are shown in Table 1. It shows that

the convergence orders for ek and êk are 2 and 3, respectively.

§3 Qualitative comparisons among different methods

Table 2. The symbols of different methods.

Newton like Clipping Progressive
N1 N2[16] N3[23] C1[17] C2[4] C3[5] M1[RBM] M2[6] M3[7]

As shown in Table 2, the symbols of different methods of three classes are listed. In this

section, the qualitative comparisons are done. All of the examples have been tested by using the

Maple software on a PC with Intel i5 CPU 2*2.3G and memory 8G. The unit of the computation

time is second (s).
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Table 3. Comparisons with other methods using an efficiency index.

Method N1 N2[16] N3[23] C1[17] C2[4] C3[5] M1 M2[6] M3[7]
nfe 2 6 4 4 7 5 1 1 1
CR 2 16 8 4 7 5 2 2 2
AEI 1.414 1.587 1.682 1.414 1.38 1.32 2 2 2

Firstly, we do the comparisons among different methods on asymptotic efficiency index

(AEI), which is frequently used for comparing the computational efficiencies of different algo-

rithms [22, 23]. The results are list in Table 3, where nfe, CR and AEI denote the number

n of FEs, the convergence rate p and the asymptotic efficiency index (AEI), respectively, with

AEI being defined by p1/n. In Table 3, from the second or third step, the progressive methods

M1, M2 and M3 achieve convergence rate 2 by adding one more FE, while both the numbers of

FEs and the convergence rates of other methods are also listed. It shows that the progressive

methods achieve better AEI than those of Newton-like methods and clipping methods.

Secondly, more qualitative comparisons among three classes of the methods. In principle, the

progressive methods can much easier to improve the convergence order by using more derivatives

than those of both Newton-like methods and clipping methods, and the computational efficiency

of the progressive methods is the highest among the three classes of the methods. On the other

hand, the clipping methods can be used to separate two or more roots, and it achieves the

highest computational stability, and the computational stability of the progressive methods is

higher than that of the Newton-like methods.

Thirdly, the comparisons among different progressive methods Mi, i = 1, 2, 3 are shown

in Table 4. Note that their asymptotical efficiency indexes are all 2. The computational

complexities of one iterative step, e.g., the n-th step, are discussed, and the corresponding

results are listed in Table 4, where nfe, na and nm denote the number of FEs, the number of

addition (minus) operations and the number of multiplication (division) operations, respectively.

It shows that M1 has better computational efficiency than those of M2 and M3, especially in

case of a large n.

Table 4. Comparisons on computational costs for the n-th step.

Method M1 M2 [6] M3 [7]
nfe 1 1 1
na O(n) O(n2) O(n2)
nm O(n) O(n2) O(n2)

§4 Numerical examples and further discussions

This section shows more examples for comparisons among different methods.
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4.1 Comparisons between M1 and clipping methods

This section compares M1 with clipping methods C2 [4] and C3 [5]. In principle, C2 and C3

can compute all of the real roots of a polynomial within a given interval. For computing a unique

simple root of a polynomial within an interval, M1 can achieve a much better performance,

which can be taken as a complementary one of the clipping methods. Note that C2 [4] and C3

[5] need 7 and 5 FEs, respectively, in each clipping step, and the length of the subinterval of the

i−th clipping step is ei, i = 1, 2, · · · . In Table 5, the progressive method M1 costs 5 FEs per

step, i.e., the i−th error ei of M1 is mapping to |t5i−1 − t⋆|, such that there are 5i FEs in M1.

The average computational time is relative to the effective number of digits after point. In this

paper, without special claim, the number of digits is set as 20 for testing the computational

time, i.e., the tolerance is set as 10−20 which is enough for most of practical uses. However, the

numerical convergence rate tends to be more accurate for a large number of digits, by using the

Maple software, the maximum number of digits can be set up to 5000 for testing high precision

of the error.

Table 5. Comparisons on errors and time of Example 2 (|t5i−1 − t⋆| for M1).

ei e1 e2 e3 CR Time(s)

f2(t)

M1 2.8e-3 9.2e-69 9.7e-2166 32 0.188
C2 3.0e-8 5.6e-61 1.2e-431 7 1.656
C3 5.1e-5 8.6e-25 1.2e-123 5 1.156

f3(t)

M1 1.7e-4 1.5e-113 3.6e-3608 32 0.188
C2 5.0e-7 4.4e-51 1.8e-359 7 1.672
C3 2.2e-4 1.0e-22 2.3e-114 5 1.282

f4(t)

M1 2.3e-6 3.4e-179 / 32 0.204
C2 5.2e-11 7.8e-83 1.3e-585 7 1.781
C3 3.5e-7 1.3e-39 1.2e-201 5 1.187

f5(t)

M1 2.1e-4 4.4e-106 1.4e-3358 32 0.203
C2 3.2e-7 3.4e-52 5.2e-367 7 1.703
C3 1.4e-4 4.6e-25 2.0e-127 5 1.219

Example 2. We have tested the following four polynomial functions f2(t) = (t− 1/4)(t+

3)(t + 4)3, f3(t) = (t − 1/5)(t − 3)2(t + 5)4, f4(t) = 1/16(t − 2/5)(4 − t)(t − 10)2 and f5(t) =

(t−3/5)(t+2)2(t−4)4 within [0, 1], which have simple roots 1/4, 1/5, 2/5 and 3/5, respectively.

Table 5 shows the comparison results on both approximation error and computation time. In

Table 5, Time and CR denote average computation time of one step (in second under 100 valid

digits) and convergence rate, and the number 5.2e-3 denotes 5.2 · 10−3. The CRs of M1, C2

and C3 are 32, 7 and 5, respectively. The computational efficiency of each step of M1 is 6 ∼ 10

times of those of C2 and C3. Note that e3 of M1 can reach 5.1e-2011 for f2(t), the bounds of the

number of valid digits is set within [16, 4000]. It shows that M1 achieves the best performance

compared with that of C2 and C3.

We have also tested Example 2 under error tolerance 10−16 where the precision is also set

as 10−16. The comparison results are shown in Table 6. In Table 6, nc denotes the number

of (clipping) steps which are needed, and Tc denotes the total computation time in second. It
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shows that M1, C2 and C3 can satisfy the given tolerance 10−16 within 2 (clipping) steps, and

M1 can be done with the highest computational efficiency, which is about 8 ∼ 15 times of those

of C2 and C3. Since M1 is a progressive method, it can end with an earlier tk, k ≤ 9, which

can further improve the computational efficiency.

Table 6. The number of clipping steps and computation time (s) within 10−16.

Method f2(t) f3(t) f4(t) f5(t)
nc Tc nc Tc nc Tc nc Tc

M1 2 0.266 2 0.272 2 0.265 2 0.281
C2[4] 2 3.297 2 3.266 2 3.391 2 3.344
C3[5] 2 2.516 2 2.563 2 2.485 2 2.578

4.2 Comparisons between progressive methods and Newton-like meth-

ods

This section compares progressive methodsM1, M2 [6] andM3 [7] with Newton-like methods

N2 [16] and N3 [23]. Note that each iterative step of N2 and N3 costs 6 and 4 FEs, respectively,

and each step of progressive methods is considered to cost 6 FEs. We use a total of 12 FEs for

comparisons, which is composed of 2 steps of M1, M2, M3 and N2, and 3 steps of N3.

Table 7. Comparison results on approximation errors in Example 3.

M1 M2 [6] M3[7] N2 [16] N3[23]

f6(t)

n = 4 / / / / 3.3e-2
n = 6 2.5e-14 1.8e-18 3.9e-13 6.6e-5 /
n = 8 / / / / 1.2e-6
n = 12 5.8e-825 1.6e-1076 3.7e-748 2.0e-56 3.5e-42
CR 59 60 58 10 19

f7(t)

n = 4 / / / / 5.8e-2(tb)
n = 6 1.8e-17 1.2e-17 7.1e-19 6.7(ta) /
n = 8 / / / / 8.1e-11(tb)
n = 12 4.2e-1026 3.1e-1109 1.7e-1202 5.2e-1(ta) 3.0e-81(tb)
CR 60 65 63 /(diverge) 22

f8(t)

n = 4 / / / / 3e-16
n = 6 4.1e-52 6.5e-44 2.7e-56 7e-32 /
n = 8 / / / / 4e-136
n = 12 1.4e-3382 4.3e-2844 2.0e-3623 4e-520 2e-1094
CR 65 64 64 16 22.9

f9(t)

n = 4 / / / / 1.9e-2
n = 6 -2.4e-9 6.8e-12 4.9e-14 2.7e-5 /
n = 8 / / / / 1.1e-16
n = 12 -1.4e-495 5.84e-732 3.4e-832 -2.2e-79 1.3e-130
CR 55 61 59 16 8
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(a) (b) (c) (d)

Figure 2. Plots of fi(t) in Example 3, i = 6, 7, 8, 9.

Table 8. Comparisons on computation time at the end of 12 FEs in Example 3.

Digits=100 Digits=1000
f6(t) f7(t) f8(t) f9(t) f6(t) f7(t) f8(t) f9(t)

M1 0.453 0.391 0.437 0.484 0.797 0.703 0.750 0.758
M2[6] 0.641 0.672 0.703 0.721 1.203 1.313 1.375 1.346
M3[7] 0.578 0.547 0.562 0.594 0.906 0.922 0.937 0.953
N2 0.373 0.360 0.375 0.328 0.507 0.513 0.506 0.375
N3 0.391 0.375 0.390 0.391 0.532 0.542 0.537 0.422

Example 3. We have compared progressive methods M1, M2 and M3 with Newton-like

methods N2 and N3, by testing three non-polynomial functions (see also Fig. 2),

f6(t) = (t− 0.5)(esin(10(t−π)) + 4(t− π)− 1), t ∈ [3, 3.3], t⋆2 = π,

f7(t) = −1/t+ sin(t) + 1, t ∈ [0.01, 1.3], t⋆3 ≈ 0.6294465,

f8(t) =
√
t− 1/t− 3, t ∈ [9.4, 10.5], t⋆4 ≈ 9.6318875,

f9(t) = 10t4 − ln(t)− 10e4 + 1, t ∈ [2, 3], t⋆5 = e,

which have simple roots t⋆i , i = 2, 3, 4, 5, respectively. With an initial value, by using Theorem

3, one can obtain an interval containing the root t⋆i . Tables 7 and 8 show the comparison results

on approximation error and average computation time of each step. N2 and N3 converge to the

correct result for cases f6(t) and f7(t); while for the f8(t) case, N2 diverges around ta = 5.3347,

and N3 converges to a wrong one tb = 16.933. The progressive methods converge to the correct

results for all three cases. Table 7 shows the comparison on the approximation errors of the

progressive methods and the Newton-like method. As shown in Table 7, the progressive methods

M1, M2 and M3 have comparable convergence rates, and each additional FE can achieve twice

the convergence order, which are much better than those of Newton-like methods N2 and N3.

Table 8 shows the total computation time at the end of 12 FEs under different digits as well,

which shows that M1, N2 and N3 achieve comparable computational efficiency, which are better

than those of M2 and M3. M1 achieves the best approximation error in the same time, and

achieves the best computational efficiency for the same approximation tolerance. Considering

all the above comparisons, M1 achieves the best performance among the five methods M1, M2,

M3, N2 and N3.

Example 4. We also have tested the following polynomial function f10(t) = 10t4 + log(2−
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t), t ∈ [2− 10−69, 2− 10−70]. Table 9 shows that M1 works well, while Newton method reaches

tc = 2 + 10−70 which is outside of the valid domain of definition in the first iteration. In this

case, M1 achieves a better robustness.

Table 9. Comparison results on approximation errors in Example 4 (ek = |tk − t⋆|).

ek e2 e4 e6 e8 e10 e12
M1 2.3e-70 4.5e-71 1.5e-75 5.4e-94 4.3e-168 2.1e-301

Newton tc / / / / /

4.3 Further discussions with multiple roots for a univariate case

Firstly, we show how to obtain an interval containing one root. Suppose that x1 is obtained

by using some iterative methods including the Newton’s method under the initial value x0. If

2|x1 − t⋆| < |x0 − t⋆|, where t⋆ is the root of f(t), from Lemma 2, t⋆ is bounded by x0 and

2x1−x0. In this way, one can find an interval containing a root by using a suitable initial value

x0.

Secondly, we consider the case which contains a multiple root t⋆ within an interval, and

k ≥ 2 is the corresponding multiplicity. If k is even, we utilize Ai(s) = (s/gi(s), L(s)/gi(s))

to approximate C1(t) = (f(t), f ′(t)). Otherwise, if k is odd, we utilize Ai(s) to approximate

C2(t) = (f ′(t), f ′′(t)) instead. In principle, (f (k−2)(t), f (k−1)(t)) is the best one to be approxi-

mated by using Ai(s), which can lead to a better convergence rate.

Thirdly, the case which may contain two or more roots is considered. If the given function

is a polynomial, one possible way is to turn it into Bernstein-Bézier form and split the given

interval into several subintervals by using the zeros of its control polygon. For each subinterval,

one may isolate the roots by using the method of the first case. For a non-polynomial case, one

may sample the interval into several subintervals of smaller length, and use the method of the

first case to iteratively split it into several subintervals which contain one root.

Example 5. By using the methods for the above three cases, we have tested the RBM

method M1 to compute the roots of the Wilkinson polynomial (see also Fig. 3),

W (t) =
20∏
i=0

(t− i), (22)

within [0, 25], which has twenty zeros i, i = 1, 2, · · · 20, see also Fig. 1 and Example 7 in [4]. At

the beginning, we compute the zeros of the corresponding control polygon, i.e., {0.27, 1.55, 2.83,
4.11, 5.38, 6.65, 7.92, 9.19, 10.46, 11.73, 13.007, 14.27, 15.54, 16.81, 18.07, 19.34, 20.61, 21.87, 23.14,

24.40}. Thus, the given interval [0, 25] is divided into twenty-two sub-intervals by using the

above twenty-one zeros. There are sixteen sub-intervals containing one or two roots of W (t).

We select three of them
∧

1 = [0.27, 1.55],
∧

2 = [2.83, 4.11] and
∧

3 = [16.81, 18.07] to illustrate

with more details, which contain one, two and two roots of W (t), respectively. The RBM can be

directly applied to
∧

1 where W (t) has different signs at its two end points. For
∧

2 and
∧

3, one

can select their mid points to split each of them into two subintervals and each subinterval con-
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Figure 3. Plot of the Wilkinson polynomial [4].

tains a root. The RBM can then be applied for the subintervals. By applying the optimization

method of the given interval (see also Remark 1) for adding one or two points, one may obtain

optimized intervals
∧̄

1 = [0.99, 1.0034],
∧̄

2 = [2.83, 3.004] and
∧̄

3 = [17.988, 18.07] which are

corresponding to [0.27, 1.55], [2.83, 3.47] and [17.44, 18.07]. As shown in Table 10, the RBM

works well in these cases, where the error ei is mapping, respectively to the reparameterization

function ϕi(t).

Table 10. The approximation errors of M1 in Example 5.

Error e1 e2 e3 e4 e5 e6 e7∧̄
1 2.9e-5 7.7e-9 3.7e-15 2.5e-28 2.6e-54 1.7e-106 1.0e-210∧̄
2 4.8e-4 1.2e-6 1.2e-11 1.2e-21 1.2e-41 1.2e-81 1.3e-161∧̄
3 2.8e-3 5.6e-5 1.4e-7 3.2e-14 2.9e-25 5.4e-49 2.0e-95

4.4 Example of the RBM by using derivatives

Table 11. Approximation errors ei of Example 6 for different i.

ei 3 4 5 6 7 CR

f11(t) 2.6e-8 4.7e-23 2.0e-67 2.5e-202 7.2e-603 3
f12(t) 1.3e-3 2.6e-5 2.5e-10 2.1e-25 1.4e-70 3
f13(t) 3.5e-6 1.2e-17 9.3e-50 5.7e-147 6.9e-439 3
f14(t) 1.8e-5 8.0e-15 2.4e-43 1.0e-128 9.3e-385 3
f15(t) 2.4e-9 1.1e-28 1.1e-86 1.2e-260 1.5e-782 3
f16(t) 2.0e-6 2.0e-18 1.4e-53 4.9e-160 4.6e-478 3

Example 6. We have tested the RBM with derivatives by using the following eight more
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examples,

f11(t) = (t− 1)3 − 1, t⋆ = 2, t0 = 1.9, t1 = 2.011,

f12(t) = 10150−5t2 − 1, t⋆ ≈ 5.4772, t0 = 5.490, t1 = 5.458,

f13(t) = e−t2+t+3 − t+ 2, t⋆ ≈ 2.490, t0 = 2.3, t1 = 2.6,

f14(t) = t3 − 10, t⋆ = 101/3, t0 = 2, t1 = 2.850,

f15(t) =
√
t− 1/t− 3, t⋆ ≈ 9.6335, t0 = 9.4, t1 = 10.5,

f16(t) = et + t− 20, t⋆ ≈ 2.8424, t0 = 2.5, t1 = 3.

The results are shown in Table 11. It shows that RBM by using derivatives works well and

achieves the convergence rate 3, and it means that RBM by using derivatives can achieve much

better convergence order for each additional FE.

§5 Extending the RBM method to bivariate cases

5.1 The algorithm of the RBM method

Given an equation system with x ∈ [a, b], y ∈ [c, d] as follows{
f1(x, y) = 0,

f2(x, y) = 0,
(23)

which has a solution (x⋆, y⋆) ∈ [a, b]× [c, d], and the initial value is (x0, y0).

Let Li(x, y) = fi(x0, y0)+fix(x0, y0)(x−x0)+fiy(x0, y0)(y−y0) , αix+βiy+µi, where fix

and fiy denote the partial derivatives of fi(x, y) in x and y, respectively, and s⋆ ∈ [a, b], t⋆ ∈ [c, d]

satisfy Li(s
⋆, t⋆) = 0, i = 1, 2. In this case, we find curves (s,L1(s,t))

ui(s,t)
and (t,L2(s,t))

vi(s,t)
to interpolate

(x, f1(x, y)) and (y, f2(x, y)) at three points (xj , yj), j = i− 2, i− 1, i, where i ≥ 2,

ui(s, t) = ai,0 + ai,1s+ ai,2t and vi(s, t) = bi,0 + bi,1s+ bi,2t (24)

are linear functions of both s and t.

Given three points (xj , yj), j = i−2, i−1, i, the next point can be similarly computed in the

following way. Firstly, for each j, the values of sj and tj are computed by solving the system

consisting of the following two linear equations{
(sj , L1(sj , tj))× (xj , f1(xj , yj)) = f1(xj , yj)sj − L1(sj , tj)xj = 0,

(tj , L2(sj , tj))× (yj , f2(xj , yj)) = f2(xj , yj)tj − L2(sj , tj)yj = 0.
(25)

Secondly, the values of ai,j and bi,j , j = 0, 1, 2, are computed by solving{
ui(sj , tj) = ai,0 + ai,1sj + ai,2tj =

sj
xj
,

vi(sj , tj) = bi,0 + bi,1sj + bi,2tj =
tj
yj
,

j = i− 2, i− 1, i. (26)

Thirdly, the values of xi+1 and yi+1 are computed by using

xi+1 = s⋆

ui(s⋆,t⋆)
and yi+1 = t⋆

vi(s⋆,t⋆)
. (27)

The outline of the algorithm for a bivariate case is described as follows.

Algorithm 2. The RBM method for solving the solution (x⋆, y⋆) of Eq. (23).

Input: The given smooth functions fi(x, y), the intervals [a, b] and [c, d],

the initial value (x0, y0) and the tolerance ε.

Output: The approximation of (x⋆, y⋆).
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(1) Begin: At the beginning, given (x0, y0), the points (x1, y1) and (x2, y2) can be sampled

from the circle with the center (x0, y0) and its radius 10ε;

Compute (s⋆, t⋆) by solving L1(s, t) = L2(s, t) = 0;

Compute (s0, t0), (s1, t1) by solving Eq. (25);

Let i = 2.

(2) If
√
(xi − xi−1)2 + (yi − yi−1)2 < ε, go to Step ((7)); otherwise, go to Step ((3)).

(3) Compute (si, ti) by solving Eq. (25);

(4) By solving Eq. (26), one obtains ui(s, t) and vi(s, t).

(5) By using Eq. (27), one obtains the values of xi+1 and yi+1.

(6) By setting i = i+ 1, go to Step (2).

(7) End: Output (xi, yi) as the approximation of (x⋆, y⋆).

5.2 Numerical examples

Example 7. We have tested the RBM method by using the bivarite cases in Table 12,

which are shown in Fig. 4.

Table 12. The bivarite cases for testing the RBM method

Example formula initial value root

EX1
(y − 1)3(x+ 1) + yx3 − 4 = 0

x0 = 0.7; y0 = 1.6 x⋆ = 1; y⋆ = 2
(x+ 1)2 − 2y2 + 4x = 0

EX2
ln(2ex

2−y − xy) + ex − ey = 0
x0 = 0.8; y0 = 0.8 x⋆ = 1; y⋆ = 1

(x− 2)4(y + 1)xy + yln(x) − 3 = 0

EX3
(x4 − 1)2(y2 − 2)− x2y2 − 3 = 0

x0 = 1.35; y0 = 1.83 x⋆ =
√
2; y⋆ =

√
3

ey
2−x2−1 − (x2 − y2)2 = 0

EX4
3x3 − 4x2 + y4 − 3 = 0

x0 = 0.85; y0 = 1.65 x⋆ = 1; y⋆ =
√
3

ln(x)− y2 + 2 = 0

EX5
y ln(x) + y

1
2
(x−3)2 − 2 = 0

x0 = 2.5; y0 = 1.2 x⋆ = e; y⋆ = 1
ln(xyyx)− yln(x) = 0

EX6
x3 − x− 0.1 + y = 0

x0 = 0.9; y0 = 0.08 x⋆ = 1; y⋆ = 0.1
cos( 1

y
) + ey − cos(10)− e0.1 + 1− x = 0

By using Algorithm 2, we obtain the results shown in Table 13. Note that RBM costs

one functional evaluation (i.e., f(x, y)) for each step while the Newton’s method costs three

functional evaluations (i.e., f(x, y), fx(x, y) and fy(x, y)) for each step. In Table 12, both the

approximation error and the computational time are of three steps for RBM, while they are

of one step for the Newton’s method. It shows that the convergence rate of RBM is about 3

for three functional evaluations (or three steps) or 31/3 ≈ 1.44 for one functional evaluation
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Figure 4. Example 7. Plots of curves in cases EXi, i = 1, 2, · · · , 6.

(or one step), while that of the Newton’s method is of convergence rate 2 for three functional

evaluations or 21/3 ≈ 1.25 for one functional evaluation. The computational time of RBM for

one step is very close to one-third of that of the Newton’s method, whose unit is second. Both

of RBM and the Newton’s method work well for the first five examples; for the sixth example,

RBM works well while the Newton’s method diverges. It shows that the performance of RBM

is much better than that of the Newton’s method.

Table 13. Comparisons on errors and computational time of Example 7.

Example Method 1 2 3 4 Time(s) CR

EX1
RBM 7.6e-3 5.5e-9 4.4e-28 4.7e-89 0.094 3.18
Newton 1.1e-2 1.1e-4 1.1e-8 1.2e-16 0.094 2

EX2
RBM 1.2e-2 1.4e-8 2.8e-25 5.1e-80 0.094 3.20
Newton 7.4e-6 4.8e-11 2.1e-21 3.8e-42 0.095 2

EX3
RBM 2.2e-3 8.9e-10 1.5e-29 5.5e-92 0.095 3.17
Newton 5.8e-7 5.0e-13 3.9e-25 2.2e-49 0.094 2

EX4
RBM 4.0e-3 5.4e-11 1.3e-35 3.0e-112 0.094 3.20
Newton 9.7e-5 9.4e-9 8.9e-17 8.0e-33 0.096 2

EX5
RBM 3.6e-3 3.8e-9 5.8e-28 1.3e-89 0.094 3.18
Newton 1.7e-3 2.8e-6 7.2e-12 4.8e-23 0.096 2

EX6
RBM 1.6e-3 3.5e-9 7.0e-26 2.2e-78 0.096 3
Newton 1.49 1.61 1.86 1.86 0.094 /(diverge)
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§6 Discussions and conclusions

Numerical examples show that the RBM method can achieve convergence rate 2 or 3 by

using no derivatives or with derivatives, the corresponding asymptotical efficiency indexes are

2 or
√
3, which are much better than that

√
2 of the Newton’s method. Furthermore, note

that the interpolation result doesn’t matter with the order of the interpolation points, while

the Newton’s method does matter with the order of the point sequence, and the RBM method

can work more robust than the Newton’s method.

Comparing with the progressive methods M2 [6] and M3 [7], it achieves much higher compu-

tational efficiency, while the approximation error is equivalent to those ofM2 andM3. Moreover,

M2 and M3 cannot deal with the bivariate cases, while M1 is extended to bivariate cases.

In our future work, it is challenging to extend the RBM method to solve double or more

roots with the same number of initial values at the same time. Next, it is necessary to further

improve the corresponding robustness. Finally, it is meaningful to self-adaptively find suitable

initial values for RBM, and to extend RBM to solve equation systems of three or more variables.
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[3] M Bartoň, G Elber, I Hanniel. Topologically guaranteed univariate solutions of underconstrained

polynomial systems via no-loop and single-component tests, Computer-Aided Design, 2011, 43(8):

1035-1044.

[4] X Chen, W Ma, Y Ye. A rational cubic clipping method for computing real roots of a polynomial,

Computer Aided Geometric Design, 2015, 38: 40-50.

[5] X Chen,W Ma. Rational cubic clipping with linear complexity for computing roots of polynomials,

Applied Mathematics and Computation, 2016, 273: 1051-1058.

[6] X Chen, Y Zhang, J Shi, et al. An efficient method based on progressive interpolation for solving

non-linear equations, Applied Mathematics Letters, 2016, 61 (11): 67-72.



WANG Hui, et al. Progressive explicit formulae for root-finding problems based on... 851

[7] X Chen, J Shi, W Ma. A fast and robust method for computing real roots of nonlinear equations,

Applied Mathematics Letters, 2017, 68: 27-32.

[8] Y Choi, W Wang, Y Liu, et al. Continuous collision detection for two moving elliptic disks,

IEEE Transactions on Robotics, 2006, 22(2): 213-224.

[9] A Cordero, J Torregrosa, M Vassileva. A family of modified Ostrowski’s methods with optimal

eighth order of convergence, Applied Mathematics Letters, 2011, 24(12): 2082-2086.

[10] P Davis. Interpolation and Approximation, New York: Dover Publications, 1975.
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