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Progressive explicit formulae for root-finding problems

based on reparameterization

WANG Hui QIAN Cheng CHEN Xiao-diao*

Abstract. This paper presents an explicit formula based on reparameterization technique for
progressively computing a simple root of a smooth function, which may have wide applications
in robotics, geomagnetic navigation, geometric processing and computer graphics. Comparing
with Newton-like method, it can achieve convergence rate 2 by adding one more functional eval-
uation, improve the computational stability and ensure the convergence, and also obtain higher
convergence rate and higher efficiency index. Compared with clipping methods for polynomials,
it doesn’t need to bound the polynomials, directly bound the roots and can also work well for
non-polynomial functions with much higher computational efficiency. Comparing with previ-
ous progressive methods, it achieves a much higher computational efficiency and is extended
to solve bivariate equation system. Numerical examples show its much better performance on

approximation error, computational efficiency and computational stability.

81 Introduction

The root-finding problem is a common and important problem in science and engineering
and it has wide applications in robotics [8], geomagnetic navigation, computer aided geometric
design [17] and computer graphics [1, 3].

There are so many references on the root-finding problems. For the root-finding problem of a
univariate equation, there are Newton-like methods [9, 15, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33],
clipping methods based on Bernstein-Bézier form [2, 4, 5, 13, 14, 17, 18, 21, 29|, interval
methods [19, 20] and progressive methods [6, 7]. The works on solving a system of non-linear
equations are referred to [1, 3, 12, 24] and the references therein.

The progressive method in [7] provides explicit derivative-free formula for the root-finding

problem of a univariate equation, which achieves the optimal efficiency index in the conjecture
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[15] and obtains much better robustness than Newton-like methods. At the moment, it seems
to be difficult to extend the progressive method in [7] to the bivariate equation system case,
partially because that the root-finding problem of two approximation bivariate equations itself
is not easy to be solved. Moreover, for a multiple root case, it is necessary to speed up the
convergence rate by using the derivatives, which is not considered in [7].

This paper presents a reparameterization-based method (RBM) to construct explicit for-
mulae of the root-finding problems of both univariate cases and bivariate cases. It achieves the
same robustness as that of the progressive method in [7]; at the same time, it also provides
the corresponding explicit formula by using the derivatives. Numerical examples show that the

RBM achieves much better computational efficiency than that of the progressive method in [7].

82 The RBM method for univariate cases

2.1 Preliminary theory

For the sake of convenience, we also introduce Theorem 3.5.1 in Page 67, Chapter 3.5 of
[10] as follows.

Theorem 1. Let wy, wy, - -+, w, be r + 1 distinct points in [a,b], and ng, -+, n,. be r +1
integers > 1. Let N =ng + ny + - -+ + n,. Suppose that g(t) is a polynomial of degree N such
that ¢ (w;) = f@(w;), i=0,---,n; —1, j=0,---,r. There exists &/(t) € [a,b] such that

(N) r
1(0) — gty = T T e

i=0
From Theorem 1, if a function ¢(s) interpolates another function f(t) at several points such

that f(t;) = g(s;), tj,s; € [a,b], j =0,1,---,r, and suppose that ¢(s) is a monotonous
function such that ¢t; = ¢(s;), j=0,1,---,r, Vs € [a,b], there exists &1 (s) € [a, b] such that
_ (=9 (&) -
which means that the error f(¢(s)) — g(s) can be of O((b— a)"*1).
Furthermore, by selecting a suitable monotonous function q@(s) such that

é(s.]) = t] and (5/(8]) = i”((:j;7 j = Oa 17 e, T
it can be verified that f(s;) = g(s;), f'(s;) = ¢'(s;), j=0,1,---,r, where f(s) = f(¢(s)).
From Theorem 1, there exists £2(s) € [a, b] such that

; _ (=9 (&) ¢ 2

f(S) g(S) - (27" 4 2)| jl;[()(s S]) ’
which means that the error f(¢(s)) — g(s) can be of O((b— a)**+2). Both ¢(s) and ¢(s) are
called reparameterization functions. Fig. 1 shows an example of sin(¢). In Fig. 1(b), the
errors sin(t) — p(t) and sin(t) — p(t) are plotted in solid black and in dashed red, respectively,

where p(t) = p(4(t)), p(t) is the quadratic polynomial interpolating sin(t) at three points
t;1 = 0,t2 = w/4,t3 = 7/2, and ¢(t) is a quintic polynomial satisfying ¢(t;) = t; and p'(¢;) =
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sin’(t;), i = 1,2, 3. In principle, p(t) interpolates position of sin(t) at three points and achieves
approximation order 3, while while p(¢t) = p(¢(t)) interpolates both position and derivative
of sin(¢) at three points and achieves approximation order 6, which means that p(¢4(t)) is
expected to have much better approximation error than that of p(t). As shown in Fig. 1(b),

the approximation error can be improved by using reparameterization.
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(a)

Figure 1. Improve the approximation error by using reparameterization: (a) The plots of sin(t)
in solid blue, p(t) in dashed red and p(¢(t)) in solid black; and (b)the curves in solid black and
in dashed red are the errors sin(t) — p(t) and sin(t) — p(¢(t)), respectively.

Let s* be the root satisfying g(s*) = 0, one has that f(¢(s*)) = f(¢(s*)) — g(s*) =~ 0, which
means that ¢(s*) can be used to approximate the root t* satisfying f(¢t*) = 0. So it is the same
with ¢(s*).

Suppose that k1 and ko are two real numbers within [a,b]. We have the following lemma
for bounding the root t* of f(t).

Lemma 1. If |k — t*] < Tl |k1 — t*|, where 8 > 0, we have ko + 0(k2 — k1) and kK
bound t*.

Proof. Without loss generality, assume that k1 < Ko.
(1) Firstly, we claim that k; < ¢t*. Otherwise, suppose that k1 > t*, one has that |ke —t*| >

|k1 — t*], which conflicts with the assumption that |ke — t*| < %_;_0 R =t < |kp — T

(2) Secondly, if ko > t*, one has ko + 0(ka — K1) > Ko > t*, combining with k1 < t*, we
have kg + 0(k2 — k1) and k1 bound ¢*.

(3) Finally, if ko < t*, we will prove that ks + 0(k2 — k1) and k1 bound ¢*. Combining with

the assumption |kg — t*| < T30 |k1 — t*], we have

0>(140) - (t"—ka)—0-(t*—kK1) =t"— (k2 + 0 (k2 — K1)).
Combining with k1 < t*, we have
K1 <t* < ko +0- (ko — K1),
which means ko + (k2 — k1) and k1 bound ¢*.

From the above discussions, the proof has been completed.
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2.2 The idea and the algorithm of RBM for a derivative-free case

Given a smooth function f(¢) and the interval [a,b] as well. For the case that f(t) is a
polynomial, one can isolate the multiple roots by using the clipping methods such as the ones
in [5, 17]. While for a case that f(¢) is a non-polynomial function, this section also provides
an alternative way for isolating the roots as follows. Let r; be the root of F;(t), i = 2,3, where
F;(t) is a polynomial of degree ¢ and interpolates f(t) at ¢ + 1 points (or derivatives as well),
and note that the condition 2|rs — t*| < |re — t*| can be satisfied, from Lemma 1, one has that

2rs — ro and 75 can bound t*. The root isolation can be done in the above way.

After the above root isolation process, this paper assumes that f(¢) has a unique root t*
within [a, b].

In [7], f(t) is approximated by a rational polynomial P(t) = (a; 1t +a;0)/(1+ > i ji1t?),
=1

where «; ; are ¢ + 2 real numbers determined by the i + 2 constraints f(¢;) :j P(t;), j =
0,1,---,i4 1. Then the root t = —a; 0/, 1 is used to progressively approximate the root t* of
fi),i=1,2,---.

In this paper, the RBM method utilizes A;(s) = (Sg;iL((:))) instead to interpolate C(t) =
(t, f(t)) at several points t = ¢;, j = 0,1,---,4, where L(s) = a + fs is a linear function

satisfying
fla)b— f(b)a f(b) — fla
o= JODZ IOy JOLZTO) ) = ) ana L) = F0), ()
which has a root s* € [a, b] such that L(s*) =0.
Similarly as the one in [7], all of the points ¢; are nearby or close to the root t*, j = 0,1,--- ,4.

For the case that f(¢) is a polynomial, the more interpolation points {tj};zo, the smaller
approximation error |L(s)/gi(s) — f(#i(s))|, especially for the place nearby ¢*. It means that
f(@i(s*) = L(s*)/gi(s*) = 0, and ¢;(s*) can be used to approximate the root t* of f(¢).

The RBM provides an explicit formula for directly computing the value of s; for any given
t; € (a,b), and it does not need to compute the expression of g;(s) at all, which achieves
much better computational efficiency than those of the progressive methods in [6, 7]. With the

S
gi(s)
be determined by using the corresponding explicit formulas. The details are as follows.

values of s;, both the polynomial g;(s) and the reparameterization function ¢;(s) =

can

S

From Theorem 1, both ¢;(s) = 5. and Gi(s) = gL((Z)) can be used to approximate ¢ and

f(t), respectively, i.e.,

t~¢i(s) and f(t) = Gi(s) and [f(¢i(s)) = Gi(s). (2)
From Eq. (2), one has f(¢;(s*)) = G;(s*) = 0, which leads to

di(s¥) ~ t*. (3)

Given t;, j = 0,1,--- ,4, we determine the values of g;(s*) and t;,41 = ¢;(s*) =

gi(s7) &8

follows. Firstly, from
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C(t]) = AZ(S])7 j = 0717' o 7ia
one has C(t;) x A;(s;) = 0, which leads to

th(Sj) - f(tj)Sj = 0, ] = 0, 1, e ,i.
By solving the linear Eq. (5), we obtain the value of s;.

Secondly, by using t; = ¢;(s;) = ﬁij), one has
Sj . .
g’L(S]) = 7 =% J :0u17"' Iz
J

837

(6)

From Eq. (6), the unique polynomial g;(s) of degree ¢ can be explicitly expressed by the

following progressive formula
S .
H—gi-1(si) i1 ‘
g1(s) =1, gi(s) = gia(s) + “g——" (s —s5), 122,
II (si — s;)
and then, t;41 = ﬁ;*) is obtained.

The outline of the algorithm is described as follows.

Algorithm 1. The RBM method for solving the unique root t* € [a, b] of f(t).
Input: The given smooth function f(t), the interval [a, b] and the toler-
ance .

Output: The approximation of ¢*.

(1) Begin: Let i =2, g1(s) =s,tp =sp =a, t;1 =s; =band ty = ‘%b;

Compute «a, f and s* = —&.

™

(2) If |t; — ti—1| < &, go to Step (6); Otherwise, go to Step (3).
(3) By solving Eq. (2), one obtains the values of s; and ~;.

(4) By using Eq. (4), one obtains t;; = ﬁ

(5) By setting i =i+ 1, go to Step (2).

(6) End: Output ¢; as the approximation of ¢*.

2.3 The idea and the algorithm of RBM by using derivatives

(7)

In this section, it uses A;(s) = % instead which is tangent with C(t) = (¢, f(¢)) at
several points C(¢;), j =0,1,--- ,4, where L(s) = a + (s is determined by Eq. (1). Similarly,

one has
S ~

L(s)
gi(s)

s) = f(éz(s)) ~ Gz(s) =

(8)

(9)
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Given t;, j = 0,1,--- ,i, we determine the values of g;(s*) and #;4; = éi(s*) = gi?;*) as

follows.

Firstly, from C(f;) = A;(s;), one obtains the linear Eq. (2) for determining the value of s,
3=0,1,--- 4.

Secondly, by using t}- = (;ASZ-(S]-) = ﬁg]‘), one has

gi(sj)zj—jzyj, j=0,1,-- i (10)
Thirdly, combining Eq. (7) with f'(s;) = G'(s;),5 = 0,1,--- 4, one has
F(s;) = f'(d;) - (7% _ %f(sj)) = Gl(s;) = Ll’gjj) _ L(Sj)’)'/;g:;(sj), (11)
which leads to
Gilsy) = Ll — o, j 0,1, i (12)

Finally, let h;(s) = ‘Ho(s — 5;)?, combining Eq. (10) with Eq. (12), the unique polynomial
=
gi(s) of degree 2i + 1 can be explicitly expressed by the following progressive formula

Go(s) = kos + (Yo — KoSo),

N N . (13)
Gi(8) = gi—1(s) + (Mis + Aai)hica(s), ©>1,
where
N — —Gia(s)tri _ hiy(si)(vi—gi-1(s:))
AR o™ h s (51))
Gi_1(si)si—risi+vi—Ggi—1(s: ioq(si)si(yi—gi—1(s:
Azi = ; hi—1(si) : + ' hi—1(s:)? )
And t;, = ﬁ;*) is obtained.

The corresponding algorithm is similar to Algorithm 1, which uses §;(s*) instead of g;(s*)

for computing the value of #; 1.

2.4 Discussions on the convergence order
Let D;(s) = f(¢i(s)) — Gi(s). Combining Eq. (2), Eq. (4) with Eq. (6), one has
Dl(sj):f(¢z(sj))_Gl(S]):O’ .7:0717 7Z (14)

Theorem 2. For Vs € [a, b], if \D§i+1)(s)| < My, where M, is a positive real number and

i > 2, we have

IDi(9)] < i (s = sl (15)
Proof. Combining Eq. (14) with Theorem 1, there exists &3(s) € [a,b] such that
Di(s) = F(6i(s)) = Guls) = 2800 11 (5 — 5,) (16)
1(3 = f(¢i(s)) — Gi(s) = Gt ijS—SJ.

Combining Eq. (16) with |D5i+1)(s)| < M, we obtain Eq. (15), and the proof is completed.
Let Dy(s) = f(¢i(s)) — Gi(s). Combining Eq. (5), Eq. (7) with Eq. (8), one has
Di(sj) = Di(s;) =0, j=0,1,---,i. (17)
Theorem 3. For Vs € [a, 1], if |D§2i+2)(s)| < My, where Mj is a positive real number and
i > 2, we have
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IDi(9)] = 1F(Bi(s)) = Guls)] < iy T (5 = 5 (18)
Proof. Combining Eq. (17) with Theorem 1, there exists &4(s) € [a,b] such that
. DE+D ¢ (o)) b
Di(s) = Z(Tgﬁﬁmjgo(s - ;)% (19)

Combining Eq. (19) with |ﬁ§2i+1)(s)| < Ms, we obtain Eq. (18), and the proof is completed.

From Theorems 2 and 3, we have the following corollaries, and similar method for their
proofs can be referred to [11].

Corollary 1. Suppose that for Vs € [a, b], when f(¢) is a polynomial such that \D§i+1)(s)| <
My, where M; is a constant number, ¢* is a unique but simple root of f(t) within [a,b] and
G(s*) =0, we have

|6i(s*) — | = O(|gi—1(s*) = t*°), i>3.
Proof. Note that ¢;(s) is a reparameterization function, combining Theorem 2, t; = ¢;(s;),
tir1 = ¢i(s*) with the assumption, one has
ltivr — ] = [@i(s*) — ¥
= O(|f(9i(s*)) = f(t9)]) = O(| f(ds(s™))])

= 01 (6:(s) = G(s7)) = O( T | = 55

= O( 11 0x(s") = 6u(s,)]) = Ot — 5] (20)
= O( 1L |(ti1 — ) = (t; — £)) = O( L |t — £*)

= O(TLJt; — 1)) It = 1] = (It — "),

and the proof is completed.

Corollary 2. Suppose that for Vs € [a, b], when f(t) is a polynomial such that |Z§£2i+2) (s)] <
My, where M, is a constant number, t* is a unique but simple root of f(¢) within [a,b] and
G(s*) =0, we have

|Gi(s™) =t = O(|dia(s) = t**), i >3
Proof. Note that ¢;(s) is a reparameterization function, combining Theorem 3, t; = qgi(sj),

i1 = @( *) with the assumption, one has

=0O(

= O(If(u(s7) — G(s")) = O(TL |s* — s, )

= O(IL[6i(5%) = 6i(s1)) = O ML Jivss — ,?) 1)
= O Gus =) = (G =2 = O, — )

=0o(1l G =) - [f = 7 = O(Jt; — *),

and the proof is completed. From Corollarles 1 and 2, the algorithms by computing t; and ¢;
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can achieve convergence order 2 and 3, respectively.

Remark 1. For a large i, the curves interpolating i + 1 points of C(t) (with the order
0,1,---,4) may cause Runge oscillation phenomenon. Thus, for ¢ > 6, one may use three points
(with the order ¢ — 2,7 — 1,4) instead for avoiding the Runge oscillation phenomenon, whose
convergence orders are py ~ 1.839 and p; ~ 2.919, which satisfy 1 + pg + pg — p§ = 0 and
2+ 2p; +2p2 — p3 = 0.

Remark 2. When a given polynomial f(¢) has a unique root with an interval [a,b], the
convergence of the corresponding progressive method by using another polynomial a(t) inter-
polating f(¢) within [a, b] has been discussed and proved [7, 10]. In principle, the progressive
method in this paper uses a rational interpolation polynomial G;(s) to approximate f(¢;(s))
with s € [a, b], whose convergence is equivalent to that by using a rational interpolating polyno-
mial G(t) to approximate f(¢), and it has similar convergence within [a,b] containing a unique
root.

2.5 Illustration of the RBM method for a univariate case

Table 1. Approximation errors e; and é; of Example 1 for different k.

k 2 3 4 5 6 7 8
ek 1.0e-1 1.7e-3 2.3e-6 6.3e-12 4.2e-23 2.1e-45 5.3e-90
ek 1.0e-1 7.6e-5 6.7e-13 4.9e-37 1.9e-109 1.2e-326 3.1e-978

Example 1. Let fi(t) = (5t — 2)(4 — t)(t + 10)2/40,t € [0,1], which has a simple root
t* = 04 € [0,1]. At the beginning, we obtain the linear function L(s) = —10 4 23.6125s,
to =590 =0, t1 = s1 = 1 and s* = 800/1889 =~ 0.4235. And then, let t; = 0.5 and i = 2,
we obtain so &~ 0.532224 by using Eq. (2), and obtain t3 ~ 0.398328 (or 3 ~ 0.399923) from
Eq.(4) (or Eq. (10)). Later, one can obtain the values of t; and #; in a similar way, i = 4,5, - - - .
More details of the errors ey = |t — t*| and é; = |fx — t*| are shown in Table 1. It shows that
the convergence orders for e and é; are 2 and 3, respectively.

83 Qualitative comparisons among different methods

Table 2. The symbols of different methods.

Newton like Clipping Progressive
Ny No[16] N3[23] Ci[17] C:[4]  Cs[5] M;,[RBM] M.[6] M3[7]

As shown in Table 2, the symbols of different methods of three classes are listed. In this
section, the qualitative comparisons are done. All of the examples have been tested by using the
Maple software on a PC with Intel i5 CPU 2*2.3G and memory 8G. The unit of the computation
time is second (s).
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Table 3. Comparisons with other methods using an efficiency index.

Method N1 N2[16] N3 [23] C1 [17} CQ [4] Cg [5} M1 M2 [6] M3 [7}

Nfe 2 6 4 4 7 5 1 1 1
CR 2 16 8 4 7 5 2 2 2
AET 1.414 1.587 1.682 1.414 1.38 1.32 2 2 2

Firstly, we do the comparisons among different methods on asymptotic efficiency index
(AEI), which is frequently used for comparing the computational efficiencies of different algo-
rithms [22, 23]. The results are list in Table 3, where ng., CR and AEI denote the number
n of FEs, the convergence rate p and the asymptotic efficiency index (AEI), respectively, with
AEI being defined by p'/". In Table 3, from the second or third step, the progressive methods
My, My and Mj achieve convergence rate 2 by adding one more FE, while both the numbers of
FEs and the convergence rates of other methods are also listed. It shows that the progressive
methods achieve better AEI than those of Newton-like methods and clipping methods.

Secondly, more qualitative comparisons among three classes of the methods. In principle, the
progressive methods can much easier to improve the convergence order by using more derivatives
than those of both Newton-like methods and clipping methods, and the computational efficiency
of the progressive methods is the highest among the three classes of the methods. On the other
hand, the clipping methods can be used to separate two or more roots, and it achieves the
highest computational stability, and the computational stability of the progressive methods is
higher than that of the Newton-like methods.

Thirdly, the comparisons among different progressive methods M;, i = 1,2,3 are shown
in Table 4. Note that their asymptotical efficiency indexes are all 2. The computational
complexities of one iterative step, e.g., the n-th step, are discussed, and the corresponding
results are listed in Table 4, where n¢., n, and n,, denote the number of FEs, the number of
addition (minus) operations and the number of multiplication (division) operations, respectively.
It shows that M; has better computational efficiency than those of My and M3, especially in
case of a large n.

Table 4. Comparisons on computational costs for the n-th step.

Method M,y M> [6] M3 [7]
Tre I i 1

Ng O(n) O(n?) O(n?)
Nim, O(n) O(n?) O(n?)

84 Numerical examples and further discussions

This section shows more examples for comparisons among different methods.
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4.1 Comparisons between )M; and clipping methods

This section compares M; with clipping methods Cy [4] and C3 [5]. In principle, Cy and Cs
can compute all of the real roots of a polynomial within a given interval. For computing a unique
simple root of a polynomial within an interval, M; can achieve a much better performance,
which can be taken as a complementary one of the clipping methods. Note that Cy [4] and C3
[5] need 7 and 5 FEs, respectively, in each clipping step, and the length of the subinterval of the
i—th clipping step is e;, ¢ = 1,2,---. In Table 5, the progressive method M; costs 5 FEs per
step, i.e., the i—th error e; of M is mapping to |ts5;—1 — t*|, such that there are 5i FEs in M;.
The average computational time is relative to the effective number of digits after point. In this
paper, without special claim, the number of digits is set as 20 for testing the computational
time, i.e., the tolerance is set as 10720 which is enough for most of practical uses. However, the
numerical convergence rate tends to be more accurate for a large number of digits, by using the
Maple software, the maximum number of digits can be set up to 5000 for testing high precision
of the error.

Table 5. Comparisons on errors and time of Example 2 (|t5;—1 — t*| for My).

e; el es es CR Time(s)
M 2803 9.20-69 9702166 32 0.188
Ca 3.0e-8 5.60-61 1.2e-431 7 1.656
() 5.1e-5 8.66-25 1.2-123 5 1.156
7, 1764 The-113  3.603608 32 0.188%
Cs 5.00-7 4.4e-51 1.8¢-359 7 1.672
EIORoN 2.26-4 1.0e-22 2.3e-114 5 1.282
i 2.36:6 3.46-179 32 0.204
o 5.2e-11 7.80-83 1.3¢-585 7 1.781
L) o 3.5¢-7 1.3¢-39 1.2¢-201 5 1.187
L 2104 146106 1.4e3358 32 0.203
o 3.20-7 3.4e-52 5.20-367 7 1.703
QRN 1.4e-4 4.66-25 2.0e-127 5 1.219

Example 2. We have tested the following four polynomial functions fo(t) = (¢t — 1/4)(t +
3)(t+ 4%, folt) = (t— 1/5)(t — 3)2(t + 5), fa(t) = 1/16(t — 2/5)(4 — 1)(t — 10)? and f5(t) =
(t—3/5)(t+2)%(t—4)* within [0, 1], which have simple roots 1/4, 1/5, 2/5 and 3/5, respectively.
Table 5 shows the comparison results on both approximation error and computation time. In
Table 5, Time and CR, denote average computation time of one step (in second under 100 valid
digits) and convergence rate, and the number 5.2e-3 denotes 5.2 - 1073. The CRs of My, Co
and C3 are 32, 7 and 5, respectively. The computational efficiency of each step of Mj is 6 ~ 10
times of those of Cy and C3. Note that eg of M7 can reach 5.1e-2011 for f5(t), the bounds of the
number of valid digits is set within [16,4000]. It shows that M; achieves the best performance
compared with that of Cy and Cj.

We have also tested Example 2 under error tolerance 10716 where the precision is also set
as 107!6. The comparison results are shown in Table 6. In Table 6, n. denotes the number

of (clipping) steps which are needed, and T, denotes the total computation time in second. It
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shows that M, Cy and C3 can satisfy the given tolerance 1016 within 2 (clipping) steps, and
M can be done with the highest computational efficiency, which is about 8 ~ 15 times of those

of C5 and (5. Since Mj is a progressive method, it can end with an earlier t;, k& < 9, which

can further improve the computational efficiency.

Table 6. The number of clipping steps and computation time (s) within 10716.

Method f2(t) f3(t) fa(t) f5(t)
T. Ne T. Ne T. Ne 1.
M, 0.266 2 0.272 2 0.265 2 0.281
Cs4] 3.207 2 3.266 2 3.391 2 3.344
Cs[5] 2.516 2 2.563 2 2.485 2 2.578

4.2 Comparisons between progressive methods and Newton-like meth-

ods

This section compares progressive methods My, M [6] and M3 [7] with Newton-like methods
N3 [16] and N3 [23]. Note that each iterative step of Ny and N3 costs 6 and 4 FEs, respectively,

and each step of progressive methods is considered to cost 6 FEs. We use a total of 12 FEs for

comparisons, which is composed of 2 steps of My, My, M3z and Ny, and 3 steps of Nj.

Table 7. Comparison results on approximation errors in Example 3.

My M, [6] M3[7] Ny [16] N3[23]
n=4 / / / / 3.3e-2
n==~6 2.5e-14 1.8e-18 3.9e-13 6.6e-5 /

fe(t) n=28 / / / / 1.2e-6
n =12 5.8e-825 1.6e-1076 3.7e-748 2.0e-56 3.5e-42
CR 59 60 58 10 19
n=4 / / / / 5.8e-2(tb)
n==6 1.8e-17 1.2e-17 7.1e-19 6.7(ta) /

fz(t) n=28 / / / / 8.1e-11(tb)
n=12 4201026  3.1e-1109  1.7e-1202  5.2e-1(ta)  3.0e-81(tb)
CR 60 65 63 /(diverge) 22
n=4 / / / / 3e-16
n==~6 4.1e-52 6.5e-44 2.7e-56 Te-32 /

fs(t) n=38 / de-136
n =12 1.4e-3382 4.3e-2844 2.0e-3623 4e-520 2e-1094
CR 65 64 64 16 22.9
n=4 / / / 1.9e-2
n==~6 -2.4e-9 6.8e-12 4.9e-14 2.7e-5 /

fo(t) n=28 / / / / 1.1e-16
n =12 -1.4e-495 5.84e-732 3.4e-832 -2.2e-79 1.3e-130
CR 55 61 59 16 8
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Figure 2. Plots of f;(¢) in Example 3, ¢ =6,7,8,09.

Table 8. Comparisons on computation time at the end of 12 FEs in Example 3.

Digits=100 Digits=1000
fe(?) f7(#) fs(t) fo(t) fo(?) JidO) fs(®) fo)
M, 0.453 0.391 0.437 0.484 0.797 0.703 0.750 0.758
MQ[G] 0.641 0.672 0.703 0.721 1.203 1.313 1.375 1.346
M3[7] 0.578 0.547 0.562 0.594 0.906 0.922 0.937 0.953
No 0.373 0.360 0.375 0.328 0.507 0.513 0.506 0.375
N3 0.391 0.375 0.390 0.391 0.532 0.542 0.537 0.422

Example 3. We have compared progressive methods M;, My and M3 with Newton-like
methods Ny and N3, by testing three non-polynomial functions (see also Fig. 2),

fo(t) = (t — 0.5)(esmO0CE=m) 4 4(t — 1) — 1), t€[3,3.3], th=m,
fr(t) = =1/t +sin(t) + 1, t€[0.01,1.3], 1}~ 0.6294465,
fa(t) =Vt —1/t -3, t €19.4,10.5], t; ~ 9.6318875,
fo(t) = 10t* — In(t) — 10e* + 1, te 2,3, tt =e,

which have simple roots t7, i = 2, 3,4, 5, respectively. With an initial value, by using Theorem
3, one can obtain an interval containing the root ¢7. Tables 7 and 8 show the comparison results
on approximation error and average computation time of each step. Ny and N3 converge to the
correct result for cases fg(t) and f7(t); while for the fs(¢) case, Ny diverges around t, = 5.3347,
and N3 converges to a wrong one t, = 16.933. The progressive methods converge to the correct
results for all three cases. Table 7 shows the comparison on the approximation errors of the
progressive methods and the Newton-like method. As shown in Table 7, the progressive methods
M, M> and M3 have comparable convergence rates, and each additional FE can achieve twice
the convergence order, which are much better than those of Newton-like methods Ny and Njs.

Table 8 shows the total computation time at the end of 12 FEs under different digits as well,
which shows that M, Ny and N3 achieve comparable computational efficiency, which are better
than those of My and Ms. M; achieves the best approximation error in the same time, and
achieves the best computational efficiency for the same approximation tolerance. Considering
all the above comparisons, M; achieves the best performance among the five methods My, Ms,
M3, Ny and Nj.

Example 4. We also have tested the following polynomial function fio(t) = 10t* + log(2 —
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t),t € [2—107%,2—107"°]. Table 9 shows that M; works well, while Newton method reaches
tc = 2+ 10779 which is outside of the valid domain of definition in the first iteration. In this

case, M achieves a better robustness.

Table 9. Comparison results on approximation errors in Example 4 (e, = [t — t*]).

€k ez eq €s es €10 e12
M, 2.3e-70 4.5e-71 1.5e-75 5.4e-94 4.3e-168 2.1e-301
Newton  tc / / / / /

4.3 Further discussions with multiple roots for a univariate case

Firstly, we show how to obtain an interval containing one root. Suppose that x; is obtained
by using some iterative methods including the Newton’s method under the initial value xq. If
2|z1 — t*| < |zo — t*|, where ¢* is the root of f(¢), from Lemma 2, t* is bounded by z¢ and
2x1 — xo. In this way, one can find an interval containing a root by using a suitable initial value
0.

Secondly, we consider the case which contains a multiple root ¢* within an interval, and
k > 2 is the corresponding multiplicity. If k is even, we utilize A;(s) = (s/gi(s), L(s)/gi(s))
to approximate C1(t) = (f(t), f/(t)). Otherwise, if k is odd, we utilize A;(s) to approximate
Ca(t) = (f'(t), f(t)) instead. In principle, (f*=2)(¢), f*=1)(t)) is the best one to be approxi-
mated by using A;(s), which can lead to a better convergence rate.

Thirdly, the case which may contain two or more roots is considered. If the given function
is a polynomial, one possible way is to turn it into Bernstein-Bézier form and split the given
interval into several subintervals by using the zeros of its control polygon. For each subinterval,
one may isolate the roots by using the method of the first case. For a non-polynomial case, one
may sample the interval into several subintervals of smaller length, and use the method of the
first case to iteratively split it into several subintervals which contain one root.

Example 5. By using the methods for the above three cases, we have tested the RBM

method M; to compute the roots of the Wilkinson polynomial (see also Fig. 3),
20

w(t) =[] -, (22)
i=0

within [0, 25], which has twenty zeros i,i = 1,2, -- 20, see also Fig. 1 and Example 7 in [4]. At
the beginning, we compute the zeros of the corresponding control polygon, i.e., {0.27,1.55,2.83,
4.11,5.38,6.65,7.92,9.19,10.46, 11.73, 13.007, 14.27, 15.54, 16.81, 18.07, 19.34, 20.61, 21.87, 23.14,
24.40}. Thus, the given interval [0, 25] is divided into twenty-two sub-intervals by using the
above twenty-one zeros. There are sixteen sub-intervals containing one or two roots of W ().
We select three of them A, = [0.27,1.55], A\, = [2.83,4.11] and A5 = [16.81,18.07] to illustrate
with more details, which contain one, two and two roots of W (t), respectively. The RBM can be
directly applied to A; where W (t) has different signs at its two end points. For A, and /\5, one
can select their mid points to split each of them into two subintervals and each subinterval con-
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Figure 3. Plot of the Wilkinson polynomial [4].
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tains a root. The RBM can then be applied for the subintervals. By applying the optimization

method of the given interval (see also Remark 1) for adding one or two points, one may obtain
optimized intervals A, = [0.99,1.0034], A, = [2.83,3.004] and A, = [17.988,18.07] which are
corresponding to [0.27,1.55], [2.83,3.47] and [17.44,18.07]. As shown in Table 10, the RBM

works well in these cases, where the error e; is mapping, respectively to the reparameterization

function ¢;(t).

Table 10. The approximation errors of M; in Example 5.

Error el [ es3 €4 €5 €6 er

A 2.9e-5 7.7e-9 3.7e-15  2.5e-28 2.6e-54 1.7e-106  1.0e-210
/_\2 4.8e-4 1.2e-6 1.2e-11  1.2e-21 1.2e-41 1.2e-81 1.3e-161
A 2.8e-3 5.6e-5 1.4e-7 3.2e-14  2.9e-25 5.4e-49 2.0e-95

4.4 Example of the RBM by using derivatives

Table 11. Approximation errors e; of Example 6 for different 1.

€; 3 4 5 6 7 CR
f11(¢t) 2.6e-8 4.7e-23 2.0e-67 2.5e-202  7.2e-603 3
f12(t) 1.3e-3 2.6e-5 2.5e-10 2.1e-25 1.4e-70 3
f13(t) 3.5e-6 1.2e-17 9.3e-50 5.7e-147  6.9e-439 3
S1a(t) 1.8e-5 8.0e-15 2.4e-43 1.0e-128  9.3e-385 3
f1s(t) 2.4e-9 1.1e-28 1.1e-86 1.2e-260 1.5e-782 3
f16(t) 2.0e-6 2.0e-18 1.4e-53 4.9e-160  4.6e-478 3

Example 6. We have tested the RBM with derivatives by using the following eight more
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examples,
fuit)=(@t—-1)3-1, =2, to = 1.9, t; = 2.011,
f1a(t) = 10150-5¢* _ 1. t* &~ 54772, to=5.490, t; = 5.458,
fis(t) = e CHFS 42 1 x2490, to =23, t; =26,
f1a(t) =3 — 10, t* =103, t5=2, t; = 2.850,
fis(t) =t -1/t -3, t* ~ 9.6335, to=9.4, t; = 10.5,
fi6(t) = et +t — 20, t* = 2.8424, tg= 2.5, t1 = 3.

The results are shown in Table 11. It shows that RBM by using derivatives works well and
achieves the convergence rate 3, and it means that RBM by using derivatives can achieve much

better convergence order for each additional FE.

85 Extending the RBM method to bivariate cases

5.1 The algorithm of the RBM method

Given an equation system with x € [a, b],y € [c, d] as follows

{ fl(xay) =0, (23)
fa(z,y) =0,
which has a solution (z*,y*) € [a,b] X [c,d], and the initial value is (2, yo).

Let Li(z,y) = fi(z0,Y0) + fiz(z0, o) (x —20) + fiy (20, Y0) (Y —yo) = ;x4 By + i, where fip
and f;, denote the partial derivatives of f;(z,y) in z and y, respectively, and s* € [a, b], t* € [c, d]
(Siéi’; ) and (t’fiéj;)) to interpolate

(z, f1(z,y)) and (y, f2(x,y)) at three points (x;,y;), j =4 —2,¢ — 1,4, where ¢ > 2,

satisfy L;(s*,t*) =0, ¢ = 1,2. In this case, we find curves

u;i(s,t) = a; 0+ a;18 + a2t and v;(s,t) = b0+ bi 15+ b; ot (24)

are linear functions of both s and t.
Given three points (z;,y;), j = i —2,i—1,4, the next point can be similarly computed in the
following way. Firstly, for each j, the values of s; and t; are computed by solving the system

consisting of the following two linear equations

(85, La(sj.t5)) % (x5, fr(zs,95)) = fil@s,y5)s; — La(ss, tj)w; =0, (25)
(tj, La(sj, t5)) % (yj. f2(25,95)) = fa(25,95)t; — La(ss,t5)y; = 0.
Secondly, the values of a; ; and b; j, 7 = 0,1, 2, are computed by solving
ui(sj ty) = aio +ainsj +aioty = 25, . .
(.7 J) 0 195 20Uy t:_vj ]:Z_Q,Z—I,Z. (26)
vi(85,t5) = bio + bi18; + biot; = e
Thirdly, the values of z;1 and y;+1 are computed by using
Lit1 = ﬁ:’t*) and y;11 = #j,t*) (27)

The outline of the algorithm for a bivariate case is described as follows.
Algorithm 2.  The RBM method for solving the solution (z*,3*) of Eq. (23).

Input: The given smooth functions f;(z,y), the intervals [a, ] and [e, d],
the initial value (xg,yo) and the tolerance e.
Output: The approximation of (z*,y*).
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(1) Begin: At the beginning, given (zo,yo), the points (z1,y1) and (x2,y2) can be sampled
from the circle with the center (xg,y0) and its radius 10e;
Compute (s*,t*) by solving Li(s,t) = La(s,t) = 0;
Compute (so,%o), (s1,t1) by solving Eq. (25);
Let 7 = 2.

(2) If \/(zi — 2i—1)2 + (i — ¥i—1)2 < &, go to Step ((7)); otherwise, go to Step ((3)).
(3) Compute (s;,t;) by solving Eq. (25);

(4) By solving Eq. (26), one obtains u;(s,t) and v;(s, ).

(5) By using Eq. (27), one obtains the values of z;41 and y;11.

(6) By setting i =14+ 1, go to Step (2).

(7) End: Output (x;,y;) as the approximation of (z*,y*).

5.2 Numerical examples

Example 7. We have tested the RBM method by using the bivarite cases in Table 12,

which are shown in Fig. 4.

Table 12. The bivarite cases for testing the RBM method

Example formula initial value root
(-1’ +1)+y2° —4=0

A TR Vi T 20 =0Ty =16 2" =1Ly" =2
127
EX: l(n( )4(: )foyln(f}y —30 0 0= 08y =08 o' =Ly —1
EX3 if ,Izl,)f(i/ = —)y2)2 — (: 3=0 2o = 1.35;y0 = 1.83 2" = V2, 5" = /3
EXa ?r:f(l)_fziiyg4:_03 = zo = 0.85;y0 = 1.65 2* = L,y = /3
T(7_3)2

EX;5 ?nl(nl,(f;%gz;m(j :702 =0 0 =25;y0=12 z*=ey" =1
EXg 22—z —01+y=0 20 = 0.9:y0 = 0.08 2" =1;y* = 0.1

cos(%) +eV—cos(10) — e’ T +1—2=0

By using Algorithm 2, we obtain the results shown in Table 13. Note that RBM costs
one functional evaluation (i.e., f(x,y)) for each step while the Newton’s method costs three
functional evaluations (i.e., f(z,y), fz(z,y) and fy(z,y)) for each step. In Table 12, both the
approximation error and the computational time are of three steps for RBM, while they are
of one step for the Newton’s method. It shows that the convergence rate of RBM is about 3
for three functional evaluations (or three steps) or 3'/3 ~ 1.44 for one functional evaluation
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(or one step), while that of the Newton’s method is of convergence rate 2 for three functional

evaluations or 2'/% a 1.25 for one functional evaluation. The computational time of RBM for

one step is very close to one-third of that of the Newton’s method, whose unit is second. Both

of RBM and the Newton’s method work well for the first five examples; for the sixth example,
RBM works well while the Newton’s method diverges. It shows that the performance of RBM
is much better than that of the Newton’s method.

Table 13. Comparisons on errors and computational time of Example 7.

Example Method 1 2 3 4 Time(s) CR
EX, RBM 7.6e-3 5.5e-9 4.4e-28  4.7e-89 0.094 3.18
Newton 1.1e-2 1.1e-4 1.1e-8 1.2e-16 0.094 2
EX, RBM 1.2e-2 1.4e-8 2.8¢-25  5.1e-80 0.094 3.20
Newton 7.4e-6 4.8e-11  2.1e-21 3.8e-42 0.095 2
EXs RBM 2.2¢-3 8.9e-10 1.5e-29  5.5e-92 0.095 3.17
Newton 5.8e-7 5.0e-13  3.9e-25 2.2e-49 0.094 2
EX, RBM 4.0e-3 5.4e-11  1.3e-35 3.0e-112 0.094 3.20
Newton 9.7e-5 9.4e-9 8.9e-17  8.0e-33 0.096 2
EX- RBM 3.6e-3 3.8e-9 5.8e-28  1.3e-89 0.094 3.18
° Newton 1.7e-3 2.8¢-6 7.2e-12  4.8e-23 0.096 2
EXs RBM 1.6e-3 3.5e-9 7.0e-26  2.2e-78 0.096 3 ‘
Newton 1.49 1.61 1.86 1.86 0.094 /(diverge)
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86 Discussions and conclusions

Numerical examples show that the RBM method can achieve convergence rate 2 or 3 by
using no derivatives or with derivatives, the corresponding asymptotical efficiency indexes are
2 or \@, which are much better than that v/2 of the Newton’s method. Furthermore, note
that the interpolation result doesn’t matter with the order of the interpolation points, while
the Newton’s method does matter with the order of the point sequence, and the RBM method
can work more robust than the Newton’s method.

Comparing with the progressive methods My [6] and Mj [7], it achieves much higher compu-
tational efficiency, while the approximation error is equivalent to those of My and M3. Moreover,
M5 and M3 cannot deal with the bivariate cases, while M; is extended to bivariate cases.

In our future work, it is challenging to extend the RBM method to solve double or more
roots with the same number of initial values at the same time. Next, it is necessary to further
improve the corresponding robustness. Finally, it is meaningful to self-adaptively find suitable

initial values for RBM, and to extend RBM to solve equation systems of three or more variables.
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