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Maximum likelihood estimation of the parameters of

weighted exponential distribution in simple random

sampling and ranked set sampling

DENG Cui-hong CHEN Wang-xue∗

ZHOU Ya-wen YANG Rui

Abstract. Weighted exponential distribution WED (α, λ) with shape parameter α and scale

parameter λ possesses some good properties and can be used as a good fit to survival time data

compared to other distributions such as gamma, Weibull, or generalized exponential distribution.

In this article, we proved the existence and uniqueness of the maximum likelihood estimator

(MLE) of the parameters ofWED (α, λ) in simple random sampling (SRS) and provided explicit

expressions for the Fisher information number in SRS. Moreover, we also proved the existence

and uniqueness of the MLE of the parameters of WED (α, λ) in ranked set sampling (RSS)

and provided explicit expressions for the Fisher information number in RSS. Simulation studies

show that these MLEs in RSS can be real competitors for those in SRS.

§1 Introduction

The distribution function of weighted exponential distribution WED (α, λ) with shape

parameter α and scale parameter λ is

F (x;α, λ) =
α+ 1

α

[
1− e−λx − 1

α+ 1

(
1− e−(α+1)λx

)]
I (x) , (1)

where α > 0, λ > 0 and I (x) = 1 if x > 0, otherwise I (x) = 0 . The probability density

function (pdf) corresponding to the distribution function in (1) is then given by

f (x;α, λ) =
α+ 1

α
λe−λx

(
1− e−αλx

)
.
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WED (α, λ) was first proposed by Gupta et al. (2009). They showed that WED (α, λ)

possesses some good properties and can be used as a good fit to survival time data compared to

other distributions such as gamma, Weibull, or generalized exponential distribution. Al-Mutairi

et al. (2011) pointed out that WED (α, λ) is very flexible and can be used quite effectively to

analyze skewed data. For further details on the importance and applications of WED (α, λ),

one may refer to Shakhatreh (2012) and Mahdavi (2015).

The estimation problem for WED (α, λ) has not been discussed extensively in the literature

yet. There are a few works regarding the inference problem for WED (α, λ). For example,

Gupta et al. (2009) considered the maximum likelihood estimators (MLEs) of the parameters

of WED (α, λ) in simple random sampling (SRS). However, they did not discuss the existence

and uniqueness of the MLE in SRS and did not provide explicit expressions for the Fisher

information number in SRS. In this paper, we will discuss the existence and uniqueness of

the MLE in SRS and provide explicit expressions for the Fisher information number in SRS.

Moreover, we focus on the MLEs in ranked set sampling (RSS).

The remainder of the paper is organized as follows. In Section 2, RSS is introduced. In

Section 3, we will prove the existence and uniqueness of the MLE of λ in SRS and obtain the

Fisher information number of λ in SRS. In Section 4, we will obtain the Fisher information

matrix of α and λ in SRS. In Sections 5 and 6, we will focus on MLEs of the parameters of

WED (α, λ) in RSS. In Section 7, we will compare the asymptotic efficiencies of the MLEs.

Conclusions are given in Section 8.

§2 Introduction to RSS

RSS was introduced by McIntyre (1952, 2005) for estimating the pasture yields. It is ap-

propriate for situations where quantification of sampling units is either costly or difficult, but

ranking the units in a small set is easy and inexpensive. The procedure of RSS is described as

follows:

(1)The experimenter draws m2 units from the population and then randomly partitioning them

into m sets of size m with equal probability and without replacement from the population.

(2)The units are ranked within each set. Here ranking could be judgement, visual perception,

covariates, or any other method that does not require actual measurement of the units.

(3)Units within the ith (i = 1, 2, · · · ,m) sample are subjected to judgement ordering, with neg-

ligible cost, and the unit possessing ith lowest rank is identified.

(4)The identified units are measured. Proceeding in this way, a ranked set sample of size m

can be attained. If needed, this process can be replicated r times (cycles).

Yang et al. (2020) used RSS to obtain the MLEs of the parameters of the log-extended

exponential-geometric distribution. They showed that the MLEs under RSS always performed

better than that under SRS numerically. Wang et al. (2023) used RSS to obtain the MLEs of

the parameters of the inverse Gaussian distribution. Simulation studies show that the MLEs

in RSS can be real competitors for those in SRS. Shen et al. (2022) used RSS to obtain the
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MLEs of the parameters of the generalized Rayleigh distribution. They showed that the MLEs

under RSS always performed better than that under SRS numerically. For more applications

of RSS, refer to Chen et al. (2003), Dong and Zhang (2020), He et al. (2021), Mahdizadeh and

Zamanzade (2018), Qiu and Eftekharian (2021) and Zamanzade (2019).

§3 MLE of λ in SRS

In this section, we prove the existence and uniqueness of the MLE of λ in SRS and obtain

the Fisher information number of λ in SRS.

Let {x1, x2, x3, · · · , xm} be a simple random sample of size m from (1) in which α is known.

The log-likelihood function based on this sample is

lnLSRS (λ) = d+mlnλ− λ
m∑
i=1

xi +
m∑
i=1

ln
(
1− e−αλxi

)
,

where d is a value independent of λ. The first derivative of lnLSRS (λ) is

∂lnLSRS (λ)

∂λ
=

m

λ
−

m∑
i=1

xi +
m∑
i=1

αxie
−αλxi

1− e−αλxi
. (2)

Since

lim
λ→0

∂lnLSRS (λ)

∂λ
= ∞ (3)

and

lim
λ→∞

∂lnLSRS (λ)

∂λ
= −

m∑
i=1

xi, (4)

a solution of (2) exists. The second derivative of lnLSRS (λ) is

∂2lnLSRS (λ)

∂λ2
= −m

λ2
−

m∑
i=1

α2x2
i e

−αλxi

1− e−αλxi
−

m∑
i=1

α2x2
i e

−2αλxi

(1− e−αλxi)
2 < 0. (5)

Thus (2) has a unique solution and this solution is a unique MLE of λ, denoted by λ̂SRS . Under

the usual regularity assumptions (see Azzalini, 1996, p.71), the Fisher information number for

λ in SRS is

I11, SRS = −E

(
∂2lnLSRS (λ)

∂λ2

)
=

m

λ2
+ E

(
m∑
i=1

α2x2
i e

−αλxi

1− e−αλxi

)
+ E

(
m∑
i=1

α2x2
i e

−2αλxi

(1− e−αλxi)
2

)

=
m

λ2
+mα2E

(
x2e−αλx

1− e−αλx

)
+mα2E

(
x2e−2αλx

(1− e−αλx)
2

)

=
m

λ2
+

2mα

(α+ 1)
2
λ2

+
m (α+ 1)

α2λ2

∫ 1

0

t
1
α+1 ln2 t

1− t
dt

=
m
(
α2 + 4α+ 1

)
(α+ 1)

2
λ2

+
2m (α+ 1)

α2λ2
Φ

(
1, 3,

1

α
+ 2

)
,

(6)

where Φ (z, λ, v) = 1
Γ(λ)

∫ 1

0
uv−1 logλ−1(1/u)

1−uz du for all complex λ, z ∈ C − [1, ∞) and v > 0 (see

Pedro and Jimenez-Gamero (2014)).
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§4 MLEs of λ and α in SRS

In this section, we consider the MLEs of α and λ in SRS and obtain the Fisher information

matrix of α and λ in SRS. Let {x1, x2, x3, · · · , xm} be a simple random sample of size m from

(1) in which λ and α are both unknown. The log-likelihood function based on this sample is

lnLSRS (λ, α) = mln (α+ 1)−mlnα+mlnλ− λ

m∑
i=1

xi +

m∑
i=1

ln
(
1− e−αλxi

)
.

This function implies that

∂lnLSRS (λ, α)

∂λ
=

m

λ
−

m∑
i=1

xi +
m∑
i=1

αxie
−αλxi

1− e−αλxi
, (7)

and
∂lnLSRS (λ, α)

∂α
=

m

α+ 1
− m

α
+

m∑
i=1

λxie
−αλxi

1− e−αλxi
. (8)

Solutions of (7) and (8) are the MLEs of λ and α, denoted as
(
λ̂SRS , α̂SRS

)
. Then under the

usual regularity assumptions (see Azzalini, 1996, p.71), the Fisher information matrix for λ and

α in SRS is given by

ISRS (λ, α) =

(
I11, SRS I12, SRS

I12, SRS I22, SRS

)
, (9)

where

I12, SRS = −E

(
∂2lnLSRS (λ, α)

∂λ∂α

)
= −E

(
m∑
i=1

xie
−αλxi (1− αλxi)

1− e−αλxi

)
+ E

(
m∑
i=1

αλx2
i e

−2αλxi

(1− e−αλxi)2

)

= −mE

(
xe−αλx (1− αλx)

1− e−αλx

)
+mαλE

(
x2e−2αλx

(1− e−αλx)2

)
= − m (1− α)

αλ (α+ 1)2
+

m (α+ 1)

α3λ

∫ 1

0

t
1
α
+1 ln2 t

1− t
dt

= − m (1− α)

αλ (α+ 1)2
+

2m (α+ 1)

α3λ
Φ

(
1, 3,

1

α
+ 2

)

(10)

and

I22, SRS = −E

(
∂2lnLSRS (λ, α)

∂α2

)
=

m

(α+ 1)2
− m

α2
+ E

(
m∑
i=1

λ2x2
i e

−αλxi

1− e−αλxi

)
+ E

(
m∑
i=1

λ2x2
i e

−2αλxi

(1− e−αλxi)2

)

=
m

(α+ 1)2
− m

α2
+mλ2E

(
x2e−αλx

1− e−αλx

)
+mλ2E

(
x2e−2αλx

(1− e−αλx)2

)
=

m

(α+ 1)2
− m

α2
+

2m

α (α+ 1)2
+

m (α+ 1)

α4

∫ 1

0

t
1
α
+1 ln2 t

1− t
dt

= − m

α2 (α+ 1)2
+

m (α+ 1)

α4

∫ 1

0

t
1
α
+1 ln2 t

1− t
dt

= − m

α2 (α+ 1)2
+

2m (α+ 1)

α4
Φ

(
1, 3,

1

α
+ 2

)
.

(11)
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§5 MLE of λ in RSS

RSS was introduced by McIntyre (1952, 2005) for estimating the pasture yields. It is ap-

propriate for situations where quantification of sampling units is either costly or difficult, but

ranking the units in a small set is easy and inexpensive. An important advantage of RSS ap-

proach is that it improves the efficiency of estimators of the population parameters by providing

more representative sample from the target population.

In this section, we prove the existence and uniqueness of the MLE of λ in RSS and obtain

the Fisher information number of λ in RSS. Let
{
x1(1), x2(2), x3(3), · · · , xm(m)

}
be a ranked set

sample of size m from (1) in which α is known. Then the pdf of Xi(i) is

fi (x;α, λ) = c (i,m)

{
1 +

α+ 1

α
e−λx

(
1

α+ 1
e−αλx − 1

)}i−1

×
{
α+ 1

α
e−λx

(
1− 1

α+ 1
e−αλx

)}m−i

× α+ 1

α
λe−λx

(
1− e−αλx

)
,

where c (i,m) = m!
(m−i)!(i−1)! . Then the log-likelihood function based on the observed sample is

lnLRSS (λ) = d+mlnλ− λ
m∑
i=1

xi(i) +
m∑
i=1

ln
(
1− e−αλxi(i)

)
+

m∑
i=1

(i− 1)ln

(
1 +

α+ 1

α
e−λxi(i)

(
1

α+ 1
e−αλxi(i) − 1

))

+
m∑
i=1

(m− i)ln

(
α+ 1

α
e−λxi(i)

(
1− 1

α+ 1
e−αλxi(i)

))
,

where d is a value independent of λ. The first derivative of lnLRSS (λ) is

∂lnLRSS (λ)

∂λ
=

m

λ
−

m∑
i=1

xi(i) +
m∑
i=1

αxi(i)e
−αλxi(i)

1− e−αλxi(i)

+

m∑
i=1

(m− i)
xi(i)

(
e−αλxi(i) − 1

)
1− 1

α+1e
−αλxi(i)

+

m∑
i=1

(i− 1)
α+1
α xi(i)e

−λxi(i)
(
1− e−αλxi(i)

)
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

) .
(12)

Based on the above preparation, we have the following result.

Theorem 1. The MLE of λ under RSS exists and is unique, denoted by λ̂RSS .

Proof. Since

lim
λ→0

∂lnLRSS (λ)

∂λ
= ∞, (13)

and

lim
λ→∞

∂lnLRSS (λ)

∂λ
= −

m∑
i=1

(m− i+ 1)xi(i) < 0, (14)
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a solution of (13) exists. Considering that

∂2lnLRSS (λ)

∂λ2

=

m∑
i=1

(i− 1)

α+1
α

x2
i(i)

e−λxi(i)
(
(α+ 1) e−αλxi(i) − 1

)
1 + α+1

α
e−λxi(i)

(
1

α+1
e−αλxi(i) − 1

)
−

m∑
i=1

(i− 1)

(
α+1
α

)2
x2

i(i)
e−2λxi(i)

(
1− e−αλxi(i)

)2(
1 + α+1

α
e−λxi(i)

(
1

α+1
e−αλxi(i) − 1

))2
−

m∑
i=1

(m− i)
αx2

i(i)
e−αλxi(i)

1− 1
α+1

e−αλxi(i)
−

m∑
i=1

(m− i)

α
α+1

x2
i(i)

e−αλxi(i)
(
e−αλxi(i) − 1

)(
1− 1

α+1
e−αλxi(i)

)2
−

m∑
i=1

α2x2
i(i)

e−αλxi(i)

1− e−αλxi(i)
−

m∑
i=1

α2x2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2 − m

λ2

= −
m∑
i=1

(i− 1)

α+1
α

x2
i(i)

e−λxi(i)
(
1− (α+ 1) e−αλxi(i)

)
1 + α+1

α
e−λxi(i)

(
1

α+1
e−αλxi(i) − 1

)
−

m∑
i=1

(i− 1)

(
α+1
α

)2
x2

i(i)
e−2λxi(i)

(
1− e−αλxi(i)

)2(
1 + α+1

α
e−λxi(i)

(
1

α+1
e−αλxi(i) − 1

))2
−

 m∑
i=1

(m− i)
αx2

i(i)
e−αλxi(i)

(
1− 1

α+1
e−αλxi(i)

)
(
1− 1

α+1
e−αλxi(i)

)2 +

m∑
i=1

(m− i)

α
α+1

x2
i(i)

e−αλxi(i)
(
e−αλxi(i) − 1

)(
1− 1

α+1
e−αλxi(i)

)2


−
m∑
i=1

α2x2
i(i)

e−αλxi(i)

1− e−αλxi(i)
−

m∑
i=1

α2x2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2 − m

λ2

= −
m∑
i=1

(i− 1)

α+1
α

x2
i(i)

e−λxi(i)
(
1− (α+ 1) e−αλxi(i)

)
1 + α+1

α
e−λxi(i)

(
1

α+1
e−αλxi(i) − 1

)
−

m∑
i=1

(i− 1)

(
α+1
α

)2
x2

i(i)
e−2λxi(i)

(
1− e−αλxi(i)

)2(
1 + α+1

α
e−λxi(i)

(
1

α+1
e−αλxi(i) − 1

))2
−

m∑
i=1

(m− i)

α2

α+1
x2

i(i)
e−αλxi(i)(

1− 1
α+1

e−αλxi(i)

)2 − m

λ2
−

m∑
i=1

α2x2
i(i)

e−αλxi(i)

1− e−αλxi(i)
−

m∑
i=1

α2x2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2 < 0.

(15)

Thus (13) has a unique solution and this solution is a unique MLE of λ. This completes

the proof of Theorem 1. In Theorem 2, we give the Fisher information number of λ in RSS.

Theorem 2. Under the usual regularity assumptions (see Azzalini, 1996, p.71), the Fisher
information number for λ in RSS is

I11,RSS = I11, SRS +
m (m− 1)

(
α2 + 6α+ 6

)
4λ2(α+ 2)

2 +
m (m− 1)

(
7α2 + 18α+ 12

)
4λ2 (α+ 1) (α+ 2)

3
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+
m (m− 1) (α+ 1)

3

α3λ2

∫ 1

0

t2ln2t(1− tα)
3

1 + α+1
α t

(
1

α+1 t
α − 1

)dt
− m (m− 1) (α+ 1)

αλ2

∫ 1

0

t2ln2t(tα − 1)
2

1− 1
α+1 t

α
dt.

(16)

Proof. Using the basic identities
m∑
i=1

E [gi (x;α, λ)] = mE [g (x;α, λ)] , (17)

m∑
i=1

(i− 1)E [gi (x;α, λ)] = m (m− 1)E [g (x;α, λ)F (x;α, λ)] , (18)

and
m∑
i=1

(m− i)E [gi (x;α, λ)] = m (m− 1)E [g (x;α, λ) (1− F (x;α, λ))] , (19)

of order statistics in RSS (see Stokes (1995)), we have

I11, RSS = −E

(
∂2lnLRSS (λ)

∂λ2

)

= −E

 m∑
i=1

(i− 1)

α+1
α x2

i(i)
e−λxi(i)

(
(α+ 1) e−αλxi(i) − 1

)
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

)


+ E

 m∑
i=1

(i− 1)

(
α+1
α

)2
x2

i(i)
e−2λxi(i)

(
1− e−αλxi(i)

)2(
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

))2


+ E

(
m∑
i=1

(m− i)
αx2

i(i)
e−αλxi(i)

1− 1
α+1e

−αλxi(i)

)
+ E

 m∑
i=1

(m− i)

α
α+1x

2
i(i)

e−αλxi(i)
(
e−αλxi(i) − 1

)(
1− 1

α+1e
−αλxi(i)

)2


+ E

(
m∑
i=1

α2x2
i(i)

e−αλxi(i)

1− e−αλxi(i)

)
+ E

(
m∑
i=1

α2x2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2
)

+
m

λ2

= −m (m− 1) (α+ 1)

α
E
(
x2e−λx

(
(α+ 1) e−αλx − 1

))
+

m (m− 1) (α+ 1)
2

α2
E

 x2e−2λx
(
1− e−αλx

)2
1 + α+1

α e−λx
(

1
α+1e

−αλx − 1
)


+m (m− 1) (α+ 1)E
(
x2e−(α+1)λx

)
+m (m− 1)E

(
x2e−(α+1)λx

(
e−αλx − 1

)
1− 1

α+1e
−αλx

)

+mα2E

(
x2e−αλx

1− e−αλx

)
+mα2E

(
x2e−2αλx

(1− e−αλx)
2

)
+

m

λ2

= −m (m− 1) (α+ 1)
2

α2λ2

∫ 1

0

t ln2 t ((α+ 1) tα − 1) (1− tα)dt

+
m (m− 1) (α+ 1)

2

αλ2

∫ 1

0

tα+1 ln2 t (1− tα) dt
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+
m (m− 1) (α+ 1)

3

α3λ2

∫ 1

0

t2ln2t(1− tα)
3

1 + α+1
α t

(
1

α+1 t
α − 1

)dt
− m (m− 1) (α+ 1)

αλ2

∫ 1

0

t2ln2t(tα − 1)
2

1− 1
α+1 t

α
dt

+
mα (α+ 1)

λ2

∫ 1

0

tα ln2 tdt+
m (α+ 1)

α2λ2

∫ 1

0

t
1
α+1 ln2 t

1− t
dt+

m

λ2

=
m (m− 1)

(
α2 + 6α+ 6

)
4λ2(α+ 2)

2 +
m (m− 1)

(
7α2 + 18α+ 12

)
4λ2 (α+ 1) (α+ 2)

3

+
m (m− 1) (α+ 1)

3

α3λ2

∫ 1

0

t2ln2t(1− tα)
3

1 + α+1
α t

(
1

α+1 t
α − 1

)dt
− m (m− 1) (α+ 1)

αλ2

∫ 1

0

t2ln2t(tα − 1)
2

1− 1
α+1 t

α
dt

+
m
(
α2 + 4α+ 1

)
(α+ 1)

2
λ2

+
2m (α+ 1)

α2λ2
Φ

(
1, 3,

1

α
+ 2

)
= I11, SRS +

m (m− 1)
(
α2 + 6α+ 6

)
4λ2(α+ 2)

2 +
m (m− 1)

(
7α2 + 18α+ 12

)
4λ2 (α+ 1) (α+ 2)

3

+
m (m− 1) (α+ 1)

3

α3λ2

∫ 1

0

t2ln2t(1− tα)
3

1 + α+1
α t

(
1

α+1 t
α − 1

)dt
− m (m− 1) (α+ 1)

αλ2

∫ 1

0

t2ln2t(tα − 1)
2

1− 1
α+1 t

α
dt,

under the usual regularity assumptions of Thoerem 2. This completes the proof of Theorem 2.

§6 MLEs of λ and α in RSS

In this section, we consider the MLEs of α and λ in RSS and obtain the Fisher information

matrix of α and λ in RSS.

Let
{
x1(1), x2(2), x3(3), · · · , xm(m)

}
be a ranked set sample of size m from (1) in which λ and

α are both unknown. The log-likelihood function based on this sample is

lnLRSS (λ, α) = d+mln (α+ 1)−mlnα+mlnλ− λ

m∑
i=1

xi(i) +

m∑
i=1

ln
(
1− e−αλxi(i)

)
+

m∑
i=1

(i− 1)ln

(
1 +

α+ 1

α
e−λxi(i)

(
1

α+ 1
e−αλxi(i) − 1

))

+
m∑
i=1

(m− i)ln

(
α+ 1

α
e−λxi(i)

(
1− 1

α+ 1
e−αλx(i)

))
,

where d is a value independent of λ and α. This function implies that
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∂lnLRSS (λ, α)

∂λ
=

m

λ
−

m∑
i=1

xi(i) +
m∑
i=1

αxi(i)e
−αλxi(i)

1− e−αλxi(i)
+

m∑
i=1

(m− i)
xi(i)

(
e−αλxi(i) − 1

)
1− 1

α+1e
−αλxi(i)

+

m∑
i=1

(i− 1)
α+1
α xi(i)e

−λx(i)
(
1− e−αλxi(i)

)
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

) , (20)

and
∂lnLRSS (λ, α)

∂α
=

m

α+ 1
− m

α
+

m∑
i=1

λxi(i)e
−αλxi(i)

1− e−αλxi(i)

+

m∑
i=1

(i− 1)
1
αe

−λxi(i)
(
1
α −

(
1
α + λxi(i)

)
e−αλxi(i)

)
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

)
−

m∑
i=1

(m− i)
1
αe

−λxi(i)
(
1
α −

(
1
α + λxi(i)

)
e−αλxi(i)

)
α+1
α e−λxi(i)

(
1− 1

α+1e
−αλxi(i)

) .

(21)

The solutions of (20) and (21) are the MLEs of λ and α, denoted as
(
λ̂RSS , α̂RSS

)
. The Fisher

information matrix for λ and α under RSS is given as follows.

Theorem 3. Under the usual regularity assumptions of Theorem 2, the Fisher information

matrix for λ and α in RSS is given by

IRSS (λ, α) =

(
I11, RSS I12, RSS

I12, RSS I22, RSS

)
, (22)

where

I12, RSS = I12, SRS +
m (m− 1)α

4λ (α+ 2)
3 +

m (m− 1)
(
7α2 + 18α+ 12

)
4αλ (α+ 1) (α+ 2)

3

+
m (m− 1) (α+ 1)

2

α3λ

∫ 1

0

t2 ln t
(
tα
(
1
α − ln t

)
− 1

α

)
(1− tα)

2

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

− m (m− 1) (α+ 1)
2

α2λ

∫ 1

0

tα+1 ln t(tα − 1)
2
(

1
α+1 ln t−

1
(α+1)2

)
1− 1

α+1 t
α

dt,

(23)

and

I22,RSS = I22,SRS +
m (m− 1) (α+ 1)

α3

∫ 1

0

t2
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

+
m (m− 1)

α2

∫ 1

0

t
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1− 1
α+1 t

α
dt.

(24)

Proof. Since
∂2lnLRSS (λ, α)

∂λ∂α

= −
m∑
i=1

(i− 1)
1
αxi(i)e

−λxi(i)
(
1
α − e−αλxi(i)

(
1
α + (α+ 1)λxi(i)

))
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

)
+

m∑
i=1

(i− 1)
α+1
α2 xi(i)e

−2λxi(i)
(
1
α − e−αλxi(i)

(
1
α + λxi(i)

)) (
e−αλxi(i) − 1

)(
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

))2
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−
m∑
i=1

(m− i)
x(i)

(
e−αλx(i) − 1

) ((
1

(α+1)2
+ λx(i)

1
α+1

)
e−αλx(i)

)
(
1− 1

α+1e
−αλx(i)

)2
+

m∑
i=1

(m− i)
λx2

i(i)
e−αλxi(i)

1
α+1e

−αλxi(i) − 1
+

m∑
i=1

(
xi(i) − αλx2

i(i)

)
e−αλxi(i)

1− e−αλxi(i)
−

m∑
i=1

αλx2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2 ,
and

∂2lnLRSS (λ, α)

∂α2
= −

m∑
i=1

(i− 1)

1
αe

−λxi(i)

(
2
α2 − e−αλxi(i)

(
2
α2 + 2

αλxi(i) + λ2x2
i(i)

))
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

)
−

m∑
i=1

(i− 1)
1
α2 e

−2λxi(i)
(
1
α − e−αλxi(i)

(
1
α + λxi(i)

))2(
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

))2
+

m∑
i=1

(m− i)

1
αe

−λxi(i)

(
2
α2 − e−αλxi(i)

(
2
α2 + 2

αλxi(i) + λ2x2
i(i)

))
α+1
α e−λxi(i)

(
1− 1

α+1e
−αλxi(i)

)
−

m∑
i=1

(m− i)
1
α2 e

−2λxi(i)
(
1
α − e−αλxi(i)

(
1
α + λxi(i)

))2(
α+1
α e−λxi(i)

(
1− 1

α+1e
−αλxi(i)

))2
− m

(α+ 1)
2 +

m

α2
−

m∑
i=1

λ2x2
i(i)

e−αλxi(i)

1− e−αλxi(i)
−

m∑
i=1

λ2x2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2 ,
under the usual regularity assumptions of Theorem 2, we can obtain

I12, RSS = −E

(
∂2lnLRSS (λ, α)

∂λ∂α

)

= E

(
m∑
i=1

αλx2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2
)

− E

 m∑
i=1

(
xi(i) − αλx2

i(i)

)
e−αλxi(i)

1− e−αλxi(i)


− E

(
m∑
i=1

(m− i)
λx2

i(i)
e−αλxi(i)

1
α+1e

−αλxi(i) − 1

)

+ E

 m∑
i=1

(i− 1)
1
αxi(i)e

−λxi(i)
(
1
α − e−αλxi(i)

(
1
α + (α+ 1)λxi(i)

))
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

)


− E

 m∑
i=1

(i− 1)
α+1
α2 xi(i)e

−2λxi(i)
(
1
α − e−αλxi(i)

(
1
α + λxi(i)

)) (
e−αλxi(i) − 1

)(
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

))2


+ E

 m∑
i=1

(m− i)
xi(i)

(
e−αλxi(i) − 1

) ((
1

(α+1)2
+ λxi(i)

1
α+1

)
e−αλxi(i)

)
(
1− 1

α+1e
−αλxi(i)

)2


=
m (m− 1)

α
E

(
xe−λx

(
1

α
− e−αλx

(
1

α
+ (α+ 1)λx

)))
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+
mλ (m− 1) (α+ 1)

α
E
(
x2e−(α+1)λx

)
− m (m− 1) (α+ 1)

α2
E

xe−2λx
(
1
α − e−αλx

(
1
α + λx

)) (
e−αλx − 1

)
1 + α+1

α e−λx
(

1
α+1e

−αλx − 1
)


+

m (m− 1) (α+ 1)

α
E

xe−λx
(
e−αλx − 1

) ((
1

(α+1)2
+ λx 1

α+1

)
e−αλx

)
1− 1

α+1e
−αλx


−mE

((
x− αλx2

)
e−αλx

1− e−αλx

)
+mαλE

(
x2e−2αλx

(1− e−αλx)
2

)

= −m (m− 1) (α+ 1)

α2λ

∫ 1

0

t ln t

(
1

α
− tα

(
1

α
− (α+ 1) ln t

))
(1− tα) dt

+
m (m− 1) (α+ 1)

2

α2λ

∫ 1

0

tα+1 ln2 t (1− tα) dt

+
m (m− 1) (α+ 1)

2

α3λ

∫ 1

0

t2 ln t
(
tα
(
1
α − ln t

)
− 1

α

)
(1− tα)

2

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

− m (m− 1) (α+ 1)
2

α2λ

∫ 1

0

tα+1 ln t(tα − 1)
2
(

1
α+1 ln t−

1
(α+1)2

)
1− 1

α+1 t
α

dt

+
m (1− α)

αλ (α+ 1)
2 +

m (α+ 1)

α3λ

∫ 1

0

t
1
α+1 ln2 t

1− t
dt

=
m (m− 1)α

4λ (α+ 2)
3 +

m (m− 1)
(
7α2 + 18α+ 12

)
4αλ (α+ 1) (α+ 2)

3 − m (α− 1)

αλ (α+ 1)
2 +

2m (α+ 1)

α3λ
Φ

(
1, 3,

1

α
+ 2

)
+

m (m− 1) (α+ 1)
2

α3λ

∫ 1

0

t2 ln t
(
tα
(
1
α − ln t

)
− 1

α

)
(1− tα)

2

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

− m (m− 1) (α+ 1)
2

α2λ

∫ 1

0

tα+1 ln t(tα − 1)
2
(

1
α+1 ln t−

1
(α+1)2

)
1− 1

α+1 t
α

dt

= I12, SRS +
m (m− 1)α

4λ (α+ 2)
3 +

m (m− 1)
(
7α2 + 18α+ 12

)
4αλ (α+ 1) (α+ 2)

3

+
m (m− 1) (α+ 1)

2

α3λ

∫ 1

0

t2 ln t
(
tα
(
1
α − ln t

)
− 1

α

)
(1− tα)

2

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

− m (m− 1) (α+ 1)
2

α2λ

∫ 1

0

tα+1 ln t(tα − 1)
2
(

1
α+1 ln t−

1
(α+1)2

)
1− 1

α+1 t
α

dt,

and

I22, RSS = −E

(
∂2lnLRSS (λ, α)

∂α2

)
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= E

 m∑
i=1

(i− 1)

1
αe

−λxi(i)

(
2
α2 − e−αλxi(i)

(
2
α2 + 2

αλxi(i) + λ2x2
i(i)

))
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

)


+ E

 m∑
i=1

(i− 1)
1
α2 e

−2λxi(i)
(
1
α − e−αλxi(i)

(
1
α + λxi(i)

))2(
1 + α+1

α e−λxi(i)

(
1

α+1e
−αλxi(i) − 1

))2


− E

 m∑
i=1

(m− i)

1
αe

−λxi(i)

(
2
α2 − e−αλxi(i)

(
2
α2 + 2

αλxi(i) + λ2x2
i(i)

))
α+1
α e−λxi(i)

(
1− 1

α+1e
−αλxi(i)

)


+ E

 m∑
i=1

(m− i)
1
α2 e

−2λxi(i)
(
1
α − e−αλxi(i)

(
1
α + λxi(i)

))2(
α+1
α e−λxi(i)

(
1− 1

α+1e
−αλxi(i)

))2


+ E

(
m∑
i=1

λ2x2
i(i)

e−αλxi(i)

1− e−αλxi(i)

)
+ E

(
m∑
i=1

λ2x2
i(i)

e−2αλxi(i)(
1− e−αλxi(i)

)2
)

+
m

(α+ 1)
2 − m

α2

=
m (m− 1)

α
E

(
e−λx

(
2

α2
− e−αλx

(
2

α2
+

2

α
λx+ λ2x2

)))

+
m (m− 1)

α2
E

 e−2λx
(
1
α − e−αλx

(
1
α + λx

))2
1 + α+1

α e−λx
(

1
α+1e

−αλx − 1
)


− m (m− 1)

α
E

(
e−λx

(
2

α2
− e−αλx

(
2

α2
+

2

α
λx+ λ2x2

)))

+
m (m− 1)

α (α+ 1)
E

e−λx
(
1
α − e−αλx

(
1
α + λx

))2(
1− 1

α+1e
−αλx

)


+mλ2E

(
x2e−αλx

1− e−αλx

)
+mλ2E

(
x2e−2αλx

(1− e−αλx)
2

)
+

m

(α+ 1)
2 − m

α2

=
m (m− 1) (α+ 1)

α3

∫ 1

0

t2
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

+
m (m− 1)

α2

∫ 1

0

t
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1− 1
α+1 t

α
dt− m

α2 (α+ 1)
2

+
m (α+ 1)

α4

∫ 1

0

t
1
α+1 ln2 t

1− t
dt

=
m (m− 1) (α+ 1)

α3

∫ 1

0

t2
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

+
m (m− 1)

α2

∫ 1

0

t
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1− 1
α+1 t

α
dt

− m

α2 (α+ 1)
2 +

2m (α+ 1)

α4
Φ

(
1, 3,

1

α
+ 2

)
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= I22, SRS +
m (m− 1) (α+ 1)

α3

∫ 1

0

t2
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1 + α+1
α t

(
1

α+1 t
α − 1

) dt

+
m (m− 1)

α2

∫ 1

0

t
(
1
α − tα

(
1
α − ln t

))2
(1− tα)

1− 1
α+1 t

α
dt,

from (17), (18) and (19). This completes the proof of Theorem 3.

§7 Numerical comparison

In this section, we will compare the MLEs in RSS with respect to (w.r.t.) those MLEs in

SRS in terms of the asymptotic efficiency.

Table 1. Asymptotic efficiencies of MLEs of λ and α

α m AE1 AE2 AE3

0.5 2 1.44 1.47 1.64

3 1.89 1.94 2.37

4 2.33 2.42 3.19

5 2.77 2.88 4.11

6 3.22 3.37 5.13

7 3.66 3.84 6.23

8 4.10 4.30 7.43

9 4.54 4.79 8.72

1 2 1.45 1.50 1.66

3 1.89 2.00 2.42

4 2.34 2.50 3.29

5 2.79 2.99 4.26

6 3.24 3.48 5.41

7 3.68 3.96 6.53

8 4.13 4.49 7.83

9 4.58 4.98 9.23

1.5 2 1.45 1.49 1.68

3 1.90 1.98 2.49

4 2.35 2.48 3.41

5 2.77 2.97 3.98

6 3.25 3.46 5.63

7 3.70 3.95 6.42

8 4.15 4.44 8.33

9 4.60 4.93 9.87

Since under some regularity conditions, the asymptotic efficiencies of the MLEs can be

obtained from the inverse of the Fisher information number (Barabesi and El-Sharaawi (2001)),

the asymptotic efficiency of λ̂RSS w.r.t λ̂SRS may be defined as AE1 =
I11, RSS

I11, SRS
. The asymptotic
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efficiencies of α̂RSS w.r.t α̂SRS and
(
λ̂RSS , α̂RSS

)
w.r.t

(
λ̂SRS , α̂SRS

)
may be respectively

defined as AE2 =
I22, RSS

I22, SRS
and AE3 = det{IRSS(λ,α)}

det{ISRS(λ,α)} . Since AEi (i = 1, 2, 3) are free of λ,

without loss of generality, the simulation is given for λ = 1. The simulation results are given

in Table 1.

From Table 1, we conclude the following:

(1) AE1 > 1, which means λ̂RSS is more efficient than λ̂SRS ;

(2) AE2 > 1, which means α̂RSS is more efficient than α̂SRS ;

(3) AE3 > 1, which means (λ̂RSS , α̂RSS) is more efficient than (λ̂SRS , α̂SRS);

(4) In conclusion, the MLEs of λ and α in RSS are more efficient than that in SRS.

§8 Conclusion

In this article, we proved the existence and uniqueness of the MLE of the parameters of

WED (α, λ) in SRS and provided explicit expressions for the Fisher information number in

SRS. Moreover, we also proved the existence and uniqueness of the MLE of the parameters of

WED (α, λ) in RSS and provided explicit expressions for the Fisher information number in

RSS. Simulation studies show that these MLEs in RSS can be real competitors for those in

SRS. A further stage would be to extend the use of minimum ranked set sampling with unequal

samples to WED (α, λ).
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