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Maximum likelihood estimation of the parameters of
weighted exponential distribution in simple random

sampling and ranked set sampling
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Abstract. Weighted exponential distribution WED («, A) with shape parameter o and scale
parameter A possesses some good properties and can be used as a good fit to survival time data
compared to other distributions such as gamma, Weibull, or generalized exponential distribution.
In this article, we proved the existence and uniqueness of the maximum likelihood estimator
(MLE) of the parameters of WED («, A) in simple random sampling (SRS) and provided explicit
expressions for the Fisher information number in SRS. Moreover, we also proved the existence
and uniqueness of the MLE of the parameters of WED (a, A) in ranked set sampling (RSS)
and provided explicit expressions for the Fisher information number in RSS. Simulation studies
show that these MLEs in RSS can be real competitors for those in SRS.

81 Introduction

The distribution function of weighted exponential distribution WED (a, A\) with shape

parameter o and scale parameter A is

a+1 _a 1 -
F . L x __ - (1 _ (Oz+1))\z) T 1
(=t e (1 (@), (1)
where o« > 0, A > 0 and I (z) = 1 if x > 0, otherwise I () = 0 . The probability density

function (pdf) corresponding to the distribution function in (1) is then given by

fz;a,0) = LZ 1)\67)\1’ (1 — 670‘)‘“") .
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WED (a, A) was first proposed by Gupta et al. (2009). They showed that WED (a, )
possesses some good properties and can be used as a good fit to survival time data compared to
other distributions such as gamma, Weibull, or generalized exponential distribution. Al-Mutairi
et al. (2011) pointed out that WED («, A) is very flexible and can be used quite effectively to
analyze skewed data. For further details on the importance and applications of WED («, A),
one may refer to Shakhatreh (2012) and Mahdavi (2015).

The estimation problem for WED («, A) has not been discussed extensively in the literature
yet. There are a few works regarding the inference problem for WED («, \). For example,
Gupta et al. (2009) considered the maximum likelihood estimators (MLEs) of the parameters
of WED (a, M) in simple random sampling (SRS). However, they did not discuss the existence
and uniqueness of the MLE in SRS and did not provide explicit expressions for the Fisher
information number in SRS. In this paper, we will discuss the existence and uniqueness of
the MLE in SRS and provide explicit expressions for the Fisher information number in SRS.
Moreover, we focus on the MLEs in ranked set sampling (RSS).

The remainder of the paper is organized as follows. In Section 2, RSS is introduced. In
Section 3, we will prove the existence and uniqueness of the MLE of A in SRS and obtain the
Fisher information number of A in SRS. In Section 4, we will obtain the Fisher information
matrix of o and X in SRS. In Sections 5 and 6, we will focus on MLEs of the parameters of
WED (a, A) in RSS. In Section 7, we will compare the asymptotic efficiencies of the MLEs.

Conclusions are given in Section 8.

82 Introduction to RSS

RSS was introduced by McIntyre (1952, 2005) for estimating the pasture yields. It is ap-
propriate for situations where quantification of sampling units is either costly or difficult, but
ranking the units in a small set is easy and inexpensive. The procedure of RSS is described as
follows:

(1)The experimenter draws m? units from the population and then randomly partitioning them
into m sets of size m with equal probability and without replacement from the population.
(2)The units are ranked within each set. Here ranking could be judgement, visual perception,
covariates, or any other method that does not require actual measurement of the units.
(3)Units within the ith (i = 1,2,--- ,m) sample are subjected to judgement ordering, with neg-
ligible cost, and the unit possessing ith lowest rank is identified.

(4)The identified units are measured. Proceeding in this way, a ranked set sample of size m
can be attained. If needed, this process can be replicated r times (cycles).

Yang et al. (2020) used RSS to obtain the MLEs of the parameters of the log-extended
exponential-geometric distribution. They showed that the MLEs under RSS always performed
better than that under SRS numerically. Wang et al. (2023) used RSS to obtain the MLEs of
the parameters of the inverse Gaussian distribution. Simulation studies show that the MLEs
in RSS can be real competitors for those in SRS. Shen et al. (2022) used RSS to obtain the
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MLESs of the parameters of the generalized Rayleigh distribution. They showed that the MLEs
under RSS always performed better than that under SRS numerically. For more applications
of RSS, refer to Chen et al. (2003), Dong and Zhang (2020), He et al. (2021), Mahdizadeh and
Zamanzade (2018), Qiu and Eftekharian (2021) and Zamanzade (2019).

83 MLE of )\ in SRS

In this section, we prove the existence and uniqueness of the MLE of X\ in SRS and obtain
the Fisher information number of A\ in SRS.

Let {x1,x2, 23, -+ ,Zm} be a simple random sample of size m from (1) in which « is known.
The log-likelihood function based on this sample is

InLsps (\) =d+ mink — A Z T+ Z In (1 _ e—a)\:pi)’

i=1 i=1
where d is a value independent of X. The first derivative of InLggrs () is
8lnLSRS ax;e —OAT;
o\ _7_2331—1_2 — e alzx; (2)
Since SinL o)
. nlsgs _
= = ®)
and
L
lim M Zx“ (4)

A—0c0

a solution of (2) exists. The second derivatlve of lnLSRS ()\) is

azlnLSRS ()\) m 042:C26 alx; m 2 —2alx;

(0% CC e
O\2 A2 1 — e—arzi Z 1 — e~z <0. (5)
i=1 o (1—e )

Thus (2) has a unique solution and this solution is a unique MLE of A, denoted by 5\5 rs- Under
the usual regularity assumptions (see Azzalini, 1996, p.71), the Fisher information number for
Ain SRS is

ON?

m 2 92 _alz: m 2,.2 —2alx;
a“r;e i a“T;e i
= 4FE T R arre " T
)\2 + <Z 1 — e~z ) + <Z (1 —e oz)mm) )

d?InL A
5y, srs = —F (SRS( ))

1=1 =1
2 —alx 2 —2alx
B 9 x’e 9 xce
m 2mao m(a+1) [tatiin?e
=3t T g (2 2 )/ dt
A (a-|—]_) A2 a? 1—1t
:m(a2+4a+1) 2m(0[+1)(1)(1’31+2>7

(a+1)% A2 a?)\?
where @ (z,\,v) = F(/\) fl %Wdu for all complex A\, z € C'—[1, 00) and v > 0 (see

Pedro and Jimenez-Gamero (2014)).
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84 MLEs of A\ and « in SRS

In this section, we consider the MLEs of @ and A in SRS and obtain the Fisher information
matrix of a and A in SRS. Let {x1,x2,z3, -+ ,2,,} be a simple random sample of size m from

(1) in which A and « are both unknown. The log-likelihood function based on this sample is

InLsrs (A, &) = min (a4 1) — mina + mink — A Z x; + Z In(1- e_“‘/\‘”).
i=1 i=1
This function implies that

m —alx;

dlnLgrs (A, @) _m Zx +Z<m:e

o\ A e—aAT;’ (7)

and

OlnLsrs (A, a) _m__m zm: )\xie*aAm.. -
da atl o Hl-eotwm

Solutions of (7) and (8) are the MLEs of A and «, denoted as <S\SR57@5RS)- Then under the

usual regularity assumptions (see Azzalini, 1996, p.71), the Fisher information matrix for A and

« in SRS is given by

1 I
Isns (A a) = [ D1-srs Dzosrs ) )
Ii2, srs 122, sRs
where . e
0“InLsprs (A, «
1 = _F (| —=2n2 v )
12, SRS ( 3da )
= -’I’ie_aAZi’ (1 — CZA.’EZ) m akxze_QO‘)‘li
=-E +E aarie T T
—alz 1— 2 _—2alx
:_mE<%)+ma/\E (m) (10)
__ml-a)  m+]) /1 te ' n’t
a (a+1)3 A o 1—¢
_ m(l—a)2 + 2m(a+1)® 173’l+2
a\ (O{+ 1) CYSA «
and ,
0°IlnL A,
Iz, srs = —E (n;+(a))
e’
m m )\2 2 704/\11 AQ 2 7204)\11
=9 5 tE — | + E e
(a + 1)2 a? (i_l 1 — e—@Az; ) <; (1 _ e—fv\zi)z
2 _ —aldx 2 —2alzx
=" z_ﬁz"‘m/\QE(“i/\)—Fm)\QE(LQ)
(a+1) a 1—e o (1 — e—arx) an
_L_ﬁ_i_ 2m +m(a+1)/1té+1ln2tdt
C(a+1)? @ afla+1) ot o 1—¢
- m _,mltl) /1 e’y
 a?(a+1)? a4 o 1—t
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85 MLE of )\ in RSS

RSS was introduced by Mclntyre (1952, 2005) for estimating the pasture yields. It is ap-
propriate for situations where quantification of sampling units is either costly or difficult, but
ranking the units in a small set is easy and inexpensive. An important advantage of RSS ap-
proach is that it improves the efficiency of estimators of the population parameters by providing
more representative sample from the target population.

In this section, we prove the existence and uniqueness of the MLE of X\ in RSS and obtain
the Fisher information number of A in RSS. Let {1(1), Z2(2), 3(3), - - * » Zm(m) } be a ranked set
sample of size m from (1) in which « is known. Then the pdf of X is

1—1
fi (w30, A) c(i,m){1+ OﬁLlew\z ( 1 e oAT _ 1)}

a a+1

X {a+1eA1 <1 _ 1 ea)\x)}
« a+1

X LHAef)\z (1 o 6704)\1)

)

where ¢ (i,m) = #,('1_1), Then the log-likelihood function based on the observed sample is

InLrss () = d+minXk =AYz + Y In (1— e M)

i=1 i=1

- a—i—l_/\ I e
—Din (1 SUON — O
+Zl n( + o (a+1e >)

i=1

a+17/\z 1 —aAT;(;
i (e (1 e ) ).

where d is a value independent of \. The first derivative of InLrgs () is

6lnLRSS amz(z OLA’E;(’L)
T Z Ti(4) + Z 7(1)@,(,)
m —adx
TiGi) ( 1)
+ Z 1_ 76—0&\361-(,5) (12)
i=1 a+1
m OﬁLll‘ e~ AT (1 — 670()\267’,(1‘)
P T e ik L
pt 1+ oc+1 e~ i) (%ﬂefa)\m(i) —_ 1)

Based on the above preparation, we have the followmg result.
Theorem 1. The MLE of A under RSS exists and is unique, denoted by Arss.

Proof. Since
8lnLRSS ()\)

== =~ (13)
and
. OlnLgss (\) i ,
)\ILHOIOT = —Z(m—l—i— 1)z <0, (14)

i=1
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a solution of (13) exists. Considering that

82lnLRss ()\)
N2
a? e i ((a+ 1) e i) — 1)

_ i Z _ 1) 1(1)
i=1

a+1 —/\:tc7 1 —QAT; )
1+ (4) (T+1@ (@) 1)

m (a+1) 1( )672/\9%(1) ( 7a>\x1(1))
-> (-1 3
i=1 (1 + ol e i) (T}H —aATy( ))
m 2 —aAT;(; m 2 —adx;(; —QAT; ()
L AT € @ sy i) © i (6 @ 1)
—2 i)y 2 (m ) 3
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(15)
Thus (13) has a unique solution and this solution is a unique MLE of A. This completes
the proof of Theorem 1. In Theorem 2, we give the Fisher information number of A in RSS.

Theorem 2. Under the usual regularity assumptions (see Azzalini, 1996, p.71), the Fisher
information number for A in RSS is

m(m—1)(a®?+6a+6) m(m—1) (70 + 18a + 12)
AN2(a +2)° AN (a+1) (a+2)°

Ii1,rss = I11, srs +
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a3 )\?

L m(m—1) (a+1)° /1 2%t (1 — t*)?
1 1 4o
0 1 2ty (e - 1)

m(m—1)(a+1) /1 2In?¢(t> 1)2dt
a? e

Proof. Using the basic identities

ZE [gi (x;, )] = mE [g (x; , V)],

S (i = 1) B lgi (w10, )] = m (m — 1) B g (w30, ) F (2.0, \)]
i=1

and
m

Y (m—i)Elgi (z;0,0)] = m(m —1) E[g (x; 0, ) (1 —

i=1
of order statistics in RSS (see Stokes (1995)), we have
9*InLgss (N)
I S et A
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Lmm—1)(a+ 1)? /1 2%t (1 — t*)? i
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a2 0 1— L ta

under the usual regularity assumptions of Thoerem 2. This completes the proof of Theorem 2.

dt,

86 MLEs of A and « in RSS

In this section, we consider the MLEs of « and A in RSS and obtain the Fisher information
matrix of o and A in RSS.

Let {1’1(1), To(2), T3(3)s " " ,zm(m)} be a ranked set sample of size m from (1) in which A and

« are both unknown. The log-likelihood function based on this sample is

InLrss (A, ) =d+min(a+ 1) —mina+ mink — A in(i) + Z In (1 —e @)

i=1 i=1

§ . a+l — AT 1 —aAT,(;

+ £ (Z — ].)Z'I'L <1 + Te (i) (Me @ — 1))
Em : «a 1 — AT 1 —QAT(;
i:l( Zﬂn( a © v <1a+16 U))’

where d is a value independent of A and «. This function implies that

3
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m —alz; m . —aAT; (i) _
dlnLgrss (N, «) _ T)r\l Zl‘l o+ Z Qe o A (@) N Z (m i) Z4i(4) (6 O] 1)
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The solutions of (20) and (21) are the MLEs of A and «, denoted as (;\RSS, dRss>. The Fisher
information matrix for A and a under RSS is given as follows.

Theorem 3. Under the usual regularity assumptions of Theorem 2, the Fisher information

matrix for A and « in RSS is given by

I, rss T2, rss
Inss (\a) = : ’ : 22
rss (%, ) ( I, rss I22, Rrss (22)

where
m(m—1)a m(m—1)(7a®+18a + 12)
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132 rss = I22,5Rs +
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m(m — 1) /1 t(L—t (L —1nt))” (1=t
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(24)

_|_

Proof. Since
82lnLR55 (/\, Oé)

akaa
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under the usual regularity assumptions of Theorem 2, we can obtain
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- Lg2(L _qo (L _qpg))? (1 — o
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a3 +1 1
1+ ety (—ta - 1)
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m(m—1) [rt(L -t (é—lnt))z(l—to‘)
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from (17), (18) and (19). This completes the proof of Theorem 3. O

87 Numerical comparison

In this section, we will compare the MLEs in RSS with respect to (w.r.t.) those MLEs in
SRS in terms of the asymptotic efficiency.

Table 1. Asymptotic efficiencies of MLEs of A and «

o m AFE, AE, AF3
0.5 2 1.44 1.47 1.64
3 1.89 1.94 2.37
4 2.33 2.42 3.19
5 2.77 2.88 4.11
6 3.22 3.37 5.13
7 3.66 3.84 6.23
8 4.10 4.30 7.43
9 4.54 4.79 8.72
1 2 1.45 1.50 1.66
3 1.89 2.00 2.42
4 2.34 2.50 3.29
5 2.79 2.99 4.26
6 3.24 3.48 5.41
7 3.68 3.96 6.53
8 4.13 4.49 7.83
9 4.58 4.98 9.23
1.5 2 1.45 1.49 1.68
3 1.90 1.98 2.49
4 2.35 2.48 3.41
5 2.77 2.97 3.98
6 3.25 3.46 5.63
7 3.70 3.95 6.42
8 4.15 4.44 8.33
9 4.60 4.93 9.87

Since under some regularity conditions, the asymptotic efficiencies of the MLEs can be

obtained from the inverse of the Fisher information number (Barabesi and El-Sharaawi (2001)),
111, Rrss
I11, srs

the asymptotic efficiency of ;\RSS w.r.t S\SRS may be defined as AF;, = . The asymptotic
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efficiencies of &rgg w.r.t dgrg and (ARS&CAYRSS) w.I.t ()\SRS,dSRs) may be respectively

defined as AFE; = % and AF3 = %. Since AE; (i = 1,2,3) are free of ),
without loss of generality, the simulation is given for A = 1. The simulation results are given
in Table 1.

From Table 1, we conclude the following:

1) AE; > 1, which means XRSS is more efficient than S\SRSQ

3) AE3 > 1, which means (5\R3570AZRSS) is more efficient than (;\SRS, QsRrs);
4) In conclusion, the MLEs of A and « in RSS are more efficient than that in SRS.

(
(
(
(

)

2) AE,; > 1, which means dgrgs is more efficient than é&gprs;
)
)

88 Conclusion

In this article, we proved the existence and uniqueness of the MLE of the parameters of
WED (a, A) in SRS and provided explicit expressions for the Fisher information number in
SRS. Moreover, we also proved the existence and uniqueness of the MLE of the parameters of
WED (a, A\) in RSS and provided explicit expressions for the Fisher information number in
RSS. Simulation studies show that these MLEs in RSS can be real competitors for those in
SRS. A further stage would be to extend the use of minimum ranked set sampling with unequal
samples to WED («, A).
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