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Vanishing theorems for f-CC harmonic maps with

potential H into sub-Riemannian manifolds

LI Jing1 HE Guo-qing2 ZHAO Pei-biao3,∗

Abstract. In this paper, we introduce the notion of f -CC harmonic maps with potential

H from a Riemannian manifold into sub-Riemannian manifolds, and achieve some vanishing

theorems for f -CC harmonic maps with potential H via the stress-energy tensor and the mono-

tonicity formulas.

§1 Introduction

As a generalization of harmonic maps, f -harmonic maps between Riemannian manifolds was

introduced by Lichnerowicz in [23] (see also [14]). Subsequently, many researchers have taken

part in this field and obtained a lot of results on f -harmonic maps (cf. [10, 25, 29, 30]). On the

other hand, another generalized harmonic map of a certain kind, harmonic maps with potential,

was introduced by Fardoun, Ratto in [15], which had its own mathematical and physical back-

ground, for example, the classical Neumann motion and the static Landau-Lifshitz equation.

Furthermore, they discovered some properties different from those of ordinary harmonic maps

due to the presence of the potential. Since then, many researchers have focused on the work of

harmonic maps with potential (cf. [8, 16,24,27,35,36]).

Sub-Riemannian geometry, as a generalization of Riemannian geometry, has important ap-

plications in physics (cf. [28]) and it has been paid much attention in recent years, especially

the geometric analysis in sub-Riemannian geometry (cf. [3, 4]). For instance, many important

geometric-functional inequalities were obtained in sub-Riemannian manifolds. The isoperimet-

ric inequality was first proved by Pausu [31], for the Heisenberg group H1. The Poincaré

and Sobolev inequalities for Carnot groups or more generally for Hörmander’s vector fields

were well studied in [17, 21, 26]. Meanwhile, the subelliptic harmonic theory has been well

developed. In [34], Wang investigated some regularity results for subelliptic harmonic maps
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from Carnot groups. In [7], Chang, Chang proved an existence result for pseudo-harmonic

maps from closed pseudo-Hermitian manifolds into Riemannian manifolds. In [12], Dong dis-

cussed subelliptic harmonic maps from more general sub-Riemannian manifolds and obtained

Eells-Sampson type results. On the other hand, Jost, Yang in [22] studied the heat flows of

horizontal harmonic maps from Riemannian manifolds into a class of CC spaces. In [9], Chong,

Dong, Ren introduced CC-harmonic maps associated with horizontal energy functional from

Riemannian manifolds to pseudo-Hermitian manifolds and established Liouville-type theorems

for CC-harmonic maps. Recently, in [20], He, Li, Zhao obtained Liouville-type theorems for

CC-F -harmonic maps into Carnot groups.

Inspired by all the above-mentioned interesting literature on Riemannian geometry and sub-

Riemannian geometry, we aim to study vanishing results for the generalized CC harmonic maps

associated with sub-Riemannian geometry. To this end, in the present paper, we consider the

f -CC harmonic maps with potential H (see Section 2) from a Riemannian manifold into sub-

Riemannian manifolds. According to structural characteristics of sub-Riemannian manifolds,

we obtain some vanishing theorems for f -CC harmonic maps with potential H under diverse

proper conditions.

The paper is organized as follows. In Section 2, we give the notion of f -CC harmonic

maps with potential H for the horizontal functional Ef
H,H from a Riemannian manifold into a

sub-Riemannian manifold. In Section 3, we introduce the stress-energy tensor Sf
H,H which is

naturally linked to conservation law. Afterwards, by using the stress-energy tensor Sf
H,H, we

obtain some vanishing results for f -CC harmonic maps with potential H under three different

proper conditions: small energy conditions, slow-divergent energy conditions and the boundary

vanishing conditions in Section 4. In the last section, we give some examples that are appropriate

for the results of this paper.

§2 f-CC harmonic maps with potential H

In this section, we introduce a horizontal functional Ef
H,H and give the notion of f -CC

harmonic maps with potentialH associated with horizontal functional Ef
H,H from a Riemannian

manifold into sub-Riemannian manifolds.

To this end, we first provide some basic knowledge of sub-Riemannian manifolds. Let N be

a real (n̂+k)-dimensional manifold of class C∞. Suppose that there exists a distribution H(N)

with rank n̂ on N , and a Riemannian metric gH on H(N). Then the triple (N,H(N), gH),

in the literature, is known as a sub-Riemannian manifold (cf. [6, 28, 32, 33]). Note that when

H(N) = TN , the sub-Riemannian manifold N is just a Riemannian manifold.

We also suppose that there exists a complementary distribution V(N) toH(N) in the tangent

bundle TN of N . Note that V(N) exists on any paracompact sub-Riemannian manifold. And

we usually callH(N) (resp. V(N)) the horizontal distribution (resp. vertical distribution) onN .

In this case, there exists a Riemannian metric g̃ on N and V(N) is taken as the complementary

orthogonal distribution to H(N) in TN with respect to g̃. And g̃ is called a Riemannian
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extension of gH if g̃|H = gH. Actually we may choose any Riemannian metric ḡ on N and

setting gV = ḡ|V , then we get a Riemannian extension g̃ of gH and g̃ = gH + gV , by requiring

g̃(v, k) = 0 for any v ∈ H(N) and k ∈ V(N).

For our purpose, we consider a suitable linear connection compatible to the sub-Riemannian

structure on (N,H(N), gH, g̃). The generalized Bott connection ∇B [5] is given by

∇B
XY =


ΠH(∇R

XY ), X, Y ∈ Γ(H(N)),

ΠH([X,Y ]), X ∈ Γ(V(N)), Y ∈ Γ(H(N)),

ΠV([X,Y ]), X ∈ Γ(H(N)), Y ∈ Γ(V(N)),

ΠV(∇R
XY ), X, Y ∈ Γ(V(N)),

(2.1)

where ∇R denotes the Riemannian connection of g̃, ΠH : TN → H(N) and ΠV : TN → V(N)

are the horizontal and vertical projection, respectively. Clearly ∇B satisfies

∇B
XgH = 0 and ∇B

Y gV = 0, (2.2)

for any X ∈ H(N) and Y ∈ V(N).

Next, we will introduce the horizontal functional Ef
H,H and give the notion of f -CC harmonic

maps with potential H.

Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map between Riemannian manifold

Mm and sub-Riemannian manifold N . In this paper, we consider the horizontal functional

Ef
H,H,D(u)

Ef
H,H,D(u) =

∫
D

(f(x)
|duH|2

2
−H ◦ u)dvg, (2.3)

where duH = ΠH ◦ du, f : (M, g) → (0,∞) is a smooth function, H is a smooth function on N

and D is any bounded domain with smooth boundary and D ⊆ Mm. In particular, if Mm is

compact, we may define the horizontal energy Ef
H,H(u) on Mm.

Definition 2.1. Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map between Riemannian

manifold Mm and sub-Riemannian manifold N . The map u is called an f Carnot-Carathéodory

harmonic map with potential H or f -CC harmonic map with potential H for simplicity for the

horizontal functional Ef
H,H,D(u) if it is a critical point of Ef

H,H,D(u) for any horizontal vector

fieldQ ∈ Γ(u−1H) whose support is contained in any bounded domainD with smooth boundary.

Remark 2.2. If H = 0 and f(x) = 1, then we have Ef
H,H,D = EH,D. If H = 0, then we have

Ef
H,H,D = Ef

H,D. If f(x) = 1, then we have Ef
H,H,D = EH,H,D. From Definition 2.1, we can

give the notion of CC harmonic maps associated with EH,D, f -CC harmonic maps associated

with Ef
H,D and CC harmonic maps with potential H associated with EH,H,D, respectively.

In the following, we will introduce some preparatory work to get the first variation formula

for Ef
H,H,D. In this paper, we assume that ∇B satisfies

∇B
Y gH = 0 (2.4)

for any Y ∈ V(N). Then, it follows from (2.2) and (2.4) that ∇B is compatible to gH. In fact,

this compatible connection indeed exists for some sub-Riemannian manifolds and we give two

such examples in Section 5.
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Then, for the smooth map u : (Mm, g) → (N,H(N), gH, g̃) between Riemannian manifold

Mm and sub-Riemannian manifold N , we may define the second fundamental form of u with

respect to (∇M ,∇B) by

B(X,Y ) = ∇B
Xdu(Y )− du(∇M

X Y ),

where∇M denotes the Levi-Civita connection ofM and∇B also denotes the induced connection

on u−1TN .

We also need the following lemma (see also ( [20])).

Lemma 2.3. Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map between Riemannian

manifold Mm and sub-Riemannian manifold N . Then, for any X,Y ∈ Γ(TM), we have

∇B
Xdu(Y )−∇B

Y du(X) = du([X,Y ])−ΠH([duV(X), duV(Y )])−ΠV([duH(X), duH(Y )]),

where duV = ΠV ◦ du.

For later use, we choose a local orthonormal frame field {ei} on M and define the f -CC-H

tension field τfH,H(u) of u by

τfH,H(u) = fτH(u) + duH(gradf) + gradHH ◦ u,
where τH(u) =

∑m
i=1{∇B

eiduH(ei)− duH∇M
ei ei} is the horizontal tensor field of u and gradHH

is the horizontal gradient of smooth function H defined by ⟨(gradHH)q, X⟩gH = dH(X) for

any X ∈ Hq and q ∈ (N,H(N), gH, g̃).

Now, we give the first variation formula for Ef
H,H,D. For convenience, we write g, gH and g̃

all as ⟨·, ·⟩.

Lemma 2.4. Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map between Riemannian

manifold Mm and sub-Riemannian manifold N . Then
d

dt
Ef

H,H,D(ut) = −
∫
D

⟨τfH,H(u), Q⟩, (2.5)

where d
dtut|t=0 = Q ∈ Γ(u−1H) which support contained in D and D is any bounded domain

with smooth boundary and D ⊆ Mm.

Proof. Let Ψ : (−ϵ, ϵ)×M be defined by Ψ(t, x) = ut(x) and ϵ is a positive constant. We also

use ∇M and ∇B for the Levi-Civita connection on (−ϵ, ϵ)×M and the induced connection on

Ψ−1TN . Then we get
d

dt
Ef

H,H,D(ut)|t=0

=

∫
D

{
f

m∑
i=1

(ei⟨dΨ(
∂

∂t
), dΨH(ei)⟩ − ⟨dΨ(

∂

∂t
),∇B

eidΨH(ei)⟩)

− ⟨gradHH ◦Ψ, dΨ(
∂

∂t
)⟩
}
|t=0dvg

= −
∫
D

{
⟨

m∑
i=1

f(∇B
eiduH)(ei) + dΨH(gradf) + gradHH ◦Ψ, dΨ(

∂

∂t
)⟩
}
|t=0dvg

= −
∫
D

⟨fτH(u) + duH(gradf) + gradHH ◦ u,Q⟩dvg,
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where we use Lemma 2.3 and the divergent theorem.

From Lemma 2.4, we can easily get that u is an f -CC harmonic map with potential H if

and only if τfH,H(u) = 0.

Definition 2.5. Let u : (M, g) → (N,H(N), gH) be a smooth map between Riemannian

manifold M and sub-Riemannian manifold N , u is called horizontal if (dxu)(TxM) ⊆ Hu(x)(N)

for any point x ∈ M .

Remark 2.6. The notions of CC harmonic maps, f -CC harmonic maps, CC harmonic maps

with potential H and f -CC harmonic maps with potential H defined above are all with respect

to horizontal variational vector fields, but they are not required to be horizontal themselves.

They are different from the notion of horizontal harmonic maps defined in [22], where horizontal

harmonic maps is both horizontal and harmonic usually.

§3 Stress-energy tensor

In this section, we introduce the stress-energy tensor Sf
H,H(u) associated with the horizontal

functional Ef
H,H and give the conditions that f -CC harmonic maps with potential H satisfy

the conservation law.

The stress-energy tensor for maps between Riemannian manifolds was introduced by Baird,

Eells [2] in 1980 and it unifies various results on harmonic maps. Since then, it has become

a useful tool for studying the energy behaviour of related functional, the readers may refer

to [1, 2, 11] and so on. Following [1, 16], we associated a symmetric 2-tensor Sf
H,H(u) to the

horizontal functional Ef
H,H(u), which is called the stress-energy tensor

Sf
H,H(u) = (f

|duH|2

2
−H ◦ u)g − f(u∗g̃)H,

where (u∗g̃)H = gH(duH(·), duH(·)). Analogously, we may define the stress-energy tensor Sf
H(u)

associated with the horizontal functional Ef
H(u), i.e., Sf

H(u) = f( |duH|2
2 g − (u∗g̃)H).

Proposition 3.1. Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map. Then for any vector

field X ∈ Γ(TM),

(divSf
H,H(u))(X) =

|duH|2

2
df(X)− ⟨τfH,H(u), duH(X)⟩

−
m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩,

where τfH,H(u) = fτH(u) + duH(gradf) + gradHH ◦ u.

Proof. We choose a local orthonormal basis {ei} of TM such that it is an normal frame at a

point x ∈ M . Let X be any vector field on M . Then, at the point x, one has

(divSf
H,H(u))(X)

=
|duH|2

2
df(X)−

m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩ − ⟨gradHH ◦ u, du(X)⟩
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−
m∑
i=1

ei(f)⟨duH(ei), duH(X)⟩ −
m∑
i=1

f⟨∇B
eiduH(ei), duH(X)⟩

=
|duH|2

2
df(X)− ⟨τfH,H(u), duH(X)⟩ −

m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩, (3.1)

where we used Lemma 2.3.

Let X be any smooth vector field on M . Recall that for any 2-tensor field T ∈ Γ(T ∗M ⊗
T ∗M), its divergence divT ∈ Γ(T ∗M) is defined by divT (X) =

∑m
i=1(∇M

ei T )(ei, X). Let θX be

the dual one form for any vector field X ∈ Γ(TM), i.e., θX(Y ) = ⟨X,Y ⟩, where Y ∈ Γ(TM).

The covariant derivative of θX is given by (∇MθX)(Y,Z) = (∇M
Y θX)(Z) = ⟨∇M

Y X,Z⟩ for any
X,Y, Z ∈ Γ(TM). If X = ∇Mφ is the gradient field of some C2 function φ on M , then θX = dφ

and ∇MθX = Hessφ. Let T be a symmetric (0,2)-type tensor field. It follows from [1,13] that

div(iXT ) = div(T )(X) + ⟨T ,∇MθX⟩ = div(T )(X) + 1
2 ⟨T , LXg⟩ for any X ∈ Γ(TM). Let D

be any bounded domain of M with C1 boundary. By using the Stokes’ theorem, we get∫
∂D

T (X, ṽ)dsg =

∫
D

(⟨T ,
1

2
LXg⟩+ div(T )(X))dvg, (3.2)

where ṽ is the unit outward normal vector field along ∂D.

Therefore, we can infer from Proposition 3.1 that

(divSf
H,H(u))(X) =

|duH|2

2
df(X)−

m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩. (3.3)

Then, by using (3.2) and (3.3), we get∫
∂D

Sf
H(X, v̄)dsg =

∫
D

{
⟨Sf

H,
1

2
LXg⟩+ ⟨gradHH ◦ u, du(X)⟩+ |duH|2

2
df(X)

−
m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩
}
dvg, (3.4)

and ∫
∂D

Sf
H,H(X, v̄)dsg =

∫
D

{
⟨Sf

H,H,
1

2
LXg⟩+ |duH|2

2
df(X)

−
m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩
}
dvg. (3.5)

Definition 3.2. Let u : (M, g) → (N,H(N), gH) be a smooth map. We call u satisfies the

conservation law if divSH(u) = 0, where SH(u) is the stress-energy tensor of u.

Therefore, we get that if f is a constant function and either u is horizontal or the vertical

distribution V on N is integrable, then the f -CC harmonic map with potential H satisfies the

conservation law.

§4 Vanishing results

In this section, we use the stress-energy tensor to obtain vanishing results for f -CC harmonic

maps with potential H under small energy conditions, under slowly divergent energy conditions
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and under boundary vanishing conditions in Subsections 4.1, 4.2 and 4.3, respectively.

4.1 Vanishing theorems under small energy conditions

In this subsection, we will prove some vanishing theorems for f -CC harmonic maps with

potential H under small energy conditions. Furthermore, by using these vanishing theorems,

we get another class of vanishing results on pinched Riemannian manifolds.

Before we present vanishing results, we first suppose that (Mm, g1) is a complete Riemannian

manifold with a pole x1 and r(x) = distg1(x, x1) is g1-distance function relative to the pole

x1. Set B(r) = {x ∈ M : r(x) ≤ r}. Denote by λmax (resp. λmin) the maximum (resp.

minimal) eigenvalues of Hessg1(r
2) − 2dr ⊗ dr at each point of M − {x1}. Next, we suppose

that u : (Mm, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential H, where

g = ω2g1 and 0 < ω ∈ C∞(M). We assume that ω satisfies (I) ∂ logω
∂r ≥ 0 and (II) there is a

constant K1 such that (m − 2)r ∂ logω
∂r + m−1

2 λmin + 1 −max{2, λmax} ≥ K1. We also assume

that ϑ = supM r|∂ log f
∂r | < +∞.

Definition 4.1. A map u : (M, g) → (N,H(N), gH) between a complete Riemannian manifold

M with a pole x1 and a sub-Riemannian manifold N is called radial horizontal, if du( ∂
∂r ) is

horizontal.

Theorem 4.2. Let u : (Mm, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H. If K1 − ϑ > 0, ω satisfies (I) (II), ∂H◦u
∂r ≥ 0 and u is radial horizontal, then∫

B(ϱ1)
f |duH|2

2 dvg

ϱK1−ϑ
1

≤

∫
B(ϱ2)

f |duH|2
2 dvg

ϱK1−ϑ
2

,

for any 0 < ϱ1 ≤ ϱ2. In particular, if
∫
B(R)

f |duH|2
2 dvg = o(RK1−ϑ), then duH = 0.

Proof. According to the assumption ∂H◦u
∂r ≥ 0 and taking D = B(R) and X = r ∂

∂r = 1
2∇

1r2

into (3.4), one has∫
∂B(R)

Sf
H(X, ṽ)dsg ≥

∫
B(R)

{
⟨Sf

H,
1

2
LXg⟩+ |duH|2

2
df(X)

}
dvg, (4.1)

where ∇1 denotes the covariant derivative determined by g1. Then direct computation yields

⟨Sf
H,

1

2
LXg⟩ = r

∂ logω

∂r
⟨Sf

H, g⟩+ 1

2
ω2⟨Sf

H,Hessg1(r
2)⟩. (4.2)

Now, we choose an orthonormal basis {ei}mi=1 with respect to g1 and em = ∂
∂r and suppose that

Hessg1(r
2) becomes a diagonal matrix w.r.t. {ei}. Then we have

r
∂ logω

∂r
⟨Sf

H, g⟩ = r
∂ logω

∂r
(m− 2)f

|duH|2

2
, (4.3)

and
1

2
ω2⟨Sf

H,Hessg1(r
2)⟩ ≥ 1

2
f
{
(m− 1)λmin + 2− 2max{2, λmax}

} |duH|2

2
. (4.4)

Combining (I), (II) and (4.2)-(4.4), one has

⟨Sf
H,

1

2
LXg⟩+ |duH|2

2
df(X) ≥ (K1 − ϑ)f

|duH|2

2
. (4.5)
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By using the coarea formula and |∇r| = ω−1, one has∫
∂B(R)

Sf
H(X, ṽ)dsg = R

d

dR

∫
B(R)

f
|duH|2

2
dvg −

∫
∂B(R)

fRω−1⟨duH(
∂

∂r
), duH(

∂

∂r
)⟩dsg. (4.6)

Then, it follows form (4.1), (4.5) and (4.6) that∫
B(ϱ1)

f |duH|2
2 dvg

ϱK1−ϑ
1

≤

∫
B(ϱ2)

f |duH|2
2 dvg

ϱK1−ϑ
2

, (4.7)

for any 0 < ϱ1 ≤ ϱ2. In particular, if
∫
B(R)

f |duH|2
2 dvg = o(RK1−ϑ), we obtain that duH = 0 by

(4.7) and yields the claim.

Theorem 4.3. Let u : (M, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H. If K1 − ϑ > 0, H ≤ 0 (or H|u(M) ≤ 0), ω satisfies (I) (II) and u is radial horizontal, then∫
B(ϱ1)

(f |duH|2
2 −H ◦ u)dvg
ϱK1−ϑ
1

≤

∫
B(ϱ2)

(f |duH|2
2 −H ◦ u)dvg
ϱK1−ϑ
2

,

for any 0 < ϱ1 ≤ ϱ2. In particular, if
∫
B(R)

(f |duH|2
2 −H ◦ u)dvg = o(RK1−ϑ), then duH = 0.

Proof. Taking D = B(R) and X = r ∂
∂r = 1

2∇
1r2 into (3.5), one has

⟨Sf
H,H,

1

2
LXg⟩ = ⟨Sf

H,H, r
∂ logω

∂r
g⟩+ ⟨Sf

H,H,
1

2
ω2Hessg1(r

2)⟩, (4.8)

where ∇1 denotes the covariant derivative determined by g1. Analogously, using (I), we have

⟨Sf
H,H, r

∂ logω

∂r
g⟩ ≥ (m− 2)r

∂ logω

∂r
(f

|duH|2

2
−H ◦ u), (4.9)

and

⟨Sf
H,H,

1

2
ω2Hessg1(r

2)⟩ ≥ 1

2
(f

|duH|2

2
−H ◦ u)

{
2 + (m− 1)λmin − 2max{2, λmax}

}
. (4.10)

From (4.8)-(4.10) and (II), one has

⟨Sf
H,H,

1

2
LXg⟩ ≥ K1(f

|duH|2

2
−H ◦ u). (4.11)

By using the coarea formula and |∇r| = ω−1, we have∫
∂B(R)

Sf
H,H(X, ṽ)dsg ≤ R

d

dR

∫
B(R)

(f
|duH|2

2
−H ◦ u)dvg. (4.12)

Then, it follows form (3.5), (4.11) and (4.12) that∫
B(ϱ1)

(f |duH|2
2 −H ◦ u)dvg
ϱK1−ϑ
1

≤

∫
B(ϱ2)

(f |duH|2
2 −H ◦ u)dvg
ϱK1−ϑ
2

, (4.13)

for any 0 < ϱ1 ≤ ϱ2. In particular, if
∫
B(R)

(f |duH|2
2 −H ◦ u)dvg = o(RK1−ϑ), we obtain that

duH = 0 by (4.13) and yields the claim.

The rest of this subsection is devoted to obtain some vanishing results for f -CC harmonic

maps with potential H on pinched Riemannian manifolds. To this end we will make use of the

following lemmas.

Lemma 4.4. (cf. [11,13,18,19]) Let (Mm, g) be a complete Riemannian manifold with a pole

x1. Let Kr be the radial curvature of Mm.
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(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0, then

β coth(βr)[g1 − dr ⊗ dr] ≤ Hess(r) ≤ α coth(αr)[g1 − dr ⊗ dr];

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε then

1− B
2ε

r
[g1 − dr ⊗ dr] ≤ Hess(r) ≤ e

A
2ε

r
[g1 − dr ⊗ dr];

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0 and 0 ≤ b2 ≤ 1
4 , then

1 +
√
1− 4b2

2r
[g1 − dr ⊗ dr] ≤ Hess(r) ≤ 1 +

√
1 + 4a2

2r
[g1 − dr ⊗ dr].

In [16], Feng, Han obtained the following lemma by Lemma 4.4.

Lemma 4.5. Let (Mm, g) be a complete Riemannian manifold with a pole x1. Let Kr be the

radial curvature of Mm.

(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and m− 1− 2α
β ≥ 0, then

m− 1

2
λmin + 1−max{2, λmax} ≥ m− 2α

β
;

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε, then

m− 1

2
λmin + 1−max{2, λmax} ≥ 1 + (m− 1)(1− B

2ε
)− 2e

A
2ε ;

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0 and 0 ≤ b2 ≤ 1
4 , then

m− 1

2
λmin + 1−max{2, λmax} ≥ 1 + (m− 1)

1 +
√
1− 4b2

2
− (1 +

√
1 + 4a2).

Using Lemma 4.5 and the proof of Theorem 4.2-Theorem 4.3, we easily get the following

corollaries on pinched Riemannian manifolds.

Corollary 4.6. Let (Mm, g) be a complete Riemannian manifold with a pole x1. Assume that

the radial curvature Kr of M satisfies one of the following three conditions:

(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and m− 1− 2α
β ≥ 0;

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and 1 + (m− 1)(1− B
2ε )−

2e
A
2ε > 0;

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0, 0 ≤ b2 ≤ 1
4 and 1+m−1

2 (1+
√
1− 4b2)−(1+

√
1 + 4a2) >

0.

Let u : (M, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential H. If A−ϑ > 0,
∂H◦u
∂r ≥ 0 and u is radial horizontal, then∫

B(ϱ1)
f |duH|2

2 dvg

ϱA−ϑ
1

≤

∫
B(ϱ2)

f |duH|2
2 dvg

ϱA−ϑ
2

,

for any 0 < ϱ1 ≤ ϱ2 and

A =


m− 2α

β , when Kr satisfies (i),

1 + (m− 1)(1− B
2ε )− 2e

A
2ε , when Kr satisfies (ii),

1 + m−1
2 (1 +

√
1− 4b2)− (1 +

√
1 + 4a2), when Kr satisfies (iii).

In particular, if
∫
B(R)

f |duH|2
2 dvg = o(RA−ϑ), then duH = 0.
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Corollary 4.7. Let u : (M, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H. Let (Mm, g), Kr and A be as in Corollary 4.6. If A− ϑ > 0, H ≤ 0 (or H|u(M) ≤ 0) and

u is radial horizontal, then∫
B(ϱ1)

(f |duH|2
2 −H ◦ u)dvg
ϱA−ϑ
1

≤

∫
B(ϱ2)

(f |duH|2
2 −H ◦ u)dvg
ϱA−ϑ
2

,

for any 0 < ϱ1 ≤ ϱ2. In particular, if
∫
B(R)

(f |duH|2
2 −H ◦ u)dvg = o(RA−ϑ), then duH = 0.

4.2 Vanishing theorems under slowly divergent energy conditions

In this subsection, we will prove some vanishing theorems for f -CC harmonic maps with

potential H under slowly divergent energy conditions. Furthermore, by using these vanishing

theorems, we get another class of vanishing results on pinched Riemannian manifolds.

We call the functional Ef
H(u) (or Ef

H,H(u)) is slowly divergent if there exists a positive

function Ψ(r) with
∫∞
R1

dr
rΨ(r) = +∞ (R1 > 0), such that

lim
R→∞

∫
B(R)

f |duH|2
2

Ψ(r(x))
dvg < ∞

(
or lim

R→∞

∫
B(R)

(f |duH|2
2 −H ◦ u)
Ψ(r(x))

dvg < ∞
)
. (4.14)

Theorem 4.8. Let u : (Mm, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H. If ω satisfies (I) (II), K1 − ϑ > 0, ∂H◦u
∂r ≥ 0, u is radial horizontal and Ef

H(u) is slowly

divergent, then duH = 0.

Proof. It follows from the proof of Theorem 4.2 that

R

∫
∂B(R)

ωf
|duH|2

2
dsg ≥ (K1 − ϑ)

∫
B(R)

f
|duH|2

2
dvg. (4.15)

Assume that duH ̸= 0, then there is a R1 > 0 such that
∫
B(R)

f |duH|2
2 dvg ≥ C1, for R ≥ R1

and for a positive constant C1. Combining this inequality with (4.15), for R ≥ R1, one has∫
∂B(R)

ωf
|duH|2

2
dsg ≥ C1(K1 − ϑ)

R
.

This allows us to infer

lim
R→∞

∫
B(R)

f |duH|2
2

Ψ(r(x))
dvg ≥ C1(K1 − ϑ)

∫ ∞

R1

dR

RΨ(R)
= ∞,

which contradicts (4.14) and then completes the proof of Theorem 4.8.

Theorem 4.9. Let u : (Mm, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H. If K1 − ϑ > 0, H ≤ 0 (or H|u(M) ≤ 0), ω satisfies (I) (II), u is radial horizontal and

Ef
H,H(u) is slowly divergent, then duH = 0.

Proof. Analogously, using Theorem 4.3, we can finish the proof of Theorem 4.9.

Theorem 4.10. Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map which satisfies∫
M

(divSf
H)(X)dvg =

∫
M

⟨gradHH ◦ u, du(X)⟩dvg +
∫
M

|duH|2

2
df(X)dvg
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−
∫
M

m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩dvg, (4.16)

for any X ∈ Γ(TM). If K1 − ϑ > 0, ω satisfies (I) (II), ∂H◦u
∂r ≥ 0, u is radial horizontal and

Ef
H(u) is slowly divergent, then duH = 0.

Proof. Taking D = B(r), T = Sf
H and X = r ∂

∂r in (3.2), we have∫
B(r)

⟨Sf
H,

1

2
LXg⟩dvg +

∫
B(r)

(divSf
H)(X)dvg ≤ r

∫
∂B(r)

ωf
|duH|2

2
dsg. (4.17)

From the proof of Theorem 4.2, we have

⟨Sf
H,

1

2
LXg⟩+ |duH|2

2
df(X) ≥ (K1 − ϑ)f

|duH|2

2
. (4.18)

It follows from (4.16) that

lim
R→∞

∫
B(R)

(divSf
H)(X)dvg = lim

R→∞

∫
B(R)

{
⟨gradHH ◦ u, du(X)⟩+ |duH|2

2
df(X)dvg

−
m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩
}
dvg. (4.19)

Assume that duH ̸= 0, then there is a positive constant R3 such that
∫
B(R)

f |duH|2
2 dvg ≥ C3 for

R ≥ R3 and a positive constant C3. Then, there exists a positive constant R4 > R3 such that

|
∫
B(R)

(divSf
H)(X)dvg −

∫
B(R)

{
⟨gradHH ◦ u, du(X)⟩+ |duH|2

2
df(X)dvg

−
m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩
}
dvg| ≤

(K1 − ϑ)C3

2
, (4.20)

for R ≥ R4. From (4.17), (4.18) and (4.20) for R > R4, one has
∫
∂B(R)

ωf |duH|2
2 dsg ≥ (K1−ϑ)C3

2R .

Combining this with |∇r| = ω−1 leads to

lim
R→∞

∫
B(R)

f |duH|2
2

Ψ(r(x))
dvg ≥ C3(K1 − ϑ)

∫ ∞

R4

dR

2RΨ(R)
= ∞,

which contradicts (4.14), and then we complete the proof of Theorem 4.10.

Theorem 4.11. Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map which satisfies∫
M

(divSf
H.H)(X)dvg =

∫
M

|duH|2

2
df(X)dvg (4.21)

−
∫
M

m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩dvg,

for any X ∈ Γ(TM). If K1 − ϑ > 0, H ≤ 0 (or Hu(M) ≤ 0), ω satisfies (I) (II), u is radial

horizontal and Ef
H,H(u) is slowly divergent, then duH = 0.

Proof. Taking D = B(r), T = Sf
H,H and X = r ∂

∂r in (3.2), we have∫
B(r)

{
⟨Sf

H,H,
1

2
LXg⟩+ (divSf

H,H)(X)
}
dvg ≤ r

∫
∂B(r)

ω(f
|duH|2

2
−H ◦ u)dsg. (4.22)

From the proof of Theorem 4.3, we have

⟨Sf
H,H,

1

2
LXg⟩+ |duH|2

2
df(X) ≥ (K1 − ϑ)(f

|duH|2

2
−H ◦ u). (4.23)
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It follows from (4.21) that

lim
R→∞

∫
B(R)

(divSf
H,H)(X)dvg (4.24)

= lim
R→∞

∫
B(R)

|duH|2

2
df(X)dvg − lim

R→∞

∫
B(R)

m∑
i=1

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩dvg.

Assume that duH ̸= 0, then there is a positive constant R5 such that
∫
B(R)

(f |duH|2
2 −H◦u)dvg ≥

C4, for R ≥ R5 and a positive constant C4. Then, there exists a positive constant R6 > R5

such that

|
∫
B(R)

(divSf
H,H)(X)dvg −

∫
B(R)

|duH|2

2
df(X)dvg (4.25)

+
m∑
i=1

∫
B(R)

f⟨duH(ei),ΠH([duV(X), duV(ei)])⟩dvg| ≤
(K1 − ϑ)C4

2
,

for R ≥ R6. From (4.22), (4.23) and (4.25), for R > R6, one has
∫
∂B(R)

ω(f |duH|2
2 −H ◦u)dsg ≥

(K1−ϑ)C4

2R . Combining this with |∇r| = ω−1 leads to

lim
R→∞

∫
B(R)

(f |duH|2
2 −H ◦ u)
Ψ(r(x))

dvg ≥ C4(K1 − ϑ)

∫ ∞

R6

dR

2RΨ(R)
= ∞,

which contradicts (4.14) and then complete the proof of Theorem 4.11.

On the other hand, using Theorem 4.8-Theorem 4.11, we obtain the following corollaries on

pinched Riemannian manifolds.

Corollary 4.12. Let u : (Mm, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H. Let (Mm, g1), Kr and A be as in Corollary 4.6. If A − ϑ > 0, u is radial horizontal, and

one of the following two conditions is satisfied

(1) ∂H◦u
∂r ≥ 0 and Ef

H(u) is slowly divergent,

(2) H ≤ 0 (or H|u(M) ≤ 0) and Ef
H,H(u) is slowly divergent,

then duH = 0.

Corollary 4.13. Let u : (Mm, g) → (N,H(N), gH, g̃) be a smooth map. Let (Mm, g1), Kr and

A be as in Corollary 4.6. If A − ϑ > 0, u is radial horizontal, and one of the following two

conditions is satisfied

(1) the equality (4.16) holds, ∂H◦u
∂r ≥ 0 and Ef

H(u) is slowly divergent,

(2) the equality (4.21) holds, H ≤ 0 (or H|u(M) ≤ 0) and Ef
H,H(u) is slowly divergent,

then duH = 0.

4.3 Vanishing theorems under boundary vanishing conditions

In this subsection, we will prove some vanishing results for f -CC harmonic maps with

potential H under boundary vanishing conditions on Riemannian manifolds and pinched Rie-

mannian manifolds. This kind of vanishing results under boundary vanishing conditions here

may be regarded as a natural generalization of constant Dirichlet boundary value problems for
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the maps between two Riemannian manifolds. To this end, we recall starlike domains with

C1-boundaries which generalize C1-convex domains as below.

Definition 4.14. (cf. [13]) A bounded domainD ⊂ M with C1 boundary ∂D is called starlike if

there exists an interior point x0 ∈ D such that ⟨ ∂
∂rx0

, v̂⟩|∂D ≥ 0, where v̂ is the unit outer normal

to ∂D, and the vector field ∂
∂rx0

is the unit vector field such that for any x ∈ (D \ {x0}) ∪ ∂D,
∂

∂rx0
is the unit vector tangent to the unique geodesic joining x0 and pointing away from x0.

Theorem 4.15. Let u : (Mm, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H and D ⊂ M be a bounded statlike domain with C1 boundary with the pole x0 ∈ D. If

K1 − ϑ > 0 and ∂H◦u
∂r ≥ 0 on D, ω satisfies (I) (II), u is radial horizontal and duH|∂D = 0,

then duH|D = 0.

Proof. According to duH|∂D = 0 and choosing X = rx0
∂

∂rx0
, one has∫

∂D

Sf
H(rx0

∂

∂rx0
, v̂)dsg ≤ 0. (4.26)

It follows from the proof of Theorem 4.2 that∫
D

⟨Sf
H,

1

2
Lrx0

∂
∂rx0

g⟩dvg +
∫
D

|duH|2

2
df(rx0

∂

∂rx0
)dvg ≥ 0. (4.27)

Then, from (4.1), (4.26) and (4.27), we obtain duH|D = 0 and finish the proof of Theorem

4.15.

Corollary 4.16. Let u : (Mm, g) → (N,H(N), gH, g̃) be an f -CC harmonic map with potential

H. Let (Mm, g1), Kr and A be as in Corollary 4.6, and D ⊂ M be a bounded statlike domain

with C1 boundary with the pole x0 ∈ D. If A−ϑ > 0 and ∂H◦u
∂r ≥ 0 on D, u is radial horizontal

and duH|∂D = 0, then duH|D = 0.

§5 Examples

In this last section, we give two sub-Riemannian manifolds that are appropriate for the

vanishing results in this paper.

Example 5.1. Let X1 = 1
2∂x− 1

4y∂z, X2 = ∂y + 3
2x∂z and X3 = ∂z be three vector fields on

R3. Consider the distribution given by D1 = span{X1,X2}. Then, we get the matrix {g̃ij} has

the following form

g̃ij =

 4 + 1
4y

2 −3
4xy

1
2y

− 3
4xy 1 + 9

4x
2 − 3

2x
1
2y −3

2x 1

 .

Choosing H = D1 and setting gH = g̃|H, then (R3,H, gH, g̃) defines a sub-Riemannian

manifold. Now, we prove that ∇B is compatible to gH.

Take any vector fields U = UaXa ∈ Γ(H), W = WbXb ∈ Γ(H) for a, b = 1, 2, Υ = Υ3X3 ∈
Γ(V) and Λ = Λ3X3 ∈ Γ(V). By (2.1), we easily get (∇B

ΥgH)(U ,W) = 0 and (∇B
UgV)(Υ,Λ) = 0.

Combining this two equalities with (2.2), we conclude that ∇B is compatible to gH and (2.4)

holds. Furthermore, we know ∇B is compatible to g̃.
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Example 5.2. Let X1 = ∂x, X2 = x∂y + ∂z + 1
2x

2∂w, X3 = ∂y + x∂w and X4 = ∂w be four

vector fields on R4. Consider the distribution given by D2 = span{X1,X2}. Then we get the

matrix {g̃ij} as below

g̃ij =


1 0 0 0

0 1 + x2 −x− 1
2x

3 −x

0 −x− 1
2x

3 1 + x2 + 1
4x

4 1
2x

2

0 −x 1
2x

2 1

 .

Choosing H = D2 and setting gH = g̃|H. Then we have a sub-Riemannian manifold

(R4,H, gH, g̃). Now, we prove that ∇B is compatible to gH.

Take any vector fields U = UaXa ∈ Γ(H), W = WbXb ∈ Γ(H) for a, b = 1, 2, Υ = ΥαXα ∈
Γ(V) and Λ = ΛβXβ ∈ Γ(V) for α, β = 3, 4. From (2.1), we get

(∇B
ΥgH)(U ,W) = ΥαXα⟨UaXa,WbXb⟩gH − ⟨ΠH([ΥαXα,UaXa]),WbXb⟩gH

− ⟨UaXa,ΠH([ΥαXα,WbXb])⟩gH = 0, (5.1)

and

(∇B
UgV)(Υ,Λ) = UaXa(Υ

αΛα)− ⟨UaXa(Υ
α)Xα,Λ

αXα⟩gV − ⟨UaΥα[Xa,Xα],Λ
βXβ⟩gV

− ⟨ΥαXα,UaXa(Λ
α)Xα⟩gV − ⟨ΥαXα,UaΛβ [Xa,Xβ ]⟩gV ̸= 0. (5.2)

Combining (5.1), (5.2) with (2.2), we conclude that ∇B is compatible to gH and (2.4) holds.

Furthermore, we know ∇B is not compatible to g̃.
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