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Vanishing theorems for f-C'C' harmonic maps with

potential H into sub-Riemannian manifolds

LI Jing? HE Guo-ging? ZHAO Pei-biao*

Abstract. In this paper, we introduce the notion of f-C'C harmonic maps with potential
H from a Riemannian manifold into sub-Riemannian manifolds, and achieve some vanishing
theorems for f-C'C harmonic maps with potential H via the stress-energy tensor and the mono-

tonicity formulas.

81 Introduction

As a generalization of harmonic maps, f-harmonic maps between Riemannian manifolds was
introduced by Lichnerowicz in [23] (see also [14]). Subsequently, many researchers have taken
part in this field and obtained a lot of results on f-harmonic maps (cf. [10,25,29,30]). On the
other hand, another generalized harmonic map of a certain kind, harmonic maps with potential,
was introduced by Fardoun, Ratto in [15], which had its own mathematical and physical back-
ground, for example, the classical Neumann motion and the static Landau-Lifshitz equation.
Furthermore, they discovered some properties different from those of ordinary harmonic maps
due to the presence of the potential. Since then, many researchers have focused on the work of
harmonic maps with potential (cf. [8,16,24,27,35,36]).

Sub-Riemannian geometry, as a generalization of Riemannian geometry, has important ap-
plications in physics (cf. [28]) and it has been paid much attention in recent years, especially
the geometric analysis in sub-Riemannian geometry (cf. [3,4]). For instance, many important
geometric-functional inequalities were obtained in sub-Riemannian manifolds. The isoperimet-
ric inequality was first proved by Pausu [31], for the Heisenberg group H'. The Poincaré
and Sobolev inequalities for Carnot groups or more generally for Hormander’s vector fields
were well studied in [17,21,26]. Meanwhile, the subelliptic harmonic theory has been well

developed. In [34], Wang investigated some regularity results for subelliptic harmonic maps
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from Carnot groups. In [7], Chang, Chang proved an existence result for pseudo-harmonic
maps from closed pseudo-Hermitian manifolds into Riemannian manifolds. In [12], Dong dis-
cussed subelliptic harmonic maps from more general sub-Riemannian manifolds and obtained
Eells-Sampson type results. On the other hand, Jost, Yang in [22] studied the heat flows of
horizontal harmonic maps from Riemannian manifolds into a class of CC spaces. In [9], Chong,
Dong, Ren introduced C'C-harmonic maps associated with horizontal energy functional from
Riemannian manifolds to pseudo-Hermitian manifolds and established Liouville-type theorems
for CC-harmonic maps. Recently, in [20], He, Li, Zhao obtained Liouville-type theorems for
CC-F-harmonic maps into Carnot groups.

Inspired by all the above-mentioned interesting literature on Riemannian geometry and sub-
Riemannian geometry, we aim to study vanishing results for the generalized C'C harmonic maps
associated with sub-Riemannian geometry. To this end, in the present paper, we consider the
f-CC harmonic maps with potential H (see Section 2) from a Riemannian manifold into sub-
Riemannian manifolds. According to structural characteristics of sub-Riemannian manifolds,
we obtain some vanishing theorems for f-C'C' harmonic maps with potential H under diverse
proper conditions.

The paper is organized as follows. In Section 2, we give the notion of f-C'C harmonic
maps with potential H for the horizontal functional EI{I,H from a Riemannian manifold into a
sub-Riemannian manifold. In Section 3, we introduce the stress-energy tensor S{I,H which is
naturally linked to conservation law. Afterwards, by using the stress-energy tensor SIJ;’H, we
obtain some vanishing results for f-C'C' harmonic maps with potential H under three different
proper conditions: small energy conditions, slow-divergent energy conditions and the boundary
vanishing conditions in Section 4. In the last section, we give some examples that are appropriate
for the results of this paper.

§2 f-CC harmonic maps with potential H

In this section, we introduce a horizontal functional E{{H and give the notion of f-CC
harmonic maps with potential H associated with horizontal fuflctional E{IH from a Riemannian
manifold into sub-Riemannian manifolds.

To this end, we first provide some basic knowledge of sub-Riemannian manifolds. Let N be
a real (N + k)-dimensional manifold of class C°. Suppose that there exists a distribution H(N)
with rank 7 on N, and a Riemannian metric gy on H(N). Then the triple (N, H(N), gx),
in the literature, is known as a sub-Riemannian manifold (cf. [6,28,32,33]). Note that when
H(N) = TN, the sub-Riemannian manifold N is just a Riemannian manifold.

We also suppose that there exists a complementary distribution V(N) to H(N) in the tangent
bundle TN of N. Note that V(N) exists on any paracompact sub-Riemannian manifold. And
we usually call H(N) (resp. V(N)) the horizontal distribution (resp. vertical distribution) on N.
In this case, there exists a Riemannian metric g on N and V(N) is taken as the complementary
orthogonal distribution to H(N) in TN with respect to g. And g is called a Riemannian
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extension of gy if gl = gn. Actually we may choose any Riemannian metric § on N and
setting gy = gly, then we get a Riemannian extension § of gy and § = g + gy, by requiring
g(v,8) =0 for any v € H(N) and £ € V(N).

For our purpose, we consider a suitable linear connection compatible to the sub-Riemannian
structure on (N, H(N), g3, ). The generalized Bott connection V3 [5] is given by
HH(V‘I;}Y), X, Y e T(H(N)),

Iy ([X,Y]), X eT(V(N)),Y e I(H(N)),
Iy([X,Y]), X el(H(N)),Y e [(V(N)),

My (VEY), XY e D(V(N)),

where V# denotes the Riemannian connection of g, I, : TN — H(N) and II, : TN — V(N)

are the horizontal and vertical projection, respectively. Clearly VZ satisfies
VB9 =0 and VEgy, =0, (2.2)
for any X € H(N) and Y € V(N).

Next, we will introduce the horizontal functional E ]J; 4 and give the notion of f-C'C harmonic

VEY = (2.1)

maps with potential H.

Let w : (M™,g9) — (N,H(N),gn,g) be a smooth map between Riemannian manifold
M™ and sub-Riemannian manifold N. In this paper, we consider the horizontal functional
EIJLCI,H,Q (u)

|duz|?

E}CI’Hyg(u)z/Q(f(x) 5 — Hou)dv,, (2.3)

where duy, =y odu, f: (M, g) — (0,00) is a smooth function, H is a smooth function on N

and © is any bounded domain with smooth boundary and ® C M™. In particular, if M™ is
compact, we may define the horizontal energy E}}H(u) on M™.

Definition 2.1. Let u : (M™,g) — (N,H(N), g, g) be a smooth map between Riemannian
manifold M™ and sub-Riemannian manifold N. The map u is called an f Carnot-Carathéodory
harmonic map with potential H or f-C'C harmonic map with potential H for simplicity for the
horizontal functional E};H@ (u) if it is a critical point of E{I,H@ (u) for any horizontal vector

field @ € T'(u~1H) whose support is contained in any bounded domain ® with smooth boundary.

Remark 2.2. If H =0 and f(z) = 1, then we have EIJ;,H o = By o. If H=0, then we have
EI{CI’H@ = E7f-t,9' If f(x) =1, then we have Elf_l’%@ = Epno. From Definition 2.1, we can
give the notion of CC' harmonic maps associated with Ey 5, f-C'C' harmonic maps associated
with Eit » and C'C harmonic maps with potential H associated with Ef 3 o, respectively.

In the following, we will introduce some preparatory work to get the first variation formula
for E{I o In this paper, we assume that VB satisfies

Vign =0 (24)

for any Y € V(N). Then, it follows from (2.2) and (2.4) that V7 is compatible to gs. In fact,

this compatible connection indeed exists for some sub-Riemannian manifolds and we give two

such examples in Section 5.
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Then, for the smooth map u : (M™,g) — (N, H(N), g%, g) between Riemannian manifold
M™ and sub-Riemannian manifold N, we may define the second fundamental form of u with
respect to (VM,V5) by

B(X,Y) = V5du(Y) — du(VYY),
where VM denotes the Levi-Civita connection of M and V? also denotes the induced connection
on u 'TN.

We also need the following lemma (see also ( [20])).

Lemma 2.3. Let v : (M™,g) — (N,H(N),g%,3) be a smooth map between Riemannian
manifold M™ and sub-Riemannian manifold N. Then, for any X, Y € T'(TM), we have

VEdu(Y) = V¥du(X) = du([X, Y]) — My ([duy(X), duy (Y)]) — Iy ([duz (X)), dun(Y))),

where duy = Ily, o du.

For later use, we choose a local orthonormal frame field {e;} on M and define the f-CC-H

tension field T{LH (u) of u by
TIJ;,H(U) = fryu(u) + duy(gradf) + grady H o u,

where 73 (u) = 1" {V5 duy(e;) — dup V2 e;} is the horizontal tensor field of u and grady H
is the horizontal gradient of smooth function H defined by ((gradyH)q, X)g,, = dH(X) for
any X € Hy and g € (N, H(N), gu, §)-

Now, we give the first variation formula for Egm—[@ For convenience, we write g, gy and g
all as (-, ).

Lemma 2.4. Let u : (M™,g) — (N,H(N),g%,3) be a smooth map between Riemannian

manifold M™ and sub-Riemannian manifold N. Then

d

B == [ (rh (0. Q) (25)
D

where %Uth:o = Q € I'(u"'H) which support contained in ® and D is any bounded domain

with smooth boundary and ©® C M™.

Proof. Let U : (—¢,€) x M be defined by ¥(¢,2) = u;(x) and € is a positive constant. We also
use VM and V2 for the Levi-Civita connection on (—¢,¢) x M and the induced connection on

U~ITN. Then we get

d
&E{I,”H,Q (ut)|t=0

= [ Ay St avnten) - @iz, vEave)
0
~(gradyH o ¥, d\II(a)>}|t:0dvg

N 0
= _/9 {<; f(VeBiduH)(ei) + dVUy (gradf) + grady H o W, dqj(a»}‘tzod%

- / (Frae(us) + dus(gradf) + grady H o u, Q)duv,,
D
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where we use Lemma 2.3 and the divergent theorem. O

From Lemma 2.4, we can easily get that u is an f-C'C harmonic map with potential H if

and only if TIJ;’H (u) =0.

Definition 2.5. Let u : (M,g) — (N,H(N),g) be a smooth map between Riemannian
manifold M and sub-Riemannian manifold N, u is called horizontal if (dyu)(T M) C Hyz)(NN)
for any point = € M.

Remark 2.6. The notions of C'C' harmonic maps, f-C'C harmonic maps, CC' harmonic maps
with potential H and f-C'C harmonic maps with potential H defined above are all with respect
to horizontal variational vector fields, but they are not required to be horizontal themselves.
They are different from the notion of horizontal harmonic maps defined in [22], where horizontal

harmonic maps is both horizontal and harmonic usually.

83 Stress-energy tensor

In this section, we introduce the stress-energy tensor S };H (u) associated with the horizontal
functional E};H and give the conditions that f-C'C harmonic maps with potential H satisfy
the conservation law.

The stress-energy tensor for maps between Riemannian manifolds was introduced by Baird,
Eells [2] in 1980 and it unifies various results on harmonic maps. Since then, it has become
a useful tool for studying the energy behaviour of related functional, the readers may refer
to [1,2,11] and so on. Following [1,16], we associated a symmetric 2-tensor S{LH(U) to the

horizontal functional EI’; (1), which is called the stress-energy tensor

2
Sty = (1295 oy — fugn.

where (u*§)y = g2(dug (), dug(-)). Analogously, we may define the stress-energy tensor Sﬁ;(u)

|dusq |

associated with the horizontal functional E?’;(u), ie., S{L(u) = f(—3g — (W g)n)-

Proposition 3.1. Let u: (M™,g) — (N, H(N), g, J) be a smooth map. Then for any vector
field X e T(TM),

|dusq|?
T2

= > fldug(en), My ([duy (X)), duy (e:)])),

i=1

(divS 3 (w))(X) df (X) = (rf; 3, (), dug (X))

where TIJ_CLH(u) = fru(u) + duy(gradf) + gradyu H o u.

Proof. We choose a local orthonormal basis {e;} of TM such that it is an normal frame at a
point x € M. Let X be any vector field on M. Then, at the point =, one has
(divSfy 30 (w)(X)
_ ldug
2

m

df (X) — Zf(duy(ei)7ﬂy([duy(X),duv(ei)]» — (gradyu H o u, du(X))
i=1
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m m

=Y el ) dunles), du (X)) = > f(VE dus(eq), dup (X))

i=1 i=1

|d1m|2

m

S Af (X) = (30 (w), dusg (X)) =3 Fldusg(er), oy ([dupy(X), duy(e3)])), (3.1)
=1
where we used Lemma 2.3. O

Let X be any smooth vector field on M. Recall that for any 2-tensor field 7 € I'(T*M ®
T*M), its divergence divT € I(T*M) is defined by divT (X) = > (VY T)(e;, X). Let Ox be
the dual one form for any vector field X € I'(TM), i.e., Ox(Y) = (X,Y), where Y € T'(TM).
The covariant derivative of Ox is given by (VM0x)(Y,2) = (VMox)(Z) = (V¥ X, Z) for any
XY, Z € I(TM). If X = VM is the gradient field of some C? function ¢ on M, then fx = dyp
and VMOx = Hessp. Let T be a symmetric (0,2)-type tensor field. It follows from [1,13] that
div(ixT) = div(T)(X) + (T,VMOx) = div(T)(X) + 2(T, Lxg) for any X € I'(TM). Let ®
be any bounded domain of M with C' boundary. By using the Stokes’ theorem, we get

T(X,0)dsy = / (T, %Lxg) + div(T)(X))dv,, (3.2)
D )

where ¥ is the unit outward normal vector field along 09.

Therefore, we can infer from Proposition 3.1 that

(divSiy 3 (u))(X) = df (X Zf dugy(e;), 1y ([duy (X)), duy (e;)]))- (3.3)

i=1
Then, by using (3.2) and (3.3), we get

|dUH|

\dUH|

SL(X,’D)dsg = / {(S{L, %Lxg> + (gradyu H o u,du(X)) + ———df (X)
0D D
= 3 Fldupeles), Tae[duy (X), duy(e) bavy, (3.4)
i=1
and
U 2
| Shaxoidsy = [ {(Sho yLxa+ 5 arx)

= 3 Fldun(es), Ta([duy(X), duy(e)) bdvy. — (3.5)

i=1
Definition 3.2. Let u : (M,g) — (N, H(N),g) be a smooth map. We call u satisfies the

conservation law if divSy (u) = 0, where Sz (u) is the stress-energy tensor of u.

Therefore, we get that if f is a constant function and either u is horizontal or the vertical
distribution V on N is integrable, then the f-C'C harmonic map with potential H satisfies the

conservation law.

84 Vanishing results

In this section, we use the stress-energy tensor to obtain vanishing results for f-C'C' harmonic

maps with potential H under small energy conditions, under slowly divergent energy conditions
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and under boundary vanishing conditions in Subsections 4.1, 4.2 and 4.3, respectively.

4.1 Vanishing theorems under small energy conditions

In this subsection, we will prove some vanishing theorems for f-C'C' harmonic maps with
potential H under small energy conditions. Furthermore, by using these vanishing theorems,
we get another class of vanishing results on pinched Riemannian manifolds.

Before we present vanishing results, we first suppose that (M™, g,) is a complete Riemannian
manifold with a pole z, and r(x) = disty, (x,2,) is g,-distance function relative to the pole
x,. Set B(r) = {z € M : r(z) < r}. Denote by Apax (resp. Amin) the maximum (resp.
minimal) eigenvalues of Hessg, (r?) — 2dr @ dr at each point of M — {z,}. Next, we suppose
that w : (M™,g) — (N,H(N),gxn,g) be an f-CC harmonic map with potential H, where
g =w?g, and 0 < w € C®°(M). We assume that w satisfies (I) alg# > 0 and (II) there is a
constant X, such that (m — 2) Qlogw | mT_l)\min + 1 —max{2, Apax} > K;. We also assume

"ar or
610gf|<—|—00.

that ¢ = sup,, 7|

Definition 4.1. A map u: (M, g) — (N, H(N), gx) between a complete Riemannian manifold
M with a pole z, and a sub-Riemannian manifold IV is called radial horizontal, if du(%) is

horizontal.

Theorem 4.2. Let u: (M™, g) — (N,H(N), g, g) be an f-CC harmonic map with potential
H. IfK, -9 >0, w satisfies (I) (II), % > 0 and u is radial horizontal, then

duy |? du
fB(gl)f‘ 2%‘ dvg fB(gg)fI - dvg

C,—19 — -9 )
01" 92

for any 0 < 01 < 0o. In particular, if fB(R) f%dvg = o(RF+=7), then duy = 0.

Proof. According to the assumption % > 0 and taking ® = B(R) and X = raT = %VlrQ
into (3.4), one has

/@B(R) ST (X, D)dsy > /B(R){<Sf “Lxg)+ df (X )}dvg, (4.1)

where V* denotes the covariant derivative determined by g,. Then direct computation yields
1 8logw 1
(sS4 glxg) =r=— (S1,9)+ §w2<SL,Hessgl (r?)). (4.2)

Now, we choose an orthonormal basis {e; }/"; with respect to g, and e, = a and suppose that

|du7-t|

Hessg, (r*) becomes a diagonal matrix w.r.t. {e;}. Then we have

dlogw , .y Ologw |duz)?
"%, (S3,,9) =7 5 (m 2)fT7 (4.3)
and
1 1 2
§w2<5’{£, Hess,, (1)) > if{(m — 1) Amin + 2 — 2max{2, /\max}} |du27.[| (4.4)

Combining (I), (IT) and (4.2)-(4.4), one has
1 duz|?
<Sf Lxg > | H|

a0 2 (0 - ) (45)

|duH|
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1

By using the coarea formula and |Vr| = w™!, one has

|du7{‘2 _/ 1 0 0
/OB(R) SH(X D)dsg = RdR/ )f 5 dvg s fRw <duH(8r) duq.[(a ))dsg. (4.6)

Then, it follows form (4.1), (4.5) and (4.6) that
duy |? duy |?
Jian 173 dug _ B 1125 du,

= = ) (4.7

o’ o5’
for any 0 < g1 < 02. In particular, if fB(R) f%dvg = o(R*+=7), we obtain that dus = 0 by
(4.7) and yields the claim. O

Theorem 4.3. Let u : (M,g) — (N,H(N),gu,§) be an f-CC harmonic map with potential
H.IfK, =9 >0, H<O0 (or H|ya) <0), w satisfies (1) (II) and u is radial horizontal, then

du duy |?
oo (F w° _ H o u)dv, fB(gg) Flnl _ H o w)do,

Ko—9 K, —0 ;
07" 057"

for any 0 < 01 < po. In particular, if fB(R)(fM — Hou)dv, = o(RX+=?), then dug = 0.

2

Proof. Taking ® = B(R) and X = Ta@ = 1V*r? into (3.5), one has

1 8logw 1
<SH o 2LX9> <S£{ T or 9> + <SIJ;,7-U §w2H€35gl (T2)>a (4-8)
where V* denotes the covariant derivative determined by g,. Analogously, using (I), we have
dlogw dlogw . . |duy|?
f g g H
<SH7H,7“79> > (m—2)r B (f 5~ Hou), (4.9)
and
f Lo 2 1 |dus
(Shyaus g0t Hessy, (1) 2 5 (=0 = H o u){2+ (m = D)Amin — 2max{2 Amax} . (4.10)
From (4.8)-(4.10) and (II), one has
f ]. |d’U/H‘2
(S0 5Lxg) = Ka(f =7 = Hou). (4.11)
By using the coarea formula and |Vr| = w™!, we have
d 2
/ St (X, 8)ds, < RdR (f% — H ou)dv,. (4.12)
8B(R) B(R)

Then, it follows form (3.5), (4.11) and (4.12) that
du duy |?
S (F 25— H 0wy, fB@z) (fldnll — H o w)du,

, (4.13)

s T
for any 0 < p; < go. In particular, if fB(R)(f'W“;‘2 — H ou)dv, = o(R*+=?), we obtain that
duz = 0 by (4.13) and yields the claim. O

The rest of this subsection is devoted to obtain some vanishing results for f-C'C' harmonic
maps with potential H on pinched Riemannian manifolds. To this end we will make use of the

following lemmas.

Lemma 4.4. (cf. [11,15,18,19]) Let (M™, g) be a complete Riemannian manifold with a pole
;. Let K, be the radial curvature of M™.
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(i) if —a® < K, < =% with a > 3> 0, then
Bcoth(Br)g, — dr ® dr] < Hess(r) < acoth(ar)[g, — dr @ dr];
(it) of — W<K <W withe >0, A>0 and 0 < B < 2¢ then

1-£ e3e
—=£]g, —dr®dr] < Hess(r) < —|g, — dr ® dr];
r r
(i) if —1%5 < K, < 125 witha >0 and 0 < b* < 1, then
141 — 4b? 1+ V14 4a?
+ 5 ———————[g: —dr®dr] < Hess(r) < + 2+ a (g, — dr @ dr].
r r

n [16], Feng, Han obtained the following lemma by Lemma 4.4.

Lemma 4.5. Let (M™,g) be a complete Riemannian manifold with a pole x,. Let K, be the

radial curvature of M™.

(i) if —a® < K, < —32 witha2,8>0andm—l—?>0 then
mTilAmin + 1 — max{2, Amax } > m — %1;
(it) of — WgK <szths>0 A >0 and0< B < 2¢, then
%Amin +1—max{2, Amax} > 1+ (m — 1)(1 — 2’%) — 2
(ii2) if — 1+2—K §1+2wztha>0and0<b2_ =, then
T_lxmm +1— max{2 Ama} > 14 (m — 1) F Y40 V;_W — (14 V1 +4a2).

Using Lemma 4.5 and the proof of Theorem 4.2-Theorem 4.3, we easily get the following

corollaries on pinched Riemannian manifolds.

Corollary 4.6. Let (M™,g) be a complete Riemannian manifold with a pole x,. Assume that
the radial curvature K, of M satisfies one of the following three conditions:
(') if—a2<K < —p? witha>ﬂ>0 andm—l—%azo;
Qe > 0,
(i) if — 1% < K, < 155 witha > 0,0 < b < 1 and 142572 (14T — 402) — (141 + 4a?) >
0.

Letu: (M,g) = (N,H(N), gu, g) be an f-CC harmonic map with potential H. If A—19 > 0,

9Hou > () and u is radial horizontal, then

or
|dup|? |d \
fB(Ql)f 5l dvg fB(@z)f 3

2
ot~ 7 o’
for any 0 < 01 < 02 and
m— %‘, when K, satisfies (i),
A=4q 14+ m-1)1-2)- pLE when K, satisfies (i),

14+ 22014+ V1 —402) — (1 + V1 + 4a?), when K, satisfies (ii).

In particular, if fB(R) f|d“2HI dvy = o(RA~?), then duy = 0.
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Corollary 4.7. Let u: (M,g) = (N,H(N), gxn,g) be an f-CC harmonic map with potential
H. Let (M™,g), K, and A be as in Corollary 4.6. If A—9 >0, H<0 (or H| ) <0) and
u 1$ radial horizontal, then

Is Ql)(fld“’*‘ — Hou)d, fB(QQ) (Flnl — H o u)du,

=9 A—D J
Q1 )

for any 0 < 01 < go. In particular, if fB f‘d“”‘ — Hou)dv, = o(RA™?), then duy, = 0.

4.2 Vanishing theorems under slowly divergent energy conditions

In this subsection, we will prove some vanishing theorems for f-C'C' harmonic maps with
potential H under slowly divergent energy conditions. Furthermore, by using these vanishing
theorems, we get another class of vanishing results on pinched Riemannian manifolds.

We call the functional El 2 (w) (or E};H(u)) is slowly divergent if there exists a positive
function ¥(r) with [ +00 (R, > 0), such that

' f|du’H| ' (f\dUH|2 — Houw)
lim / dv, < oo ( or lim 2
R—o0 B(R) \Il(r(x)) g ( R—o0 B(R) \I’(’]"(.’E))

r‘Il(r)

dv, < oo). (4.14)

Theorem 4.8. Let u: (M™,g) — (N, H(N), g%, ) be an f-CC harmonic map with potential
H. If w satisfies (I) (II), Ky — 9 > 0, 815;’“ > 0, u is radial horizontal and E{[( ) is slowly
divergent, then duy = 0.

Proof. Tt follows from the proof of Theorem 4.2 that

duy|? duy|?
R wf! “;' ds, > (Kl—ﬁ)/ /! ”;' dv,. (4.15)
dB(R) B(R)

Assume that dug # 0, then there is a R; > 0 such that fB(R) flduz”ﬁd”ug > (Cq, for R > Ry
and for a positive constant Cy. Combining this inequality with (4.15), for R > Rj, one has

2 _
/ Wf ‘d'LL’H| ng Z Cl (’Cl 19) .
9B(R) 2 R

This allows us to infer
] f |du7-¢‘ o) dR
lim / ————dv, > C1(K, —9) = 00,
R—oo () W(r ( )Y r, RY(R)
which contradicts (4.14) and then completes the proof of Theorem 4.8. O

Theorem 4.9. Let u: (M™,g) — (N, H(N), g%, g) be an f-CC harmonic map with potential
H. IfK, -9 >0, H<O0 (or Hlyry <0), w satisfies (1) (II), u is radial horizontal and
E{IH(u) 1s slowly divergent, then duy = 0.

Proof. Analogously, using Theorem 4.3, we can finish the proof of Theorem 4.9. O

Theorem 4.10. Let u: (M™,g) — (N, H(N),gn,J) be a smooth map which satisfies
d
/ (divSL,) (X )dvy = / (grady H o u, du(X))dv, +/ [ doun|” 1L dp(X)do
M M M
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- /MZf<dun<ei>,ny<[duv<x>,dw(ez-)}»dvg, (4.16)

for any X e T(TM). If K, — 9 > 0, w satisfies (1) (II), alg% > 0, u is radial horizontal and
E{L(u) is slowly divergent, then duy = 0.

Proof. Taking ® = B(r), T = S{L and X = r% in (3.2), we have

1 2
/ (S;;, §Lxg)dvg —|—/ (divSﬁr,f_L)(X)dvg < r/ wfldu;| dsg. (4.17)
B(r) B(r) OB(r)
From the proof of Theorem 4.2, we have
1 duy|? duy|?

(54 2 Lxa) + L) > e, — o) 120 (4.15)

It follows from (4.16) that
2
lim (divSf)( Jdvg = lim {(gradHHou,du(X» ‘dqu ——df(X)dv

—Zf dupy(eq), Thu([duy (X), duy (e)) bdv,. — (4.19)

2
Assume that duy # 0, then there is a positive constant Rz such that | B(R) f %dvg > (3 for
R > R3 and a positive constant C3. Then, there exists a positive constant R4 > R3 such that

S Vg — ra ou,du |duH‘
st = [ { gt owan(0) + S g Xy

(Ky —9)Cs5

= > Fldun(es). Ta(duy(X), duy(e)])) pvy| < 2222,

i=1
for R > Ry. From (4 |duze (a—9)Cy

> Ry. From (4.17), (4.18) and (4.20) for R > Ry, one has [, 5 p wf =5 dsy > 222552
Combining this with |[Vr| = w™?! leads to

. f\dUH\ /oo dR
hm/ 2 __du, > Cs(KC, =9 ———— = 00,
R—co Jp(R) (r(z) ? 3 ) R, 2RY(R)

(4.20)

which contradicts (4.14), and then we complete the proof of Theorem 4.10. O
Theorem 4.11. Let u: (M™,g) — N), g1, 9) be a smooth map which satisfies
d 2
/ (divSs, ) (X / | “”' 1 ap(x (4.21)
M

- /MZf<duﬂ<ei>,nﬂ<[duv<x>,dw(em»dvm

for any X e T(TM). If Ky =9 >0, H <0 (or Hyy <0), w satisfies (1) (I1), u is radial
horizontal and EI];H(U) s slowly divergent, then duy = 0.
Proof. Taking ® = B(r), T = SI{I’H and X = r% in (3.2), we have

| _ dus?
/ {(Sher 5 Lxo) + (divSh ) (X) bu, < v / o f% CHouds,  (4.22)
B(r) dB(r)

From the proof of Theorem 4.3, we have

(Shree sLxa) + 950 > e, — o)

2

|d’u,y|2

5 Hou). (4.23)



LI Jing, et al. Vanishing theorems for f-C'C harmonic maps with potential H into... 813

It follows from (4.21) that

lim (divS; 5,)(X)dv, (4.24)
R— B(R) ’ ’

o |duy|* / ,

= Jlim s 2 —y A (X)dvy — lim B(R)Zf dugy(€;), g ([duy (X)), duy (e7)]))dvy.

Assume that duy # 0, then there is a positive constant Rs such that fB(R)( ‘d“’{l —Hou)dvg >
Cy, for R > Rs and a positive constant C4. Then, there exists a positive constant Rg > R;
such that

2
[ awshaa, - [ 10

B(R) B(R)

——df (X)dv (4.25)

+Z / Fldus(es), T ([dur (X), duys(e:)]))dug| < w

for R > Rg. From (4.22), (4.23) and (4.25), for R > Rg, one has faB(R) f‘d“”l —Hou)dsy >

%. Combining this with |Vr| = w™! leads to

2
_ (flled — How) >~ dR
lim dvy, > Cy(Ky — 19)/ — = 00,
which contradicts (4.14) and then complete the proof of Theorem 4.11. O

On the other hand, using Theorem 4.8-Theorem 4.11, we obtain the following corollaries on

pinched Riemannian manifolds.

Corollary 4.12. Letu: (M™,g) = (N,H(N), g, g) be an f-CC harmonic map with potential
H. Let (M™,g,), K, and A be as in Corollary 4.6. If A—19 >0, u is radial horizontal, and
one of the following two conditions is satisfied

(1) % >0 and E{l(u) is slowly divergent,

(2) H<0 (or H|yay <0) and EIJ;,H(U) is slowly divergent,

then duy = 0.

Corollary 4.13. Letu: (M™,g) — (N,H(N), gu,d) be a smooth map. Let (M™, g,), K, and
A be as in Corollary 4.6. If A — 19 > 0, u is radial horizontal, and one of the following two
conditions is satisfied

(1) the equality (4.16) holds, % >0 and E;;(u) is slowly divergent,

(2) the equality (4.21) holds, H <0 (or H|,m) <0) and E};H(u) is slowly divergent,

then duy = 0.

4.3 Vanishing theorems under boundary vanishing conditions

In this subsection, we will prove some vanishing results for f-C'C' harmonic maps with
potential H under boundary vanishing conditions on Riemannian manifolds and pinched Rie-
mannian manifolds. This kind of vanishing results under boundary vanishing conditions here

may be regarded as a natural generalization of constant Dirichlet boundary value problems for
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the maps between two Riemannian manifolds. To this end, we recall starlike domains with

C'-boundaries which generalize C''-convex domains as below.

Definition 4.14. (cf. [13]) A bounded domain ® C M with C* boundary 9D is called starlike if
there exists an interior point xg € D such that (%, 0)|ap > 0, where ¢ is the unit outer normal
zo

to 0D, and the vector field 52— is the unit vector field such that for any = € (D \ {z0}) U 0D,
ro

9
Oy

Theorem 4.15. Let u: (M™, g) = (N, H(N), gu,g) be an f-CC harmonic map with potential
H and ® C M be a bounded statlike domain with C' boundary with the pole z, € ©. If
K, —1v >0 and 81;% >0 on D, w satisfies (I) (II), u is radial horizontal and duy|so = 0,
then duy|o = 0.

is the unit vector tangent to the unique geodesic joining x¢ and pointing away from z.

Proof. According to duy|so = 0 and choosing X = rm%, one has

o S,f;(rmar—m, )ds, < 0. (4.26)
It follows from the proof of Theorem 4.2 that
/ i, g +/ Dl =0 Vo, > 0 (4.27)
o HY 9T Two 7y g ° 2 o Omo g = U. .
Then, from (4.1), (4.26) and (4.27), we obtain duy|p = 0 and finish the proof of Theorem
4.15. O

Corollary 4.16. Letu: (M™,g) — (N, H(N), gxn,g) be an f-CC harmonic map with potential
H. Let (M™,g,), K, and A be as in Corollary 4.6, and © C M be a bounded statlike domain
with C boundary with the pole o € ©. If A—9 > 0 and % >0 on®, u is radial horizontal
and duy|oo = 0, then duy|o = 0.

85 Examples

In this last section, we give two sub-Riemannian manifolds that are appropriate for the
vanishing results in this paper.

Example 5.1. Let A; = %896 — iyaz, Xo = Oy + %x@z and X3 = 0z be three vector fields on
R3. Consider the distribution given by D; = span{X;, Xo}. Then, we get the matrix {g;;} has

the following form

4+ iyz f%xy %y

gij = —3zy 1+3%2? -3z
2y w1

Choosing H = D; and setting gy = §|u, then (R3 H,g3,3) defines a sub-Riemannian
manifold. Now, we prove that V5 is compatible to gy.

Take any vector fields U = U?X,, € T(H), W = WPA,, € T'(H) for a,b=1,2, T = T3X; €
(V) and A = A3X; € T(V). By (2.1), we easily get (VEgz)(U, W) =0 and (VEgy)(YT,A) = 0.
Combining this two equalities with (2.2), we conclude that V5 is compatible to g3, and (2.4)
holds. Furthermore, we know V5 is compatible to §.
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Example 5.2. Let X} = 0z, X, = 20y + 0z + %xQ(‘?w, X3 = 0y + 0w and X; = Ow be four
vector fields on R%. Consider the distribution given by Dy = span{Xxi, X>}. Then we get the

matrix {g;;} as below

1 0 0 0
_— 0 1+ 22 —x—%x3 —T
id = 0 —x-— %x?’ 14+ 22+ ix‘l %xQ

0 —x L2 1

2
Choosing H = Dy and setting g = g|ly. Then we have a sub-Riemannian manifold

(R*,H, g%, §). Now, we prove that V5 is compatible to gy.
Take any vector fields U = U X, € T'(H), W = WX, € T'(H) for a,b=1,2, T = T*X,, €
(V) and A = APX5 € T(V) for a, 8 = 3,4. From (2.1), we get
(VEgr) (U W) = TOXa (U X, WP ) gy, — (T ([T X, U X)), WP X ) g
= (U X, Ty ([T X, WP g5 = 0, (5.1)
and
(Vagv) (T, A) = U Xy (TOAY) = UK (T) Xy A Xa) gy, — UL [Xa, Xo], AP ) g,
X U X (A Xy — (XX U X, Kol 20, (5.2)
Combining (5.1), (5.2) with (2.2), we conclude that V7 is compatible to g3, and (2.4) holds.

Furthermore, we know V% is not compatible to §.
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