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Regularity criteria of weak solutions to the 3D

axisymmetric Navier-Stokes equations

ZHAO Ji-hong

Abstract. We investigate a sufficient condition, in terms of the azimuthal component w? of
w = curlw in cylindrical coordinates, for the regularity of axisymmetric weak solutions to the
3D incompressible Navier-Stokes equations. More precisely, we prove that if

T
/ Hwe(-,t)H%O dt < co with +-=2, - <p<Loo,
0 2p 2

Py

3
p

2N

then the weak solution wu is actually a regular solution. Similar regularity criterion still holds in

the homogeneous Triebel-Lizorkin spaces.

81 Introduction

In this paper, we are concerned with the regularity problem of axisymmetric weak solutions
to the incompressible Navier-Stokes equations in R3:
Ou+ (u-V)u—Au+Vr =0,
V-u=0, (1)
u(x,0) = ug(x),
where u : R? x (0,7) — R3 is the fluid velocity field, and 7« : R® x (0,7) — R is a scalar
pressure, and ug is a given initial velocity satisfying V - ug = 0 in the sense of distributions.
By the classical results of Leray [26] and Hopf [17], we know that for given initial data
up € L*(R™) with V - ug = 0 in the sense of distributions, the n-dimensional version of system
(1) admits at least one global weak solution u € L>(0,T; L*(R™))N L2(0,T; H'(R")) satisfying
the following energy inequality:

t
Hu(t)||2L2 —|—2/ HVU(T)H%QCZT < ||u0|\%2 for a.e. t€[0,T) (2)
0
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and
(u- n +u~V¢-u+u-A¢)dwdt+/ uo(z) - ¢(z,0)dz = 0,
0 R™ R
for all ¢ € C§°(R™ x [0,T)) with V- ¢ = 0. It is well-known that in two dimensions, this weak
solution is unique and regular for all £ > 0. However, in three dimensions, the regularity of
weak solutions is a challenging open problem in mathematical fluid mechanics. In 1962, Serrin

[34] proved that if u is a Leray-Hopf weak solution such that
2 3
we LU0, T; LP(R*)) with =+ =<1, 2<g<oo, 3<p< oo, (3)
qg p

then u is a regular solution in R® x (0,7). From then on, many mathematicians are in-
terested in finding sufficient regularity conditions to ensure the regularity of weak solutions,
the literatures listed here are far from being complete, and we refer the readers to see [1,3-
7,9,12,13,15,16,19,20,31-33,36,42-44] and references therein.

In this paper, we are interested in finding sufficient conditions to ensure the regularity
of weak solutions for the 3D axisymmetric Navier-Stokes equations. For a point in R? by
x = (71,72, 73), let us consider the cylindrical coordinates of R?

r1 =rcosl, xo=rsind, 3= x3,

where r > 0, 0 < 0 < 27, z3 € R, and
z
r=1/22 + 22, 0=arctan —>, 3= ms.
T1

T2 T1

67":(7’770)’ 69:(_757a0)7 63:(07071)

be the corresponding basis vectors. Then a solution u of the Navier-Stokes equations (1) is

Let

called an axisymmetric solution if the three components u”, u’ and u® are independent of the
angular variable 6, i.e., the solution w has the following form

u(z,t) = u"(r, zs, t)e, +u’(r, x5, t)eq + ud(r, z3,t)es,

and (u”,u’, u®) satisfies the following equations:

(u®)?

pru’ = (02 + 03 + 10, — fo)u” — L5 4 0w =0,
By = (02 + 03 + 0, — Fu’ + 225 =,
Do — (02 + 33 + L0, )u® + 95w = 0, 4)

Opu” + Ou + Tum =0,

(urvuevugﬂt:O = (ugvugvug)v
where u”, u? and u? are called the radial, swirl (or azimuthal) and axial components of the
velocity field u, respectively, and % = 0y + u"0, + u03 stands for the convection derivative.

By the uniqueness of local smooth solutions, it is easy to verify that if u$ = 0, then u? = 0 for
all later time. For the study of axisymmetric solutions of the Navier-Stokes equations without
swirl, Ladyzhenskaya [23] and Ukhovskii-Yudovich [37] independently proved global existence,
uniqueness and regularity of axisymmetric weak solutions. Later on, Leonardi et. al [25] gave
a refined proof. However, for the axisymmetric Navier-Stokes equations with nonzero swirl
component, it is not clear the effect of the vortex stretching in the vorticity equations and the
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regularity problem of weak solutions is still open. Many studies and interesting progresses have
been made on the regularity issues of the axisymmetric weak solutions, see [10,15,18,21,22,24,28-
30,38-41] and references therein. In 2002, Chae-Lee [8] proved that if the azimuthal component
w? of w = curlu satisfies

T
3
/ (- )]|%,dt < oo with <2, —<p<oo, 1<qg<oo, (5)
0

2 3

qg p 2
then the weak solution u is regular in R? x (0,7"). Subsequently, Chen-Zhang [11] proved that
if

+

T
lo? 1)l gt < o0, (6)
then u is a regular solution in R3 x (0, 7).
In this paper, we aim at improving the regularity criteria (5) and (6) to the following Serrin’s
regularity criterion in the framework of Besov spaces and Triebel-Lizorkin spaces. The main
results are as follows.

Theorem 1.1. Let u be an azisymmetric weak solution of the Navier-Stokes equations (1) with
ug € H'(R3), V -ug = 0. If w? satisfies the following condition:
/T| L, dt<oo with 2+5—2 3op< (7)
w’ (-, t)||% oo with —+4+-=2, - < o0,
0 Bl o qa p 2 =7
then the weak solution u is regular in R® x (0,T).

Obviously, (7) becomes the condition (6) if we choose “p = 00” in (7), thus (7) can be
regarded as an extension of the regularity criteria (5) and (6). Moreover, by using similar
argument in the proof of Theorem 1.1, we can prove that similar regularity criterion as (7) still
holds in the homogeneous Triebel-Lizorkin spaces.

Theorem 1.2. Let u be an axisymmetric weak solution of the Navier-Stokes equations (1) with
ug € HY(R?), V-ug = 0. If w? satisfies the following condition:
w i d th 2+2-9 2op< 8
; o™ D)o, dt < 00 wit T p 2 g <P (8)

then the weak solution u is regular in R® x (0,T), where F;T.(R?’) denotes the homogeneous

P,

Triebel-Lizorkin spaces.

The paper is organized in the following way. In Section 2, we shall introduce the homo-
geneous Besov spaces and review some known estimates. In Section 3, we shall complete the
proofs of Theorems 1.1 and 1.2. Throughout the paper, C stands for some real positive constant
which may be different in each occurrence.

82 Preliminary

We start with the Fourier transform. Let S(R?) be the Schwartz class of rapidly decreasing
function, and &’(R?) of temperate distributions be the dual set of S(R3). Given f € S(R?),
the Fourier transform fis defined by

fie)= [ e papin
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More generally, the Fourier transform f of a tempered distribution f € &’(R?) is defined by
the dual argument in the standard way.

Let us now introduce a dyadic decomposition in R3. Let ¢ : R® — [0, 1] be a smooth cut-off
function which equals one on the ball B(0,2) := {¢ € R®: |¢| < 2} and equals zero outside the
ball B(0, 3). Let

p() = 0(€) — #(26),  ¢;(6) = 0(277€),  ¢;(€) == 0(277€), jEL.
Then for all j € Z, the Littlewood-Paley projection operators A; and S; are respectively defined
by
Ajf =279 D)f,and S;f = ¢(277D)f.

Let S; (R?) be the space of tempered distribution f € &'(R?) such that

dim S;f=0.

j——o0
By telescoping the series, we thus have the Littlewood-Paley decomposition

F=Y_A;f,

JEL

which holds for all f € Sj,(R?). Now we recall the definition of the homogeneous Besov spaces.
Let s€ R, 1 <p,r <ocoand f €S (R?), we set

1
(Zjez QjSTHAijTLp) T for 1<r < oo,
sup; ez 27°(| A; fl v for r = 0.

11, =

Then the homogeneous Besov space B;T(Rs) is defined by

. Fors<%(0r3:§ifr:1),wedeﬁne

B, (R?) = {f € SR I/

B, < OO}
. IkaNand%+k§s< %JrkJrl (ors:%+k+1 if r=1), thenB;ﬂ,(]Ri%) is defined
as the subset of distributions f € &'(R?) such that 9° f € B;;k (R3) whenever |3| = k.

In the sequel we shall frequently use the Bernstein’s inequalities (see for example [2]).

Lemma 2.1. Let B be a ball, and C a ring in R®. There exists a constant C such that for any
positive real number X\, any nonnegative integer k and any couple of real numbers (p,q) with
1 <p<q< oo, we have

supp f CAB = sup [A%f||za < CFTINF3G=D £ o, 9)
la|=k
supp f C AC = c-l-kxknfnmsls?p IA® fllze < CYENE(| £l o (10)
o=k

Let us recall the well-known Biot-Savart law, which reveals the relation between the diver-

gence free velocity field w and the vorticity w = curlu (see for example [27]).

Lemma 2.2. Let u be a smooth vector field with V -u = 0. Then we have

Vu(z) = Mw(z) + K x w(x), (11)
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where M is a constant matriz, and K is a matriz valued function with homogeneous of degree
of —3. Moreover, for any 1 < p < oo, we have

IVullLr < Cllw|Le- (12)

Finally, in the following, we shall use two notations for the axisymmetric vector field u

U= u"e, + ules,

and
V = (8,,0).
We can easily compute the vorticity w = curlwu as follows:
w=uw"e, +wles+ wies,
where ;
W= —d5u’, w? =01 + u7’ W = —8,u® + 93u”.

Moreover, if we denote

&= w"e, + wies,
then we can infer from [8] and [11] to get the following equalities and inequalities.

Lemma 2.3. Let u be an azisymmetric vector field. Then we have
Va2 = 1“7]2 + VU2 + [V, (13)
0 ~
IV (ufeq)|? = |“7|2 + |Vl 2. (14)

Lemma 2.4. Let u be an axisymmetric vector field with V - u = 0, and let w = curlu vanish
sufficiently fast near infinity in R®. Then Vu and V(u’eq) can be represented as the singular
integral form
Vii(z) = Mweq(z) + [K * (Wep)](x), (15)
V(e (x)) = M(x) + [H «&](x), (16)
where the kernels K (z) and H(x) are matriz valued functions homogeneous of degree —3, defin-
ing a singular integral operator by convolution, and f x g(x) = f]R3 flx—1v)g(y)dy denotes the
standard convolution operator. The matrices M and M' are the constant matrices.

Lemma 2.5. Let 1 < p < co. Then we have
IVallr < Clw’llze,  IV(u’eq)lle < Cl| e, (17)

where C' is a constant depending only on p.

83 The proofs of Theorems 1.1 and 1.2

Let u be an axisymmetric solution of the Navier-Stokes equations (1). Taking the curl on
both sides of (1), we obtain

Ow+ (u-Viw — Aw = (w- V)u. (18)
Multiplying both sides of (18) by w and integrating over R3, we get

1d
3l + 1Vl = [ (- Vupwds, (19)
R3



778 Appl. Math. J. Chinese Univ. Vol. 40, No. 4

where we used the fact
1
/ (u- Vw)wdr = f/
RS 2 Jgs
since V - u = 0. Noting that

(u- V)wide = 1 / (V- u)w?dz =0,
2 Jgs

. 1
w=w"e, + ey +wdes, V=60, — =egdy+ e30s,
r
we can rewrite the right-hand side of (19) as

1
/ (w- Vu)wdz = / (wrﬁrurwr + w9 ulw? + W utw? + —wluTw?
R3 R3 T

1 . -
— 20Ul + WlOsuT W + widsulw? + w383u3w3>dx
r

=1(t) + L(t) + - - + Is(1). (20)
We estimate I;(t) (i =1,2,---,8) as follows. For I(t), it is easily seen from the fact |0,u"| <
|[Vi| and using Lemma 2.4, one has

L) g/ |wr|2\6,.ur|dx§0/ W 2(|w?] + K * (Peq)|)da. (21)
R3 R3

By means of the Littlewood-Paley dyadic decomposition, we divide w? into the following three

parts:

“+oo N
W = Z A]—we = Z Ajwo + Z Ajwe + Z Ajwe,

j=—00 j<—N j=—N J>N
where N is a positive integer to be determined later. Thus we have

BOI< 3 [ POAWT + K « (Ajule))da

j<—-N

N
+ 30 [ POAW + K ¢ (Aguten))ds
R

j=—N
#30 [ TPOAWI K ¢ (Agwen) )z
j>N /R
= Ill(t) + Ilg(t) + Ilg(t) (22)
For I1(¢), applying the Holder’s inequality and (9), we can bound it as

IOl = 3 [ A+ K« (Agulen))da

j<—N
<Ol Fe D 1Azl + 1K + (Ajeleq)|z)
j<—N
<Ol 22 Y 2¥)|A0 s
j<—N
<clw iz (0 2Y) (X lawll)
j<—N j<—N

< 0273V |w|3.. (23)
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For I15(t), it follows from the Holder’s inequality that

1a(8)] = Z / W 218,67 + [K * (AP eq)|)da
j=—N
N
< C||wr||i% _ZN(HAJ‘WQHLP + || K (A0 eq) | Lr)
&

N 2p 22;3 a 2 21
<O 2 (30 175) 7 (X 1)
Lr =N N

<CONH IIwGHBo el =
0 2(1—
<ONH |l HBo wllz: A2

< 16HVw||L2 +0Nllw9||2” * fwlize, (24)
r. 3P
where we used the following Gagliardo- Nirenberg inequahty:
3
loll | 22, < w2 2”|\Vw\|2” forall p=> 7.

For I13(t), applying the Holder’s inequality, (9) and (10) yield that
a0 = Y [ P+ K (g en))ds

J>N
< Ollo el llze Y (180 oo + 1K = (Agee0)]25)
>N
< Cllo" el s Y 2% ]l 12
i>N
< Ol g2 | Veo” ||Lz(22 V(X 2 ))
J>N
< O F 9
< C2 ¥ w12 | Ve 2. (25)

Plugging estimates (23)—(25) into (22), we see that
L) < — ||Vw||Lz +C(27N||w||m + Njw 9H2p *lwlze +277 ||w||L2||VwHL2> (26)

3
Similarly, by means of the fact

°| < |Val < O(IM’| + K * (w eo)]),
the terms I5(t ) I4(t), I(t) and Ig(t) can be estimated as I;(t), thus for i = 3,4, 6,8, we have
[Li(t)] < 7||VWHL2 +C<27§NHWHL2 + Nllw e”2p P lwlzs +27 HWHL2||VW||L2) (27)

3
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For I5(t), similar to the derivation of (2 ) it can be rewritten as the following three terms

|I5(t)| = Z / w" O’ Ajwldr + Z / w" O’ Ajwldr + Z/ w" O’ A’ da

Jj<—N i>N
= I (t) 4 Ioa(t) + In3(t). (28)
It follows from Lemmas 2.3 and 2.4 that
[0ru’| < [V (u’eq)| < |&] + |H * &,

and since the singular operator is bounded on L? for all 1 < p < 0o, we can use Lemma 2.5 and
perform the same procedure as (26) to obtain

_3 _N
100 < oIVl +C (27 4V fulifs + Nl 3 Nl 2 F e Vle). (29

3

For the last two terms I5(t) and I7(t), it follows Lemmas 2.3 and 2.4 again that

0
u ~ ~
5| tosu?) < IV (o) < 16l + 1H + 31,

thus these two terms can be bounded analogously as the term I5(¢). Combining all above
estimates (26)—(29) altogether, we obtain

d _3 22 N
el IVelEe < C (278 Jwlide + NI T ® e +27 ¥ Jullpa|Vwl3s).  (30)
P
Now we can choose N large enough such that

C27 % ||w| 2 <

[\3\'—‘

ie.

+ 2
N 2 Clelt)
In2

where In* ¢ = Int for t > 1 and InTt =0 for 0 < ¢ < 1, then we know from (30) that

d
el +5 IIVWIILz <O+ |w?ll g e j )(lwlZ + e) In([lw]Z: + e)- (31)

3

Denoting Y (t) := ||w(t)||32 + e, the inequality (31) implies that

d

S ImY() <C(+ le®1 2, 2" )InY (1)
3

By solving this ordinary differential inequality, we have

Y () <Y(0)exp{exp{Ct+C/ ||w9||2p ;dT}}

for all 0 < ¢ < T, which implies further that

sup ||w||L2 < (||Vu0||L2 +e)exp {exp {CT-i—C/ ||w9||2” 3 dt}} (32)
0<t< 2p

3

Combining the above estimate (32) with the energy inequality (2), we ﬁnally get

sup (Dl < (ol + ) exp{exp {ccrw [z dt}} (53)

o< » 3

Proof of Theorem 1.1. In [14], Fujita and Kato proved the local existence of strong
solution for uy € H(R3) with V -ug = 0, and it follows that there exists T, > 0 and an
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axisymmetric solution v of the Navier-Stokes equations (1) satisfying

v(t) € C([0,T,), H) N C*((0,T,), H) N C((0,T.), H?), v(0) = up.
Since the weak solution u satisfies the energy inequality (2), we can apply Serrin’s uniqueness
criterion in [35] to conclude that

u=v on [0,T).

Thus it is sufficient to show that T, = T. Suppose T < T. Without loss of generality, we may
assume that T, is the maximal existence time for v(¢). Notice that u(t) = v(¢) on [0,7%), by
the assumption (7), we have

Tx
/ [ (curlv)? ()H” ! di < oo,
0

Then it follows from (33) that the existence time of v( ) can be extended after ¢ = T, which
contradicts the maximality of T,. The proof of Theorem 1.1 is achieved.
Proof of Theorem 1.2. Back to (20), we need to estimate I;(¢) (i = 1,2,---,8) one by

one. For I;(t), it suffices to tackle with I15(¢) as follows:
N

[112(1))| :/ WY (1A 4 K * (Ajw’eq)|)da
R3 =N
N 2p 73 N ) ) 3
gc/ wE( 3 1) T Z (185671 + |K « (A50eq)| F)) 7 du
R3 Pt =N

2p=3 12
SON = [l 2
Lp—1 Lr

N 3
(30 (a51¥ + 1K « (Aen)| %))
j N

< N5 (|l o, +||K*waupo el 2o
"

» 2 I

2p-3 2(1- 5

<SON (]| o [wllys IIVwIILz
P 3

< gVl + ONIWIE fwl
P73

which together with (23) and (25) yield that
1 2
L)) < 1 IVelfs + O(2 PV lwlds + N 5

2
P

Based on the above argument, the remaining terms I;(¢)(i = 2, - - - , 8) can be similarly estimated

_N
JwliZz + 2% w2l Vel ).

by only using “the homogeneous Triebel-Lizorkin norm” instead of “the homogeneous Besov
norm”, and we can exactly proceed the same lines as the proof of Theorem 1.1 to complete the
proof of Theorem 1.2.

Acknowledgement

The author would like to acknowledge his sincere thanks to the editor and the referees for
a careful reading of the paper and many valuable comments and suggestions.



782

Appl. Math. J. Chinese Univ. Vol. 40, No. 4

Declarations
Conflict of interest The authors declare no conflict of interest.

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

R P Agarwal, S Gala, M A Ragusa. A regularity criterion in weak spaces to Boussinesq
equations, Mathematics, 2020, 8(6): 920, DOI: 10.3390/math8060920.

H Bahouri, J Y Chemin, R Danchin. Fourier Analysis and Nonlinear Partial Differential
Equations, Berlin: Springer, 2011.

J T Beale, T Kato, A Majda. Remarks on breakdown of smooth solutions for the 3D Euler
equations, Comm Math Phys, 1984, 94: 61-66.

H Beirdo da Veiga. A new regularity class for the Navier-Stokes equations in R™, Chinese Ann
Math Ser B, 1995, 16: 407-412.

S Benbernou, S Gala, M A Ragusa. On the regularity criteria for the 8D magnetohydrodynamic
equations via two components in terms of BMO space, Math Method Appl Sci, 2014, 37(15):
2320-2325.

C S Cao, E S Titi. Global regularity criterion for the 3D Navier-Stokes equations involving one
entry of the velocity gradient tensor, Arch Ration Mech Anal, 2011, 202: 919-932.

D Chae, H Choe. Regularity of solutions to the Navier-Stokes equations, Electron J Differ Equ,
1999, 1999: 1-7.

D Chae, J Lee. On the reqularity of axisymmetric solutions of the Navier-Stokes equations, Math
7, 2002, 239: 645-671.

J Y Chemin, P Zhang. On the critical one component regularity for 3-D Navier-Stokes systems,
Ann Sci Ec Norm Supér, 2016, 49(1): 131-167.

H Chen, D Fang, T Zhang. Regularity of 3D azisymmetric Navier-Stokes equations, Discrete
Contin Dyn Syst, 2017, 37(4): 1923-1939.

Q Chen, Z Zhang. Regularity criterion of azisymmetric weak solutions to the 3D Navier-Stokes
equations, J Math Anal Appl, 2007, 331(2): 1384-1395.

L Eskauriaza, G A Serégin, V Sverdk. L3 -solutions of Navier-Stokes equations and backward
uniqueness, Russ Math Surv, 2003, 58: 211-250.

D Fang, C Qian. The regularity criterion for the 3D Navier-Stokes equations involving one
velocity gradient component, Nonlinear Anal, 2013, 78: 86-103.

H Fujita, T Kato. On the Navier-Stokes initial value problem I, Arch Ration Mech Anal, 1964,
16: 269-315.

S Gala. On the regularity criterion of axisymmetric weak solutions to the 8D Nawvier-Stokes
equations, Nonlinear Anal, 2011, 74: 775-782.

S Gala, E Galakhov, M A Ragusa, et al. Beale-Kato-Majda regularity criterion of smooth
solutions for the Hall-MHD equations with zero viscosity, Bull Braz Math Soc, New Series, 2022,
53: 229-241.



ZHAO Ji-hong. Regularity criteria of weak solutions to the 3D axisymmetric... 783

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

E Hopf. Uber die Anfangwertaufgaben fir die hydromischen Grundgleichungen, Math Nachr,
1951, 4: 213-321.

O Kreml, M Pokorny. A regularity criterion for the angular velocity component in axisymmetric
Navier-Stokes equations, Electron J Differ Equ, 2007, 8: 1-10.

H Kozono, T Ogawa, Y Taniuchi. The critical Sobolev inequalities in Besov spaces and regularity

criterion to some semi-linear evolution equations, Math Z, 2002, 242: 251-278.

H Kozono, Y Taniuchi. Bilinear estimates in BMO and the Navier-Stokes equations, Math Z,
2000, 235: 173-194.

A Kubica, M Pokorny, W Zajaczkowski. Remarks on regularity criteria for axially symmetric
weak solutions to the Navier-Stokes equations, Math Method Appl Sci, 2012, 35: 360-371.

I Kukavica, M Ziane. One component regularity for the Navier-Stokes equations, Nonlinearity,
2006, 19: 453-469.

O A Ladyzhenskaya. Unique global solvability of the three-dimensional Cauchy problem for the
Navier-Stokes equations in the presence of axial symmetry, Zap Nauchn Sem LOMI, 1968, 7:
155-177.

Z Lei, Q S Zhang. A Liouville theorem for the azially symmetric Navier-Stokes equations, J
Funct Anal, 2011, 261(8): 2323-2345.

S Leonardi, J Mslek, J Netas, et al. On azially symmetric flows in R®, Z Anal Anwendungen,
1999, 18: 639-649.

J Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math, 1934, 63:
193-248.

A J Majda, A L Bertozzi. Vorticity and Incompressible Flow, Cambridge: Cambridge University
Press, 2002.

J Neustupa, M Pokorny. An interior regularity criterion for an azially symmetric suitable weak
solution to the Navier-Stokes equations, J Math Fluid Mech, 2000, 2: 381-399.

J Neustupa, M Pokorny. Azisymmetric flow of Navier-Stokes fluid in the whole space with
non-zero angular velocity component, Math Bohem, 2001, 126: 469-481.

X Pan. A regularity condition of 3d axisymmetric Navier-Stokes equations, Acta Appl Math,
2017, 150: 103-109.

P Penel, M Pokorny. Some new regularity criteria for the Navier-Stokes equations containing
gradient of the velocity, Appl Math, 2004, 49(5): 483-493.

P Penel, M Pokorny. On anisotropic reqularity criteria for the solutions to 8D Navier-Stokes
equations, J Math Fluid Mech, 2011, 13: 341-353.

C Qian. A generalized reqularity criterion for 3D Navier-Stokes equations in terms of one velocity
component, J Differ Equ, 2016, 260(4): 3477-3494.

J Serrin. On the interior reqularity of weak solutions of the Navier-Stokes equations, Arch Ration
Mech Anal, 1962, 9: 187-195.

J Serrin. The initial value problem for the Navier-Stokes equations, in: R E Langer (Ed.),
Nonlinear Problems, Madison: University of Wisconsin Press, 1963, 69-98.



784 Appl. Math. J. Chinese Univ. Vol. 40, No. 4

[36] H Sohr. Zur Regularitdtstheorie der instationdren Gleichungen von Navier-Stokes, Math Z, 1983,
184: 359-375.

[37] M R Ukhovskii, V I Yudovich. Auzially symmetric flows of ideal and viscous fluids filling the
whole space, J Appl Math Mech, 1968, 32: 52-61.

[38] D Wei. Regularity criterion to the azially symmetric Navier-Stokes equations, J Math Anal Appl,
2016, 435(1): 402-413.
[39] P Zhang, T Zhang. Global azisymmetric solutions to the three-dimensional Navier-Stokes equa-

tions system, Int Math Res Notices, 2014, 2014: 610-642.

[40] Z Zhang. Remarks on regularity criteria for the Navier-Stokes equations with azisymmetric data,
Ann Polon Math, 2016, 117(2): 181-196.

[41] Z Zhang. A pointwise regularity criterion for azisymmetric Navier-Stokes system, J Math Anal
Appl, 2018, 461(1): 1-6.
[42] X Zheng. A regularity criterion for the tridimensional Navier-Stokes equations in terms of one

velocity component, J Differ Equ, 2014, 256(1): 283-309.

[43] Y Zhou. A new regularity criterion for weak solutions to the Navier-Stokes equations, J Math
Pures Appl, 2005, 84(11): 1496-1514.

[44] Y Zhou, M Pokorny. On the regularity of the solutions of the Navier-Stokes equations via one
velocity component, Nonlinearity, 2010, 23: 1097-1107.

School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013,
China.
Email: jihzhao@163.com



