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Regularity criteria of weak solutions to the 3D

axisymmetric Navier-Stokes equations

ZHAO Ji-hong

Abstract. We investigate a sufficient condition, in terms of the azimuthal component ωθ of

ω = curlu in cylindrical coordinates, for the regularity of axisymmetric weak solutions to the

3D incompressible Navier-Stokes equations. More precisely, we prove that if∫ T

0

∥ωθ(·, t)∥q
Ḃ0

p,
2p
3

dt < ∞ with
2

q
+

3

p
= 2,

3

2
< p ≤ ∞,

then the weak solution u is actually a regular solution. Similar regularity criterion still holds in

the homogeneous Triebel-Lizorkin spaces.

§1 Introduction

In this paper, we are concerned with the regularity problem of axisymmetric weak solutions

to the incompressible Navier-Stokes equations in R3:
∂tu+ (u · ∇)u−∆u+∇π = 0,

∇ · u = 0,

u(x, 0) = u0(x),

(1)

where u : R3 × (0, T ) → R3 is the fluid velocity field, and π : R3 × (0, T ) → R is a scalar

pressure, and u0 is a given initial velocity satisfying ∇ · u0 = 0 in the sense of distributions.

By the classical results of Leray [26] and Hopf [17], we know that for given initial data

u0 ∈ L2(Rn) with ∇ · u0 = 0 in the sense of distributions, the n-dimensional version of system

(1) admits at least one global weak solution u ∈ L∞(0, T ;L2(Rn))∩L2(0, T ;H1(Rn)) satisfying

the following energy inequality:

∥u(t)∥2L2 + 2

∫ t

0

∥∇u(τ)∥2L2dτ ≤ ∥u0∥2L2 for a.e. t ∈ [0, T ] (2)
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and ∫ T

0

∫
Rn

(u · ∂ϕ
∂t

+ u · ∇ϕ · u+ u ·∆ϕ)dxdt+

∫
Rn

u0(x) · ϕ(x, 0)dx = 0,

for all ϕ ∈ C∞
0 (Rn × [0, T )) with ∇ · ϕ = 0. It is well-known that in two dimensions, this weak

solution is unique and regular for all t > 0. However, in three dimensions, the regularity of

weak solutions is a challenging open problem in mathematical fluid mechanics. In 1962, Serrin

[34] proved that if u is a Leray-Hopf weak solution such that

u ∈ Lq(0, T ;Lp(R3)) with
2

q
+

3

p
≤ 1, 2 < q < ∞, 3 < p < ∞, (3)

then u is a regular solution in R3 × (0, T ). From then on, many mathematicians are in-

terested in finding sufficient regularity conditions to ensure the regularity of weak solutions,

the literatures listed here are far from being complete, and we refer the readers to see [1,3-

7,9,12,13,15,16,19,20,31-33,36,42-44] and references therein.

In this paper, we are interested in finding sufficient conditions to ensure the regularity

of weak solutions for the 3D axisymmetric Navier-Stokes equations. For a point in R3 by

x = (x1, x2, x3), let us consider the cylindrical coordinates of R3

x1 = r cos θ, x2 = r sin θ, x3 = x3,

where r > 0, 0 ≤ θ < 2π, x3 ∈ R, and

r =
√
x2
1 + x2

2, θ = arctan
x2

x1
, x3 = x3.

Let

er = (
x1

r
,
x2

r
, 0), eθ = (−x2

r
,
x1

r
, 0), e3 = (0, 0, 1)

be the corresponding basis vectors. Then a solution u of the Navier-Stokes equations (1) is

called an axisymmetric solution if the three components ur, uθ and u3 are independent of the

angular variable θ, i.e., the solution u has the following form

u(x, t) = ur(r, x3, t)er + uθ(r, x3, t)eθ + u3(r, x3, t)e3,

and (ur, uθ, u3) satisfies the following equations:

D
Dtu

r − (∂2
r + ∂2

3 + 1
r∂r −

1
r2 )u

r − (uθ)2

r + ∂rπ = 0,

D
Dtu

θ − (∂2
r + ∂2

3 + 1
r∂r −

1
r2 )u

θ + uruθ

r = 0,

D
Dtu

3 − (∂2
r + ∂2

3 + 1
r∂r)u

3 + ∂3π = 0,

∂ru
r + ∂3u

3 + 1
ru

r = 0,

(ur, uθ, u3)|t=0 = (ur
0, u

θ
0, u

3
0),

(4)

where ur, uθ and u3 are called the radial, swirl (or azimuthal) and axial components of the

velocity field u, respectively, and D
Dt := ∂t + ur∂r + u3∂3 stands for the convection derivative.

By the uniqueness of local smooth solutions, it is easy to verify that if uθ
0 = 0, then uθ = 0 for

all later time. For the study of axisymmetric solutions of the Navier-Stokes equations without

swirl, Ladyzhenskaya [23] and Ukhovskii-Yudovich [37] independently proved global existence,

uniqueness and regularity of axisymmetric weak solutions. Later on, Leonardi et. al [25] gave

a refined proof. However, for the axisymmetric Navier-Stokes equations with nonzero swirl

component, it is not clear the effect of the vortex stretching in the vorticity equations and the
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regularity problem of weak solutions is still open. Many studies and interesting progresses have

been made on the regularity issues of the axisymmetric weak solutions, see [10,15,18,21,22,24,28-

30,38-41] and references therein. In 2002, Chae-Lee [8] proved that if the azimuthal component

ωθ of ω = curlu satisfies∫ T

0

∥ωθ(·, t)∥qLpdt < ∞ with
2

q
+

3

p
≤ 2,

3

2
< p < ∞, 1 < q ≤ ∞, (5)

then the weak solution u is regular in R3 × (0, T ). Subsequently, Chen-Zhang [11] proved that

if ∫ T

0

∥ωθ(·, t)∥Ḃ0
∞,∞

dt < ∞, (6)

then u is a regular solution in R3 × (0, T ).

In this paper, we aim at improving the regularity criteria (5) and (6) to the following Serrin’s

regularity criterion in the framework of Besov spaces and Triebel-Lizorkin spaces. The main

results are as follows.

Theorem 1.1. Let u be an axisymmetric weak solution of the Navier-Stokes equations (1) with

u0 ∈ H1(R3), ∇ · u0 = 0. If ωθ satisfies the following condition:∫ T

0

∥ωθ(·, t)∥q
Ḃ0

p,
2p
3

dt < ∞ with
2

q
+

3

p
= 2,

3

2
< p ≤ ∞, (7)

then the weak solution u is regular in R3 × (0, T ).

Obviously, (7) becomes the condition (6) if we choose “p = ∞” in (7), thus (7) can be

regarded as an extension of the regularity criteria (5) and (6). Moreover, by using similar

argument in the proof of Theorem 1.1, we can prove that similar regularity criterion as (7) still

holds in the homogeneous Triebel-Lizorkin spaces.

Theorem 1.2. Let u be an axisymmetric weak solution of the Navier-Stokes equations (1) with

u0 ∈ H1(R3), ∇ · u0 = 0. If ωθ satisfies the following condition:∫ T

0

∥ωθ(·, t)∥q
Ḟ 0

p,
2p
3

dt < ∞ with
2

q
+

3

p
= 2,

3

2
< p ≤ ∞, (8)

then the weak solution u is regular in R3 × (0, T ), where Ḟ s
p,r(R3) denotes the homogeneous

Triebel-Lizorkin spaces.

The paper is organized in the following way. In Section 2, we shall introduce the homo-

geneous Besov spaces and review some known estimates. In Section 3, we shall complete the

proofs of Theorems 1.1 and 1.2. Throughout the paper, C stands for some real positive constant

which may be different in each occurrence.

§2 Preliminary

We start with the Fourier transform. Let S(R3) be the Schwartz class of rapidly decreasing

function, and S ′(R3) of temperate distributions be the dual set of S(R3). Given f ∈ S(R3),

the Fourier transform f̂ is defined by

f̂(ξ) :=

∫
R3

e−2πix·ξf(x)dx.
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More generally, the Fourier transform f̂ of a tempered distribution f ∈ S ′(R3) is defined by

the dual argument in the standard way.

Let us now introduce a dyadic decomposition in R3. Let ϕ : R3 → [0, 1] be a smooth cut-off

function which equals one on the ball B(0, 5
4 ) := {ξ ∈ R3 : |ξ| ≤ 5

4} and equals zero outside the

ball B(0, 3
2 ). Let

φ(ξ) := ϕ(ξ)− ϕ(2ξ), ϕj(ξ) := ϕ(2−jξ), φj(ξ) := φ(2−jξ), j ∈ Z.
Then for all j ∈ Z, the Littlewood-Paley projection operators ∆j and Sj are respectively defined

by

∆jf := φ(2−jD)f, and Sjf := ϕ(2−jD)f.

Let S ′
h(R3) be the space of tempered distribution f ∈ S ′(R3) such that

lim
j→−∞

Sjf = 0.

By telescoping the series, we thus have the Littlewood-Paley decomposition

f =
∑
j∈Z

∆jf,

which holds for all f ∈ S ′
h(R3). Now we recall the definition of the homogeneous Besov spaces.

Let s ∈ R, 1 ≤ p, r ≤ ∞ and f ∈ S ′(R3), we set

∥f∥Ḃs
p,r

:=


(∑

j∈Z 2
jsr∥∆jf∥rLp

) 1
r

for 1 ≤ r < ∞,

supj∈Z 2
js∥∆jf∥Lp for r = ∞.

Then the homogeneous Besov space Ḃs
p,r(R3) is defined by

• For s < 3
p (or s = 3

p if r = 1), we define

Ḃs
p,r(R3) :=

{
f ∈ S ′

h(R3) : ∥f∥Ḃs
p,r

< ∞
}
.

• If k ∈ N and 3
p + k ≤ s < 3

p + k + 1 (or s = 3
p + k + 1 if r = 1), then Ḃs

p,r(R3) is defined

as the subset of distributions f ∈ S ′(R3) such that ∂βf ∈ Ḃs−k
p,r (R3) whenever |β| = k.

In the sequel we shall frequently use the Bernstein’s inequalities (see for example [2]).

Lemma 2.1. Let B be a ball, and C a ring in R3. There exists a constant C such that for any

positive real number λ, any nonnegative integer k and any couple of real numbers (p, q) with

1 ≤ p ≤ q ≤ ∞, we have

supp f̂ ⊂ λB ⇒ sup
|α|=k

∥Λαf∥Lq ≤ Ck+1λk+3( 1
p−

1
q )∥f∥Lp , (9)

supp f̂ ⊂ λC ⇒ C−1−kλk∥f∥Lp ≤ sup
|α|=k

∥Λαf∥Lp ≤ C1+kλk∥f∥Lp . (10)

Let us recall the well-known Biot-Savart law, which reveals the relation between the diver-

gence free velocity field u and the vorticity ω = curlu (see for example [27]).

Lemma 2.2. Let u be a smooth vector field with ∇ · u = 0. Then we have

∇u(x) = Mω(x) +K ∗ ω(x), (11)
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where M is a constant matrix, and K is a matrix valued function with homogeneous of degree

of −3. Moreover, for any 1 < p < ∞, we have

∥∇u∥Lp ≤ C∥ω∥Lp . (12)

Finally, in the following, we shall use two notations for the axisymmetric vector field u

ũ := urer + u3e3,

and

∇̃ := (∂r, ∂3).

We can easily compute the vorticity ω = curlu as follows:

ω = ωrer + ωθeθ + ω3e3,

where

ωr = −∂3u
θ, ω3 = ∂ru

θ +
uθ

r
, ωθ = −∂ru

3 + ∂3u
r.

Moreover, if we denote

ω̃ := ωrer + ω3e3,

then we can infer from [8] and [11] to get the following equalities and inequalities.

Lemma 2.3. Let u be an axisymmetric vector field. Then we have

|∇ũ|2 =
∣∣ur

r

∣∣2 + |∇̃ur|2 + |∇̃u3|2, (13)

|∇(uθeθ)|2 =
∣∣uθ

r

∣∣2 + |∇̃uθ|2. (14)

Lemma 2.4. Let u be an axisymmetric vector field with ∇ · u = 0, and let ω = curlu vanish

sufficiently fast near infinity in R3. Then ∇ũ and ∇(uθeθ) can be represented as the singular

integral form

∇ũ(x) = Mωθeθ(x) + [K ∗ (ωθeθ)](x), (15)

∇(uθeθ(x)) = M ′ω̃(x) + [H ∗ ω̃](x), (16)

where the kernels K(x) and H(x) are matrix valued functions homogeneous of degree −3, defin-

ing a singular integral operator by convolution, and f ∗ g(x) =
∫
R3 f(x − y)g(y)dy denotes the

standard convolution operator. The matrices M and M ′ are the constant matrices.

Lemma 2.5. Let 1 < p < ∞. Then we have

∥∇ũ∥Lp ≤ C∥ωθ∥Lp , ∥∇(uθeθ)∥Lp ≤ C∥ω̃∥Lp , (17)

where C is a constant depending only on p.

§3 The proofs of Theorems 1.1 and 1.2

Let u be an axisymmetric solution of the Navier-Stokes equations (1). Taking the curl on

both sides of (1), we obtain

∂tω + (u · ∇)ω −∆ω = (ω · ∇)u. (18)

Multiplying both sides of (18) by w and integrating over R3, we get

1

2

d

dt
∥ω∥2L2 + ∥∇ω∥2L2 =

∫
R3

(ω · ∇u)ωdx, (19)
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where we used the fact∫
R3

(u · ∇ω)ωdx =
1

2

∫
R3

(u · ∇)ω2dx = −1

2

∫
R3

(∇ · u)ω2dx = 0,

since ∇ · u = 0. Noting that

ω = ωrer + ωθeθ + ω3e3, ∇ = er∂r −
1

r
eθ∂θ + e3∂3,

we can rewrite the right-hand side of (19) as∫
R3

(ω · ∇u)ωdx =

∫
R3

(
ωr∂ru

rωr + ωr∂ru
θωθ + ωr∂ru

3ω3 +
1

r
ωθurωθ

− 1

r
ωθuθωr + ω3∂3u

rωr + ω3∂3u
θωθ + ω3∂3u

3ω3
)
dx

:= I1(t) + I2(t) + · · ·+ I8(t). (20)

We estimate Ii(t) (i = 1, 2, · · · , 8) as follows. For I1(t), it is easily seen from the fact |∂rur| ≤
|∇ũ| and using Lemma 2.4, one has

|I1(t)| ≤
∫
R3

|ωr|2|∂rur|dx ≤ C

∫
R3

|ωr|2(|ωθ|+ |K ∗ (ωθeθ)|)dx. (21)

By means of the Littlewood-Paley dyadic decomposition, we divide ωθ into the following three

parts:

ωθ =

+∞∑
j=−∞

∆jω
θ =

∑
j<−N

∆jω
θ +

N∑
j=−N

∆jω
θ +

∑
j>N

∆jω
θ,

where N is a positive integer to be determined later. Thus we have

|I1(t)| ≤
∑

j<−N

∫
R3

|ωr|2(|∆jω
θ|+ |K ∗ (∆jω

θeθ)|)dx

+
N∑

j=−N

∫
R3

|ωr|2(|∆jω
θ|+ |K ∗ (∆jω

θeθ)|)dx

+
∑
j>N

∫
R3

|ωr|2(|∆jω
θ|+ |K ∗ (∆jω

θeθ)|)dx

:= I11(t) + I12(t) + I13(t). (22)

For I11(t), applying the Hölder’s inequality and (9), we can bound it as

|I11(t)| =
∑

j<−N

∫
R3

|ωr|2(|∆jω
θ|+ |K ∗ (∆jω

θeθ)|)dx

≤ C∥ωr∥2L2

∑
j<−N

(∥∆jω
θ∥L∞ + ∥K ∗ (∆jω

θeθ)∥L∞)

≤ C∥ωr∥2L2

∑
j<−N

2
3
2 j∥∆jω

θ∥L2

≤ C∥ωr∥2L2

( ∑
j<−N

23j
) 1

2
( ∑

j<−N

∥∆jω
θ∥2L2

) 1
2

≤ C2−
3
2N∥ω∥3L2 . (23)
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For I12(t), it follows from the Hölder’s inequality that

|I12(t)| =
N∑

j=−N

∫
R3

|ωr|2(|∆jω
θ|+ |K ∗ (∆jω

θeθ)|)dx

≤ C∥ωr∥2
L

2p
p−1

N∑
j=−N

(∥∆jω
θ∥Lp + ∥K ∗ (∆jω

θeθ)∥Lp)

≤ C∥ωr∥2
L

2p
p−1

( N∑
j=−N

1
2p

2p−3

) 2p−3
2p

( N∑
j=−N

∥∆jω
θ∥

2p
3

Lp

) 3
2p

≤ CN
2p−3
2p ∥ωθ∥Ḃ0

p,
2p
3

∥ω∥2
L

2p
p−1

≤ CN
2p−3
2p ∥ωθ∥Ḃ0

p,
2p
3

∥ω∥2(1−
3
2p )

L2 ∥∇ω∥
3
p

L2

≤ 1

16
∥∇ω∥2L2 + CN∥ωθ∥

2p
2p−3

Ḃ0

p,
2p
3

∥ω∥2L2 , (24)

where we used the following Gagliardo-Nirenberg inequality:

∥w∥
L

2p
p−1

≤ ∥w∥1−
3
2p

L2 ∥∇w∥
3
2p

L2 for all p ≥ 3

2
.

For I13(t), applying the Hölder’s inequality, (9) and (10) yield that

|I13(t)| =
∑
j>N

∫
R3

|ωr|2(|∆jω
θ|+ |K ∗ (∆jω

θeθ)|)dx

≤ C∥ωr∥L2∥wr∥L6

∑
j>N

(∥∆jω
θ∥L3 + ∥K ∗ (∆jω

θeθ)∥L3)

≤ C∥ωr∥L2∥wr∥L6

∑
j>N

2
j
2 ∥ωθ∥L2

≤ C∥ωr∥L2∥∇ωr∥L2

( ∑
j>N

2−j
) 1

2
( ∑

j>N

22j∥ωθ∥2L2

) 1
2

≤ C2−
N
2 ∥ωr∥L2∥∇ωr∥L2∥∇ωθ∥L2

≤ C2−
N
2 ∥ω∥L2∥∇ω∥2L2 . (25)

Plugging estimates (23)–(25) into (22), we see that

|I1(t)| ≤
1

16
∥∇ω∥2L2 + C

(
2−

3
2N∥ω∥3L2 +N∥ωθ∥

2p
2p−3

Ḃ0

p,
2p
3

∥ω∥2L2 + 2−
N
2 ∥ω∥L2∥∇ω∥2L2

)
. (26)

Similarly, by means of the fact

|∂ru3|,
∣∣∣ur

r

∣∣∣, |∂3ur|, |∂3u3| ≤ |∇ũ| ≤ C(|Mωθ|+ |K ∗ (ωθeθ)|),

the terms I3(t), I4(t), I6(t) and I8(t) can be estimated as I1(t), thus for i = 3, 4, 6, 8, we have

|Ii(t)| ≤
1

16
∥∇ω∥2L2 + C

(
2−

3
2N∥ω∥3L2 +N∥ωθ∥

2p
2p−3

Ḃ0

p,
2p
3

∥ω∥2L2 + 2−
N
2 ∥ω∥L2∥∇ω∥2L2

)
. (27)
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For I2(t), similar to the derivation of (22), it can be rewritten as the following three terms

|I2(t)| =
∑

j<−N

∫
R3

ωr∂ru
θ∆jω

θdx+
N∑

j=−N

∫
R3

ωr∂ru
θ∆jω

θdx+
∑
j>N

∫
R3

ωr∂ru
θ∆jω

θdx

:= I21(t) + I22(t) + I23(t). (28)

It follows from Lemmas 2.3 and 2.4 that

|∂ruθ| ≤ |∇(uθeθ)| ≤ |ω̃|+ |H ∗ ω̃|,
and since the singular operator is bounded on Lp for all 1 < p < ∞, we can use Lemma 2.5 and

perform the same procedure as (26) to obtain

|I2(t)| ≤
1

16
∥∇ω∥2L2+C

(
2−

3
2N∥ω∥3L2 +N∥ωθ∥

2p
2p−3

Ḃ0

p,
2p
3

∥ω∥2L2 + 2−
N
2 ∥ω∥L2∥∇ω∥2L2

)
. (29)

For the last two terms I5(t) and I7(t), it follows Lemmas 2.3 and 2.4 again that∣∣∣uθ

r

∣∣∣, |∂3uθ| ≤ |∇(uθeθ)| ≤ |ω̃|+ |H ∗ ω̃|,

thus these two terms can be bounded analogously as the term I2(t). Combining all above

estimates (26)–(29) altogether, we obtain

d

dt
∥ω∥2L2+∥∇ω∥2L2 ≤ C

(
2−

3
2N∥ω∥3L2 +N∥ωθ∥

2p
2p−3

Ḃ0

p,
2p
3

∥ω∥2L2 + 2−
N
2 ∥ω∥L2∥∇ω∥2L2

)
. (30)

Now we can choose N large enough such that

C2−
N
2 ∥ω∥L2 ≤ 1

2
,

i.e.,

N ≥
2 ln+(C∥ω∥2L2)

ln 2
+ 2,

where ln+ t = ln t for t ≥ 1 and ln+ t = 0 for 0 < t < 1, then we know from (30) that

d

dt
∥ω∥2L2 +

1

2
∥∇ω∥2L2 ≤ C(1 + ∥ωθ∥

2p
2p−3

Ḃ0

p,
2p
3

)(∥ω∥2L2 + e) ln(∥ω∥2L2 + e). (31)

Denoting Y (t) := ∥ω(t)∥2L2 + e, the inequality (31) implies that

d

dt
lnY (t) ≤ C(1 + ∥ωθ∥

2p
2p−3

Ḃ0

p,
2p
3

) lnY (t).

By solving this ordinary differential inequality, we have

Y (t) ≤ Y (0) exp
{
exp

{
Ct+ C

∫ t

0

∥ωθ∥
2p

2p−3

Ḃ0

p,
2p
3

dτ
}}

for all 0 < t ≤ T , which implies further that

sup
0≤t≤T

∥ω∥2L2 ≤ (∥∇u0∥2L2 + e) exp

{
exp

{
CT + C

∫ T

0

∥ωθ∥
2p

2p−3

Ḃ0

p,
2p
3

dt

}}
. (32)

Combining the above estimate (32) with the energy inequality (2), we finally get

sup
0≤t≤T

∥u(t)∥2H1 ≤ (∥u0∥2H1 + e) exp

{
exp

{
CT + C

∫ T

0

∥ωθ∥
2p

2p−3

Ḃ0

p,
2p
3

dt

}}
. (33)

Proof of Theorem 1.1. In [14], Fujita and Kato proved the local existence of strong

solution for u0 ∈ H1(R3) with ∇ · u0 = 0, and it follows that there exists T∗ > 0 and an
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axisymmetric solution v of the Navier-Stokes equations (1) satisfying

v(t) ∈ C([0, T∗),H
1) ∩ C1((0, T∗),H

1) ∩ C((0, T∗),H
3), v(0) = u0.

Since the weak solution u satisfies the energy inequality (2), we can apply Serrin’s uniqueness

criterion in [35] to conclude that

u ≡ v on [0, T∗).

Thus it is sufficient to show that T∗ = T . Suppose T∗ < T . Without loss of generality, we may

assume that T∗ is the maximal existence time for v(t). Notice that u(t) = v(t) on [0, T∗), by

the assumption (7), we have ∫ T∗

0

∥(curl v)θ(t)∥
2p

2p−3

Ḃ0

p,
2p
3

dt < ∞.

Then it follows from (33) that the existence time of v(t) can be extended after t = T∗, which

contradicts the maximality of T∗. The proof of Theorem 1.1 is achieved.

Proof of Theorem 1.2. Back to (20), we need to estimate Ii(t) (i = 1, 2, · · · , 8) one by

one. For I1(t), it suffices to tackle with I12(t) as follows:

|I12(t)| =
∫
R3

|ωr|2
N∑

j=−N

(|∆jω
θ|+ |K ∗ (∆jω

θeθ)|)dx

≤ C

∫
R3

|ωr|2
( N∑

j=−N

1
2p

2p−3

) 2p−3
2p

( N∑
j=−N

(|∆jω
θ|

2p
3 + |K ∗ (∆jω

θeθ)|
2p
3 )

) 3
2p

dx

≤ CN
2p−3
2p ∥ωr∥2

L
2p

p−1

∥∥∥( N∑
j=−N

(
|∆jω

θ|
2p
3 + |K ∗ (∆jω

θeθ)|
2p
3

)) 3
2p
∥∥∥
Lp

≤ CN
2p−3
2p

(
∥ωθ∥Ḟ 0

p,
2p
3

+ ∥K ∗ ωθ∥Ḟ 0

p,
2p
3

)
∥ω∥2

L
2p

p−1

≤ CN
2p−3
2p ∥ωθ∥Ḟ 0

p,
2p
3

∥ω∥2(1−
3
2p )

L2 ∥∇ω∥
3
p

L2

≤ 1

16
∥∇ω∥2L2 + CN∥ωθ∥

2p
2p−3

Ḟ 0

p,
2p
3

∥ω∥2L2 ,

which together with (23) and (25) yield that

|I1(t)| ≤
1

16
∥∇ω∥2L2 + C

(
2−

3
2N∥ω∥3L2 +N∥ωθ∥

2p
2p−3

Ḟ 0

p,
2p
3

∥ω∥2L2 + 2−
N
2 ∥ω∥L2∥∇ω∥2L2

)
.

Based on the above argument, the remaining terms Ii(t)(i = 2, · · · , 8) can be similarly estimated

by only using “the homogeneous Triebel-Lizorkin norm” instead of “the homogeneous Besov

norm”, and we can exactly proceed the same lines as the proof of Theorem 1.1 to complete the

proof of Theorem 1.2.
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