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Monotonicity of limit wave speed for the perturbed gKdV

equation with general even m

WEN Zhen-shu

Abstract. This paper concerns the monotonicity of limit wave speed c0(h) for the perturbed

gKdV equation with general even m. We show that c0(h) is decreasing. Our results give partial

answer to the open problem presented by Yan et al. (Math. Model. Anal., 19, 537-555, 2014).

§1 Introduction

Shallow water wave models play an important role in describing natural phenomena, and the

research of their solutions is a very active subject in the field of differential equations and has

significant application. Many approaches have been developed to study them [1–11]. In recent

years, the perturbed shallow water wave equations and their traveling waves have attracted

considerable interest since the perturbed models maybe more realistic [12–21]. Among these

models, the KdV-type equations are of particular interest and have attracted continuous atten-

tion due to the fact that they possess a type of traveling wave solutions, the so-called solitary

wave solutions and are believed to be able to describe the soliton phenomenon first discovered

by Scott Russell in 1834. The KdV equation is also well-known as the prototypical example of

an exactly solvable equation. Some modified or generalized forms of the KdV equation have

been introduced and studied more recently for both physical and mathematical interest. When

modelling the move of wave, small perturbations due to the existence of uncertainty in real

world and the unavoidable error in modeling may be neglected. However, the perturbations

should be included to obtain a more realistic model and to better understand the dynamical

behavior of the equation. For example, Owaga [23] studied the perturbed KdV equation

vt + vvx + vxxx + ε(vxx + vxxxx) = 0, (1)
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and established the persistence of its solitary waves and periodic waves for sufficiently small

parameter ε > 0, which include the perturbation terms: the backward diffusion uxx and dis-

sipation uxxxx. As a generalization, Yan et al. [22] further proved the existence of these two

kinds of waves to the perturbed generalized KdV (gKdV) equation

vt + vmvx + vxxx + ε(vxx + vxxxx) = 0. (2)

However, the authors also proposed an open problem about the monotonicity of limit wave

speed, which will further help understand the water wave. About this open problem, there

have been partial results for some particular (small) m. For m = 1, Owaga [23] showed that

c0(h) is decreasing. For m = 2, 3, 4, Chen et al. [24, 25] established that c0(h) is also decreas-

ing. However, as suggested in [25], for m ≥ 5, the monotonicity of c0(h) is difficult to prove

analytically and remains an open problem. We made a tentative study to address this problem

for m ≥ 5 from the numerical perspective [26]. In this paper, inspired by [26], we further study

the monotonicity of c0(h) to Eq.(2) with general even m. From now on, we suppose that m is

even.

Obviously, Eq.(2) can be transformed into the following ODE

−cv′(ζ) + vm(ζ)v′(ζ) + v′′′(ζ) + ε(v′′(ζ) + v′′′′(ζ)) = 0, (3)

by letting ζ = x− ct with the wave speed c > 0, from which we easily obtain

−cv(ζ) +
1

m+ 1
vm+1(ζ) + v′′(ζ) + ε(v′(ζ) + v′′′(ζ)) = 0. (4)

Introducing the scale transformation ρ =
√
cζ, v = m

√
cX, we arrive at

−X(ρ) +
1

m+ 1
Xm+1(ρ) +X ′′(ρ) + ε

(
1√
c
X ′(ρ) +

√
cX ′′′(ρ)

)
= 0. (5)

Setting ε = 0, we obtain the unperturbed system of Eq.(5)

X ′′ +
1

m+ 1
Xm+1 −X = 0, (6)

or in the form of planar dynamical system{
dX
dρ = Y,
dY
dρ = X − 1

m+1X
m+1,

(7)

with first integral

H(X,Y ) = −Y 2 +X2 − 2

(m+ 1)(m+ 2)
Xm+2 = h. (8)

Obviously, system (7) has one saddle (0, 0), two centers (± m
√
m+ 1, 0), and the phase por-

trait is given in Figure 1. In addition, we haveH(0, 0) = 0 andH(± m
√
m+ 1, 0) =

m m
√

(m+1)2

m+2 ,
H∗. Then we can parameter the traveling waves of system (7) through h, and display the mono-

tonicity of c0(h) in the following theorem.

Theorem 1. There exists ε0 > 0, such that for ε ∈ [0, ε0) and h ∈ [0,H∗), Eq.(2) with

general even m has solutions v = ± m
√
cX(ε, h, c, ρ), where X(ε, h, c, ρ) is a solution of Eq.(5).

c = c(ε, h) is a smooth function of ε and h, with the limit c0(h) as ε → 0. Furthermore, c0(h)

is a smooth decreasing function for h ∈ [0, H∗) and satisfies
1

m
≤ c0(h) <

3m+ 4

m(2m+ 3)
, c0(0) =

3m+ 4

m(2m+ 3)
, and lim

h→H∗−0
c0(h) =

1

m
. (9)
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Figure 1. The phase portrait of system (7).

§2 The theoretic derivations of the monotonicity of c0(h)

In this section, we exploit the Abelian integral theory and numerical technique to deal with

the monotonicity of c0(h) only, since other parts of Theorem 1 were proved in [22].

Assume that X(ρ) is the solution of system (7), and Q and R are defined by

Q =
1

2

∫
(X ′′)2dρ, R =

1

2

∫
(X ′)2dρ,

where the integrals are performed along the orbits of system (7). Then from [22], it is known

that c0(h) can be expressed as

c0(h) =
R

Q
.

Now it is time to analyze Q and R in detail. Suppose that a(h) and b(h) are two roots of

X2 − 2
(m+1)(m+2)X

m+2 = h, where 0 ≤ h < H∗, satisfying 0 ≤ a(h) < b(h). Therefore, we can

express Q and R as

Q =

∫ b(h)

a(h)

(
X − 1

m+1X
m+1

)2
E(X)

dX, R =

∫ b(h)

a(h)

E(X)dX, (10)

where E(X) =
√
X2 − 2

(m+1)(m+2)X
m+2 − h, through system (7).

For convenience, we introduce the following integrals:

Jm(h) =

∫ b(h)

a(h)

XmE(X)dX, m = 0, 1, 2, · · · , (11)

which satisfy ∫ b(h)

a(h)

Xm

E(X)
dX = −2J ′

m(h). (12)

To study the monotonicity of c0(h), we turn to its reciprocal Z(h) = Q
R , and present its

properties in Proposition 1.

Proposition 1. For 0 < h < H∗, Z ′(h) > 0 and m(2m+3)
3m+5 < Z(h) < m. Additionally,

Z(0) = m(2m+3)
3m+5 and lim

h→H∗−0
Z(h) = m.

To prove the above proposition, we cite Lemmas 1, 2, 3 and 4 from [22].
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Lemma 1. [22]. We have Jm(0)
J0(0)

= 2(m+1)(m+2)
3m+4 and lim

h→H∗−0

Jm(h)
J0(h)

= m+ 1.

Lemma 2. [22]. We have J = A(h)J ′, where J = (J0, J2, · · · , Jm)
T

and A(h) =



M
m+4

−2m
m+4 0 0 · · · 0 0

0 M
m+8

−2m
m+8 0 · · · 0 0

0 0 M
m+12

−2m
m+12 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −2m
3m−4 0

0 0 0 0 · · · M
3m

−2m
3m

F G 0 0 · · · 0 M
3m+4


m+2

2 ×m+2
2

,

with F = 2m(m+1)(m+2)h
(m+4)(3m+4) , G = −4m(m+1)(m+2)

(m+4)(3m+4) , and M = 2(m+ 2)h.

Lemma 3. [22]. Let V = M
m+2

2 + (−1)
m+2

2 (m + 1)M(−2m)
m
2 , W =

∏m+2
2

j=1 (m + 4j), and

we have |A| = V
W , A−1 = Ω

V ,Ω = (ωij)m+2
2 ×m+2

2
, where

ω11 = (m+ 4)M
m
2 + (−1)

m+2
2 2(m+ 1)(m+ 2)(−2m)

m
2 ,

ω1j = (−1)1+j(m+ 4j)M
m
2 −(j−1)(−2m)j−1, 2 ≤ j ≤ m+ 2

2
,

ωij = (−1)i+j(m+ 4j)M
m
2 −(j−i)(−2m)j−i, 2 ≤ i ≤ j ≤ m+ 2

2
,

ωi1 = (−1)
m
2 +im(m+ 1)M i−1(−2m)

m
2 −(i−1), 2 ≤ i ≤ m+ 2

2
,

ωij = (−1)
m
2 +i+j(m+ 1)(m+ 4j)M i−j(−2m)

m
2 −(i−j), 2 ≤ j < i ≤ m+ 2

2
.

Lemma 4. [22]. We have Q = Jm − J0, R = J0, and Z = Q
R = Jm

J0
− 1.

For Lemma 2, we have J ′′ = A−1(I − A′)J ′, where I is the m+2
2 × m+2

2 identity matrix,

which yields Lemma 5.

Lemma 5. We have

J ′′
0 =

1

V

−2m(m+ 1)(m+ 2)

(m+ 4)(3m+ 4)
ω1m+2

2
J ′
0 +

m+2
2∑

j=1

−m+ 4j − 4

m+ 4j
ω1jJ

′
2(j−1)

 ,

J ′′
m =

1

V

−2m(m+ 1)(m+ 2)

(m+ 4)(3m+ 4)
ωm+2

2
m+2

2
J ′
0 +

m+2
2∑

j=1

−m+ 4j − 4

m+ 4j
ωm+2

2 jJ
′
2(j−1)

 .

Let

Z̄ =
Jm
J0

, and Z̃ =
J ′
m

J ′
0

, (13)

then we list their properties in Lemmas 6, 7, 8, and 9.

Lemma 6. [22]. If Z̄ ′(h0) = 0 for some 0 < h0 < H∗, then 2(m+1)(m+2)
3m+4 < Z̄(h0) < m+ 1.

Lemma 7. If 0 < h < H∗, then Z̃ ′ > 0.
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Proof . Applying Lemma 5, we derive the following Ricatti equation

Z̃ ′(h) =

(
J ′
m

J ′
0

)′

=
J ′′
m

J ′
0

− J ′′
0 J

′
m

(J ′
0)

2

=
1

V J ′
0

−2m(m+ 1)(m+ 2)

(m+ 4)(3m+ 4)
ωm+2

2
m+2

2
J ′
0 +

m+2
2∑

j=1

−m+ 4j − 4

m+ 4j
ωm+2

2 jJ
′
2(j−1)


− J ′

m

V (J ′
0)

2

−2m(m+ 1)(m+ 2)

(m+ 4)(3m+ 4)
ω1m+2

2
J ′
0 +

m+2
2∑

j=1

−m+ 4j − 4

m+ 4j
ω1jJ

′
2(j−1)


=

1

V

−2m(m+ 1)(m+ 2)

(m+ 4)(3m+ 4)
ωm+2

2
m+2

2
− m

m+ 4
ωm+2

2 1 +

m
2∑

j=2

−m+ 4j − 4

m+ 4j
ωm+2

2 j

J ′
2(j−1)

J ′
0

+
2m

3m+ 4
ωm+2

2
m+2

2

J ′
m

J ′
0

−
m
2∑

j=2

−m+ 4j − 4

m+ 4j
ω1j

J ′
2(j−1)

J ′
0

J ′
m

J ′
0

− m

3m+ 4
ω1m+2

2

(
J ′
m

J ′
0

)2


=
1

V

− m

3m+ 4
ω1m+2

2

(
J ′
m

J ′
0

−
ωm+2

2
m+2

2

ω1m+2
2

)2

+ F (h)

 ,

(14)

where

Fm(h) =
m

3m+ 4

(
ωm+2

2
m+2

2

)2
ω1m+2

2

− 2m(m+ 1)(m+ 2)

(m+ 4)(3m+ 4)
ωm+2

2
m+2

2
− m

m+ 4
ωm+2

2 1

+
1

J ′
0

(
m+ 1− J ′

m

J ′
0

) m
2∑

j=2

−m+ 4j − 4

m+ 4j
ω1jJ

′
2(j−1).

(15)

Note that J ′
2(j−1) =

1
V

∑m+2
2

k=1 ωjkJ2(k−1), then we further have

Fm(h) =
m

3m+ 4

(
ωm+2

2
m+2

2

)2
ω1m+2

2

− 2m(m+ 1)(m+ 2)

(m+ 4)(3m+ 4)
ωm+2

2
m+2

2
− m

m+ 4
ωm+2

2 1

+
1

V J ′
0

(
m+ 1− J ′

m

J ′
0

) m+2
2∑

k=1

m
2∑

j=2

−m+ 4j − 4

m+ 4j
ω1jωjkJ2(k−1).

(16)

Since V and the first term in the brackets in (14) are negative, if we can prove Fm(h) < 0,

then the conclusion holds. Here we apply numerical technique to prove Fm(h) < 0. Specifical-

ly, for each even m, let h changes from 0.01 to H∗ with step 0.01, then we can numerically

evaluate a(h), b(h) and J0, J2, · · · , Jm, J ′
0, J

′
m through (11) and (12), and the values of Fm(h)

follow. Further, for each even m, we find the maximum of Fm(h) with respect to h, denoted

by max(Fm(h)). The profile of max(Fm(h)) with respect to m from 2 to 80 are illustrated in

Figure 2, which implies that Fm(h) < 0, for 0 < h < H∗.

Remark 1. Although we choose a specific step 0.01 in the numerical technique, the step can

be any small number.

Remark 2. As indicated in [25], it is difficult to prove Z̃ ′(h) > 0 for m ≥ 5 analytically. Here,



1012 Appl. Math. J. Chinese Univ. Vol. 40, No. 4

0 10 20 30 40 50 60 70 80

m

-16

-14

-12

-10

-8

-6

-4

-2

0

m
ax

(F
m

(h
))

1011

Figure 2. The profile of max(Fm(h)) with respect to m from 2 to 80.

we adopt the numerical technique to show that Z̃ ′(h) > 0 for general even m, which partially

solve the open question given in [22].

Exploiting Lemma 7 and performing the similar analysis as that in [23–25], we then obtain

Lemma 8.

Lemma 8. If Z̄ ′(h0) = 0 for some 0 < h0 < H∗, then Z̄ ′′(h0) < 0.

Combining the results in Lemmas 1, 6 and 8, we derive the monotonicity of Z̄ through the

proof by contradiction.

Lemma 9. If 0 < h < H∗, then Z̄ ′(h) > 0.

Now we also complete the proof about the monotonicity of Z in Proposition 1 since Z = Z̄−1.

Furthermore, the monotonicity of c0(h) and its upper and lower bounds in Theorem 1 follow

from c0(h) = Z−1.

Remark 3. Although we show that Z̃ ′(h) > 0 for general even m, unfortunately, Z̃ ′(h) are

not always positive for general odd m when we perform the same procedure.

§3 Conclusions

In this paper, we develop the numerical technique to derive the monotonicity of c0(h) for

the perturbed gKdV equation (2) with general even m, which partially solve the open problem

presented by [22]. However, the present framework cannot be applied to general odd m, which

is still under consideration.
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