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Monotonicity of limit wave speed for the perturbed gKdV

equation with general even m

WEN Zhen-shu

Abstract. This paper concerns the monotonicity of limit wave speed co(h) for the perturbed
gKdV equation with general even m. We show that co(h) is decreasing. Our results give partial
answer to the open problem presented by Yan et al. (Math. Model. Anal., 19, 537-555, 2014).

81 Introduction

Shallow water wave models play an important role in describing natural phenomena, and the
research of their solutions is a very active subject in the field of differential equations and has
significant application. Many approaches have been developed to study them [1-11]. In recent
years, the perturbed shallow water wave equations and their traveling waves have attracted
considerable interest since the perturbed models maybe more realistic [12-21]. Among these
models, the KdV-type equations are of particular interest and have attracted continuous atten-
tion due to the fact that they possess a type of traveling wave solutions, the so-called solitary
wave solutions and are believed to be able to describe the soliton phenomenon first discovered
by Scott Russell in 1834. The KdV equation is also well-known as the prototypical example of
an exactly solvable equation. Some modified or generalized forms of the KdV equation have
been introduced and studied more recently for both physical and mathematical interest. When
modelling the move of wave, small perturbations due to the existence of uncertainty in real
world and the unavoidable error in modeling may be neglected. However, the perturbations
should be included to obtain a more realistic model and to better understand the dynamical

behavior of the equation. For example, Owaga [23] studied the perturbed KdV equation
U + VU + Uggr + g(vzz + Umxmz) - 07 (1)
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and established the persistence of its solitary waves and periodic waves for sufficiently small
parameter € > 0, which include the perturbation terms: the backward diffusion wu,, and dis-
sipation Ugzq... As a generalization, Yan et al. [22] further proved the existence of these two
kinds of waves to the perturbed generalized KdV (gKdV) equation

Vg + 0"V + Vazz + €(Vez + Vazaa) = 0. (2)
However, the authors also proposed an open problem about the monotonicity of limit wave
speed, which will further help understand the water wave. About this open problem, there
have been partial results for some particular (small) m. For m = 1, Owaga [23] showed that
co(h) is decreasing. For m = 2,3,4, Chen et al. [24,25] established that cg(h) is also decreas-
ing. However, as suggested in [25], for m > 5, the monotonicity of ¢o(h) is difficult to prove
analytically and remains an open problem. We made a tentative study to address this problem
for m > 5 from the numerical perspective [26]. In this paper, inspired by [26], we further study
the monotonicity of ¢y(h) to Eq.(2) with general even m. From now on, we suppose that m is
even.

Obviously, Eq.(2) can be transformed into the following ODE

—cv'(€) +v™ (O () +v"(C) +e(v”(¢) +v"(¢)) =0, (3)
by letting ¢ = x — ¢t with the wave speed ¢ > 0, from which we easily obtain
1
—cv(C) + mv”“(() +0"(¢) + (v (¢) +v"(¢)) = 0. (4)
Introducing the scale transformation p = /¢, v = %/cX, we arrive at
1 1
-X Xm+1 X" X’ X" = 0.
O+ g X0 + X7+ (X0 4 VEX () ) =0 )
Setting £ = 0, we obtain the unperturbed system of Eq.(5)
1
X' ——X" X =0 6
* m+1 ’ (6)
or in the form of planar dynamical system
X _ vy
(?)e _ )(7 1 XTYL-‘,—l (7)
dp T T mAl ’

with first integral
2

(m+1)(m+2)
Obviously, system (7) has one saddle (0,0), two centers (£ ¥/m + 1,0), and the phase por-

trait is given in Figure 1. In addition, we have H(0,0) = 0 and H(£ %/m + 1,0) = AU R W =

H*. Then we can parameter the traveling waves of system (7) through h, and display the mono-

HX,)Y)=-Y?+ X2~ Xt = p, (8)

tonicity of ¢o(h) in the following theorem.

Theorem 1. There exists g > 0, such that for e € [0,e9) and h € [0, H*), Eq.(2) with
general even m has solutions v = + /cX (e, h, c, p), where X (e, h,c, p) is a solution of Eq.(5).
¢ = c(e, h) is a smooth function of € and h, with the limit co(h) as € — 0. Furthermore, co(h)

is a smooth decreasing function for h € [0, H*) and satisfies

3m+4 3m+4

% <co(h) < m, co(0) = ———, and lim ¢o(h) = (9)

1
 m(2m+3)’ h—H*—0 m’



WEN Zhen-shu. Monotonicity of limit wave speed for the perturbed gKdV equation... 1009

Y

a )
Y

Figure 1. The phase portrait of system (7).

§2 The theoretic derivations of the monotonicity of cy(h)

In this section, we exploit the Abelian integral theory and numerical technique to deal with
the monotonicity of ¢o(h) only, since other parts of Theorem 1 were proved in [22].
Assume that X(p) is the solution of system (7), and @ and R are defined by

1 1
Q=3 [xip r=3 [0
where the integrals are performed along the orbits of system (7). Then from [22], it is known

that co(h) can be expressed as

Co(h) = 6

Now it is time to analyze @) and R in detail. Suppose that a(h) and b(h) are two roots of

X? - (meme*2 = h, where 0 < h < H*, satisfying 0 < a(h) < b(h). Therefore, we can
express () and R as
b(h) X - m—_HXerl
dX, R= 10
¢ / B(X) / 1o
where F(X \/X (m+1)(m+2)Xm — h, through system (7).
For convenience, we introduce the following integrals:
b(h)
T (h) :/ X"E(X)dX, m=0,1,2,- (11)
a(h)
which satisfy
L, 2ix ) a2
——dX = -2J,,(h). 12
a(h) E(X)

To study the monotonicity of ¢o(h), we turn to its reciprocal Z(h) = %, and present its

properties in Proposition 1.

Proposition 1. For 0 < h < H*, Z'(h) > 0 and 2#23) < Z(h) < m. Additionally,
Z(0) = ™2mE3) 4nd  lim Z(h) = m.
h—H*—0

3m—+5

To prove the above proposition, we cite Lemmas 1, 2, 3 and 4 from [22].
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Lemma 1. [22]. We have 20 — 2miD(m+2) and lim L) — gy

70(0) 3m+4 LB Te(h)
Lemma 2. [22] We have J = A(h)J', where J = (Jo, J2, - ,Jm)T
T
e 00
and A(h) = : : : : : : ;
—2m
0 0 0 0 3";/[_4 !
0 0 0 0 oo
F G 0 0 0 g

_ 2m(m+1)(m+2)h _ 4dm(m+1)(m+2) _

m,+2 m-

Lemma 3. [22]. LetV = M™% + (=1)"2 (m + )M (=2m)%, W = H]mﬁz(m—&—élj) and

we have |A| = 3, A7 = £ Q= (w”)mTHXmTH, where

wit = (Mm+4ME + (=1)"2"2(m + 1)(m + 2)(—2m) 7,

wij = (_1)1+](m+4j)M7_(J—1)(—2m)]_17 2< ] < m;— ’

o o . 2
wij = (=) (m+4j)M T U= (—2m)i =" 2<i<j< %

mo . o 2
win = (=) F ' m(m 4+ DM (=2m) T 07 2 < < m; :

m - m i 2
wij = (=12 " (m+ D(m+4)M=I(—2m)2 =09 2<j<i< m+ )

Lemma 4. [22]. We have Q = Jn, —Jo,R=Jo, and Z = § = 2= — 1.

For Lemma 2, we have J” = A~'(I — A’).J’, where I is the 52 x ™42 identity matrix,

which yields Lemma 5.

Lemma 5. We have

1 2m(m + 1)(m +2)

BT\ T mrpemrn ekt Z m+4] S e B |
2
Let g J),
Z:J—ZL, andZ—J(,), (13)

then we list their properties in Lemmas 6, 7, 8, and 9.
Lemma 6. [22]. If Z'(ho) =0 for some 0 < hg < H*, then M;;iw < Z(ho) <m+1.

Lemma 7. If0<h < H*, then Z' > 0.
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Proof . Applying Lemma 5, we derive the following Ricatti equation

_ J 4 J// J J/
- (5) -
W=\) =% W

m+2

1 2m(m+1)(m + 2) —m+4j—4

= - m m J/ — 0 Wmnm J
VI (m+4)(3m +4) =57 °+; mt 4y rtiv2i-1
77L+2
J), 2m(m + 1)(m + 2) —m+4j—4 ,
VD2 (m+4)(Bm+4) ‘”””“J“Z m+ 4] Ty Wty
m , (14)
1 2m(m+1)(m—|—2)w miy _'_i—m—i-ﬁlj— Jai-1)
- = - m+2 m+42 — m—+2 Wm+2 .
1% (m+4)(Bm+4) 2" m+d 2! T 45 20 ]
2m £ —mtdj—4 Doy, m T\’
+3m—|—4w 2 Z m+4j L Jh 7673m+4w1m7+2 76
1 m Ty Wngrmgs \”
L P (e s e ) B o/ 01
v smra B\ e ) T O
where
( 2
m  \Wm2 ’”*2) 2m(m + 1)(m + 2) m
F(h) = = =) is i —
) =51 wymgz (m+)Bm+4) =7 T 4
(15)
—-m+4j —4
+L]/<m+1_>z m—|—4 leJZ(] 1)
j=2
m+2
Note that Jé(jfl) = % Y oko1 WikJaak—1), then we further have
2
m (W"‘fm;z) 2m(m + 1)(m + 2) m
F(h) = - pts mis — N
() = g1 Wy g2 (m+4)(3m +4) =22 T e
m+2 m (16)
1 I\ —m+4j—4
+ VJé (m + 1-— J’) I; JZ2 lejokJQ(k_l).

Since V' and the first term in the brackets in (14) are negative, if we can prove Fp,(h) < 0,
then the conclusion holds. Here we apply numerical technique to prove F,,(h) < 0. Specifical-
ly, for each even m, let h changes from 0.01 to H* with step 0.01, then we can numerically
evaluate a(h),b(h) and Jo, Ja, -+, Jm, JGy, I, through (11) and (12), and the values of Fp,(h)
follow. Further, for each even m, we find the maximum of F,,(h) with respect to h, denoted
by max(F,,(h)). The profile of max(F,,(h)) with respect to m from 2 to 80 are illustrated in
Figure 2, which implies that F,,(h) <0, for 0 < h < H*.

Remark 1. Although we choose a specific step 0.01 in the numerical technique, the step can

be any small number.

Remark 2. As indicated in [25], it is difficult to prove Z'(k) > 0 form > 5 analytically. Here,
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Figure 2. The profile of max(F,,(h)) with respect to m from 2 to 80.

we adopt the numerical technique to show that Z’(h) > 0 for general even m, which partially

solve the open question given in [22].

Exploiting Lemma 7 and performing the similar analysis as that in [23-25], we then obtain

Lemma 8.
Lemma 8. If Z'(ho) =0 for some 0 < hg < H*, then Z"(ho) < 0.

Combining the results in Lemmas 1, 6 and 8, we derive the monotonicity of Z through the

proof by contradiction.
Lemma 9. If0<h < H*, then Z'(h) > 0.

Now we also complete the proof about the monotonicity of Z in Proposition 1 since Z = Z—1.
Furthermore, the monotonicity of cg(h) and its upper and lower bounds in Theorem 1 follow
from co(h) = Z~1.

Remark 3. Although we show that Z’(h) > 0 for general even m, unfortunately, Z’(h) are

not always positive for general odd m when we perform the same procedure.

83 Conclusions

In this paper, we develop the numerical technique to derive the monotonicity of ¢g(h) for
the perturbed gKdV equation (2) with general even m, which partially solve the open problem
presented by [22]. However, the present framework cannot be applied to general odd m, which

is still under consideration.
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