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Stability analysis of conformable fractional order systems

Imed Basdouri1 Souad Kasmi2 Jean Lerbet3

Abstract. In this paper, we study the stability of a class of conformable fractional-order sys-

tems using the Lyapunov function. We assume that the nonlinear part of the system satisfies

the one-sided Lipschitz condition and the quadratic inner-bounded condition. We provide some

sufficient conditions that ensure the asymptotic stability of the system. Furthermore, we present

the construction of a feedback stabilizing controller for conformable fractional bilinear systems.

§1 Introduction

Fractional differential equations have proven to be powerful tools for modeling many physical

phenomena. They have been widely applied in areas such as nonlinear oscillations in earth-

quakes, seepage flow in porous media, and fluid-dynamic traffic models. Significant progress

has been made in the study of fractional ordinary and partial differential equations. For more

details on fractional calculus theory, we refer the reader to the monographs of Kilbas et al. [9],

Miller and Ross [10], Podlubny [11], Tarasov [12], and the papers of Agarwal et al. [3,4].

In recent years, several definitions of fractional derivatives have been introduced, such as

the Riemann-Liouville, Grunwald-Letnikov, and Caputo definitions. Recently, Khalil et al. [8]

proposed a new definition of the fractional derivative that is highly compatible with the classical

derivative. Unlike other definitions, this new approach satisfies the product and quotient rules

for derivatives of two functions and has a simpler chain rule. In addition to the conformable

fractional derivative, the corresponding conformable fractional integral, Rolle’s theorem, and

the mean value theorem for conformable derivatives have also been established.

The concept of fractional differentiable functions was introduced, and another study [2] by

Abdeljawad contributed to this new field. He presented left and right conformable fractional

derivatives, as well as fractional integrals of higher-order concepts. Moreover, he provided the

fractional chain rule, the fractional integration by parts formulas, the Gronwall inequality, the
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fractional power series expansion, and the fractional Laplace transform definition. In a short

time, many studies related to this new fractional derivative definition were conducted [6,7,14].

For obvious reasons, the stability of differential systems is one of the fundamental topics

in science. Recently, stability problems of nonlinear fractional systems have been extensively

investigated by many authors [5], particularly regarding conformable fractional-order nonlinear

systems. Souahi et al. presented some results on the stability and asymptotic stability of

conformable fractional-order nonlinear systems using the Lyapunov function. These results

can be taken as a starting point in this vast field. However, few contributions addressing the

asymptotic stability of conformable fractional systems have been reported in the literature,

which motivates us to carry out this work.

In this paper, motivated by previous works, we study the stability of conformable fractional-

order derivative systems using Lyapunov functions. We assume that the nonlinear part of the

system satisfies the one-sided Lipschitz condition and the quadratic inner-bounded condition,

and we provide some sufficient conditions for the asymptotic stability of the system. The

construction of a feedback-stabilizing controller for conformable fractional bilinear systems is

also presented.

The rest of this paper is organized as follows. In Section 2, we introduce some definitions

and the necessary lemmas. In Section 3, we present our main result. In Section 4, an example

illustrates the validity of the proposed method. Finally, the conclusions are presented in Section

5.

§2 Preliminary

Notation 1. Throughout the paper, AT denotes the transpose of A. λmax(A) and λmin(A)

denote the maximum and minimum eigenvalues of a matrix A, respectively. P > 0 means that

the matrix P is symmetric and positive definite. I denotes an identity matrix of appropriate

dimension. ⟨·, ·⟩ denotes the inner product in Rn; that is, given x, y ∈ Rn, we have ⟨x, y⟩ = xT y.

The notation ∥ · ∥ denotes the Euclidean norm in Rn, defined by ∥x∥ =
√
⟨x, x⟩.

We next recall some classical definitions and results that are essential for our study.

Definition 1. ([8]) Given a function g defined on [a,∞), the conformable fractional derivative

of g of order α is defined by

Tα
t0g(t) = lim

ε→0

g(t+ εt1−α)− g(t)

ε
, (1)

for all t > a and α ∈ (0, 1].

Definition 2. ([8]) The conformable fractional integral of order 0 < α ≤ 1 starting from a for

a function g is defined by

Iαa g(t) =

∫ t

a

(x− a)α−1g(x) dx. (2)
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Considering the following conformable fractional nonlinear system

Tα
t0x(t) = f(t, x(t)), x(t0) = x0, (3)

where x ∈ Rn and f : R+ × Rn → Rn is a given nonlinear function satisfying f(t, 0) = 0 for

every t ≥ 0.

Definition 3. (Fractional exponential stability [2]): The solution of the system (3) is called

fractional exponentially stable if

∥x(t)∥ ≤ M∥x0∥Eα(−λ, t− t0), t ≥ t0, (4)

where 0 < α ≤ 1, λ > 0, M > 0, and Eα(λ, t) = exp
(
λ tα

α

)
.

Definition 4. The origin of the system (3) is said to be stable if, for any ε > 0, there exists

δ > 0 such that ∥x(t)∥ < ε for all t ≥ t0 whenever ∥x0∥ < δ.

The origin is said to be asymptotically stable if it is stable and additionally satisfies

lim
t→+∞

x(t) = 0.

Theorem 1. ([13]) Let x = 0 be the equilibrium point of the fractional-order system (3).

Assume that there exists a fractional Lyapunov function V : [0,∞) × Rn → R+ and positive

constants λi, i = 1, 2, 3, satisfying

(i) λ1∥x∥2 ≤ V (t, x(t)) ≤ λ2∥x∥2;

(ii) Tα
t0V (t, x(t)) ≤ −λ3∥x∥2.

Then, the origin of system (3) is fractionally exponentially stable.

Remark 1. Fractional exponential stability implies asymptotic stability.

Lemma 1. [13] Let 0 < α < 1 and let g : [t0,∞) → R+ be a continuous function and α-

differentiable on (t0,∞), such that

Tα
t0g(t) ≤ −λg(t),

where λ is a positive constant. Then,

g(t) ≤ Eα(−λ, t− t0)g(t0).

Lemma 2. ([13] ) Let x : [a,∞) → Rn such that Tα
a x(t) exists on (a,∞) and P a symmetric

positive definite matrix. Then Tα
a x(t)

TPx(t) exists on (a,∞) and

Tα
a x(t)

TPx(t) = 2x(t)TPTα
a x(t), ∀t > a.

Lemma 3. ([2] ) Let A ∈ Rn×n be a constant matrix. Then, the solution of the following

conformable fractional differential system

Tα
t0x(t) = Ax(t) + f(t, x(t)), x(t0) = x0, (5)

is given by

x(t) = x0 exp(A
(t− t0)

α

α
)+

∫ t

t0

exp(A
(t− t0)

α

α
)× exp(−A

(s− t0)
α

α
)f(s, x(s))(s− t0)

αds. (6)
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Definition 5. ([1] ) The nonlinear function f(t, x) is said to be one-sided Lipschitz if there

exists ρ ∈ R such that

⟨f(t, x1)− f(t, x2), x1 − x2⟩ ≤ ρ∥x1 − x2∥2, (7)

where ρ is called the one-sided Lipschitz constant.

Definition 6. ([1] ) The nonlinear function f(t, x) is called quadratically inner-bounded if there

exist constants β, γ ∈ R such that

[f(t, x1)− f(t, x2)]
T [f(t, x1)− f(t, x2)] ≤ β∥x1 − x2∥2 + γ⟨x1 − x2, f(t, x1)− f(t, x2)⟩. (8)

Remark 2. If a function f(t, x) satisfies the Lipschitz condition, then it also satisfies the one-

sided Lipschitz condition and the quadratic inner-bounded condition. However, the converse is

not necessarily true. In many cases, the one-sided Lipschitz constant can be much smaller than

the standard Lipschitz constant. Moreover, the constants ρ, β, and γ ∈ R can take arbitrary real

values, whereas the Lipschitz constant must be positive. Therefore, the class of nonlinearities

considered in this paper is quite general.

§3 Main results

3.1 Stability

In this section, we focus on the following conformable fractional differential system. The

main objective is to analyze the asymptotic stability of the system

Tα
t0x(t) = Ax(t) + f(t, x(t)), x(t0) = x0, (9)

where A ∈ Rn×n is a constant matrix and f : R+ × Rn → Rn is a given nonlinear function

satisfying f(t, 0) = 0 for all t ≥ 0.

Let S be the symmetric positive definite solution of the Lyapunov equation

ATS + SA = −Q, (10)

for a given symmetric positive definite matrix Q. Then, the following stability result holds

Theorem 2. Let α ∈ (0, 1]. Suppose that the function f(t, x) satisfies the conditions (7) and

(8) with constants ρ, β, and γ. Suppose also that there exist a scalar r ̸= 0 and two matrices S

and Q satisfying the Lyapunov equation (10), such that{
(r2β + 1) + ρ(γ + 2r)

}
λmax(S) < λmin(S) + λmin(Q). (11)

Then, the origin of system (9) is fractionally exponentially stable.

Proof Let us consider the following Lyapunov function candidate:

V (t, x(t)) = xT (t)Sx(t). (12)

From Lemma 2, we obtain

Tα
t0V (t, x(t)) = xT (t)(ATS + SA)x(t) + 2xT (t)Sf(t, x(t))

≤ −xT (t)Qx(t) + 2xT (t)Sf(t, x(t)).
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For brevity, denote f(t, x(t)) by ft. Note that

2xTSft = [x+ ft]
T
S [x+ ft]− xTSx− fT

t Sft.

Since S is symmetric positive definite, it satisfies

λmin(S)∥ft∥2 ≤ fT
t Sft ≤ λmax(S)∥ft∥2. (13)

Moreover

[x+ ft]
T
S [x+ ft] ≤ λmax(S)∥x+ ft∥2. (14)

Using the quadratic inner-boundedness condition (8) and the fact that f(t, 0) = 0, we have

fT
t ft ≤ βxTx+ γ⟨x, ft⟩.

Thus,
1

r
∥x+ rft∥2 = xTx+ 2rxT ft + r2fT

t ft

≤ xTx+ 2rxT ft + r2βxTx+ r2γ⟨x, ft⟩

≤ (r2β + 1)xTx+ (γ + 2r)xT ft.

Now, combining inequalities (14) and (7), we get

2xTSft ≤ λmax(S)
[
(r2β + 1)xTx+ (γ + 2r)xT ft

]
− xTSx− λmin(S)∥ft∥2

≤
{
λmax(S)

[
(r2β + 1) + ρ(γ + 2r)

]
− λmin(S)

}
xTx,

where we used xT ft ≤ ρ∥x∥2 from condition (7).

Therefore,

Tα
t0V (t, x(t)) ≤ −xTQx+

{
λmax(S)

[
(r2β + 1) + ρ(γ + 2r)

]
− λmin(S)

}
xTx

≤ −
{
λmin(Q) + λmin(S)− λmax(S)

[
(r2β + 1) + ρ(γ + 2r)

]}
∥x∥2.

By condition (11), the coefficient of ∥x∥2 is positive. Hence, according to Theorem 1, the origin

of system (9) is fractionally exponentially stable. The proof is complete. �

3.2 Stabilization

Let us now consider the following conformable fractional differential system:

Tα
t0x(t) = Ax(t) +Bu+ f(t, x(t)), x(t0) = x0, (15)

where x ∈ Rn, u ∈ Rm, A and B are constant matrices of dimensions n × n and n × m,

respectively, and f : R+ × Rn → Rn is a given nonlinear function satisfying f(t, 0) = 0 for all

t ≥ 0. Then, the following theorem holds.

Theorem 3. For 0 < α ≤ 1, suppose that the function f(t, x(t)) satisfies the conditions (7)

and (8) with constants ρ, β, and γ. Suppose also that there exist a symmetric positive definite

matrix P , a constant matrix K ∈ Rm×n, a scalar r ̸= 0, and a positive scalar ϵ > 0 such that

the following inequalities hold:

(A+BK)TP + P (A+BK) = −ϵI, (16){
(r2β + 1) + ρ(γ + 2r)

}
λmax(P ) < λmin(P ) + ϵ. (17)

Then, the control law u(x) = Kx renders system (15) fractionally exponentially stable.
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Proof Consider the following Lyapunov function candidate:

V (x) = xT (t)Px(t). (18)

From Lemma 2, we have

Tα
t0V (t) = xT (t)

[
(A+BK)TP + P (A+BK)

]
x(t) + 2xT (t)Pf(t, x(t))

= −ϵ xT (t)x(t) + 2xT (t)Pf(t, x(t))

≤ −ϵ ∥x(t)∥2 + 2xT (t)Pf(t, x(t)).

Using the same argument as in the proof of Theorem 2, and under conditions (7) and (8), we

obtain the inequality

2xT (t)Pf(t, x(t)) ≤
{
λmax(P )

[
(r2β + 1) + ρ(γ + 2r)

]
− λmin(P )

}
∥x(t)∥2.

Therefore,

Tα
t0V (t) ≤ −ϵ ∥x(t)∥2 +

{
λmax(P )

[
(r2β + 1) + ρ(γ + 2r)

]
− λmin(P )

}
∥x(t)∥2

= −
{
ϵ+ λmin(P )− λmax(P )

[
(r2β + 1) + ρ(γ + 2r)

]}
∥x(t)∥2.

By condition (17) and according to Theorem 1, the origin of the closed-loop system

Tα
t0x(t) = (A+BK)x(t) + f(t, x(t))

is fractionally exponentially stable. The proof is complete. �

3.3 Stabilization of conformable fractional perturbed systems

Let us now consider the following system:

Tα
t0x(t) = Ax(t) +Bu+ f(t, x(t)) + h(t, x(t)), x(t0) = x0, (19)

where h : R+ × Rn → Rn is a nonlinear perturbation satisfying the following condition.

There exist constants σ > 0 and ω > 0 such that

∥h(t, x)∥ < ω∥x∥ whenever ∥x∥ < σ. (20)

Then, the following theorem holds:

Theorem 4. For 0 < α ≤ 1, suppose that the function f(t, x(t)) satisfies the conditions (7)

and (8) with constants ρ, β, and γ, and that the perturbation h(t, x(t)) satisfies condition (20)

with constants σ > 0 and ω > 0. Suppose also that there exist a symmetric positive definite

matrix P , a constant matrix K ∈ Rm×n, and a positive scalar ϵ > 0 such that the following

inequalities hold.

(A+BK)TP + P (A+BK) = −ϵI, (21)

{(β + 1) + ρ(γ + 2)}λmax(P ) < λmin(P )− ω + ϵ. (22)

Then, the control law u(x) = Kx renders system (19) locally asymptotically stable.

Proof Consider the Lyapunov function candidate:

V (x) = xT (t)Px(t). (23)
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From Lemma 2, we can conclude

lllTα
t0V (t) = xT (t)((A+BK)TP + P (A+BK))x(t) + 2xT (t)Pf(t, x(t)) + 2xT (t)Ph(t, x(t))

≤ −ϵxT (t)x(t) + 2xT (t)Pf(t, x(t)) + 2xT (t)Ph(t, x(t))

≤ −ϵxT (t)x(t) + {λmax(P ) [(β + 1) + ρ(γ + 2)]− λmin(P )}xT (t)x(t) + ω||x(t)||2

≤ −{ϵ+ λmin(P )− ω − λmax(P ) [(β + 1) + ρ(γ + 2)]} ∥x(t)∥2.

By Theorem 1, it is easy to verify that the origin of the closed-loop system Tα
t0x(t) =

Ax(t) +BKx(t) + f(t, x(t)) + h(t, x(t)) is locally asymptotically stable.

§4 Stabilization of conformable fractional bilinear systems

In this section, we study the stabilization of the following conformable fractional bilinear

system with multiple inputs, in a constructive manner

Tα
t0x(t) = Ax(t) +

p∑
i=1

uiBix(t), t ∈ R, (24)

where x(t) ∈ Rn, ui ∈ R for all i ∈ {1, . . . , p}, and A,Bi ∈ Rn×n are constant matrices.

Definition 7. The control system (24) is said to be fractionally exponentially stabilizable via

a feedback control u = u(x) if the resulting closed-loop system

Tα
t0x(t) = Ax(t) +

p∑
i=1

ui(x)Bix(t)

is fractionally exponentially stable.

In the sequel, we introduce the following assumption

(H) :

p∩
i=1

Si = {0}, (25)

where

Si = {x ∈ Rn : ⟨Bix, x⟩ = 0} , i ∈ {1, 2, . . . , p}.

Theorem 5. If condition (H) holds, then there exist bounded feedback laws

ui(x) = −c
⟨Bix, x⟩
∥x∥2

, ∀i ∈ {1, 2, . . . , p}, (26)

where c > 0 is a constant to be chosen appropriately, such that the closed-loop system (24) is

fractionally exponentially stable.

Proof Let us consider the quadratic function

V (x) =
1

2
∥x∥2.



IImed Basdouri, et al. Stability analysis of conformable fractional order systems 759

which is positive definite. If condition (H) holds, then the fractional derivative of V along the

solutions of the closed-loop system (24) under the feedback (26) becomes

Tα
t0V (x(t)) = ⟨Ax, x⟩+

p∑
i=1

ui(x)⟨Bix, x⟩

= ⟨Ax, x⟩ − c

∥x∥2
p∑

i=1

⟨Bix(t), x(t)⟩2.

We have

⟨Ax, x⟩ = ⟨Asx, x⟩,
where As =

A+AT

2 , and let

λmax = max
x̸=0

⟨Asx, x⟩
∥x∥2

= max
y∈Sn−1

⟨Asy, y⟩.

Let

f(y) =

p∑
i=1

⟨Biy, y⟩2, ∀y ∈ Sn−1.

It is easy to verify that the function f is continuous and differentiable on the compact set

Sn−1, so f(y) attains both a maximum and a minimum on Sn−1. Therefore, there exist two

real numbers m and M such that

0 < m ≤ f(y) ≤ M for all y ∈ Sn−1.

Hence,

Tα
t0V (x) ≤ λmax∥x∥2 − cf(y)

≤ λmax∥x∥2 − cm∥x∥2

≤ (λmax − cm)∥x∥2.

If we choose the positive constant c such that

c >
λmax

m
,

then λmax − cm < 0, and it follows that

Tα
t0V (x(t)) ≤ (λmax − cm)∥x(t)∥2

≤ −2(cm− λmax)V (x(t)).

Using Lemma 1, we obtain

V (x(t)) ≤ Eα (−2(cm− λmax), t− t0)V (x(t0)), ∀t ≥ t0

≤ exp

(
−2(cm− λmax)

(t− t0)
α

α

)
V (x(t0)).

Therefore,

∥x(t)∥ ≤
√
2Eα (−(cm− λmax), t− t0) ∥x(t0)∥,

So, the closed-loop system (24) is fractionally exponentially stable. �

Remark 3. For the single-input system Tα
t0x = Ax + uBx, our method remains effective.

Indeed, by replacing condition (H) with

{x ∈ Rn : ⟨Bx, x⟩ = 0} ⊆ {x ∈ Rn : ⟨Ax, x⟩ < 0},
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we can construct the feedback control law

uc(x) = −c
⟨Bx, x⟩
∥x∥2

.

Remark 4. If there exist real scalars k1, k2, . . . , kp, not all zero, such that the linear combi-

nation
∑p

i=1 kiBis is symmetric and either positive definite or negative definite, then condi-

tion (H) is satisfied, i.e.,
p∩

i=1

Si = {0}.

This means that the quadratic forms associated with the Bi’s are jointly non-degenerate.

§5 Numerical example

Let us consider the following system:

Tα
t0x1(t) = −x1(t) + x2(t)− x1(t)(x

2
1(t) + x2

2(t)),

Tα
t0x2(t) = −2x1(t) + x2(t)− x2(x

2
1(t) + x2

2(t)) + u(t).
(27)

System (27) can be rewritten as the form of (15) with

A =

[
1 1

−2 1

]
, B =

[
0

1

]
,

and

f(t, x(t)) = −(x2
1(t) + x2

2(t))

[
x1(t)

x2(t)

]
.

The function f satisfies the one-sided Lipschitz condition and the quadratic inner-boundedness

inequality with parameters ρ = 0, β = −100, and γ = −99, (see [1]). Now, select

K =
[
−2 5

]
. Then AK = A+BK is Hurwitz. We also choose ϵ = 1. The matrix P is given by

P =

[
2.2500 −0.9167

−0.9167 0.5833

]
,

and

lllTα
t0V (t) = xT (t)((A+BK)TP + P (A+BK))x(t) + 2xT (t)Pf(t, x(t))

≤ −{ϵ+ λmin(P )− λmax(P ) [(β + 1) + ρ(γ + 2)]} ∥x(t)∥2

≤ −264.0723||x(t)||2.

.

Hence, the system (27) is fractionally exponentially stable.

The numerical solution of system (27) is shown in Figure 1b for a fractional order α = 0.9.

It indicates that the zero solution is asymptotically stable.
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(a) Open-loop response.
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(b) Closed-loop response.

Figure 1. State trajectories x1(t) and x2(t) for Example 27 with initial conditions x1(0) = −1,
x2(0) = 2, and α = 0.9.

§6 Conclusion

In this paper, we start by the stability of a class of conformable fractional order systems using

the Lyapunov function. We suppose that the nonlinear part of the system satisfies the one-sides

Lipschitz and quadratic inner-bounded condition, and we give some sufficient conditions which

imply the asymptotical stability of the system. The stabilization of conformable fractional

bilinear systems is studied. A numerical example is given to illustrate the efficiency of the

obtained results.
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