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Stability analysis of conformable fractional order systems

Imed Basdouri! Souad Kasmi? Jean Lerbet?

Abstract. In this paper, we study the stability of a class of conformable fractional-order sys-
tems using the Lyapunov function. We assume that the nonlinear part of the system satisfies
the one-sided Lipschitz condition and the quadratic inner-bounded condition. We provide some
sufficient conditions that ensure the asymptotic stability of the system. Furthermore, we present

the construction of a feedback stabilizing controller for conformable fractional bilinear systems.

81 Introduction

Fractional differential equations have proven to be powerful tools for modeling many physical
phenomena. They have been widely applied in areas such as nonlinear oscillations in earth-
quakes, seepage flow in porous media, and fluid-dynamic traffic models. Significant progress
has been made in the study of fractional ordinary and partial differential equations. For more
details on fractional calculus theory, we refer the reader to the monographs of Kilbas et al. [9],
Miller and Ross [10], Podlubny [11], Tarasov [12], and the papers of Agarwal et al. [3,4].

In recent years, several definitions of fractional derivatives have been introduced, such as
the Riemann-Liouville, Grunwald-Letnikov, and Caputo definitions. Recently, Khalil et al. [8]
proposed a new definition of the fractional derivative that is highly compatible with the classical
derivative. Unlike other definitions, this new approach satisfies the product and quotient rules
for derivatives of two functions and has a simpler chain rule. In addition to the conformable
fractional derivative, the corresponding conformable fractional integral, Rolle’s theorem, and
the mean value theorem for conformable derivatives have also been established.

The concept of fractional differentiable functions was introduced, and another study [2] by
Abdeljawad contributed to this new field. He presented left and right conformable fractional
derivatives, as well as fractional integrals of higher-order concepts. Moreover, he provided the

fractional chain rule, the fractional integration by parts formulas, the Gronwall inequality, the
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fractional power series expansion, and the fractional Laplace transform definition. In a short
time, many studies related to this new fractional derivative definition were conducted [6,7,14].

For obvious reasons, the stability of differential systems is one of the fundamental topics
in science. Recently, stability problems of nonlinear fractional systems have been extensively
investigated by many authors [5], particularly regarding conformable fractional-order nonlinear
systems. Souahi et al. presented some results on the stability and asymptotic stability of
conformable fractional-order nonlinear systems using the Lyapunov function. These results
can be taken as a starting point in this vast field. However, few contributions addressing the
asymptotic stability of conformable fractional systems have been reported in the literature,
which motivates us to carry out this work.

In this paper, motivated by previous works, we study the stability of conformable fractional-
order derivative systems using Lyapunov functions. We assume that the nonlinear part of the
system satisfies the one-sided Lipschitz condition and the quadratic inner-bounded condition,
and we provide some sufficient conditions for the asymptotic stability of the system. The
construction of a feedback-stabilizing controller for conformable fractional bilinear systems is
also presented.

The rest of this paper is organized as follows. In Section 2, we introduce some definitions
and the necessary lemmas. In Section 3, we present our main result. In Section 4, an example
illustrates the validity of the proposed method. Finally, the conclusions are presented in Section
5.

82 Preliminary

Notation 1. Throughout the paper, AT denotes the transpose of A. Amax(A) and Amin(A)
denote the mazimum and minimum eigenvalues of a matrix A, respectively. P > 0 means that
the matriz P is symmetric and positive definite. I denotes an identity matrix of appropriate

dimension. (-,-) denotes the inner product in R"; that is, given x,y € R™, we have (x,y) = x7y.

The notation || - || denotes the Euclidean norm in R™, defined by ||z| = /{(x, x).
We next recall some classical definitions and results that are essential for our study.

Definition 1. (/8]) Given a function g defined on [a,00), the conformable fractional derivative
of g of order « is defined by

Tg(t) = lim glt =% — (1), (1)

e—0 £

for allt > a and o € (0,1].

Definition 2. (/8]) The conformable fractional integral of order 0 < a < 1 starting from a for
a function g is defined by

Iog(t) = / (z — a)* 1 g(z) du. (2)
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Considering the following conformable fractional nonlinear system
Tix(t) = f(t,x(t), x(to) = zo, (3)
where x € R" and f : Ry x R™ — R” is a given nonlinear function satisfying f(¢,0) = 0 for
every t > 0.

Definition 3. (Fractional exponential stability [2]): The solution of the system (3) is called
fractional exponentially stable if

[z(t)]| < Mllzol| Ea(=At —to), > to, (4)
where 0 < a <1, A >0, M >0, and E,(\t) = exp ()\%)

Definition 4. The origin of the system (3) is said to be stable if, for any € > 0, there exists
d > 0 such that ||z(t)|| < e for all t >ty whenever ||xo| < 6.
The origin is said to be asymptotically stable if it is stable and additionally satisfies

lim «z(¢) = 0.

t——+oo
Theorem 1. ([13]) Let x = 0 be the equilibrium point of the fractional-order system (3).
Assume that there exists a fractional Lyapunov function V : [0,00) x R™ — Ry and positive

constants A\;, i = 1,2, 3, satisfying

(1) Mlzl? < V(¢ 2(t) < Aoflz]l?;

(i) TSV (¢, (1) < —As|l=|.

Then, the origin of system (3) is fractionally exponentially stable.
Remark 1. Fractional exponential stability implies asymptotic stability.

Lemma 1. [18] Let 0 < o < 1 and let g : [to,00) — Ry be a continuous function and a-
differentiable on (tg,00), such that
Tiig(t) < =Ag(t),

where A is a positive constant. Then,
9(t) < Ea(=A,t —t0)g(to)-

Lemma 2. ([13] ) Let  : [a,00) — R™ such that T3« (t) exists on (a,00) and P a symmetric
positive definite matriz. Then T x(t)T Px(t) exists on (a,o0) and

To2(t)T Px(t) = 22(t)T PTx(t), Vt > a.

Lemma 3. (/2] ) Let A € R™ "™ be a constant matriz. Then, the solution of the following

conformable fractional differential system
THa(t) = Ax(t) + f(t, x(t)), =(to) = o, (5)
s given by

(S — to)a

z(t) = xo exp(A%)—k/ exp(A(t?%)a) x exp(—A Vf(s,2(8))(s—tg)*ds. (6)

to
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Definition 5. (/1] ) The nonlinear function f(t,x) is said to be one-sided Lipschitz if there
exists p € R such that

(f(t 1) = [t 2), 21 — x2) < pllar — 2|, (7)
where p is called the one-sided Lipschitz constant.

Definition 6. (/1] ) The nonlinear function f(t,x) is called quadratically inner-bounded if there
exist constants B,y € R such that

[f(t, 1) = f(ta)]T[f(t,21) = f(t,22)] < Bllan — @2]|* + (2 — a2, f(t, 1) — f(t22)). (8)
Remark 2. If a function f(t,x) satisfies the Lipschitz condition, then it also satisfies the one-

stded Lipschitz condition and the quadratic inner-bounded condition. However, the converse is
not necessarily true. In many cases, the one-sided Lipschitz constant can be much smaller than
the standard Lipschitz constant. Moreover, the constants p, 3, and v € R can take arbitrary real
values, whereas the Lipschitz constant must be positive. Therefore, the class of nonlinearities

considered in this paper is quite general.

83 Main results

3.1 Stability

In this section, we focus on the following conformable fractional differential system. The

main objective is to analyze the asymptotic stability of the system

Tia(t) = Ax(t) + f(t,z(t)), x(to) = o, (9)
where A € R™*"™ is a constant matrix and f : Ry x R” — R" is a given nonlinear function
satisfying f(¢,0) =0 for all ¢ > 0.

Let S be the symmetric positive definite solution of the Lyapunov equation
ATS + 54 = —-Q, (10)

for a given symmetric positive definite matrix ). Then, the following stability result holds
Theorem 2. Let a € (0,1]. Suppose that the function f(t,z) satisfies the conditions (7) and

(8) with constants p, B, and v. Suppose also that there exist a scalar r # 0 and two matrices S

and Q satisfying the Lyapunov equation (10), such that
{(7"25 + 1) + p(’Y + 27‘)} /\max(S) < /\min(S) + /\Inin(Q)' (11)
Then, the origin of system (9) is fractionally exponentially stable.

Proof Let us consider the following Lyapunov function candidate:
V(t,z(t)) = 27 (t)Sxz(t). (12)
From Lemma 2, we obtain
TV (tat) = o’ (£)(ATS + SA)x(t) + 227 (1) S f(t, x(t))
< =2l (1)Qu(t) + 227 (1SS (t, x(1)).
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For brevity, denote f(¢,x(t)) by f:. Note that
2:TSfy =[x + ft]T Sz fi] — 27 Sz — fISf,.
Since S is symmetric positive definite, it satisfies
Amin (S) I fell* < fi7Sfe < Amax(S)fel|. (13)

Moreover
@+ £ ST+ fi) < Amax(S) 2 + o] (14)
Using the quadratic inner-boundedness condition (8) and the fact that f(¢,0) = 0, we have
fEfe < Ba"x + (=, fo).
Thus,
Sle e flF = oo+ 20 g A

< alx+2ra” fi + 2 BaTx 4+ riy(x, fi)
< (PB4 D'z + (v +20)a” fi
Now, combining inequalities (14) and (7), we get
227 S fi < Amax(S) [(72[3 + DTz + (v + 2r)acht] — 2782 — Auin(9) || £2]12
< {Puax(8) [(728 + 1)+ p(7 +20)] = Awin() } 7,
where we used z7 f; < p||z|* from condition (7).

Therefore,
TtQOV(t, z(t)) < *l'TQx + {AmaX(S) [(7"25 + 1)+ p(y + 27)] - /\min(S)} ala
<- {)‘min(Q) + Amin(S) = Amax(5) [(T25 + 1)+ p(y + 27ﬂ)}} ||x||2
By condition (11), the coefficient of ||z||? is positive. Hence, according to Theorem 1, the origin

of system (9) is fractionally exponentially stable. The proof is complete. 0

3.2 Stabilization

Let us now consider the following conformable fractional differential system:
Tix(t) = Ax(t) + Bu+ f(t,x(t)), x(to) = o, (15)
where € R™, u € R™, A and B are constant matrices of dimensions n X n and n x m,
respectively, and f : Ry x R®™ — R™ is a given nonlinear function satisfying f(¢,0) = 0 for all
t > 0. Then, the following theorem holds.

Theorem 3. For 0 < a < 1, suppose that the function f(t,x(t)) satisfies the conditions (7)
and (8) with constants p, 5, and . Suppose also that there exist a symmetric positive definite
matrix P, a constant matriz K € R™*™  a scalar r # 0, and a positive scalar € > 0 such that
the following inequalities hold:

(A+BK)'P+ P(A+ BK) = —l, (16)

{(r*B+1)+ p(v+2r) } Amax(P) < Amin(P) + €. (17)
Then, the control law u(x) = Kz renders system (15) fractionally exponentially stable.
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Proof Consider the following Lyapunov function candidate:
V(z) = 2 (t)Px(t). (18)
From Lemma 2, we have
TV (t) = 2" (t) [(A+ BK)TP + P(A+ BK)] z(t) + 22" () Pf(t, z(t))
= —exT (t)x(t) + 22T () Pf(t, ()
< —ellz(@)|” + 22T (1) Pf (¢, 2(t))-
Using the same argument as in the proof of Theorem 2, and under conditions (7) and (8), we

obtain the inequality
207 ()P f(t,2(t)) < {Amax(P) [(r28 + 1) + p(y +2r)] = Auin(P) } [|l2(8)]|*.
Therefore,
TV (t) < —€llz@®)]* + {Amax(P) [ 8+ 1) + p(v +27)] = Ain (P) } (1]
= —{e+ Anin(P) = Amax(P) [(r?B + 1) + p(y + 20)] } 2 (1) >
By condition (17) and according to Theorem 1, the origin of the closed-loop system
Tix(t) = (A+ BK)x(t) + f(t,2(t))

is fractionally exponentially stable. The proof is complete. O

3.3 Stabilization of conformable fractional perturbed systems

Let us now consider the following system:
T x(t) = Ax(t) + Bu+ f(t,z(t)) + h(t,z(t)), x(to) = wo, (19)
where h : Ry x R™ — R” is a nonlinear perturbation satisfying the following condition.
There exist constants o > 0 and w > 0 such that
Ih(t,z)|| < w|lz|| whenever |z| < o. (20)

Then, the following theorem holds:

Theorem 4. For 0 < a < 1, suppose that the function f(t,z(t)) satisfies the conditions (7)
and (8) with constants p, B, and v, and that the perturbation h(t,xz(t)) satisfies condition (20)
with constants o > 0 and w > 0. Suppose also that there exist a symmetric positive definite
matriz P, a constant matriz K € R™*™  and a positive scalar € > 0 such that the following

inequalities hold.
(A+BK)'P+ P(A+ BK) = —l, (21)
{(B+1) +p(v+2)} Amax(P) < Amin(P) —w +e. (22)
Then, the control law u(x) = Kz renders system (19) locally asymptotically stable.

Proof Consider the Lyapunov function candidate:

V(z) = 2T (t)Px(t). (23)
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From Lemma 2, we can conclude
WT2V(t) = 2" (t)((A+ BK)" P + P(A+ BK))x(t) + 22" () Pf(t,2(t)) + 22" (t) Ph(t, z(t))
< —ex? (t)x(t) + 22T () Pf(t, 2(t)) + 227 (t) Ph(t, z(t))
< —ex (1)2(t) + {Amax(P) [(B+ 1) + p(y +2)] = Amin(P)} 2T ()2(t) + w||2(8)[”
< —{e+ Amin(P) = w = Amax (P) [(B +1) + p(y + 2)]} [« (1) |1*.

By Theorem 1, it is easy to verify that the origin of the closed-loop system T xz(t) =
Az(t) + BKx(t) + f(t,x(t)) + h(t,z(t)) is locally asymptotically stable.

84  Stabilization of conformable fractional bilinear systems

In this section, we study the stabilization of the following conformable fractional bilinear

system with multiple inputs, in a constructive manner
P
Tpa(t) = Az(t) + > u;Bia(t), teR, (24)

where z(t) € R", u; € R for all i € {1,...,p}, and A, B; € R™*" are constant matrices.

Definition 7. The control system (24) is said to be fractionally exponentially stabilizable via

a feedback control u = u(x) if the resulting closed—loop system

Tfx( )+ Z ui(x
is fractionally exponentially stable.

In the sequel, we introduce the following assumption

(H) : (8i = {0}, (25)
where B

S; ={zeR": (Bz,z) =0}, ie€{l,2,...,p}

Theorem 5. If condition (H) holds, then there exist bounded feedback laws

B,
ui(z) = _C< ||l;:|72x>7 Vie {1,2,...,p}, (26)

where ¢ > 0 is a constant to be chosen appropriately, such that the closed-loop system (24) is

fractionally exponentially stable.

Proof Let us consider the quadratic function

1
Viw) = 3l
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which is positive definite. If condition (H) holds, then the fractional derivative of V along the
solutions of the closed-loop system (24) under the feedback (26) becomes

ToV(2(t) = (Az, o) JrZuz ){(Bjx,x)

We have

where Ag = ALAT, and let

2
<AS$,J}>
Amax = 08X BE yggffl( sY,Y)
Let
p
fly)=> (By,y)? Vyes
i=1

It is easy to verify that the function f is continuous and differentiable on the compact set
S"~! so f(y) attains both a maximum and a minimum on S"~!. Therefore, there exist two

real numbers m and 9 such that

0<m< fy) <M forallyeS" L.

Hence,
TAV(2) < Amaxlz]? = ¢f (y)
< Amax|2]|? — em||z]|®
< (Amax — cm)|z]|*.
If we choose the positive constant ¢ such that
c> @,
m

then Anax — em < 0, and it follows that
TV (2(t) < (Amax — em)|z(t)|?
—2(em — Apax)V (2(t)).

A

IN

Using Lemma 1, we obtain

V(J?(t)) < Ea (_2(Cm - /\max)vt - tO) V(x(tO))v vt > 1o

t—10)"
< exp (—2(cm - Amax)(aO)> V(a(to))-
Therefore,
lz()]l < V2 Ea (—(em — Amax), t — to) l|z(to)
So, the closed-loop system (24) is fractionally exponentially stable. 0

Remark 3. For the single-input system Tz = Ax + uBx, our method remains effective.
Indeed, by replacing condition (H) with
{z e R": (Bz,z) =0} C {zx € R": (Az,z) < 0},
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we can construct the feedback control law

(Bx, x)
uc(z) = —c¢ .
‘ [l
Remark 4. If there exist real scalars ki, ks, ..., ky, not all zero, such that the linear combi-

nation Zle kiB;, is symmetric and either positive definite or negative definite, then condi-
tion (H) is satisfied, i.e.,

(S = {0}

This means that the quadratic forms associated with the B;’s are jointly non-degenerate.

§5 Numerical example

Let us consider the following system:
Tiwi(t) = —a1(t) + @2(t) — 21(8) (23 (8) + 23(2)),
Tiwa(t) = —2w1(t) + 22(t) — 22(21(t) + 23 (1)) + u(t).

System (27) can be rewritten as the form of (15) with

1 1
5=’
-2 1 1

z1(t)
2(t)
The function f satisfies the one-sided Lipschitz condition and the quadratic inner-boundedness

A:

and

f(t,x(t) = —(21(t) + 23(1) [

inequality with parameters p =0, § = —100, and v = —99, (see [1]). Now, select
K=|-2 3
. Then Ax = A+ BK is Hurwitz. We also choose ¢ = 1. The matrix P is given by

p_ | 22500 —0.9167
~1-0.9167 0.5833

)

and

W2V (t) = 2" (t)((A+ BK)"P + P(A+ BK))z(t) + 227 (t)Pf(t, (1))
—{e+ Amin(P) = Amax(P) (B + 1) + p(v + 2)]} [|2(8) ]|
—264.0723||z(t)|]*.

IN A

Hence, the system (27) is fractionally exponentially stable.

The numerical solution of system (27) is shown in Figure 1b for a fractional order a = 0.9.

It indicates that the zero solution is asymptotically stable.
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(a) Open-loop response. (b) Closed-loop response.

Figure 1. State trajectories 1 (t) and 2o (¢) for Example 27 with initial conditions z1(0) = —1,
22(0) =2, and a = 0.9.

86 Conclusion

In this paper, we start by the stability of a class of conformable fractional order systems using
the Lyapunov function. We suppose that the nonlinear part of the system satisfies the one-sides
Lipschitz and quadratic inner-bounded condition, and we give some sufficient conditions which
imply the asymptotical stability of the system. The stabilization of conformable fractional
bilinear systems is studied. A numerical example is given to illustrate the efficiency of the

obtained results.
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