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Weighted estimates for multilinear commutators of
multilinear singular integral operators with

generalized kernels

LIN Yan!  YANG Qing!  ZHANG Pu?*

Abstract. In this paper, the authors study the multilinear commutators generated by a class
of multilinear singular integral operators with generalized kernels and Lipschitz functions. By
establishing the sharp maximal estimates, the boundedness of this kind of multilinear commu-

tators on product of weighted Lebesgue spaces can be obtained.

81 Introduction

Coifman and Meyer first studied the multilinear Calderén-Zygmund theory in [1-3]. Then
this theory was further investigated by many authors in the last few decades such as [7,8,10]. It is
noticed that the commutator is more singular than the singular integral operator. In recent years
there has been an explosion of interest in the study of the multilinear commutators generated
by multilinear Calderén-Zygmund operators or multilinear fractional integrals. Details can be
found in the references [4,11,16,19,21]. Pérez and Trujillo-Gonzalez introduced the multilinear
commutator as a generalization of the commutator in [17]. And the sharp weighted estimates
for vector valued singular integral operators and commutators was obtained in [18]. There are
a number of studies concerning multilinear singular integral operators whose kernel conditions
are more weaker than the standard Calderén-Zygmund class. Indeed, we are motivated by
the work of Lin and Xiao, who studied a class of multilinear singular integral operators with
generalized kernels and their multilinear commutators with BMO functions in [12]. In this
paper, we consider replacing the above BMO functions by Lipschitz functions and finding out

the corresponding conclusions.
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The multilinear operators T that we study are initially defined on the m-fold product of
Schwartz space S(R™) and take their values into the space of tempered distributions S’'(R™).
We will assume that the distributional kernel on (R™)™*! of the operator coincides away from

the diagonal yg = y; = - -+ = y,», with a function K so that
Tf@)=T(fr, fm) (@) = / A K(x,y1,-ym) [ 15 W5)dys -+ dym, (1)
n n e

where = ¢ ﬂ;n:l suppf; and f;(j = 1,---m) are smooth functions with compact support.

Moreover, we will also assume that the function K satisfies the standard estimates

C
> ma=o lyk —w)mm’

K (Yo, Y1, Ym)| < ( (2)

and, for some C > 0,

Cluy: — /' |¢

_ ly; — vjl — 3)
(Zk,l:o lyx — ui])

provided that 0 < j < m and [y; —yj| < 1 maxo<p<m |y; — yx|- Such kernels are called m-linear

|K(y05 yYjs aym)fK(y07 ay;7"' aym)| S

Calderén-Zygmund kernel.

For the multilinear singular integral operator T' defined by (1) associated with a standard
m-linear Calderén-Zygmund kernel K, T is called an m-linear Calderén-Zygmund operator if
it satisfies either of the following two conditions

(C1) T map L't x -+ x Lt=1into LH> if t > 1,

(C2) T map L't x ... x Lt=1into LY if t = 1,
for 1 < t1,-+ty,t < 0o and = % + i 4+ 4 i, where Lt! ... Ltm1 and LH* are the
Lorentz spaces.

First of all, we introduce the m-linear Calderén-Zygmund kernel of type . For details, one
can see [13,14,20,22] and the references therein. Let ¢(t) be a non-negative and non-decreasing
function on RT. A locally integrable function K (o, 1, ,¥m) defined away from the diagonal
Yo =1y = -+ = Ym in (R™)™*! is called an m-linear Calderén-Zygmund kernel of type ¢ if it

satisfies the size condition (2) and

|K(y07 s Yjs o 7ym)_K(y07 7y;7 7ym)|

< c @( |y — vl ) n
“ (yo—wal+ -+ lvo—yml)™  \yo — w1l + -+ [vo — yml|/’

whenever 0 < j < m and |y; — y;| < %maxlgkgm lyo — yx|. In addition, let p(t) = t¢ for some

€ > 0 in condition (4), then the condition (4) becomes (3) and the m-linear Calderén-Zygmund
kernel of this type ¢ is exactly the standard m-linear Calderén-Zygmund kernel.

Above all, we will introduce a class of more general multilinear singular integral operators
T defined by (1) with the kernel K satisfying the size condition (2) and a weaker condition.
For any ki,--- , kn € N, there are positive constant Cy,,i = 1,--- ,m, such that

( /2’“" [yo—uh | <|ym —yo|<2Fm+1yo—yg| /2’“1 lyo—yb|<ly1 —yol<2F1+1|yo—y}|
1

|K(y07yla"' 7ym) - K(yé),ylv aym)‘qdyl dym) !
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nk

°4

m
<Clyo—wol " [[Cr2 7, (5)
i=1

where (¢,q’) is a fixed pair of positive numbers with % + % =1 andl < ¢ < co. Obviously,
when Cy, = @(27%)w, i = 1,--- ,m, the condition (5) includes the condition (4) with any
1 < g < 0o. Thus the multilinear singular integral with the kernel of type ¢ can be regarded
as a special case of the multilinear singular integral operator we will focus on.

Now we define the multilinear commutator generated by the multilinear integral operator

and the Lipschitz function. First we recall the following definition of the Lipschitz function.

Definition 1.1 Let 0 < 8 < 1. The Lipschitz space Lipg(R"™) is defined by

[f(z+h) — f(z)]
" = su
||f||L s z,he]R"p,hyéO |h|5

< 00.

The notation b = (b1, - ,bm) € Lipj' stands for b; € Lipg(R") for j = 1,--- ,m. We
denote [|bl| Lipy = maxi<j<m [|b5]| Lips-
Let T be an m-linear operator defined by (1). Given a collection of locally integrable

functions b = (b1, ,bm), then the m-linear commutator of T with b is defined by
j=1

where
ng(f) =0;T(f1, s fm) =T (f1,- - fi—1:05F5, fijv1, -+ 5 fm)-
Before stating our main results, firstly we introduce some necessary notations and definitions.
In this paper, for 1 < p < oo, % + p—l, = 1. E¢ = R"™\ F is the complementary set of E.
B(z, R) is the ball centered at = with radius R > 0, CB(X,R) = B(z,CB) for C > 0, the
Lebesgue measure of B(z, R) is |B(z, R)| , and fp(, r) = m fB(m,R) f(y)d(y) denotes the

average of f over B.

Definition 1.2 We say that a non-negative measurable function w on R" is in the Mucken-
houpt class A, with 1 < p < oo, if there exists a constant C' > 0 such that for any cube @ in

R™ with sides parallel to the coordinate axes,

(& o) o)<

And for the situation p = 1, we say that a non-negative measurable function w on R™ belongs
to Ajp, if there exists a constant C' > 0 such that for any cube @ in R",

@1| /Qw(y)dy < Cw(x), ae. x€Q.

Denote by Ay = Ule Ap. It is well known that if w € A, with 1 < p < oo, then w € A,
for all » > p, and w € A, for some 1 < g < p.
Definition 1.3 A locally integrable non-negative function w on R is said to belong to the

weight class A(p,q), 1 < p,q < oo, if there exists a constant C' > 0 such that for any cube Q,

1

(a/czw(x)qu);(@/czw(x)—ﬁdﬁ T <c
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Definition 1.4 The Hardy-Littlewood maximal operator M is defined by
1
M) = s 5 [ 1 w)lay

We set M (f) = M(|f|*)*, where 0 < s < oo. For a function f € Ljo(R™), the sharp maximal
operator M* is defined by

f — L ~ in -
M) e) = sup i [ 170 = foldy ~ sup int [ 1£0) ~ oy,

where the supremum is taken over all balls B contalnlng x.

It is easy to check that the above definition is equivalent to the one by taking the supremum
over all balls B centered at x. For 0 < § < 0o, we denote by Mg the operator

ME(S) = [ME(F1°))3.

Definition 1.5 For 0 < a,l < o0, the fractional maximal operator M, is defined by

Ma,l(f)(x) _E>I())(|B|1 / |f | dy)
Obviously, My (f)(z) = [Mal1(|f|l)(x)}

82  Main results

Firstly, we will give the pointwise estimates for the sharp maximal functions of multilinear

commutators generated by the multilinear singular operators 7" with generalized kernels and
Lipschitz functions.
Theorem 2.1 Let m > 2, T be an m-linear operator defined by (1) whose kernel satisfies the
conditions (2) and (5) with Zz:l Ck, < 00,i=1,--- ,m. Suppose for fized1 < ry, -+ ,rpm < ¢
with 1/r = 1/ry + -+ + 1/rp, T is bounded from L™ x --- x L™ into L. If b € Lip},
0<B<1,0<6<1/m, then

m
—

METHF) @) < Ol > (MasTEN@ + Mo (£)(@) T] Mo ()(a)),

j=1 i#5,i=1

for all m-tuples f: (f1,++, fm) of bounded measurable functions with compact support.

Then, as applications of the maximal function estimates, we can establish the boundedness of
multilinear commutators generated by multilinear singular operators 1" with generalized kernels
and Lipschitz functions on product of weighted Lebesgue spaces.
Theorem 2.2 Let m > 2, T be an m-linear operator defined by (1) whose kernel satisfies the
conditions (2) and (5) with szzl Ci, <o00,i=1,---,m. Suppose for fived 1 <11, - ,rm < ¢
with 1/r = 1/ry1 + -+ + 1/rp, T is bounded from L™ x --- x L™ into L™, Ifg € Lipy,
0 < B < min{l,n/q'}, then for any ¢ < p1,--- ,pm <n/B, 1/q; =1/p; — B/n, j=1,---,m,
p>1,1/p=>"1/pi, 1/qo = 1/p — B/n, Ty is bounded from LP*(wi) X --- X LP™(wy,)
into L% (w), where wj € Ay /qr, wg//pj € Alp;/d.q;/d), j =1, ,m, w= H;n 1wq°/p1 and
w'/9 € A(p, qo).-



LIN Yan, et al. Weighted estimates for multilinear commutators of multilinear singular... 745

83 Lemmas

Before giving the proof of our main results, we need some lemmas as follows.
Lemma 3.1 ( [6,9]) Let 0 < p < g < 00, then there is a positive constant C = C,, , such that

for any measurable function f there has

QI 1 fllr @) < CIRITV N fll Lo (@)-
Lemma 3.2 ([5]) Let 0 < p,d < 00 andw € An. Then there exists a constant C > 0 depending

only on the Ay, constant of w such that

| msn@rs@ds<c | pi @,

R™

for every function f such that the left-hand side is finite.

Lemma 3.3 ( [12]) Let m > 2, T be an m-linear operator defined by (1) whose kernel sat-
isfies the conditions (2) and (5) with 37.°_ C, < oo, @ = 1,---,m. Suppose for fired
1 <ry,oyrm < ¢ with 1/r = 1/ry + -+ 1/ry, T is bounded from L™ X --- X L™ in-

to L™, Then for any ¢ < p1, - ,pm < 00, with 1/p = 1/p1 + -+ + 1/pm, T is bounded
from LPY(wy) X --- X LPm(wy,) into LP(w), where (w1, -+ ,wm) € (Ap, /g, Ap,./qr) and
w=[", WP

j=1%j

Lemma 3.4 For 1 <p,q < oo, w € A(p,q) if and only if w? € Agpri1.
The result of Lemma 3.4 directly comes from the definitions of the two kinds of weights.

Lemma 3.5 ( [15]) If0<a<n,l<p<n/a, 1/¢g=1/p—a/n and w € A(p,q), then there
is a constant C' > 0, independent of f, such that

([ testn@wtonias) " <o [ iswura) .

84 Proof of main results

Now we are able to prove our main results. First, we will give the proof of Theorem 2.1.
Proof. Without loss of generality, we will only consider the situation m = 2 and omit other
situations since their similarities.

Let fi1, fo be bounded measurable functions with compact support. Then for any ball

B = B(xg,rp) with center at z¢ and radius g > 0, we decompose f; and fy as follows
fi = fixies + fixaes)e = fi + fi,

fa = faxies + faxeB)e = fr+f3

Choose a zg € 3B\ 2B, then
() T((b — bh) . o))
T((by = bp) fl, f2)(2)

— T((by — bp) f1. f2)(2)

bp)T (f1, f2)(

(b1(2) = bp)T(f1, f2)(2)
((bs = bp)f1, f3)(2)
(b1 = bp)fE. f3)(2)

B ?)

(b1(2)

-T
-T

3
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-
—
Sy}
1
I

THA)(E) + T —b}g)ff,fz?)(ZO)l‘st)é

IN
Q
/\
—
’&
=
A
\_/
\
o>
ool
\_/
A
&H
—
bﬁ

|dz)
B|/ IT((b1 — bB) f1, f2)( %Lz)
|B|/ IT((by — by fL, £3)( 5dz>

5dz)

/|T —Bh) 2 £

Sl

(b — by 12, £2)(2) = T((bs — b}g>ff,f§><20>|5dz)

We can estimate the five terms as follows. By the definition of the Lipschitz function, we
have

1 2) — bL|® 2)|°dz
n=c(og 106 -l )G )

1 5
< C||b1||up,n§;(|B| / |T<f1,f2><z>|5dz)

1
< Ol (= [ 110 0:)
B s
< O[b1 | Lips M5 (T(f)) (w0)-
It follows from 0 < § < r < oo and Lemma 3.1 that
I = C|BI7 YT (b1 = bp) f1, £2)ll s ()
< CIBITVIIT((by = b) f1 1) ()

1
]' 1 T1 T1 ﬁ
<(rigz [ 1) = o1 i)
1

1
1 )
’I"Qd
< (7i5a1 f Fe0)
L

1
< c|b1||up5rf;(|163 | |f1<yl>|"dyl> My, (£2) o)

1
1 Py

|16]3|1W/1 filp)l” dyl) M, (f2)(zo)

< Clb1||Lips Mp,q (f1)(x0) My (f2)(20)-

< mmum(



LIN Yan, et al. Weighted estimates for multilinear commutators of multilinear singular... 747

By the size condition (2) of the kernel, we have

= C(|é|/ ‘/ & K(2,91,92) (01(y1) — b%)ff(yl)fg(yz)dwdyg‘6dz>5

(|B|/ /16B)c /GB (2,91, 92)[[b1 (y1) — b

3

< |fuon) L o)l dnys dz)

< C(;/B (/(16}3)c (/16B\b1(y1) — bL || f1 (y1) | dun ) | |f2(y2)2|ndy2>5dz>

3 (1)
< C(/lﬁB b1(y1) — b}9||f1(y1)|dy1) ;/ LI N

okt1p\2k B [To — y2|?"

(S

1/q" o 1

1 ,
< COlb1 || Lips s [ ——= 7 p L d
< 1|LPBTB<|1GB| /163|f1(yl)| y1> kzzél PEEN] 2k+13|f2(y2)‘ Y2

1 , 1/q' s -
< Clb1lLips (W/ | f1(y1)|? dyl) M(f5)(wo) Y 27H"
[16B|'~ = Ji6B Py

< COlbillnips Mp,q (f1)(20) My (f2)(0).

Similarly, we can estimate I4

f4<c<|;|/</W>c</mw i) ) )

|f1(y1)]zo *yl|ﬁ
< C|b1|Li (/ f2(y2)|dy / d
61| Lips y | f2(y2)|dy2 E TR PRSP TR
o0 1
< ot
Cllbr || Lips [ BIM (f2)(zo k§:4 PaEpTRE /2k+lB|f1(yl)|d3/1

1
7

1
< CHblHLimM(fz)(xO)ZTW ( /2k+1 | f1(ya)]? dyl)
k=4

|2k+1 Bt da

< Clb1|| Lips Mp,q (f1)(0) My (f2)(20)-

For z € B and y1,y2 € (16B)°, there are |y; — 20| > 2|z — z0l, |y2 — 20| > 2]z — 20|, and
rg < |z — 29| < 4rp. It follows from Holder’s inequality and the condition (5) that

I5 < C( / / / K(z,y1,y2) — K (20,91, ¥2)|
|B| (16B)e 163)”

6

< Ian) = O3 ol ) )

SCHble‘pa(B/ Z Z:/

f1=1 ka1 v 22 |2—20|<[y2—20]<2F2 T |2—20|

<[ K (2 1.2) — K (o, ot) 31 — 0l
2k1|z—z0|<|y1 —z0|<2F1H1|z—2|
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5 \?
< Al o) ) dZ)

scnblum<|3| / (Z > . ol

f11 ko1 v 22|z —20|<[y2—20]<2F2 T [z —20|

x (/ |K (2,91, Y2) —K(Zo,ybyz)\qdyl)
2k1|z—2z0|<|y1 —z0|<2F1H1|z2—2|

1 g s
x (/ ly1 — 2ol [ f1(y1)| dyl) dy2> dz)
2k1+4B
1 o0 oo
< Ol Lip, (W/B ( Z Z (/2k1+4 ly1 — !E0|Bq | f1(yn)]? dy1)

ki=1ks=1

’
X (/ | f2(y2)|? dy2)q (/
2k2 4B 2k2|z—20|<|y2—z0|<2F2H1 |2 — 20|

1\ 0 %
|K(Zay17y2) 7K(205y17y2)|qdy1dy2> q> dZ)

Q=

1
a7

x /
2F1|z—20|<|y1 —20|<2F1 1| z—20|

§C||b1Lip5<|B|/ (Z > (W /2161+4 | f1(ya)|? dy1>

k1=1ko=

1
7/

1 / 7 a a
X (m s | f2(y2)|? dyg) 2k BT |2k B
2

1
B

|z—zo| - C, 2 =" C’k2 Y )dz)

< Cllbnlain, Mo (M () (3 01 ) (3 )
ki=1 ko=1

2 1 _2n 5
< IBI7 (m/Blz—m ! 5dz>

< COlbllnips Mp,q (f1)(z0) My (f2)(0).

Combining the estimates of I;, j =1,---,5, we get
1

(157 [ [+ 70 = vt i)

—

< Clballzips (M, (T(f))(w0) + Mp,q (f1)(20) My (f2)(20))-

Similarly,

5

<|B| / ’Tz T(f, (b b%)fzz)(Zo)rdz>

—

< Cllb2llLips (Mps(T(f))(@o) + My (f1)(@o) Mp,q (f2)(20)).
Thus
ME(T5(f)) (o)
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1
5

. 1 VIRND)
~ sup inf (/ T-(f)(=z —a‘dz)
rp>00a€C |B(.’E0,7"B)| B(zo,rB) | b( )( )l

IT5(f)(2))°

1
< sup (
rg>0 |B($0»7"B)| B(zo,rB)

-

T = )72 £ ) + TR, 2 = B 3) o))

<O sup {(w(l THF) ) + (b b}g>ff,f§><zO>]5dz)é

rg>0 $07TB)‘ B(zo,rB)

" (|B($017TB)| / G ><z>+T<ff,<b2bé)f%)(z())]édz)é}

2 2

< Clball iz > (MB’(;(T( ) (o) + Ma.gr(£;)(wo) [] MQ’(fi)<xO))-

j=1 i=1,i#j

This completes the proof of Theorem 2.1.
Then, we will give the proof of Theorem 2.2.
Proof. Tt follows from w'/% € A(p, qp) and Lemma 3.4 that w € Ago/pr+1- Take a § such that
0 <6 <1/m. Then by Lemma 3.2 and Theorem 2.1, we have
T3P 20 ) < IMs(T5(F)) 0 ) < CIUMEHTH()) | oo (o)

m

< ClBllears 3= (IMss @D + || Moo (5) TT Mo, )
j=1 i#g,i=1
Since w € Ay, /p41, there exists an s such that 1 < s < qo/p’ + 1 and w € A,. Denote by
t ~ ~
t= ﬁ, then s = (;1)%), +1,1<t<p<n/B,and w € A(Z)O/{;’H. Let 8 = pt, p = p/t and

4 = qo/t, then 0 < §< n,1<p< n/B and 1/q = 1/§fﬁ/n.
It follows from Lemma 3.4 that w'/9 € A(p,§). By Lemma 3.3 and Lemma 3.5, we have
1M5,5(T ()l oo @) < 1Mt (T ooy = 1M, (T N e )

N (/n[ME,1(\T(J?)It)(x)w(x)l/i]ida?) '

Q=

<c( / nuT<m>|tw<x>%mx)%

= CIT(F gorraoy < C T Ifillr -

i=1
For every j =1,---,m, 1/qo =1/q; + Z;’;jvizl 1/p; since 1/¢q; = 1/p; — B/n. By Hoélder’s

inequality, we have
m m
|Maw () TT Mah),,, 0 < WM Ul rirmsy TT WM (F)lmc oy
i#7,i=1 J i#5,i=1

Denote by EJ = B¢, p; = p;/q¢ and §; = ¢;/q¢', then 0 < BNJ <n,1<p;< n/ﬁ? and
1/4; = 1/p; — B;/n. The fact w! /" € A(p;/q',q;/¢’) means that w'/% € A(p;, G).
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By Lemma 3.5, we have
4 ] = — ,q/ l/q/ —
HMﬂaq (f])”Lq]-(w;lj/Pj) ||MB]71(|f]‘ ) Hqu(w;Zj/pj)
o

= ([ 5 0517 s o) 1)
=

<o [ 1@ w5 )Pdr)

Rn

= Clfillrs (wy)-
For every i = 1,---,m, and i # j, since w; € A, /o and p;/q" > 1, M is bounded on
LPi/9 (w;). Thus

’ 1 ’ 11 ’
1My (Flloi oy = IMASIDN oy < CNAIT N 0 oy = Clillzrs -

Therefore for every j =1,--- ,m,
m m
(RISPIEAS | QL] INNEYe) § [ oy
i#j,i=1 i=1

In conclusion,
IT5 (Pl ooy < CllBNLapy TT1Fill Lot )
i=1

which completes the proof of Theorem 2.2.
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