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Lattice point partition designs for experiments with

mixture

LI Jun-peng!? LI Guang-hui® ZHANG Chong-qi*

Abstract. The upper bound on the model error will be decreased when the mean square error
and the maximum distance deviation are sufficiently small in the uniform designs for mixture
experiments and the design is more robust for the model. However, the analytical expressions
of MSED and MD are currently only available in the hypercube, but both types of deviations
in other studies are just approximations. Although it can obtain good approximations in the
low-dimensional case, the calculation will be more complicated for an experiment with more
variables. Therefore, in this paper, an algorithm based on lattice point partitioning design is
proposed to obtain the analytical expression of the MSED and MD in the region covered by the
lattice points. Furthermore, the design’s optimality is considered and illustrated by examples

under the same uniformity.

81 Introduction

The experimenter is mainly interested in obtaining a quality product or an effective experi-
mental scheme in engineering, food, agriculture, and medicine. However, for practical consider-
ations, such as time constraints or resources, the experimenter needs to consider how to choose
an excellent experimental design with a minimum number of experiments to obtain complete
information about the product and how to choose experimental points on the domain when
the underlying model is unknown. Therefore, the researcher proposed various practical design
methods for this purpose, such as orthogonal experimental design, uniform experimental design,
simplex-lattice design, and simplex-centroid design in mixture experimental (see Ryan[1], Fang
et al.[2], Scheffé[3], and Silvey[4]). The main interest in this paper is the design for experiments

with the mixture and the uniform design.
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For a mixture experiment, the product’s response is only related to the proportion of each
component in the mixture and not to its total amount. For example, in considering photosta-
bility studies of photographic film coating materials, Cornell [5] found that stability was only
related to the relative proportions of two coupling agents, two coupling agent solvents, and
three stabilizers. The response in mixture experiment designs is commonly associated with
factors by an underlying linear model for parameters. Therefore, the computation of optimal
designs aims to choose the combination of experiments that are combinations of proportions
of components to maximize the information gathered from the complete set of experiments.
The use of optimality criteria is a strategy grounded on the statistical theory where the main
goal is finding a design with maximum information, i.e., guaranteeing the minimization of the
confidence region of the parameters. The scholars proposed various optimality criteria for these
purpose considerations, such as D-, A-, E- and R-optimality criteria, see Atkinson et al. [6]
and Dette [7]. Moreover, under these optimality criteria, an optimal design is the best design
if the underlying model is known. Optimal designs have many attractive properties. However,
as pointed out by Fang and Wang [8], Borkowski and Piepel [9], the optimal design has the
following two drawbacks: (i) The optimal design distributes too many experimental points on
or near the boundary of the experimental region, especially when the dimensionality of factors
is high; (ii) The optimal design depends on the models’ assumptions, and it is not a robust

design. When the underlying model is unknown, optimal designs may have a poor performance.

As for the uniform design method (Fang and Wang [8]; Fang [10]; Wang and Fang [11]) in
analyzing the experimental data, it is not based on maximizing the experiment information and
is also not depends on the underlying model but tries to spread the design points uniformly
over the experimental region and does not allow repetition. The uniform design is robust to the
model specification, which is also an optimal space-filling criterion. Many authors have studied
uniform designs for mixture experiments and proposed some methods to measure the uniformity
of dispersion of experimental points in the mixture experimental region. Fang and Wang[8] pro-
posed the mean squared error deviation (MSED) and root mean squared error (RMSD) criteria.
Borkowski and Piepel [9] presented the average distance (AD) and maximum distance devia-
tion (MD) criteria. Moreover, as Fang et al. [2] mentioned, the star discrepancy is a popularly
used measure of uniformity in quasi-Monte Carlo methods. The lower the star discrepancy, the
better the uniformity of the set of points under consideration will be. From Koksma-Hlawka in-
equality, the star deviation controls the upper bound of the model’s error. Hence, for a mixture
uniform experiment design, it is sufficient that the values of MSED and MD be small enough
to result in fewer upper bounds on the model deviations and more robustness. However, it is
noted that the MSED and MD values were obtained using approximate formulas in the available
literature. Theoretically, both approximate values converge to the actual value in probability.
Nevertheless, we note that the approximate values depend on the number of random mixture
points in NT-net and also on the structure of the mixture region. Therefore, it is difficult to
obtain analytical expressions of these deviations mentioned above for an irregular experimental
region or more components. Ning et al. [13] proposed DMs-deviations and obtained analytical
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expression of DMs-deviations on regular simplex by using the regenerative kernel Hilbert space
tools. To calculate the deviation by constructing an efficient algorithm, Chuang and Hung [14]
constructed a switching algorithm. Ning et al. [15] presented a new method for producing a
uniform design of mixture experiments based on the number-theoretic LBG algorithm. Chen et
al.[16] presented a discrete particle swarm optimization algorithm. Liu and Liu [17] proposed
a new algorithm using the central composite discrepancy(CCD) criterion to obtain a unifor-
m design for mixture experiments with constraints. However, the approximation’s accuracy
is insufficient to meet our requirements. Therefore, obtaining analytical expressions for both

deviations or approximate solutions with controlled errors is necessary.

The uniform design considers how to uniformly distribute the points in the experimental
region when the underlying model is unknown, and it is the design related to space-filling.
And there is various literature to investigate the approach for space-filling experimental design
when the underlying model is unknown, see Pronzato [18,19]. The development of mixture
experimental design has also significantly contributed to the development of irregular region
filling experimental design. This paper mainly wants to obtain the analytical expressions for
the deviations by using the lattice point partition design when the model is unknown. However,
as the number of components of mixture experiments increases, the methods mentioned above
shall result in numerous computations or obtain an approximate value of the deviation. The
lattice point set is an essential tool for experiment design and has the following properties: (i)
The designs constructed by lattice point sets are uniformly dispersed in the experimental region;
(ii) Transformation or rotation does not change the self-similar structure of the lattice point
set; (iii) The deviations in sub-simplexes obtained by lattice point division are fixed, which is
favorable to the calculation of MSE. Much literature studied space-filling design by using lattice
point sets, such as Zhou and Xu [20] proved that the linear transformations of a good lattice
point set could improve its space-filling performance. He [21, 22] studied the design of interlaced
lattices with minimax distances and sliced space-filling. Li et al. [23] discussed the properties
of the mixture lattice point set and gave its application to both nonparametric modeling and
uniformity tests on a simplex experimental region. Therefore, we propose an approach to obtain
the analytic expressions of MSED and MD for a regular-simplex experimental region. For the
method, using a lattice point set, we first divide the experimental region to obtain several
standard congruent sub-simplexes without common interior points. Secondly, take all vertices

of the sub-simplexes as design points.

This paper mainly proposes a lattice point partition algorithm for the mixture region based
on the underlying model is unknown. Under the lattice point partition design, we obtained
the analytical expressions of the MSED and the MD in a standard sub-simplex. The rest of
the paper is organized as follows. In Section 2, the preliminaries and notations for the mixture
experiments and the uniform design are given. Section 3 introduces the partition method for a
standard mixture region. Based on the lattice point partition designs, the analytical expressions
of MD and MSED are obtained in Section 4. Section 5 shows that the MSED and MD are valid
by two examples and give the problems that can be studied further.
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82 Preliminaries

2.1 Experimental region

For a mixture experiment with ¢ components, x1, x2, - -+, T4 are the proportions of each
component, which satisfy >7 , z; =1,2; > 0,i =1,2--- , ¢, and construct a (g-1)-dimensional

regular simplex given by
q
Sq_l = {X:($1,$27"‘ ,$q)T20§1‘i§17i:172"' 7%2352:1} (1)
i=1

However, for the practical considerations, additional constraints exist on the mixture com-
ponents, and the typical restrictions include as follows.
(i) Single component constraints (SSCs)

Ogaigxigbiglai:1a27”'aQ7 (2)

(ii) Multiple component constraints (MCCs)

q
<Y My <ujyj=1,2,--,Q,
i=1
where ) is numbers of MCCs.
Furthermore, if the experiments with additional constraints mentioned above, and then the

experimental region will be a sub-simplex of S7~!, denotes as

q
X= {X = ($1,$2,"' 7xq)T : le =1z;,>20,i=1,2,--- aq,C/S}a (3)

i=1
where C’s is a set of additional constraints, such as SSCs and MCCs.

2.2 Models and optimal designs

In a mixture experimental design, the response is usually related to the factors by the
underlying model. However, the optimal design aims to find the design with the maximum
amount of information and minimize the confidence region of the parameter, which usually needs
to assume that the form of the underlying model is known and obtain an optimal experimental
solution for a specific optimal criterion. Due to the restrictions of the experimental region
8971 the general regression models cannot be directly applied to the mixture experiments.
Therefore, various mixture models have been proposed including mixture polynomial models,
Becker’s mixture models, and additive mixture models ([3,4, 5, 6,24, 25]). In this paper, we are

mainly interested in linear models, assuming that the response y at x is written as

y=0"f(x)+e, (4)
where 0 = (01,05, -- ,0,)" is a s-dimensional vector of unknown parameters, f(x) = (f;(x),
fa(x), -+, fs(x))T is a given functional vector, € is a random error with zero mean and variance
2
o

The optimal design for model (4) is a probability distribution with finite supporting points
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x; € S9! §=1,2,---,n, and can be given by

X1 X9 e X

w1 wo e Wn
where w;,7 = 1,2,--- ,n is a weight for each design point, which are nonnegative and sum to 1,
and such that {(x;) = w;,i=1,2, -+, n.

In addition, we have the information matrix of design £ for model (4) defined as

M = [ s ). )

From the definition of the information matrix, it follows that the information matrix does
not depend on the observations of the experiment. Moreover, an essential property of linear
models is that the information matrix does not depend on the values of the unknown parameters
either. It only depends on design £. According to Fedorov and Leonov [26], if the information
matrix is non-singular, then the least squares estimate 0 of the parameter 6 is also uniquely
determined, and we have

Var(f) o« M~ (€), (7)

where M1 (£) is the inverse matrix of M (£).

The above equation (7) suggests addressing the following optimization problem, that is, to
find the optimal design.

¢ =argmin® (M™(¢)),

where & is a scalar functional that is usually ;alled an optimality criterion, = be the set of all
competing designs.

The commonly optimality criteria, such as D-, A-, and R-optimality criteria, are based on
the above matrix M1 (£). For model (4), we have

(i) a deign &* is said to be D-optimal if £* = arg Ignelél det (M_1 (5)) ,

(i) a deign &* is said to be A-optimal if £* = arg Ignig tr(M~1(¢)),
fem
(iii) a deign £* is said to be R-optimal if £* = arg rgnig H (M‘l(f))ﬁ ,
€2 /1 g

where det(-) and tr(-) denote the determinant and trace of matrix, respectively.

2.3 Lattice point sets and measures of uniformity

Optimal design is an efficient method to obtain the best design scheme under the optimality
criterion when the underlying model is known. For practical cases, however, the underlying
model is often unknown, and the optimal design approach has a poor performance. Therefore,
in this section, we consider the uniformity of the design point in the experimental region when
the underlying model is unknown. For the convenience of discussing lattice point partition
designs on the regular simplex, we first define two types of point sets below.

Definition 2.1. For an arbitrary design point x € S97Y, let iy ,ia, -+, iy be a permutation

of 1,2,--+ ,q, then the permutation point set generated by x can be defined as

P(X) = {X7X17XQa te 7XP}7
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where X; = (Tj,, Tiy, -+, Tig) i =1,2,-++ ,p.
Definition 2.2. For any positive integers m and q, if there exists oy € Z7,i=1,2,--- ,q, such
that >"7_, a; = m, then the set of q-component m-order lattice points consisting of all possible
combination of the point (%, T2 ,%) can be defined as
q
a1 Qo ag\ T .
X{Qam}{(mvmaan;f) :ai€Z+721727"‘7Q7zlaim}- (8)
i—

Furthermore, the g-component m-order centroid point sets can be defined as

%{qvm} = U P(xi)a (9)

i=1
where x; = %23:1 e.(7),i=1,2,---,q, m < q, eq(j) is a g-dimensional column vector with
jth element being 1 and other elements being 0 and denote € {q} = ¥ {q, ¢}

However, when the underlying model is unknown, the experimenter is interested in the
dispersion of the design points in the experimental domain. The uniform design is proposed
for such a purpose. However, how to measure the degree of uniformity of the distribution of a
design is worth considering and studying. Therefore, scholars have proposed various deviation
criteria for measuring the uniformity of a design based on the consideration of different criteria.
We give two common deviations in the following, as seen in Fang and Wang [8], Borkowski and
Piepel [9].

Definition 2.3. Suppose D,, = {x1,X2, -+ , X} is a design with n support points in X. Then,

the distance between x = (1,22, - 7xq)T € X and D,, are defined as
2 _ ; 2 .

d*(x,D,) = in. {d®(x,x;)},

where d?(x,x;) = ||x — x;||* is Buclidean distance.
Furthermore, we have the definition MSED and MD for D,, as follows
1
MSED(D,,) = E (d*(x,D,)) = —— / d*(x, D,)dx, (10)
fX dX X
MD(D,,) = 1rn€a/%(dQ(x7 D). (11)

As mentioned above, the robustness of the model depends on the uniformity of the design.
In a mixture experiments, if the MSED and MD are both sufficiently small, the upper bound of
the model error can be reduced to achieve robustness. From the above definition of deviations,
it is obvious that these deviations have a common problem that is complicated to calculate.
Therefore, we use their numerical theoretical to estimate approximate true value in practical
problems.

Definition 2.4. Let x1,X2, -+ , Xy € X are N random mizture experimental points with u-
niform distribution, then the MSED and MD wvalues for the design D, can be approximated

by

1
msed(D,,) = i

N
2 _ 2
kz_:ld Ok, D) md(Dy) = max {d*(xy, Do)}, (12)
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respectively.

We can note that msed and md are respectively finite actual values of MSED and MD. When
the NT-net generated by the experimental domain contains a sufficient number of randomly
mixture experimental points, msed and md will theoretically converge to MSED and MD in
probability. However, the accuracy of the approximation does not satisfy the needs of many
situations. So, it often aims to obtain the analytic expressions of MSED and MD, or the ap-
proximate solutions with controlled errors. Ning et al. [13] constructed the analytic expressions
of DMs - deviation based on the regenerated Hilbert space over the regular simplex region. As
for the mixture experimental region with constraints, the analytic expressions of MSED and
MD are still not obtained. Therefore, we consider the use of lattice points partition to construct

the analytic expressions of MSED and MD on the constrained region.

83 Partitioning method of mixture experimental region

This section mainly presents partitioning methods for two specific types of mixture exper-
imental regions. Firstly, we introduce the partitioning method for convex polyhedral mixture
experimental regions proposed by Guan[27]. Then, we give another partitioning method for the

mixture experimental region with both upper and lower bound constraints.

3.1 Partitioning of the regular simplex 57!

Let X be i-th k-dimensional cell composed by the vertices of the regular experimental
region S971. For example, X is the i-th vertex of S971, le is the j-th edge of S9!, ..., and
ng is the p-th sub-simplex of S97!. Then, from the result in Guan [27], the p-th sub-simplex
of $9=1 can be given by

X;g_l = V{Xp1>xp27 T 7X:Dq} )
where X1, Xp2,- -+, Xpq be the ¢ vertices of g1,

Moreover, we have the sub-simplex of S9~! without common interior points by the parti-
tioning of the regular experimental region as follows.

(i) under the lattice point sets (8), S7~! can be partitioned into m?~! sub-simplex;

(ii) under the central point sets (9), S9~! can be partitioned into q! sub-simplex.

Taking three-component simplex as example, using the central point set ¢ {3}, the S3~!
can be partitioned into 6 sub-simplex, as shown in Fig.1(a), and can be partitioned into 16
sub-simplex by using lattice point set Z {3, 4}, as shown in Fig.1(b).

3.2 Partitioning of the SSCs

For the mixture experimental region (3) with SSCs, denotes as

q
X[a,b]:{xz(xlv‘” 7xq)T0§a1§xz§bz§1aZ:11 7Qazxi:1}v (13)
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Figure 1. (a) Partitioning of the regular simplex S9~! under {3}, (b) Partitioning of the
regular simplex S9=1 under £ {3, 4}.

where a = (a1, a2, - 7aq)T,b = (b1,ba, - ,bq)T are the lower and upper bound constraint
vectors, respectively.

Now in order to construct the partitioning of the SSCs, we first note that a design point

X = (21,29, ,74)T € Xap) € 5971 can be mapped to an experimental region with only
upper bound constraints by a linear transformation
Li —a; .
Zi :7a22172a"' » 4,
‘T 1-aTy, a

where 1, is g-dimensional column vector with all elements being 1. So, here we mainly consider
the experimental region with only the upper bound constraints and denote it as Xy, = Xjo, b)-

Without loss of generality, let

m; .
bi: 777’:1727"' y 4,
m
q
where my, mg, -+, my € Z", and satisfies Y m; > m. ¢ denotes the greatest common divisor
i=1
of mi,ma, -+, Mg, M — M1, M — Mg, , M — My.

Now, we give the method of the partitioning of A}, as follows.
Step 1. Let 09 = =, the upper bound constraints can be written as (k; — 1)dg = b;,i =

1,2,---,q, where k;,1 =1,2,--- | q are positive integers.
Step 2. Construct a matrix R’Xb (60) = (R1,Ra,--- ,Rq_1), where Ry = d1 ®@ Lpypyok, > B2
=14, @d2 @ Lighyeky_1> > Rge1 = Liyhgeky_n ® dg—1, ® is the Kronecker product, df =

(0,080,200, , (ki —1)do),i=1,2,...,q — 1.

Step 3. Let h=1x — Rhy, (J0) 1g—1 = (b1, ha, -+ ,hg)" , where K = kiky - kq_1.

Step 4. Construct a matrix Ry, (60) = (ex(i1),ex(i2), -+ ,ex(ir)) (R’Xb (0) ,h), where
{i1,42,--- ,i,} is a index set and satisfy 0 < h;; < b,.

Step 5. Take each row of elements of the matrix Ry, (d9) to obtain a complete covered
lattice point set Zx, (do).

Now, from the method above, the region A}, can be partitioned into several sub-simplexes
without common interior points. For example, Fig.2 shows that the experimental region A},

133)T

with upper bound-constrained b = (5, %,4)  for three-component mixture system can be

partitioned into 10 sub-simplexes.
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Figure 2. Partitioning of the three-component mixture system with upper bound-constrained
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84 Uniformity measures for the lattice point partition designs in the
mixture region

Based on the partitioning method of the mixture region presented in Section 3, we can
obtain several sub-simplexes without common interior points. This section will construct the
lattice point partitioning designs for the mixture experiments based on these sub-simplexes and
provide the analytic expressions for MSED and MD under the lattice point partitioning designs.
Now in order to construct the design we need, we first present the definition of the congruence

of the two sub-simplexes.

Definition 4.1. Let X{Fl = V{x11,X12, - ,X14} and XQ‘FI = V{x21,X22, - , X4} denote
two sub-simplexes. The simplex qu_l and X2q_1 are called congruent if for any design points
X15,X1; € X8 and xq;, %05 € X3 satisfies

d? (x14,%1;) = d* (X2i,%25), 1 <i < j < gq.

From Definition 4.1, we can find that the corresponding edge length of two sub-simplexes
are equal and both of them can be obtained by the point transformation on S9=!. That is,
if we assume that the matrix H; = (x;1,X;2," - ,xiq) ,4 = 1,2 and two design points s; =
Hyy € qu_l, so1 = Hyiyo € qu_l, then there are two corresponding points sy = Hoy € ng_l,
so2 = Hoyo € X7, respectively, and satisfy

@ (s1,501) = (v = y0) " HY Hi (y = yo)"
= (y—v0)" Hy Hz(y —yo
= d* (sy,802),
where y and y( are any two points of the regular simplex S?-!. It shows that the distance
between two points corresponding to two congruent simplexes is equal, and further, the simplex

X971 ig called a standard sub-simplex if the lengths of the edges of the sub-simplexes are equal.

The theorem below shows the distance between any two points of the sub-simplex X971,
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Theorem 4.1. Suppose X97' = V {x1,X2, -+ , X4} is a sub-simplex of ST™! and let H =

(x1,X2, =+ ,Xq) is a matriz defined in RY*%, then for any one point to € X9~ "
2
E (d*(x,t0)) = ———1TMy1, — “tTH1, + tTto, (14)
( ) qlg+1) 977 g0
d*(x,t0) = d?(x,tg), 15
max d*(x, to) max (x; to) (15)
where X1,Xa, -+ , X, are q vertices of X971, My = (1, + J,)©HY H, ® is the Hadamard product,
and Dy = {x1,X2, -+ ,Xq} 15 a design consisting of q vertices.

Proof. Let tTH = (c1,ca,- - ,¢q). For any design point x € X797, there exists a point y =

(Y1,y2, + ,yg)T € 5971 and satisfies x = Hy, then

/ d?(x, to)dx
Xa—1

- / (x — o) (x — to)dx = / (Hy — to) " (Hy — to)|H|dy
Xa—1 Sa—1

q q
2
1yid}’+229ij/ Yiyidy *2;@' /SquiderCo>

(il S i<j sa-
1 .
iy <>13 (diag (911, 922, - + Gag) + G] 1y
0

2 T
——t  H1
T(g+2 L(g+1)"° ﬁco)
2
=|H|| ——1"My1, - ——tTH1
(g ¥k~ e ).
where ¢y = tFOT(;), ['(-) is Gamma function, G = HYH, g11, g22, -, gqq are the diagonal

elements of matrix G.

Since

|H|
dx = / H|ldy = —,
/qul Sa-1 sl I'(q)
and from (10), we know that

E (d*(x,t0)) = qulldx /qul d?(x,t0)dx = ml;FMolq - gtOTqu + tg to.
Because the maximum of the distances between a single design point D; = {x} of the interior
of the sub-simplex X9~ ! and a point t, must be obtained at the vertices of the sub-simplex,
then x € D, so that equation (14) and (15) holds. O

Theorem 4.1 provide the distance between any two points of the sub-simplex X9~1. The
following theorem can be established to obtain the analytic expressions of the MSED and MD
in a standard sub-simplex.

Theorem 4.2. Let X97' = V{x1,x2, -+ ,X,} is a standard sub-simplex of S9~1, D, =

{x1,X2, -+ , X4} is a design consisting of q vertices of the X9~ and H = (x1,Xa," -+ ,X4), then

2
MSED (D,) = 1T M1, — gxlTHFlTllq +x7x1, (16)

-
q(q+1)
MD (D,) = d? (xq,%1) - (17)
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).

Q=

where My = (I, +3,) © (FuHTHFR), Fiy = (f,£2,+£,) ond £F = (1,34,
sz:(O% >,~--,qu:(0,07~--0,%),x0:%H1q.
Proof. Denote
HE}; = (Xjiy, Xjigo X3, ), J = 1,2, ,qi =1,2,-+ (¢ — 1),
where Fﬁ = (fir,- - f,_ f 6, B ), 41,42, ,ig—1 is @ permutation of 2,3,--- ,q.
From the result in Section 3.1, under the central point sets €’{q}, the simplex X?~! can be

partitioned into ¢! sub-simplex with no common interior point, that is

Q=

)

w\»—-

q (¢—1)!
:U U V{xm,xﬂwu',xjiq}.
j=1 i=1
Let Xfi_l = V{xjil,xm,-n ,xjiq} is the jith sub-simplex of X?~'. Since X97! is a

standard sub-simplex, then each of the sub-simplex X’ ;]Z-_l are congruent.
It shows that d*(x,D,) = d*(x,x;) when x € X;’i_l. Furthermore, for any one point
y € 8971,
d*(HF}}y,x;) = d*(HFy,xx),
where x;,x, € Dy, 5,k =1,2,--- ,q,j # k.
From Theorem 4.1, results in (14) and (15), then

/ d*(x,D,)dx
xa-1

q (¢—1)!

:Z Z/ d?(x,x;)dx
= =1 S
q (g—1)!

= Z /S‘I L 7.y7XJ)|HFJ’Iz‘|dy

=1

g (¢=1)! )
1 2 X X;
- HFj; 71TM‘1‘1 —_ 2 xTHFY"1 7
j; ; _ {F(q+2) e O R ()

1 2 xTx;
= |H‘ {(q—f—l)'quMlllq - aX?HFlTllq + (11)} 5
where Mj; = diag(pji,1,pji,2, -+ > Pjisg) + Pjir» Pji = Fjs HTHFﬂ, pjitsl =1,2,--,qis the Ith

element on the diagonal of P,
H
/ dx = 4] .
Xa—1 (q — 1)'

1 2
MSED (D,) = —— 1 M1, — “xTHFL1, + xTxy,
(Dyg) g 1) ¢ 1144 qx1 111q 1X1

Since

Then, we have

and

MD (D,) = max d*(x,D,) = max d*(x,x;) = d*(x0,X1).
x€Sa-1 xexi !
O

Corollary 4.1. Suppose X is a mixture region that can be partitioned by a lattice point set
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Ly (80) into N sub-simplex with no common interior points, that is

N N

_ qg—1 _

X—UXi _UV{Xi17Xi27"'7Xiq}~
i=1 i=1

Let Dyg = {xi1, X2, 7xiq} be a vertex design on the ith sub-simplex Xiqfl, then

MSED (Zx (60)) = MSED (Dy,), MD (D;,) = d*(x11,%10),

q
U}h€7’€X10 = % lej; Xij ng(éo),i: 172,-“ ,]\/v7 j: 1,2,~-~ ,q.
7j=1

Proof. Denote MSED (D,,) ,i = 1,2,--- , N be the MSED for the design D;,. Then

1
MSED (Zx (80)) = / d?(x, Ly (89))dx
fX dx X
k -1k
_ [ZT (/X dxﬂ (; /X‘H dx) MSED (D)
= MSED (Dyy) -
From Theorems 4.1 and 4.2, result MD can be obtained similarly. O

85 Special cases

In this section, we present two examples that indicate that our method of lattice point
partition design is effective for obtaining MSED and MD in an experiment with mixture while
consider the D-optimality of different lattice point partitioning designs under the same unifor-
mity.

Example 1. Consider three components x1, T2, and x3 are needed for generating some product

in an experiment with mizture, and they have constraints as follows

1 3 3
0§x1§§,0§x2§1and0§m3§1.

Now, the mixture experimental region with above constraints can be denoted by Ay, b =
(%, %, %)T. Following, we divide the experimental domain X}, with an upper bound constrain
by using the lattice point set £y, (dp) into 10 standard sub-simplexes with no common interior
point, and obtain 10 vertices, as shown in Fig 2. Then, we construct a lattice point partition
design D; with these 10 design points, as shown in Table 1. Moreover, we divide the region
Xy into 30 standard sub-simplexes, as shown in Fig 3, and we obtain lattice point partition
design D, with twenty design points, as shown in Table 1. Furthermore, from the results of
above Theorem 4.2 and Corollary 4.1, the values of MSED and MD can be obtained, as shown
in Table 1.
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Figure 3. Lattice point partition design for three-component with twenty vertex points.

Table 1. The design points and values of MSED and MD for ¢ = 3.

Design Dy Do
NO. =z x2 x3 NO. =z o 3
I R
2 N 2 %5 53
SRR R ERN U
Points 4 i 30 4 2 13
T T O N
R R
T3 0§ 17 5 53
8 0§ 1 18 5 5 1
9 0 3 3 9 %5 3 &
0 o0 3w f oL
MSED 0.08539 0.04775
MD 0.53033 0.53033

Note: the design D5 contains 20 points, here we only provide the points 11 to 20, and the
points 1 to 10 are the same as design D;.

Note that the uniformity of design Dy is optimal under the MSED criterion, but both designs
have the same MD value, and the number of design points of Dy are twice as D;. Therefore,
in the following example, we will consider the case where the MD is the same and use the
D-optimality of the design to determine which lattice point partition design is optimum.

Example 2. Consider the D-optimality of these lattice point partition designs D;,i = 1,2,

where the points of D; as shown in Table 1.

As discussed in Section 1, the optimal design depends on an underlying model. So, for
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3-component mixture experiments, we first suppose the response y at x can be written as

3
E(y)=> Bwi+ > Byziz;. (18)
i=1

1<i<j<3
Then, from the results of Section 2.2, a design D, is D-optimal if it minimizes the determi-
nant of the matrix M ~! (£) for the model (18). The design points of two design are shown in
Table 1, it is easy to calculate that the determinant of information matrix for D;, and shown
in Table 2. Then, under the MD and the results of Table 2, D; is an optimal design.

Table 2. The values of det (M(D;)).

Designs D1 Do
det(M (D)) 6.427 x 10712 1.163 x 10712

86 Discussion

Mixture experimental design and uniform design are two essential experimental design meth-
ods. The response in the mixture experiment design is commonly related to factors by an un-
derlying model of the parameters. Therefore, the computation of optimal designs aims to obtain
optimum combinations proportions of components with the minimum number of experiments.
Furthermore, maximizing the information gathered from the complete set of experiments and
estimating the parameters effectively. However, the optimal design poorly performs when the
underlying model is unknown and brings a significant bias. In contrast, the uniform design is
an experimental method that only considers the uniform distribution of experimental points

within the experimental region, which is not dependent on the model and is more robust.

The MSED and MD are two desirable criteria for uniform designs. Obtaining the analytical
expressions of two criteria is a challenging task, especially when the experiments relate to more
components. In this paper, we first present the partition method for two different mixture
regions and obtain a series of sub-simplex with no common interior points. Furthermore, the
constructed lattice point partition design and standard sub-simplex are used to construct the
analytical expressions of MSED and MD. Finally, it is shown that the MSED and MD obtained
from the lattice point partition design are effective to determine the uniformity measure of the
design points in the mixture region. In addition, it is feasible to use the D-optimal to choose
an optimal design when the deviations are the same.

In further studies, we shall plan to discuss the analytical expressions of the MSED and
MD criteria for the irregular experimental regions, or also construct an efficient algorithm for
approximation. Moreover, it is also attractive for us to construct a compound design by using
the connection between the uniformity and optimality criteria. We hope to report these results
in our paper soon.
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