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Lattice point partition designs for experiments with

mixture
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Abstract. The upper bound on the model error will be decreased when the mean square error

and the maximum distance deviation are sufficiently small in the uniform designs for mixture

experiments and the design is more robust for the model. However, the analytical expressions

of MSED and MD are currently only available in the hypercube, but both types of deviations

in other studies are just approximations. Although it can obtain good approximations in the

low-dimensional case, the calculation will be more complicated for an experiment with more

variables. Therefore, in this paper, an algorithm based on lattice point partitioning design is

proposed to obtain the analytical expression of the MSED and MD in the region covered by the

lattice points. Furthermore, the design’s optimality is considered and illustrated by examples

under the same uniformity.

§1 Introduction

The experimenter is mainly interested in obtaining a quality product or an effective experi-

mental scheme in engineering, food, agriculture, and medicine. However, for practical consider-

ations, such as time constraints or resources, the experimenter needs to consider how to choose

an excellent experimental design with a minimum number of experiments to obtain complete

information about the product and how to choose experimental points on the domain when

the underlying model is unknown. Therefore, the researcher proposed various practical design

methods for this purpose, such as orthogonal experimental design, uniform experimental design,

simplex-lattice design, and simplex-centroid design in mixture experimental (see Ryan[1], Fang

et al.[2], Scheffé[3], and Silvey[4]). The main interest in this paper is the design for experiments

with the mixture and the uniform design.
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For a mixture experiment, the product’s response is only related to the proportion of each

component in the mixture and not to its total amount. For example, in considering photosta-

bility studies of photographic film coating materials, Cornell [5] found that stability was only

related to the relative proportions of two coupling agents, two coupling agent solvents, and

three stabilizers. The response in mixture experiment designs is commonly associated with

factors by an underlying linear model for parameters. Therefore, the computation of optimal

designs aims to choose the combination of experiments that are combinations of proportions

of components to maximize the information gathered from the complete set of experiments.

The use of optimality criteria is a strategy grounded on the statistical theory where the main

goal is finding a design with maximum information, i.e., guaranteeing the minimization of the

confidence region of the parameters. The scholars proposed various optimality criteria for these

purpose considerations, such as D-, A-, E- and R-optimality criteria, see Atkinson et al. [6]

and Dette [7]. Moreover, under these optimality criteria, an optimal design is the best design

if the underlying model is known. Optimal designs have many attractive properties. However,

as pointed out by Fang and Wang [8], Borkowski and Piepel [9], the optimal design has the

following two drawbacks: (i) The optimal design distributes too many experimental points on

or near the boundary of the experimental region, especially when the dimensionality of factors

is high; (ii) The optimal design depends on the models’ assumptions, and it is not a robust

design. When the underlying model is unknown, optimal designs may have a poor performance.

As for the uniform design method (Fang and Wang [8]; Fang [10]; Wang and Fang [11]) in

analyzing the experimental data, it is not based on maximizing the experiment information and

is also not depends on the underlying model but tries to spread the design points uniformly

over the experimental region and does not allow repetition. The uniform design is robust to the

model specification, which is also an optimal space-filling criterion. Many authors have studied

uniform designs for mixture experiments and proposed some methods to measure the uniformity

of dispersion of experimental points in the mixture experimental region. Fang and Wang[8] pro-

posed the mean squared error deviation (MSED) and root mean squared error (RMSD) criteria.

Borkowski and Piepel [9] presented the average distance (AD) and maximum distance devia-

tion (MD) criteria. Moreover, as Fang et al. [2] mentioned, the star discrepancy is a popularly

used measure of uniformity in quasi-Monte Carlo methods. The lower the star discrepancy, the

better the uniformity of the set of points under consideration will be. From Koksma-Hlawka in-

equality, the star deviation controls the upper bound of the model’s error. Hence, for a mixture

uniform experiment design, it is sufficient that the values of MSED and MD be small enough

to result in fewer upper bounds on the model deviations and more robustness. However, it is

noted that the MSED and MD values were obtained using approximate formulas in the available

literature. Theoretically, both approximate values converge to the actual value in probability.

Nevertheless, we note that the approximate values depend on the number of random mixture

points in NT-net and also on the structure of the mixture region. Therefore, it is difficult to

obtain analytical expressions of these deviations mentioned above for an irregular experimental

region or more components. Ning et al. [13] proposed DM2-deviations and obtained analytical
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expression of DM2-deviations on regular simplex by using the regenerative kernel Hilbert space

tools. To calculate the deviation by constructing an efficient algorithm, Chuang and Hung [14]

constructed a switching algorithm. Ning et al. [15] presented a new method for producing a

uniform design of mixture experiments based on the number-theoretic LBG algorithm. Chen et

al.[16] presented a discrete particle swarm optimization algorithm. Liu and Liu [17] proposed

a new algorithm using the central composite discrepancy(CCD) criterion to obtain a unifor-

m design for mixture experiments with constraints. However, the approximation’s accuracy

is insufficient to meet our requirements. Therefore, obtaining analytical expressions for both

deviations or approximate solutions with controlled errors is necessary.

The uniform design considers how to uniformly distribute the points in the experimental

region when the underlying model is unknown, and it is the design related to space-filling.

And there is various literature to investigate the approach for space-filling experimental design

when the underlying model is unknown, see Pronzato [18, 19]. The development of mixture

experimental design has also significantly contributed to the development of irregular region

filling experimental design. This paper mainly wants to obtain the analytical expressions for

the deviations by using the lattice point partition design when the model is unknown. However,

as the number of components of mixture experiments increases, the methods mentioned above

shall result in numerous computations or obtain an approximate value of the deviation. The

lattice point set is an essential tool for experiment design and has the following properties: (i)

The designs constructed by lattice point sets are uniformly dispersed in the experimental region;

(ii) Transformation or rotation does not change the self-similar structure of the lattice point

set; (iii) The deviations in sub-simplexes obtained by lattice point division are fixed, which is

favorable to the calculation of MSE. Much literature studied space-filling design by using lattice

point sets, such as Zhou and Xu [20] proved that the linear transformations of a good lattice

point set could improve its space-filling performance. He [21, 22] studied the design of interlaced

lattices with minimax distances and sliced space-filling. Li et al. [23] discussed the properties

of the mixture lattice point set and gave its application to both nonparametric modeling and

uniformity tests on a simplex experimental region. Therefore, we propose an approach to obtain

the analytic expressions of MSED and MD for a regular-simplex experimental region. For the

method, using a lattice point set, we first divide the experimental region to obtain several

standard congruent sub-simplexes without common interior points. Secondly, take all vertices

of the sub-simplexes as design points.

This paper mainly proposes a lattice point partition algorithm for the mixture region based

on the underlying model is unknown. Under the lattice point partition design, we obtained

the analytical expressions of the MSED and the MD in a standard sub-simplex. The rest of

the paper is organized as follows. In Section 2, the preliminaries and notations for the mixture

experiments and the uniform design are given. Section 3 introduces the partition method for a

standard mixture region. Based on the lattice point partition designs, the analytical expressions

of MD and MSED are obtained in Section 4. Section 5 shows that the MSED and MD are valid

by two examples and give the problems that can be studied further.
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§2 Preliminaries

2.1 Experimental region

For a mixture experiment with q components, x1, x2, · · · , xq are the proportions of each

component, which satisfy
∑q

i=1 xi = 1, xi ≥ 0, i = 1, 2 · · · , q, and construct a (q-1)-dimensional

regular simplex given by

Sq−1 =

{
x = (x1, x2, · · · , xq)

T : 0 ≤ xi ≤ 1, i = 1, 2 · · · , q,
q∑

i=1

xi = 1

}
. (1)

However, for the practical considerations, additional constraints exist on the mixture com-

ponents, and the typical restrictions include as follows.

(i) Single component constraints (SSCs)

0 ≤ ai ≤ xi ≤ bi ≤ 1, i = 1, 2, · · · , q, (2)

(ii) Multiple component constraints (MCCs)

lj ≤
q∑

i=1

Mjixi ≤ uj , j = 1, 2, · · · , Q,

where Q is numbers of MCCs.

Furthermore, if the experiments with additional constraints mentioned above, and then the

experimental region will be a sub-simplex of Sq−1, denotes as

X=

{
x = (x1, x2, · · · , xq)

T
:

q∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , q, C ′s

}
, (3)

where C ′s is a set of additional constraints, such as SSCs and MCCs.

2.2 Models and optimal designs

In a mixture experimental design, the response is usually related to the factors by the

underlying model. However, the optimal design aims to find the design with the maximum

amount of information and minimize the confidence region of the parameter, which usually needs

to assume that the form of the underlying model is known and obtain an optimal experimental

solution for a specific optimal criterion. Due to the restrictions of the experimental region

Sq−1, the general regression models cannot be directly applied to the mixture experiments.

Therefore, various mixture models have been proposed including mixture polynomial models,

Becker’s mixture models, and additive mixture models ([3, 4, 5, 6, 24, 25]). In this paper, we are

mainly interested in linear models, assuming that the response y at x is written as

y = θTf (x) + ε, (4)

where θ = (θ1, θ2, · · · , θs)T is a s-dimensional vector of unknown parameters, f(x) = (f1(x),

f2(x), · · · , fs(x))T is a given functional vector, ε is a random error with zero mean and variance

σ2.

The optimal design for model (4) is a probability distribution with finite supporting points
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xi ∈ Sq−1 , i = 1, 2, · · · , n, and can be given by

ξ =

(
x1 x2 · · · xn

ω1 ω2 · · · ωn

)
, (5)

where ωi, i = 1, 2, · · · , n is a weight for each design point, which are nonnegative and sum to 1,

and such that ξ(xi) = ωi, i = 1, 2, · · · , n.
In addition, we have the information matrix of design ξ for model (4) defined as

M (ξ) =

∫
Sq−1

f(x)fT(x)ξ(dx). (6)

From the definition of the information matrix, it follows that the information matrix does

not depend on the observations of the experiment. Moreover, an essential property of linear

models is that the information matrix does not depend on the values of the unknown parameters

either. It only depends on design ξ. According to Fedorov and Leonov [26], if the information

matrix is non-singular, then the least squares estimate θ̂ of the parameter θ is also uniquely

determined, and we have

Var(θ̂) ∝ M−1 (ξ) , (7)

where M−1 (ξ) is the inverse matrix of M (ξ).

The above equation (7) suggests addressing the following optimization problem, that is, to

find the optimal design.

ξ∗ = argmin
ξ∈Ξ

Φ
(
M−1(ξ)

)
,

where Φ is a scalar functional that is usually called an optimality criterion, Ξ be the set of all

competing designs.

The commonly optimality criteria, such as D-, A-, and R-optimality criteria, are based on

the above matrix M−1 (ξ). For model (4), we have

(i) a deign ξ∗ is said to be D-optimal if ξ∗ = argmin
ξ∈Ξ

det
(
M−1 (ξ)

)
,

(ii) a deign ξ∗ is said to be A-optimal if ξ∗ = argmin
ξ∈Ξ

tr(M−1(ξ)),

(iii) a deign ξ∗ is said to be R-optimal if ξ∗ = argmin
ξ∈Ξ

s∏
i=1

(
M−1(ξ)

)
ii
,

where det(·) and tr(·) denote the determinant and trace of matrix, respectively.

2.3 Lattice point sets and measures of uniformity

Optimal design is an efficient method to obtain the best design scheme under the optimality

criterion when the underlying model is known. For practical cases, however, the underlying

model is often unknown, and the optimal design approach has a poor performance. Therefore,

in this section, we consider the uniformity of the design point in the experimental region when

the underlying model is unknown. For the convenience of discussing lattice point partition

designs on the regular simplex, we first define two types of point sets below.

Definition 2.1. For an arbitrary design point x ∈ Sq−1, let i1 ,i2, · · · , iq be a permutation

of 1, 2, · · · , q, then the permutation point set generated by x can be defined as

P(x) = {x,x1,x2, · · · ,xp} ,
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where xi = (xi1 , xi2 , · · · , xiq)
T, i = 1, 2, · · · , p.

Definition 2.2. For any positive integers m and q, if there exists αi ∈ Z+, i = 1, 2, · · · , q, such
that

∑q
i=1 αi = m, then the set of q-component m-order lattice points consisting of all possible

combination of the point
(
α1

m , α2

m , · · · , αq

m

)
can be defined as

L {q,m} =

{(α1

m
,
α2

m
, · · · , αq

m

)T
: αi ∈ Z+, i = 1, 2, · · · , q,

q∑
i=1

αi = m

}
. (8)

Furthermore, the q-component m-order centroid point sets can be defined as

C {q,m} =
m∪
i=1

P(xi), (9)

where xi =
1
i

∑i
j=1 eq(j), i = 1, 2, · · · , q, m ≤ q , eq(j) is a q-dimensional column vector with

jth element being 1 and other elements being 0 and denote C {q} = C {q, q}.
However, when the underlying model is unknown, the experimenter is interested in the

dispersion of the design points in the experimental domain. The uniform design is proposed

for such a purpose. However, how to measure the degree of uniformity of the distribution of a

design is worth considering and studying. Therefore, scholars have proposed various deviation

criteria for measuring the uniformity of a design based on the consideration of different criteria.

We give two common deviations in the following, as seen in Fang and Wang [8], Borkowski and

Piepel [9].

Definition 2.3. Suppose Dn = {x1,x2, · · · ,xn} is a design with n support points in X . Then,

the distance between x = (x1, x2, · · · , xq)
T ∈ X and Dn are defined as

d2(x,Dn) = min
1≤i≤n

{
d2(x,xi)

}
,

where d2(x,xi) = ∥x− xi∥2 is Euclidean distance.

Furthermore, we have the definition MSED and MD for Dn as follows

MSED(Dn) = E
(
d2(x,Dn)

)
=

1∫
X dx

∫
X
d2(x,Dn)dx, (10)

MD(Dn) = max
x∈X

d2(x,Dn). (11)

As mentioned above, the robustness of the model depends on the uniformity of the design.

In a mixture experiments, if the MSED and MD are both sufficiently small, the upper bound of

the model error can be reduced to achieve robustness. From the above definition of deviations,

it is obvious that these deviations have a common problem that is complicated to calculate.

Therefore, we use their numerical theoretical to estimate approximate true value in practical

problems.

Definition 2.4. Let x1,x2, · · · ,xN ∈ X are N random mixture experimental points with u-

niform distribution, then the MSED and MD values for the design Dn can be approximated

by

msed(Dn) =
1

N

N∑
k=1

d2(xk,Dn), md(Dn) = max
1≤k≤N

{
d2(xk,Dn)

}
, (12)



LI jun-peng, et al. Lattice point partition designs for experiments with mixture 731

respectively.

We can note that msed and md are respectively finite actual values of MSED and MD. When

the NT-net generated by the experimental domain contains a sufficient number of randomly

mixture experimental points, msed and md will theoretically converge to MSED and MD in

probability. However, the accuracy of the approximation does not satisfy the needs of many

situations. So, it often aims to obtain the analytic expressions of MSED and MD, or the ap-

proximate solutions with controlled errors. Ning et al. [13] constructed the analytic expressions

of DM2 - deviation based on the regenerated Hilbert space over the regular simplex region. As

for the mixture experimental region with constraints, the analytic expressions of MSED and

MD are still not obtained. Therefore, we consider the use of lattice points partition to construct

the analytic expressions of MSED and MD on the constrained region.

§3 Partitioning method of mixture experimental region

This section mainly presents partitioning methods for two specific types of mixture exper-

imental regions. Firstly, we introduce the partitioning method for convex polyhedral mixture

experimental regions proposed by Guan[27]. Then, we give another partitioning method for the

mixture experimental region with both upper and lower bound constraints.

3.1 Partitioning of the regular simplex Sq−1

Let X k
i be i-th k-dimensional cell composed by the vertices of the regular experimental

region Sq−1. For example, X 0
i is the i-th vertex of Sq−1, X 1

j is the j-th edge of Sq−1, · · · , and
X q−1

p is the p-th sub-simplex of Sq−1. Then, from the result in Guan [27], the p-th sub-simplex

of Sq−1 can be given by

X q−1
p = V {xp1,xp2, · · · ,xpq} ,

where xp1,xp2, · · · ,xpq be the q vertices of X q−1
p .

Moreover, we have the sub-simplex of Sq−1 without common interior points by the parti-

tioning of the regular experimental region as follows.

(i) under the lattice point sets (8), Sq−1 can be partitioned into mq−1 sub-simplex;

(ii) under the central point sets (9), Sq−1 can be partitioned into q! sub-simplex.

Taking three-component simplex as example, using the central point set C {3}, the S3−1

can be partitioned into 6 sub-simplex, as shown in Fig.1(a), and can be partitioned into 16

sub-simplex by using lattice point set L {3, 4}, as shown in Fig.1(b).

3.2 Partitioning of the SSCs

For the mixture experimental region (3) with SSCs, denotes as

X[a,b] =

{
x = (x1, · · · , xq)

T : 0 ≤ ai ≤ xi ≤ bi ≤ 1, i = 1, · · · , q,
q∑

i=1

xi = 1

}
, (13)
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Figure 1. (a) Partitioning of the regular simplex Sq−1 under C {3}, (b) Partitioning of the
regular simplex Sq−1 under L {3, 4}.

where a = (a1, a2, · · · , aq)T ,b = (b1, b2, · · · , bq)T are the lower and upper bound constraint

vectors, respectively.

Now in order to construct the partitioning of the SSCs, we first note that a design point

x = (x1, x2, · · · , xq)
T ∈ X[a,b] ⊆ Sq−1 can be mapped to an experimental region with only

upper bound constraints by a linear transformation

zi =
xi − ai
1− aT1q

, i = 1, 2, · · · , q,

where 1q is q-dimensional column vector with all elements being 1. So, here we mainly consider

the experimental region with only the upper bound constraints and denote it as Xb = X[0q,b].

Without loss of generality, let

bi =
mi

m
, i = 1, 2, · · · , q,

where m1, m2, · · · , mq ∈ Z+, and satisfies
q∑

i=1

mi > m. c denotes the greatest common divisor

of m1,m2, · · · ,mq,m−m1,m−m2, · · · ,m−mq.

Now, we give the method of the partitioning of Xb as follows.

Step 1. Let δ0 = c
m , the upper bound constraints can be written as (ki − 1)δ0 = bi, i =

1, 2, · · · , q, where ki, i = 1, 2, · · · , q are positive integers.

Step 2. Construct a matrix R′
Xb

(δ0) = (R1, R2, · · · , Rq−1) , where R1 = d1⊗1k2k3···kq−1 , R2

= 1k1
⊗ d2 ⊗ 1k3k4···kq−1

, · · · , Rq−1 = 1k1k2···kq−2
⊗ dq−1, ⊗ is the Kronecker product, dT

i =

(0, δ0, 2δ0, · · · , (ki − 1)δ0) , i = 1, 2, . . . , q − 1.

Step 3. Let h = 1K −R′
Xb

(δ0)1q−1 = (h1, h2, · · · , hK)
T
, where K = k1k2 · · · kq−1.

Step 4. Construct a matrix RXb
(δ0) = (eK(i1), eK(i2), · · · , eK(ir))

(
R′

Xb
(δ0) ,h

)
, where

{i1, i2, · · · , ir} is a index set and satisfy 0 ≤ hij ≤ bq.

Step 5. Take each row of elements of the matrix RXb
(δ0) to obtain a complete covered

lattice point set LXb
(δ0).

Now, from the method above, the region Xb can be partitioned into several sub-simplexes

without common interior points. For example, Fig.2 shows that the experimental region Xb

with upper bound-constrained b =
(
1
2 ,

3
4 ,

3
4

)T
for three-component mixture system can be

partitioned into 10 sub-simplexes.
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Figure 2. Partitioning of the three-component mixture system with upper bound-constrained

b =
(
1
2 ,

3
4 ,

3
4

)T
.

§4 Uniformity measures for the lattice point partition designs in the

mixture region

Based on the partitioning method of the mixture region presented in Section 3, we can

obtain several sub-simplexes without common interior points. This section will construct the

lattice point partitioning designs for the mixture experiments based on these sub-simplexes and

provide the analytic expressions for MSED and MD under the lattice point partitioning designs.

Now in order to construct the design we need, we first present the definition of the congruence

of the two sub-simplexes.

Definition 4.1. Let X q−1
1 = V {x11,x12, · · · ,x1q} and X q−1

2 = V {x21,x22, · · · ,x2q} denote

two sub-simplexes. The simplex X q−1
1 and X q−1

2 are called congruent if for any design points

x1i,x1j ∈ X q−1
1 and x2i,x2j ∈ X q−1

2 satisfies

d2 (x1i,x1j) = d2 (x2i,x2j) , 1 ≤ i < j ≤ q.

From Definition 4.1, we can find that the corresponding edge length of two sub-simplexes

are equal and both of them can be obtained by the point transformation on Sq−1. That is,

if we assume that the matrix Hi = (xi1,xi2, · · · ,xiq) , i = 1, 2 and two design points s1 =

H1y ∈ X q−1
1 , s01 = H1y0 ∈ X q−1

1 , then there are two corresponding points s2 = H2y ∈ X q−1
2 ,

s02 = H2y0 ∈ X q−1
2 , respectively, and satisfy

d2 (s1, s01) = (y − y0)
T
HT

1 H1 (y − y0)
T

= (y − y0)
T
HT

2 H2 (y − y0)
T

= d2 (s2, s02) ,

where y and y0 are any two points of the regular simplex Sq−1. It shows that the distance

between two points corresponding to two congruent simplexes is equal, and further, the simplex

X q−1 is called a standard sub-simplex if the lengths of the edges of the sub-simplexes are equal.

The theorem below shows the distance between any two points of the sub-simplex X q−1.
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Theorem 4.1. Suppose X q−1 = V {x1,x2, · · · ,xq} is a sub-simplex of Sq−1 and let H =

(x1,x2, · · · ,xq) is a matrix defined in Rq×q, then for any one point t0 ∈ X q−1

E
(
d2(x, t0)

)
=

1

q (q + 1)
1T
q M01q −

2

q
tT0 H1q + tT0 t0, (14)

max
x∈X q−1

d2(x, t0) = max
x∈Dq

d2(x, t0), (15)

where x1,x2, · · · ,xq are q vertices of X q−1, M0 = (Iq + Jq)⊙HTH, ⊙ is the Hadamard product,

and Dq = {x1,x2, · · · ,xq} is a design consisting of q vertices.

Proof. Let tT0 H = (c1, c2, · · · , cq). For any design point x ∈ X q−1, there exists a point y =

(y1, y2, · · · , yq)T ∈ Sq−1 and satisfies x = Hy, then∫
X q−1

d2(x, t0)dx

=

∫
X q−1

(x− t0)
T(x− t0)dx =

∫
Sq−1

(Hy − t0)
T(Hy − t0)|H|dy

= |H|

 q∑
i=1

gii

∫
Sq−1

y2i dy + 2

q∑
i<j

gij

∫
Sq−1

yiyjdy −2

q∑
i=1

ci

∫
Sq−1

yidy + c0

)

= |H|
(

1

Γ(q + 2)
1T
q [diag (g11, g22, · · · , gqq) +G]1q −

2

Γ(q + 1)
tT0 H1q + c0

)
= |H|

(
1

Γ(q + 2)
1T
q M01q −

2

Γ(q + 1)
tT0 H1q + c0

)
,

where c0 =
tT0 t0
Γ(q) , Γ(·) is Gamma function, G = HTH, g11, g22, · · · , gqq are the diagonal

elements of matrix G.

Since ∫
X q−1

dx =

∫
Sq−1

|H|dy =
|H|
Γ(q)

,

and from (10), we know that

E
(
d2(x, t0)

)
=

1∫
X q−1 dx

∫
X q−1

d2(x, t0)dx =
1

q (q + 1)
1T
q M01q −

2

q
tT0 H1q + tT0 t0.

Because the maximum of the distances between a single design point D1 = {x} of the interior
of the sub-simplex X q−1 and a point t0 must be obtained at the vertices of the sub-simplex,

then x ∈ Dq, so that equation (14) and (15) holds.

Theorem 4.1 provide the distance between any two points of the sub-simplex X q−1. The

following theorem can be established to obtain the analytic expressions of the MSED and MD

in a standard sub-simplex.

Theorem 4.2. Let X q−1 = V {x1,x2, · · · ,xq} is a standard sub-simplex of Sq−1, Dq =

{x1,x2, · · · ,xq} is a design consisting of q vertices of the X q−1 and H = (x1,x2, · · · ,xq), then

MSED(Dq) =
1

q(q + 1)
1T
q M111q −

2

q
xT
1 HFT

111q + xT
1 x1, (16)

MD(Dq) = d2 (x0,x1) . (17)
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where M11 = (Iq + Jq) ⊙
(
F11H

THFT
11

)
, F11 = (f1, f2, · · · , fq) and fT1 =

(
1, 1

2 ,
1
3 , · · · ,

1
q

)
,

fT2 =
(
0, 1

2 ,
1
3 , · · · ,

1
q

)
, · · · , fTq =

(
0, 0, · · · 0, 1

q

)
, x0 = 1

qH1q.

Proof. Denote

HFT
ji =

(
xji1 ,xji2 , · · · ,xjiq

)
, j = 1, 2, · · · , q, i = 1, 2, · · · , (q − 1)!,

where FT
ji = (fi1, · · · , fij−1 , f1, fij+1 , · · · , fiq−1), i1, i2, · · · , iq−1 is a permutation of 2, 3, · · · , q.

From the result in Section 3.1, under the central point sets C {q}, the simplex X q−1 can be

partitioned into q! sub-simplex with no common interior point, that is

X q−1 =

q∪
j=1

(q−1)!∪
i=1

V
{
xji1 ,xji2 , · · · ,xjiq

}
.

Let X q−1
ji = V

{
xji1 ,xji2 , · · · ,xjiq

}
is the jith sub-simplex of X q−1. Since X q−1 is a

standard sub-simplex, then each of the sub-simplex X q−1
ji are congruent.

It shows that d2(x,Dq) = d2(x,xj) when x ∈ X q−1
ji . Furthermore, for any one point

y ∈ Sq−1,

d2(HFT
jiy,xj) = d2(HFT

kiy,xk),

where xj ,xk ∈ Dq, j, k = 1, 2, · · · , q, j ̸= k.

From Theorem 4.1, results in (14) and (15), then∫
X q−1

d2(x,Dq)dx

=

q∑
j=1

(q−1)!∑
i=1

∫
X q−1

ji

d2(x,xj)dx

=

q∑
j=1

(q−1)!∑
i=1

∫
Sq−1

d2(HFT
jiy,xj)|HFT

ji |dy

=

q∑
j=1

(q−1)!∑
i=1

|HFT
ji |
{

1

Γ(q + 2)
1T
q Mji1q −

2

Γ(q + 1)
xT
i HFT

ji1q +
xT
i xi

Γ(q)

}

= |H|
{

1

(q + 1)!
1T
q M111q −

2

q!
xT
1 HFT

111q +
xT
1 x1

(q − 1)!

}
,

where Mji = diag(pji,1, pji,2, · · · , pji,q) + Pji, Pji = FjiH
THFT

ji , pji,l, l = 1, 2, · · · , q is the lth

element on the diagonal of Pji.

Since ∫
X q−1

dx =
|H|

(q − 1)!
.

Then, we have

MSED (Dq) =
1

q(q + 1)
1T
q M111q −

2

q
xT
1 HFT

111q + xT
1 x1,

and

MD(Dq) = max
x∈Sq−1

d2 (x,Dq) = max
x∈X q−1

1

d2 (x,x1) = d2 (x0,x1) .

Corollary 4.1. Suppose X is a mixture region that can be partitioned by a lattice point set
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LX (δ0) into N sub-simplex with no common interior points, that is

X =
N∪
i=1

X q−1
i =

N∪
i=1

V {xi1,xi2, · · · ,xiq}.

Let Diq = {xi1,xi2, · · · ,xiq} be a vertex design on the ith sub-simplex X q−1
i , then

MSED(LX (δ0)) = MSED (D1q) , MD(Diq) = d2(x11,x10),

where x10 = 1
q

q∑
j=1

x1j, xij ∈ LX (δ0) , i = 1, 2, · · · , N, j = 1, 2, · · · , q.

Proof. Denote MSED (Diq) , i = 1, 2, · · · , N be the MSED for the design Diq. Then

MSED (LX (δ0)) =
1∫

X dx

∫
X
d2(x,LX (δ0))dx

=

[
k∑

i=1

(∫
X q−1

i

dx

)]−1( k∑
i=1

∫
X q−1

i

dx

)
MSED(D1q)

= MSED (D1q) .

From Theorems 4.1 and 4.2, result MD can be obtained similarly.

§5 Special cases

In this section, we present two examples that indicate that our method of lattice point

partition design is effective for obtaining MSED and MD in an experiment with mixture while

consider the D-optimality of different lattice point partitioning designs under the same unifor-

mity.

Example 1. Consider three components x1, x2, and x3 are needed for generating some product

in an experiment with mixture, and they have constraints as follows

0 ≤ x1 ≤ 1

2
, 0 ≤ x2 ≤ 3

4
and 0 ≤ x3 ≤ 3

4
.

Now, the mixture experimental region with above constraints can be denoted by Xb, b =(
1
2 ,

3
4 ,

3
4

)T
. Following, we divide the experimental domain Xb with an upper bound constrain

by using the lattice point set LXb
(δ0) into 10 standard sub-simplexes with no common interior

point, and obtain 10 vertices, as shown in Fig 2. Then, we construct a lattice point partition

design D1 with these 10 design points, as shown in Table 1. Moreover, we divide the region

Xb into 30 standard sub-simplexes, as shown in Fig 3, and we obtain lattice point partition

design D2 with twenty design points, as shown in Table 1. Furthermore, from the results of

above Theorem 4.2 and Corollary 4.1, the values of MSED and MD can be obtained, as shown

in Table 1.
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Figure 3. Lattice point partition design for three-component with twenty vertex points.

Table 1. The design points and values of MSED and MD for q = 3.

Design D1 D2

Points

NO. x1 x2 x3 NO. x1 x2 x3

1 1
2

1
2 0 11 1

3
7
12

1
12

2 1
2

1
4

1
4 12 5

12
5
12

1
6

3 1
2 0 1

2 13 1
3

1
3

1
3

4 1
4

3
4 0 14 5

12
1
6

5
12

5 1
4

1
2

1
4 15 1

3
1
12

7
12

6 1
4

1
4

1
2 16 1

6
2
3

1
6

7 1
4 0 3

4 17 1
12

7
12

1
3

8 0 3
4

1
4 18 1

6
5
12

5
12

9 0 1
2

1
2 19 1

12
1
3

7
12

10 0 1
4

3
4 20 1

6
1
6

2
3

MSED 0.08539 0.04775
MD 0.53033 0.53033

Note: the design D2 contains 20 points, here we only provide the points 11 to 20, and the
points 1 to 10 are the same as design D1.

Note that the uniformity of design D2 is optimal under the MSED criterion, but both designs

have the same MD value, and the number of design points of D2 are twice as D1. Therefore,

in the following example, we will consider the case where the MD is the same and use the

D-optimality of the design to determine which lattice point partition design is optimum.

Example 2. Consider the D-optimality of these lattice point partition designs Di, i = 1, 2,

where the points of Di as shown in Table 1.

As discussed in Section 1, the optimal design depends on an underlying model. So, for
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3-component mixture experiments, we first suppose the response y at x can be written as

E(y) =

3∑
i=1

βixi +
∑

1≤i<j≤3

βijxixj . (18)

Then, from the results of Section 2.2, a design Di is D-optimal if it minimizes the determi-

nant of the matrix M−1 (ξ) for the model (18). The design points of two design are shown in

Table 1, it is easy to calculate that the determinant of information matrix for Di, and shown

in Table 2. Then, under the MD and the results of Table 2, D1 is an optimal design.

Table 2. The values of det (M(Di)).

Designs D1 D2

det(M (Di)) 6.427× 10−12 1.163× 10−12

§6 Discussion

Mixture experimental design and uniform design are two essential experimental design meth-

ods. The response in the mixture experiment design is commonly related to factors by an un-

derlying model of the parameters. Therefore, the computation of optimal designs aims to obtain

optimum combinations proportions of components with the minimum number of experiments.

Furthermore, maximizing the information gathered from the complete set of experiments and

estimating the parameters effectively. However, the optimal design poorly performs when the

underlying model is unknown and brings a significant bias. In contrast, the uniform design is

an experimental method that only considers the uniform distribution of experimental points

within the experimental region, which is not dependent on the model and is more robust.

The MSED and MD are two desirable criteria for uniform designs. Obtaining the analytical

expressions of two criteria is a challenging task, especially when the experiments relate to more

components. In this paper, we first present the partition method for two different mixture

regions and obtain a series of sub-simplex with no common interior points. Furthermore, the

constructed lattice point partition design and standard sub-simplex are used to construct the

analytical expressions of MSED and MD. Finally, it is shown that the MSED and MD obtained

from the lattice point partition design are effective to determine the uniformity measure of the

design points in the mixture region. In addition, it is feasible to use the D-optimal to choose

an optimal design when the deviations are the same.

In further studies, we shall plan to discuss the analytical expressions of the MSED and

MD criteria for the irregular experimental regions, or also construct an efficient algorithm for

approximation. Moreover, it is also attractive for us to construct a compound design by using

the connection between the uniformity and optimality criteria. We hope to report these results

in our paper soon.



LI jun-peng, et al. Lattice point partition designs for experiments with mixture 739

Declarations
Conflict of interest The authors declare no conflict of interest.

References

[1] T P Ryan. Modern Experimental Design, John Wiley & Sons, Inc, Hoboken, 2007.

[2] K T Fang, M Q Liu, H Qin, et al. Theory and Application of Uniform Experimental Designs,

Singapore: Springer, 2018.
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