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Approximation by modified Durrmeyer type

Jakimovski-Leviatan operators

CAI Qing-bo! Sule Yiiksel Giingor?*
Bayram Cekim? Mehmet Ali Ozarslan?

Abstract. In the present paper, the modified Durrmeyer type Jakimovski-Leviatan operators
are presented and their approximation properties are examined. It has shown that the new
operators are the Gamma transform of the Jakimovski-Leviatan operators. The degree of ap-
proximation is given by the modulus of continuity. It has been stressed that, there are other
operators having the same error estimation with the operators, arising from the Szész-Durrmeyer
operators. Then the degree of global approximation is obtained in a special Lipschitz type func-
tion space. Further, a Voronovskaja type asymptotic formula and Griiss-Voronovskaja type
theorem are given. The approximation with these operators is visualized with the help of error

tables and graphical examples.

81 Introduction

In the approximation theory, one of the focus of research area is the improvement of the
degree of approximation to functions with sequences of positive linear operators. Therefore,
the new operator sequences are defined whose approximation properties are at least as good
as those described in the literature [1-4]. There are several application areas of positive linear
approximation processes such as computer aided geometric design [5] and 3D-wavelet filter
banks [6]. On the other hand there are many usage areas, for instance, recently, sequences of
linear auxiliary positive operators have been considered in the construction of approximating
operators to approximate fractional calculus operators. Remarkable numerical results have been
obtained in this direction of research [7-9]. In the last decades, special polynomials were used
in the construction of positive linear operators especially for the approximation to a function
defined on an unbounded interval. Jakimovski and Leviatan [10] defined as a generalized version
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of the Széasz operators that include Appell polynomials

eg ZPJQE <) £20,0€N,

where

u) = Zagug,ao #£0,

0=0
is an analytic function in the disk |u| < R (R > 1) with ¢(1) # 0 and

S

are the corresponding Appell polynomials generated by

Jets = ij(@uj
=0

It has become inevitable to examine the properties of this sequence of operators and to define
new operators with its help. Additionally, sequences of positive linear operators have been de-
fined through the utilisation of well-known special functions and their approximation properties
have been the focus of study by various mathematicians [11-25].
In the paper [26], Karaisa introduced Durrmeyer type modification of Jakimovski-Leviatan
operators for all real valued bounded and continuous functions ¢ on [0, 00) as follows
—ef °° 7 —0¢
Lg(¢5£):;(1 j (pgfflj / 14 t)etitt (t)dt—i—%ao(ﬂo)»fzo, (1)
0

du is the Beta function. They examined the rate of

u@
“Of (1 —|- u)9+j+2
convergence in a weighted space of continuous functions and also via continuity. Further, the

where f(o+1,j+1) =

authors gave Voronovskaja type theorem and a local approximation theorem for L, operators.

In this study, we introduce a generalization of the L, operators through the instrument of
Gamma transform. We examine the approximation properties of these operators. First, we give
the degree of approximation by the modulus of continuity. Then, we obtain the degree of global
approximation in a certain Lipschitz type function space. Further, we consider a Voronovskaja
type asymptotic formula and Griiss-Voronovskaja type theorem. Finally, we give error tables

and graphical examples.

§2 Construction of the L\ operators

Now, with the help of Durrmeyer type Jakimovski-Leviatan operators defined in (1), we
present the following positive linear operators for a > 0 and £ > 0

- o0 ’U,J_1¢(u>
(1+Q04)§191 Zﬂ Q+1 J) 0/(1+u)g+j+1

L (¢;€) = du | 53 (& 0) + aod (0)| (2)
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where

J J—i
Z g(j_i)_a)
(J —i)l\1 + oa

with €0 = (€ 4 7)(€ +27) - (€ + (i~ 1)a)s i = 0,1,2, . j € N and £0) = 1.
Here, ¢ € C,[0,00) = {¢p € C[0,00) : ¢(y) = O(y") asy — oo} where v > p and C[0,0)
denotes the space of all continuous functions defined on [0, o).

5 (@)

We will consider p;*“/ polynomials that satisfy the following conditions for the positivity of

linear L(Q ) operators:

1) 5@ (60)>0,5=0,1,2...,

(2) 9(&) = > apx€%ap # 0, is an analytic function in the disk |{] < R (R > 1) with 9(1) # 0.

0=0
Remark 1. (1) For 9(u) =1 the operators L, return to the Szdsz-beta-Durrmeyer operators

(@)

given in paper [27]. Thus, the operators Ly~ reduce to the Gamma variant of these

operators.

(2) For a — 07, the operators LE,O‘) reduce to the operators L, and furthermore for the choice
Y(u) = 1, we get the Szdsz-Durrmeyer operators [28].

Remark 2. The family of operators given by (2) can be written explicitly as follows

L (456) =— ] ettt oan

3
I =)0
L P OO pJ (eat) 70 w1l (u e—oat
- b 0) | at
F(g)/e 19(1 Q+1] 1—|—u9+]+1 U+79(1)a0¢()

oo .
-1

Ly o CREEPYRIR D SEIC
ﬁ(l)F(i);ﬁ(Q‘i‘Lj) 0/(1+u)9+j+1¢( )d Z (G —1)!

=0

x/e*(1+ga)tt§+j*i*1dt+ : / Sty Yagg (0) dt
J or (£) 4
ot (e ) e T
ﬁ@+1j ) 1+u9“+1 i=0 DY (14 ga)sti=
¢
r(a 06 (0)
(1+0a)s
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_ G+ )(E+20) (64 (—i—1)a) _ £90)

i =i I
one can get the desired result. Here I' and 8 are the well-known Gamma and Beta functions,

respectively.

Now we calculate the values of the first five moments and the central moments of the Lg,a)

operators.

Lemma 1. For each & > 0, we have
LY (1;6) =1,

L g6y = ¢ + LW

09(1)’
a0 oo 2 [9(1)+9(1) 97(1) + 20'(1)
L(Q)(yQ’g)‘@—f”(@—l*g—l[ 90 D“ ee—1 * 27"
T 30 0 (39'(1) + () T
L7 (%) <@—1><g—z>f*[@—n(e—z)*( Do ><>}f
(1

[ 2% 0a(30'(1)+TY(L) | 39"(1) +149'(1 )+519(1>} c

(e=1(e—2) (e—1)(e—2)9(1) (e—1)(e—2)¥(1)

9" (1) + 79" (1) + 59'(1)
olo— 1) e=23(0) ¢

54
(0— ( )( 3)
[ o 0% (49" (1) + 169 (1

> 2,

L (y%€) =

+ I

)
P 3)*@1)@2)@3)&(1)]
lla g 3a? (49" (1) + 169 (1))
3 T e-De-2-3901)
of 619” +4819’( ) + 450 (1 ))} e
<@—1><g—2><g 3)0(1)

+

N [ 60303 N 202 0% (49’ (1) + 169 (1))
(e=1)(—-2)(e—3) (e—1)(e—2)(e—3)V(1)
o (69" (1) + 489’ (1) + 450 (1))
(e—1)(e—2)(e—3)9(1)

49" (1) + 489" (1) 4+ 909 (1) + 170 (1)} ¢
(e—1)(e—2)(e—3)V (1)

9@ (1) + 169" (1) + 459" (1) + 179’ (1)
0(0e—1)(e—2)(e—3)9(1)

, 0>3,

1 (tv-9%56) = e+ (22 + 2 [P ] 20N

L) +20'(1)

ee—1 27"
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Proof. Using the facts that from [26]

o e, U)
LQ(y,E) - g + Q0(1)7

L0 = s |64 o (PR BTy
)
)

Lg(yg;f) W |: 363 o 62 <319/(1 (—li)’h?( )>
1

N 5(319”( )+ 149(1) + 59(1 )) n 9"(1) +T9"(1 )+519’(1)], S

—_

9(1) o(1)
1 49'(1) + 1619(1))
Lo (4 €) = 4¢d | 3¢3
9= e 1€ 0 (e
9.9 [(60(1) +48¢ (1) 4+ 459(1)
el o(1) )
49"(1) + 489" (1) + 909 (1) + 179(1)
e i )
(4) " " /
+19 D (1) + 169" (1) + 459" (1) + 170 (1)} >3,
v(1)
we get the desired results.
Further, from the linearity of the Léa) operators, we get
9 9
L) (y— 6:6) = L) (1) — 10 (13) =g+ 2 ¢~ W

o) T ()

and

L&) (- 9%1€) = LW, ©) — 2615 (3,€) + €215 (1,€)

1, o 2 (@) +91Q)]  20'(1)
RVETS +<9—1+9—1 [ ¥(1) } 9?9(1)>g
9"(1) + 20'(1)
I(e(e—1)

O
Remark 3. If we choose the determining function ¥ such that ¥'(1) = 0 (for example ¥(u) =

e (u—1 ), then the resulting sequence of operators preserves linear functions. In addition, if we
choose the determining function ¥ such that 9'(1) = 9"(1) = 0 (for ezample 9(u) = e~ =" ),
then the expression L(Qa) ((y — 5)2 ;5) determines the error as the same.

Lemma 2. Let o = o, — 0 as ¢ — 00 and lim po, =1 € R. Then, we have
0— 00

: v'(1)
(a) _ £ —
ghm IQLQ (y ga g) -

Jim oL{) ((y - )’ ;5) =&+ (2+1)¢,
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lim o?L{) ((y = €)*3€) = 3¢" + (61 + 24) €7
0—00
249" (1) + 1169 (1) + 659 (1) .,
a(1) > <

+ (312 + 200 +

)

Proof. From Lemma 1 and the linearity of the Lﬁ,“ operators, one can obtain above limits. [

Here, we recall some function spaces that will be used throughout the paper. Let By ¢2 [0, 00)
denote the space of all functions ¢ satisfying |p(&)| < My(1 + €2) and My is a nonnegative
real number depending only on ¢. By Ciye2[0,00), we denote the subspace of all continu-

ous functions belonging to B¢z [0,00) and finally, Eq 2 [0,00) is the space of all functions

¢ € Cyye2 [0,00) such that lime o0 28 < 00 which is endowed with the norm

1+¢2
[9(&)]

[l 4¢2 == sup :
1+¢£2 £€[0.00) 1+€2

In order to give the approximation properties, in the rest of the paper we let «, := (&) such

fag(f)
1+ &2

that «,(§) satisfies the condition 0 < < a, < C where (o) is a positive numerical

sequence and C' is a constant.

1

Lemma 3. For ¢(§) = T

the inequality

B(E) L) <11p;5> <4

holds for all & € (0,00) and o € N, where A € R. Moreover, for all ¢ € Ey¢> and & € (0, 00)

we have
|Ebe @) < Al

1+¢2
for a positive numerical sequence (a,) = (p(§)) satisfying the inequality 0 < gla—i(éi) <a,<C.
Proof. From Lemma 1, we have
1 1
BE)LE©) (w;§> - e [Lé%(f))(l;g) N Lg%(f))(yz;g)}
1 0 o (0§ 2 [¥()+9I(1)
] A L S e T K
97(1) + 219’(1)]
d(De(e—1)
<A
Since
WO |2 @ 6)] = 0(6) |1l (5|

1
< 1Bl 2 H(EV L) (w;f) < Aldllyyer

we can obtain HLE,%(@)(@ )H " < A|§ll; ¢ by taking supremum over { € (0,00) in the
1+

above expression. O
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83 Main results

In this section, the degree of approximation of the operators L(Qa) defined by (2) is computed.

Theorem 1. Let ¢ € Eiye2 and wy1(¢,0) be the modulus of continuity on the interval
[b,7+ 1] C [0,00), b> 0. Then

L) (g;) ¢Hc[b S OM (1497) 8+ 2w (%63)7
where
a1, 27 (YD) +90D))  299'(1)
6—5Q—{Q_1v o (L) + 1( o(0) o ()

1
2

0
+Q(Ql—1) (19” +W ﬂ

Mg is a number depending on ¢, 1 < p € N and w(¢,9) is the usual modulus of continuity
defined by the formula w,(¢,0) = sup |P(y) — d(§)].

ly—€|<d
£,y€(0,7]

Proof. Let £ € [b,v] and y <+ 1. We have

66) - 9(©) < (ol - ) < (14 25 ) a6 ®)

Now, let € € [b,7] and y > v + 1. In this case, since y — & > 1, we have
|6(y) — SE)] < Mp(2+ € +y%) < Mp(2+ 36 +2(y — €)%)
<6My (1+77) (y — €), (4)

where M), is a positive number depending on ¢. According to (3) and (4), we have

60) = 90 < 00, (1+2) (=0 + (14 25 ) w000

for all £ € [b,7] and y > 0. Thus,
Lo (6:6) - 0(6)] < 6My (1+97) LEAD (y - €)%6)

(o€ (p, _ 1.
+<HLQ (o sw)wm@m

By the Cauchy-Schwarz inequality and Lemma 1, we get

(6:€) - 6(6)|
(@) (1, _ 2. V2
< 6Mj (1++2) L{e®) ((y —¢)? ;f) + |1+ [Lg <(y§ i €>] wy11(9,0)
< 6My (1++7) [ ! "y2 + (1 +9%) + 92_71 <19/(139(+1;9(1))

)
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/ ’ " ’ 1/2
1 a, 2y (9 (1)+9(1) 2y 9 (1) 1 9" (1)+20' (1)
[ﬁ'ﬁ + % (1+7%) + Tj1 ( 9(1) ) - Fw 9 1 ee-D ( (1) )]

+ |1+ 5
x W’Y+1(¢’ 5)
< 60y (1492) 6, + 211 (6,552,
where
1 1 oa 2y (Y1) +9(1) 2y 9'(1)
§=08=|—+ L1+ -=
=t e e+ 2 (T o 90D
L1 (0"(1) +219/<1))r
ole—1) (1) ’
which completes the proof. O

Corollary 1. If the sequence (a,) converges to 0, then for all ¢ € Eq 2 [0,00),
lim L (6:6) = 6(€)
uniformly on each compact subset of (0,00).

Now, we give the Voronovskaja type theorem for L(Qa) operators.

Theorem 2. Let ¢ € Cy4¢2 [0,00) such that ¢',¢" € Ci4e2 [0,00) and lim pa, =1 € R. Then
0—00

we have the following equality
1
lim o (L) (6:6) = 6(9)) = ¢/ () T + 56" (©) [ + 1+ 2)¢]
uniformly for each compact subset of (0,00).

Proof. From the Taylor expansion of ¢, we may write
bW = 9O+ (O -6+ 3 O (y— & +e6 -7,

where € (y,£) — 0 as y — £. By applying operators L(Q%) to both sides on the above equation,

we get
L (636) — 6 (€) = () L§ (4~ €):6) + 56" () 15 ((y — €% ¢)
+ L) (6 (4,6 (y = €)” ;5) :

From Lemma 1, we have

L) (¢56) — ¢ (€) = ¢/ (€)

Lo 1 2 0 2 19/(1) —1—19(1) 219/(1)
+ 50 (5)[9—154‘(9—14'9—1[ 9(1) }_90(1»5
9"(1) + 29/ (1) . |
19(1)9@1)] + L) (e(y,ﬁ) (y—€)2,§)

and via Cauchy-Schwarz inequality, we write

lim oL (e(y,€) (y - €)°5€) < \/ lim L™ (¢ (4, ) ;§>\/ lim ¢2L5™ ((y - )*:¢).
0—00 0—00 0—00
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Since hm L( ae) (€2 (y,€);€) =0 and by Lemma 2, lim QQLE)%) ((y - 5)4;5) is finite, so

0—00
Qlin;OgL(g (e (y,&) (y—§)2;§) = 0. Finally, by taking the limit as o — oo, we obtain
Jim o (LE™) (6:6) = 6(8)) = ¢/ () 5iH + 30" (©) [+ (1 +2)¢].

O

In this part, we examine a global approximation result. In the paper [30], the following

Lipschitz type space has been considered

A
Lipys (V) = {¢eoB[o %) : [6(y) — 9(6)] < M—L— A/Q;f,yem,oo)},

(y+&+1)
where M is any positive number and 0 < A < 1. Here, Cp[0,00) denotes the space of all

bounded continuous functions defined on [0, c0).
Theorem 3. For any ¢ € mM(A), 1< p€eNand X e (0,1], we have

(@0 () (5. £) _ 1 0a 2y V() +9)| 2
e ai6) - ote)| <ar { L+ 2y 2 | PO

Y
i)

19’(1)'

J(1)

.
o(o—1)

for & € (0,00).
Proof. Let A = 1. Then, for ¢ € Lip,,(1) and £ € (0,0), we have
My —
| £ ©)(g36) = 6(6)| < LG (10 () - 6(6)]3) < L) (M 5)
(y+&+1)°
M

< LDy - ¢l:9).
(& +1)*
Applying Cauchy-Schwarz inequality and using Lemma 1, we get

01 010 < o (89 (-7 )"
M {Q € 1¢ (gag(ﬁ) . 2 {19’(1) +19(1)] B 219’(1))

(§2+1)1/2 1 o-1 9(1) 09(1)
19” +19’1
2y |9/(1) +9(1)
<M{ f1+ 10t o1 | o ’
L2[r) 1 19"(1)+19’(1)‘}1/2
o|9(1) ] ele—1) 9(1) '

Now assume that A € (0,1). Similarly, for ¢ € Lipy,(A) and € € (0, 00), we have

My — A
LE©(6:6) = 0(6)| < LEO ((0(y) - 9(6)]5€) < L+ ('y . ;5>
(y+&+1)2

<@2142)L(ag (|Z/ e )
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Taking p = % and q = #/\ and with the help of the Holder’s inequality, we get

Lo (9:6) - ¢(5>]§(§2+Ml)m( (©© 1y~ ¢]:6))

Finally, by Cauchy-Schwarz inequality, we obtain
M
L (6:6) = 6(6)| < ——— (L9 (5 -9)%:¢))

A
2

(€ +1)2
B M 1 00,(€) 2 [v@)+91)] 20'(1)
C(2+1)F {9—15 +§( o-1 o1 { I(1) } 919(1)>
91 +9'(1)) ?
el 1) }
1 9 2y [9'(1) +9(1)
SM{Q—1+Q—1%+Q—1 d(1) ‘
2 19'(1)' 1 9" +19f(1)‘ 3
o|v(1) ] ele—1) J(1) ’
which gives the desired result. O

Remark 4. In Theorems 1 and 3, if the sequence (a,) converges to 0, then the sequence
(LE,%)(qs; f)) converges uniformly to ¢ on each compact subset of (0,00) for all ¢ € E1y¢2 and

NS %M (N), respectively.

In 1935, Griiss [31] gave an inequality for integrable functions on a closed bounded interval.
After that, many mathematicians used this inequality as an auxiliary tool in their studies
[32-35].

In the following theorem, we gave the Griiss-Voronovskaja type theorem for the operators
L,

Theorem 4. Let f'(£),9'(£), f"(£),9"(£), (f9)'(§) and (£9)"(§) € Clye2 [0,00), then we have

lim o (L) (f9:€) = LG (£ L (9:9)) = (€2 + 2+ 1 €) F1(©)g/(©).

o—

Proof. Since we have the following equality,

(f9)"(&) = f"(©)g(&) + 2" (€)g'(€) + 9" () F(§)

by using Taylor expansion, we can write

o { L) (Fg:6) = LI (£:€) L (9:©) |

Ly ((y —¢)? ;5) ,
=0 LG (F:6) = F(©)9(6) = (f9) (O LE (v~ &:6) - 5 (F9)" (&)
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Ly ((y —¢)? ;5)
2

L ((y-€73¢)
2

—g (&) | L) (£, = F () = F (LY (y—&€) — J(3)

—LEO (19 [ L5 (6 = () =g () LY (y = &€) - g" ()

L (w-975¢)
2

+L (- €75€) £(©) 9 (©) +4" ()
+9 (€ L) (y = 6:6) (£(©) = 1L (1:9)) }-

By Theorem 1 for each & € (0, 00), LE)%) (f;€) = f (&) as 0 — oo and by Theorem 2 for each
f € Ci4¢2[0,00), we obtain

(£©—LE (£:9)

L (w-975¢)

o | LG (f:6) = F (&) = [ () L (y - &€) - 5 1€ | =0,
as o — 0o. Hence, using Lemma 2, we get the desired result. O

84 Examples

In this part, we present some graphical and numerical examples about the convergence of
the Léa) operators to the function ¢(¢) = 2¢e=3¢ for ¥(u) = 1.

Example 1. The convergence of the operators is given in Figure 1 for a = 0.001, o = 80,
o0 =120 and p = 160. The convergence improves for increasing values of o.

0

0 1 2 3 4

Figure 1. The convergenge of Lg,a)((b; €) to ¢(€) = 2te3 (blue) for Lé%'om)((b;{) (red),
LS (4:€) (black) and L%V (¢;€) (green).

Example 2. The convergence of the Léa) operators is given in Figure 2 for o = 100, o = 0.003

and o = 0.0003. The convergence improves for decreasing values of .
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0204

0.154

005

0

0 1 2 3 4

Figure 2. The convergenge of L(ga)((b;f) to ¢(&) = 26e~3¢ (blue) for Lg%'(?og)(@é“) (red) and
Li5y"*” (65€) (black).

Example 3. Let ¢(&) = 26e™3¢ as in the graphs. For 9(u) = €%, (a,(£)) = (ng), (ap) = <2>

and & € (0,1], we compute the error estimation of function ¢ by using the first modulus of
continuity for Lga) operators. Considering the values in the Table 1, it is seen that the error

bound of ¢ decreases for incresing o values.

Table 1. Error estimation of the function ¢(¢) = 26e3¢ for Léa) operators.

0 Error estimate by LE,D‘) (¢; &) operators
10° 0.008898281
107 0.002823813
108 0.000893965
10° 0.000282796
1010 0.000089438
10™ 0.000028283
1012 0.8944 x 10~°
103 0.2828 x 107°
10™ 0.894 x 10~ °
107 0.282 x 10~ °

1
Example 4. Let us consider the function ¢(€) = 26e73¢ and the sequences (a,(€)) = (Q{)

1
and (7,(8)) = (po(§)) = <2§> Using these positive numerical sequences, the (a,) sequences
o

1 1
obtained by the inequality mentioned in Lemma 3 are () and <2>, respectively. For the
o o
operators L(g%(g)) and LEJ‘-’(@) the determining function ¢ is choosen as ¥(u) = e* and for
the operators LE_,PQ(@) as ¥(u) = 1. For o = 10%, we compute the error estimations of function

@(&) by using the first modulus of continuity for the operators Léag(f)), Léﬁ(f)) and Lépg(f)) at
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certain points from the interval (0,1]. A comparison of the first and second columns of the Table
2 indicates that a better pointwise approzimation can be achieved through the choise of (a,(£)).
Similarly, a comparison of the second and third columns demonstrates that a better pointwise

approzimation can be obtained through the choise of an alternative determining function 9.

Table 2. Error estimation of the function ¢(¢) = 26e~3¢ for the operators LE)%(E))7 LE,'Y‘-’(E)) and

Lg,p‘-’(g)) at certain points.

¢ [0 -0@] | [L V@9 - @) | 2850 - 00
0.05 0.0003075306 0.0000936823 0.0000936809
0.10 0.0002290380 0.0000950433 0.0000950404
0.15 0.0001626253 0.0000796479 0.0000796434
0.20 0.0001067782 0.0000582325 0.0000582262
0.25 0.0000601814 0.0000354158 0.0000354076
0.30 0.0000216761 0.0000135005 0.0000134902
0.35 0.0000098297 0.0000063763 0.0000063636
0.40 0.0000351489 0.0000236383 0.0000236230
0.45 0.0000551632 0.0000381376 0.0000381194
0.50 0.0000706199 0.0000499231 0.0000499016
0.55 0.0000821840 0.0000591654 0.0000591402
0.60 0.0000904486 0.0000660988 0.0000660696
0.65 0.0000959411 0.0000709904 0.0000709566
0.70 0.0000991258 0.0000741116 0.0000740728
0.75 0.0001004095 0.0000757254 0.0000756810
0.80 0.0001001476 0.0000760792 0.0000760286
0.85 0.0000986485 0.0000753995 0.0000753420
0.90 0.0000961760 0.0000738879 0.0000738228
0.95 0.0000929575 0.0000717233 0.0000716498
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