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Approximate solution of an advanced reciprocal-radical

functional equation

Hemen Dutta1 B. V. Senthil Kumar2 S. Suresh3

Abstract. The significant role of square root mapping in probability, statistics, physics, archi-

tecture and engineering motivates us to emphasize on a new radical functional equation arising

from a square root and reciprocal square root mappings. The interesting attribute of this e-

quation is that it has both a square root mapping and a reciprocal square root mapping as

solutions. We establish that the hyperstabilities of this equation exist using a fixed point alter-

native theorem. It is also demonstrated with an example that the stability may fail in special

cases.

§1 Introduction

The role of functional equations has become imperative in many fields such as communica-

tion engineering, computer graphics, computer networks, digital image processing and decision

theory. Due to its numerous applications, solving stability problems of mathematical equa-

tions has a substantial influence in many branches of mathematics such as algebra, geometry,

probability, stochastic process, statistics and in other domains.

The stability problem pertinent to mathematical equations emerged through a famous query

during the Mathematical Colloquium held at the University of Wisconsin in [25]. An exceptional

partial response was provided in [11]. In due course, the stability result proved in [11] had a

great impact in the research field of analysis and induced many academicians to find the solution

of stability problems through different versions in [9, 15, 16].

The foremost result regarding hyperstability concerning homomorphims in groups was dis-

cussed in [2]. Moreover, a class of additive functional equations was considered to obtain its

hyperstability in [14]. There are several hyperstability results of different equations (see [1, 4,

5, 6, 10, 13, 20]).

The stabilities of a multidimensional square root functional equation of the following form

p

(
k∑

ℓ=1

aℓxℓ + 2
k−1∑
ℓ=1

k∑
m=ℓ+1

√
aℓamxℓxm

)
=

k∑
ℓ=1

√
aℓp(xℓ) (1)
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were obtained in [18], where aℓ ̸= 0, for ℓ = 1, 2, . . . , k. It was proved that the equation (1) has

a radical (square root) mapping p(x) =
√
x, x ∈ R+ as its solution.

The following radical functional equations were considered to obtain their Ulam stability

under 2-normed spaces in [12], that is,

f(
√
ax2 + by2) = af(x) + b(f(y)

and

f(
√

ax2 + by2) + f(
√

|ax2 − by2|) = a2f(x) + b2f(y)

where a, b > 0 are fixed real numbers and x, y ∈ R. A radical quartic functional equation of the

form

f
(

4
√
x4 + y4

)
= f(x) + f(y)

was also dealt in [8] to find its stability in the setting of 2-Banach spaces.

On the contrary, the reciprocal functional equation

r(µ+ ν) =
r(µ)r(ν)

r(µ) + r(ν)
(2)

was dealt to study its stability in [19]. It was proved that the people reciprocal mapping

r(µ) = 1
µ is a solution of equation (2). The stability results of (2) inspired to consider several

forms of reciprocal functional equations (see [7, 17, 21, 22, 23, 24]).

An equation f(x) = 0 is a reciprocal equation if the multiplicative inverse of any solution

of equation is also the solution of it. A reciprocal equation remains unchanged by replacing x

by 1
x . This concept stands behind us to frame a functional equation emerging from square root

and reciprocal square root functions in this study.

So far in the literature, stability problems were solved pertaining to many mixed type

functional equations. Such mixed type functional equations have linear, quadratic, cubic or

quartic mappings as solutions. Also, there are different radical functional equations with radical

functions only as solutions. But our intention is to focus on a new functional equation which

has radical and reciprocal-radical functions as solutions.

The interesting theory and applications of square root functional equation (1) and reciprocal

functional equation (2) influenced us to introduce a new equation of the following form

p(α+ β + 2
√
αβ) + p

(
αβ

α+ β + 2
√
αβ

)
= p(α) + p(β) +

p(α)p(β)

p(α) + p(β)
(3)

One can easily check that the functions p(α) =
√
α and p(α) = 1√

α
are solutions of equation

(3). We discuss some fundamental results pertinent to equation (3). We also establish the

hyperstabilities of (3) considering the domain as positive real numbers.

In the entire investigation of this paper, we will denote N as the set of all natural numbers,

N0 as the set of all nonnegative integers, Nm0 as the set of all integers greater than or equal

to m0, R as the set of all real numbers and R+ as the set of all positive real numbers. As the

solutions of equation (3) involve radicals and to avoid imaginary values for the functional value

of p, we restrict the domain to be the set of positive reals.
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§2 Prerequisites in hyperstability and fixed point theory

Here we refer to a few noteworthy ideas associated with fixed point theorem and hyper-

stability [3] which are important to obtain the major outcomes of this study. We utilize the

following important statements to obtain the stabilities of equation (3).

(S1) Assume that X is a non-empty set and Y is a complete normed space (Banach space).

Let p1, p2, . . . , pk : X −→ X and G1, G2, . . . , Gk : X −→ R+ be given mappings.

(S2) Assume that an operator µ : YX −→ YX satisfies the following inequality

∥µg(α)− µh(α)∥ ≤
k∑

j=1

Gj(α) ∥g (pj(α))− h (pj(α))∥ (4)

for all g, h ∈ YX , α ∈ X .

(S3) Let Λ : RX
+ −→ RX

+ be a mapping defined by

Λ∆(α) =
k∑

j=1

Gj(α)∆ (pj(α)) , ∆ ∈ RX
+ , α ∈ X . (5)

We apply the following theorem to prove the existence of unique fixed point operator µ :

YX −→ YX .

Theorem 2.1 Suppose the statements (S1)–(S3) hold. Let φ : X −→ R+ be a function and

χ : A −→ B be a mapping satisfying the following two inequalities

∥µφ(α)− φ(α)∥ ≤ χ(α), α ∈ X , (6)

χ⋆(α) =
∞∑

m=0

Λmχ(α) < ∞, α ∈ X . (7)

Then, there exists a unique fixed point ξ of µ such that

∥χ(α)− ξ(α)∥ ≤ χ⋆(α), α ∈ X . (8)

Moreover,

ξ(α) = lim
m→∞

µmχ(α) (9)

for all α ∈ X .

§3 Fundamental results pertinent to equation (3)

In the present section, we introduce a definition and prove a theorem which will be keys

to obtain our main results.

Definition 3.1 A single real-valued function p : R+ −→ R is called reciprocal-radical if it is a

solution of the following equation

p(4α) + p
(α
4

)
=

5

2
p(α) (10)

for all α ∈ R+.

In the following theorem, we prove that a reciprocal-radical function p : R+ −→ R also

satisfies a general functional equation with p as a single real-valued function.
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Theorem 3.1 Assume a single real-valued function p : R+ −→ R satisfies (3). Then it also

satisfies the following general functional equation

p (4rα) + p
( α

4r

)
=

4r + 1

2r
p(α) (11)

for all α ∈ R+, where r is a positive integer.

Proof. We will prove this theorem by strong induction method. For any positive integer r, let

A(r) be such that

A(r) : p (4rα) + p
( α

4r

)
=

4r + 1

2r
p(α). (12)

Let us first put β = α in (3) to get

p(4α) + p
(α
4

)
=

5

2
p(α) (13)

for all α ∈ R+, which is true for r = 1 in A(r). Now, assume A(r) holds for r = n − 1 and

r = n. That is, assume that

p
(
4n−1α

)
+ p

( α

4n−1

)
=

4n−1 + 1

2n−1
p(α) (14)

and

p (4nα) + p
( α

4n

)
=

4n + 1

2n
p(α) (15)

holds for all α ∈ R+. Now, plugging 4α into α in (15), we obtain

p(4n+1α) + p
( α

4n−1

)
=

4n + 1

2n
p(α) (16)

for all α ∈ R+. Besides, substituting α = α
4 in (15), we get

p(4n−1α) + p
( α

4n+1

)
=

4n + 1

2n
p
(α
4

)
(17)

for all α ∈ R+. Now, summing the equations (16) and (17) and then simplifying by using (13),

(14) and (15), we arrive at

p
(
4n+1α

)
+ p

( α

4n+1

)
=

4n+1 + 1

2n+1
p(α)

for all α ∈ R+. Therefore, A(r) is true for r = n+ 1. Hence, the proof is completed.

§4 Approximate solution of equation (3)

In the present section, we determine the existence of unique approximate solution of

(3) using hyperstability concept. Just for the purpose of convenience, we define Dp(α, β) :

R+ × R+ −→ R via

Dp(α, β) = p(α+ β + 2
√
αβ) + p

(
αβ

α+ β + 2
√
αβ

)
− p(α)− p(β)− p(α)p(β)

p(α) + p(β)

for all α, β ∈ R+.

Theorem 4.1 Let λ, a > 0 be fixed real numbers. Assume that there exists a positive integer

m0 with the condition mα ∈ R+ for α ∈ R+, m ∈ Nm0 . Assume a single real-valued function

p : R+ −→ R satisfies the following approximation

|Dp(α, β)| ≤ λ (αa + βa) (18)
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for all α, β ∈ R+. Then a unique single real-valued reciprocal-radical function P : R+ −→ R
exists and satisfies (3) with

|P (α)− p(α)| ≤ 2a+1λ

5 · 2a−1 − 4a − 1
αa (19)

for all α ∈ R⋆.

Proof. We begin the proof with letting β = α in (18) and then multiplying with 2
5 to obtain∣∣∣∣25p(4α) + 2

5
p
(α
4

)
− p(α)

∣∣∣∣ ≤ 4λ

5
αa (20)

for all α ∈ R+. Let us define

µg(α) =
2

5
g(4α) +

2

5
g
(α
4

)
, α ∈ R+, g ∈ RR+

, (21)

Υ(α) =
4λ

5
αa, α ∈ R+, (22)

with g as a single real-valued function. Now, let α, β ∈ R+. Suppose α = β. Then g(4α) = g(4β)

and g
(
α
4

)
= g

(
β
4

)
implies

2

5
g(4α) +

2

5
g
(α
4

)
=

2

5
g(4β) +

2

5
g

(
β

4

)
which produces µg(α) = µg(β). Hence, the function µg is well-defined. Clearly, the function Υ

is also well-defined. Using the notations defined in (21) and (22), the inequality (20) becomes

|µp(α)− p(α)| ≤ Υ(α), α ∈ R+. (23)

Let us define the following function as

Λσ(α) =
2

5
σ(4α) +

2

5
σ
(α
4

)
, σ ∈ RR+

+ , α ∈ R+. (24)

The above function is in the form of (S3) with k = 2 and p1(α) = 4α, p2(α) =
α
4 and G1(α) =

G2(α) =
2
5 for α ∈ R+. Also, for each g, h ∈ RR+

, α ∈ R+,

|µg(α)− µh(α)|

=

∣∣∣∣25g(4α) + 2

5
g
(α
4

)
− 2

5
h(4α)− 2

5
h
(α
4

)∣∣∣∣
≤ 2

5
|(g − h)(4α)|+ 2

5

∣∣∣(g − h)
(α
4

)∣∣∣
≤

2∑
j=1

Gj(α) |(g − h)pj(α)| . (25)

Since
2

5

(
4a + 1

2a

)
< 1, we have

Υ⋆(α) =
∞∑

m=0

ΛmΥ(α) =
∞∑

m=0

4λ

5

(
2

5

(
4a + 1

2a

))m

αa

=
2a+1λ

5 · 2a−1 − 4a − 1
αa. (26)

Using the result of Theorem 2.1, one can notice that a unique solution P : R+ −→ R of the

equation (3) exists and it is defined through

P (α) =
2

5
p(4α) +

2

5
p
(α
4

)
(27)
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such that the inequality (19) holds. Furthermore, we can define

P (α) = lim
m→∞

µmp(α). (28)

For the purpose of showing that P satisfies (3), we find

|µmDp(α, β)| ≤ λ

(
2

5

)m(
4a + 1

2a

)m

(αa + βa) (29)

for all α, β ∈ R+, and m ∈ N0. Suppose that m = 0, then (29) turns out to be (18). So, by

taking m ∈ N0 and supposing that (29) holds for m and α, β ∈ R+, then∣∣µm+1Dp(α, β)
∣∣ = ∣∣∣2

5
µmp

(
4α+ 4β + 8

√
αβ
)
+

2

5
µmp

(
α

4
+

β

4
+ 2

√
α

4

β

4

)

+
2

5
µmp

(
16αβ

4α+ 4β + 2
√
16αβ

)
+

2

5
µmp

 αβ
16

α
4 + β

4 + 2
√

α
4
β
4


− 2

5
µm (p(4α) + p(4β))− 2

5
µm

(
p
(α
4

)
+ p

(
β

4

))

− 2

5
µm

(
p(4α)p(β)

p(4α) + p(4β) + 2
√
p(4α)p(4β)

)
− 2

5
µm

 p(α4 )p(
β
4 )

p(α4 ) + p(β4 ) + 2
√
p(α4 )p(

β
4 )

∣∣∣
≤ λ

(
2

5

)m(
4a + 1

2a

)m [
2

5
(αa + βa) +

2

5

((α
4

)a
+

(
β

4

)a)]
≤ λ

(
2

5

)m+1(
4a + 1

2a

)m+1

(αa + βa) . (30)

By mathematical induction, the preceeding inequality (30) shows that (29) holds for all α, β ∈
R+. We observe that P satisfies (3) when n approaches ∞ in (29), which completes the

proof.

The following example proves that equation (3) is not stable for a special case.

Example 4.2 Let B = (0, 1] and let p : B −→ R be defined by p(α) =
√
α, α ∈ B. Then for

α, β ∈ B such that 4α+ 4β + 8
√
αβ, α

4 + β
4 + 2

√
α
4
β
4 , 16αβ,

αβ
16 ∈ B, then

|Dp(α, β)| ≤ αa + βa

with a > 0, but p does not satisfy (3).

We obtain the hyperstability of equation (3) by considering product of different powers of

norms. Since the proof of the following theorem is achieved through akin arguments as in

Theorem 4.1, we present only the statement.

Theorem 4.3 Let λ > 0 be a real number. Let a1, a2 ∈ R such that a = a1 + a2 > 0. Suppose

the function p : R+ −→ R satisfies the following inequality

|Dp(α, β)| ≤ λ (αa1βa2)

for all α, β ∈ R+. Then a unique reciprocal-radical function P : R+ −→ R exists and satisfies

equation (3) with

|P (α)− p(α)| ≤ 2aλ

5 · 2a−1 − 4a − 1
αa

for all α ∈ R+.



Hemen Dutta, et al. Approximate solution of an advanced reciprocal-radical functional... 707

§5 Conclusion

Different types of functional equations have been taken into consideration up to this point

in order to determine their hyperstability by using the direct and fixed point methods. This is

our foremost venture to study a functional equation emerging through square root function and

reciprocal-square root function. An inspiring aspect of equation (3) is that it has two different

solutions p(α) =
√
α and p(α) = 1√

α
. Hence, we call equation (3) as reciprocal-radical functional

equation. From the investigation carried out in this study, we find that the hyperstability of

equation (3) is valid in the setting of real numbers. An example is also presented to disprove

the stability of equation (3)
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