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New perspectives on Milne’s rule inequalities with their

computational analysis via quantum calculus
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Abstract. In this study, we propose a novel method for establishing Milne’s rule-type inequal-

ities within the context of quantum calculus applied to differentiable convex functions. Initially,

we obtain a quantum integral identity, which serves as the foundation for deriving several new

Milne’s rule inequalities tailored for quantum differentiable convex functions. These inequali-

ties are particularly relevant in Open-Newton’s Cotes formulas, facilitating the determination

of bounds for Milne’s rule in both classical and q-calculus domains. Additionally, we conduct

computational analysis on these inequalities for convex functions and present mathematical ex-

amples and graphical representation to demonstrate the validity of our newly established results

within the realm of q-calculus.

§1 Introduction

Quantum calculus, an area of mathematics, has gained prominence for its applications in

number theory, special functions, and quantum physics. Quantum calculus, often known as

q-calculus, is the study of calculus without limits. This field was pioneered by the renowned

mathematician Euler in the eighteenth century when he introduced the parameter q into New-

ton’s work on infinite series. Based on Euler’s foundational work, Jackson (1910) introduced

q-definite integrals and began a symmetric analysis, which greatly advanced the study of q-

calculus [23]. Researchers have made significant contributions to the comprehension of mathe-

matical phenomena by investigating q-calculus, a crucial subfield of quantum calculus, in order

to establish q-analogues of classical inequalities. These q-analogues provide new viewpoints and

ideas, broadening the mathematical landscape and enabling progress in domains such as opti-

misation and mathematical analysis. Quantum calculus integrates mathematics and physics.

Many physicists utilise quantum calculus because it has numerous applications in quantum
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group theory. Additional research is recommended for people interested in contemporary quan-

tum calculus trends [3, 12,17–19,24].

Agarwal reported the q-fractional derivative for the first time [1]. Al-Salam [2] defined q-

analogues of the Riemann–Liouville fractional integral operator. Tariboon and Ntouyas [32]

have recently disclosed an extensive investigation of q-integrals and q-derivatives in the do-

main [σ, ρ] ⊂ R. By developing quantum analogues of well-known mathematical findings,

including Ostrowski, Hölder, and Hermite-Hadamard inequality, as well as other integral in-

equalities employing classical convexity, their study has yielded notable advancements. Alp

et al. [4] have established a novel variant of Hermite-Hadamard inequality utilizing the left

quantum integral. By leveraging the right quantum integral, Bermudo et al. [7] unveiled a

new version of Hermite-Hadamard inequality. By involving Jensen-Mercer inequality, Budak

and Kara [8] have formulated an extended version of the Hermite-Jensen-Mercer inequality for

quantum integrals. Sitthiwirattham et al. [27] have obtained integral identity to find error

bounds for Maclaurin’s formulas in term of q-calculus. By combining q-derivatives/q-integrals

with h-derivatives/h-integrals, Shi et al. [31] have investigated a range of inequalities related to

q − h-integrals and revealed their connections to well-known results in different scientific and

engineering disciplines. On Milne-type inequality for co-ordinated convex functions, Shehzadi et

al. [30] have established a novel identity. Also, they presented some new inequalities for Milne-

type co-ordinated convex functions. Alqudah et al. [6] have proposed novel definitions of partial

q-operators. By leveraging these operators they derived new variants of Hermite–Hadamard in-

equalities on the co-ordinated convex functions. Vivas-Cortez et al. [34] proposed new quantum

Simpson’s and Newton’s type inequalities. Readers can find some recent interesting findings in

quantum calculus in [11,14,20,25,36,37].

Recently, numerous researchers have turned their focus to Milne’s type inequalities across

diverse fractional integrals such as Riemann–Liouville fractional integral [10], Conformable frac-

tional integral [13], Tempered fractional integrals [15, 16, 21, 22, 35]. Mateen et al. [26] have

provided the computational analysis of some Milne’s rule type inequalities in q-calculus and

obtained better bounds to some existing ones. In [29], authors identified a novel quantum in-

tegral identity. By involving the newly established integral identity, they proved several new

inequalities of Milne’s rule type for quantum differentiable convex functions.

Inspired by current research endeavours, we formulate Milne-type inequalities by exploiting

the convexity property of the function within the context of q-calculus. We prove that the

inequalities obtained in this study extend certain existing ones. It is important to highlight

that our main findings can be reduced to classical calculus simply by setting q → 1−. The study

is divided into five sections, with the introduction being the first, in which we introduce the

fundamentals of quantum calculus and Milne-type inequalities along with recent advancements

in the field. Section 2 presents the necessary preliminaries of quantum calculus. In Section

3, we outline the main results of our study, detailing the newly derived inequalities. Section

4 provides numerical examples and graphical representations to validate the newly established

inequalities. Finally, Section 5 concludes with a summary of our findings and discusses potential

directions for future research.
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§2 Preliminaries of q-Calculus

In the following section, we begin with examining the definitions and properties of q-

derivatives and q-integrals. In 2013, Tariboon and Ntouyas [32] introduced the qσ-derivative

and integral along with a comprehensive exploration of their properties. We now recall the

following definitions from their seminal work.

Definition 2.1 (See [32] ). Let F : [σ, ρ] → R be a continuous function. Then the qσ-derivative

of F at κ ∈ (σ, ρ] is outlined by

σDqF(κ) =
F(κ)− F(σ + q(κ − σ))

(1− q)(κ − σ)
. (1)

The qσ-integral is described as∫ κ

σ

F(ζ)σdqζ = (1− q)(κ − σ)

∞∑
n=0

qnF (σ + qn(κ − σ)) . (2)

Bermudo et al. [7] unveiled a novel approach involving the qρ derivative and integral. They

also examined several fundamental properties of these operators. Here, we recapitulate the

definitions provided in their study

Definition 2.2 (See [7]). Let F : [σ, ρ] → R be a continuous function. Then the qρ-derivative

of F at κ ∈ [σ, ρ) is outlined by

ρDqF(κ) =
F(ρ+ q(κ − ρ))− F(κ)

(1− q)(ρ− κ)
. (3)

The qρ-integral is described as∫ ρ

x

F(ζ)ρdqζ = (1− q)(ρ− κ)
∞∑

n=0

qnF (ρ+ qn(κ − ρ)) . (4)

In [5] and [28], the authors provide the following formulas of q-integration by parts

Lemma 2.1 (See [5]). For continuous functions h,F : [σ, ρ] → R, the subsequent equality is

valid ∫ c

0

h(ζ)σDqF(ζρ+ (1− ζ)σ)dqζ (5)

=
h(ζ)F(ζρ+ (1− ζ)σ)

ρ− σ

∣∣∣∣c
0

− 1

ρ− σ

∫ c

0

Dqh(ζ)F(qζρ+ (1− qζ)σ)dqζ.

Lemma 2.2 (See [28]). For continuous functions h,F : [σ, ρ] → R, the subsequent equality is

valid ∫ c

0

h(ζ)ρDqF(ζσ + (1− ζ)ρ)dqζ (6)

=
1

ρ− σ

∫ c

0

Dqh(ζ)F(qζσ + (1− qζ)ρ)dqζ −
h(ζ)F(ζσ + (1− ζ)ρ)

ρ− σ

∣∣∣∣c
0

.

Lemma 2.3 (See [33]). The subsequent equality valid:∫ b

a

(ζ − a)ασdqζ =
(ρ− σ)α+1

[α+ 1]q
,

where α ∈ R− {−1}.
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§3 Main Results

First, we formulate the fundamental identity essential for obtaining the desired results by

employing quantum differentiable functions. In this investigation, q is considered as a constant

with 0 < q < 1, and [σ, ρ] ⊆ R represents an interval with σ < ρ. The q-number is defined as

follows

[n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1, n ∈ N .

Lemma 3.1. Assume F : [σ, ρ] → R be a q-differentiable function. σDqF(ζ) and ρDqF(ζ) are

q-integrable on [σ, ρ], in this case, the following equality is valid

1

3

[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]
(7)

=
ρ− σ

4

∫ 1

0

(
qζ − 4

3

)[
σDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
− ρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)]
dqζ.

Proof. Through the utilization of the q-integral definition, we attain

I1 =

∫ 1

0

(
qζ − 4

3

)
σDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
dqζ

=

∫ 1

0

qζσDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
dqζ −

4

3

∫ 1

0
σDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
dqζ.

Likewise,

I2 =

∫ 1

0

(
qζ − 4

3

)
ρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)
dqζ

=

∫ 1

0

qζρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)
dqζ −

4

3

∫ 1

0

ρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)
dqζ.

Therefore,

I1 − I2 =

∫ 1

0

qζσDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
dqζ −

4

3

∫ 1

0
σDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
dqζ (8)

−
∫ 1

0

qζρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)
dqζ +

4

3

∫ 1

0

ρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)
dqζ.

By Lemma 2.2, we attain∫ 1

0

qζσDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
dqζ (9)

=
2qζF

(
(1− ζ)σ + ζ σ+ρ

2

)
ρ− σ

∣∣∣∣∣
1

0

− 2

ρ− σ

∫ 1

0

qF

(
(1− qζ)σ + qζ

σ + ρ

2

)
dqζ

=
2q

ρ− σ
F

(
σ + ρ

2

)
− 2(1− q)

ρ− σ

∞∑
n=0

qn+1F

(
(1− qn+1)σ + qn+1σ + ρ

2

)

=
2

ρ− σ
F

(
σ + ρ

2

)
− 2(1− q)

ρ− σ

∞∑
n=0

qnF

(
(1− qn)σ + qn

σ + ρ

2

)
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=
2

ρ− σ
F

(
σ + ρ

2

)
− 4

(ρ− σ)2

∫ σ+ρ
2

σ

F(κ)σdqκ.

Similarly, ∫ 1

0
σDqF

(
(1− ζ)σ + ζ

σ + ρ

2

)
dqζ =

2

ρ− σ

[
F

(
σ + ρ

2

)
− F(σ)

]
, (10)∫ 1

0

qζρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)
dqζ =

4

(ρ− σ)2

∫ ρ

σ+ρ
2

F(κ)ρdqκ − 2

ρ− σ
F

(
σ + ρ

2

)
, (11)

∫ 1

0

ρDqF

(
(1− ζ)ρ+ ζ

σ + ρ

2

)
dqζ = − 2

ρ− σ

[
F

(
σ + ρ

2

)
− F(ρ)

]
. (12)

Substituting equalities (9)-(12) into equation (8), we arrive at
ρ− σ

4
[I1 − I2]

=
1

3

[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]
. (13)

The proof of Lemma 3.1 is concluded.

Theorem 3.2. Assume that the conditions outlined in Lemma 3.1 hold. If |ρDqF(ζ)| and
|σDqF(ζ)| are convex on [σ, ρ], then the subsequent inequality is valid∣∣∣∣∣13

[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣ (14)

≤ ρ− σ

4
[(A1(q) |σDqF(σ)|+A2(q) |σDqF(ρ)|) + (A1(q) |ρDqF(ρ)|+A2(q) |ρDqF(σ)|)] ,

where

A1(q) =

∫ 1

0

2− ζ

2

∣∣∣∣qζ − 4

3

∣∣∣∣ dqζ =
4 + 9q + 9q2 + 2q3

6[2]q[3]q
,

A2(q) =

∫ 1

0

ζ

2

∣∣∣∣qζ − 4

3

∣∣∣∣ dqζ =
4 + q + q2

6[2]q[3]q
.

Proof. Applying the absolute value in Lemma 3.1, we obtain∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣ (15)

≤ ρ− σ

4

∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ [∣∣∣∣σDqF

(
2− ζ

2
σ +

ζ

2
ρ

)∣∣∣∣+ ∣∣∣∣ρDqF

(
2− ζ

2
ρ+

ζ

2
σ

)∣∣∣∣] dqζ.
Since |ρDqF(ζ)| and |σDqF(ζ)| are convex on [σ, ρ], it yields∣∣∣∣σDqF

(
2− ζ

2
σ +

ζ

2
ρ

)∣∣∣∣ ≤ 2− ζ

2
|σDqF(σ)|+

ζ

2
|σDqF(ρ)| (16)

and ∣∣∣∣ρDqF

(
2− ζ

2
ρ+

ζ

2
σ

)∣∣∣∣ ≤ 2− ζ

2
|ρDqF(ρ)|+

ζ

2
|ρDqF(σ)| . (17)

Substituting (16) and (17) in (15), we acquire∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣
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≤ ρ− σ

4

∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ [2− ζ

2
|σDqF(σ)|+

ζ

2
|σDqF(ρ)|+

2− ζ

2
|ρDqF(ρ)|+

ζ

2
|ρDqF(σ)|

]
dqζ.

Computing the quantum integrals, we have∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣
≤ ρ− σ

4
[(A1(q) |σDqF(σ)|+A2(q) |σDqF(ρ)|) + (A1(q) |ρDqF(ρ)|+A2(q) |ρDqF(σ)|)] .

Hence, the proof is concluded.

Remark 3.3. If we assign q → 1− in Theorem 3.2, then we attain the subsequent inequality∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

∫ ρ

σ

F(κ)dκ
∣∣∣∣ ≤ 5(ρ− σ)

24
[|F′(σ)|+ |F′(ρ)|] ,

which is identified in [9, Remark 1].

Theorem 3.4. Assume that the conditions outlined in Lemma 3.1 hold. If |ρDqF(ζ)|s and

|σDqF(ζ)|s are convex on [σ, ρ] and 1
p + 1

s = 1 with p, s > 1, then the subsequent inequality is

valid ∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣ (18)

≤ ρ− σ

4

((
4

3

)p

− qp

[p+ 1]q

) 1
p

[(
(1 + 2q) |σDqF(σ)|s + |σDqF(ρ)|s

2[2]q

) 1
s

+

(
(1 + 2q) |ρDqF(ρ)|s + |ρDqF(σ)|s

2[2]q

) 1
s

]
.

Proof. By utilizing q-Hölder’s inequality in (15), it yields∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣ (19)

≤ ρ− σ

4

(∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣p dqζ)
1
p

[(∫ 1

0

∣∣∣∣σDqF

(
2− ζ

2
σ +

ζ

2
ρ

)∣∣∣∣s dqζ)
1
s

+

(∫ 1

0

∣∣∣∣ρDqF

(
2− ζ

2
ρ+

ζ

2
σ

)∣∣∣∣s dqζ)
1
s

]
.

Since |ρDqF|s and |σDqF|s are convex on [σ, ρ], we acquire∫ 1

0

∣∣∣∣σDqF

(
2− ζ

2
σ +

ζ

2
ρ

)∣∣∣∣s dqζ ≤
∫ 1

0

[
2− ζ

2
|σDqF(σ)|s +

ζ

2
|σDqF(ρ)|s

]
dqζ (20)

=
1 + 2q

2[2]q
|σDqF(σ)|s +

1

2[2]q
|σDqF(ρ)|s .

Similarly, ∫ 1

0

∣∣∣∣ρDqF

(
2− ζ

2
ρ+

ζ

2
σ

)∣∣∣∣s dqζ ≤ 1 + 2q

2[2]q
|ρDqF(ρ)|s +

1

2[2]q
|ρDqF(σ)|s . (21)

Here we use the fact that

|B1 − B2| < Bp
1 − Bp

2 (22)
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for B1 > B2 > 0 and p > 1. Applying (20) and (21) to (19), we achieve∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣
≤ ρ− σ

4

((
4

3

)p

− qp

[p+ 1]q

) 1
p

[(
(1 + 2q) |σDqF(σ)|s + |σDqF(ρ)|s

2[2]q

) 1
s

+

(
(1 + 2q) |ρDqF(ρ)|s + |ρDqF(σ)|s

2[2]q

) 1
s

]
.

Thus, the proof is concluded.

Remark 3.5. Setting q → 1− in Theorem 3.4, we attain the subsequent inequality∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

∫ ρ

σ

F(κ)dκ
∣∣∣∣

≤ ρ− σ

4

((
4

3

)p

− 1

p+ 1

) 1
p

[(
3 |F′(σ)|s + |F′(ρ)|s

4

) 1
s

+

(
3 |F′(ρ)|s + |F′(σ)|s

4

) 1
s

]
,

which is obtained in [10, Corollary 1].

Theorem 3.6. Assume that the conditions outlined in Lemma 3.1 hold. If |ρDqF(ζ)|s and

|σDqF(ζ)|s are convex on [σ, ρ] for s ≥ 1, then the subsequent inequality is valid:∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣ (23)

≤ ρ− σ

4
(A3(q))

1− 1
s

[
(A1(q) |σDqF(σ)|s +A2(q) |σDqF(ρ)|s)

1
s

+(A1(q) |ρDqF(ρ)|s +A2(q) |ρDqF(σ)|s)
1
s

]
,

where

A3(q) =

∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ dqζ =
4 + q

3[2]q
.

A1(q) and A2(q) are defined as in Theorem 3.2.

Proof. Employing q-power mean inequality in (15), we acquire∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣ (24)

≤ ρ− σ

4

(∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ dqζ)1− 1
s

[(∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ ∣∣∣∣σDqF

(
2− ζ

2
σ +

ζ

2
ρ

)∣∣∣∣s dqζ)
1
s

+

(∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ ∣∣∣∣ρDqF

(
2− ζ

2
ρ+

ζ

2
σ

)∣∣∣∣s dqζ)
1
s

]
.

Since |ρDqF|s and |σDqF|s are convex on [σ, ρ], we acquire∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ ∣∣∣∣σDqF

(
2− ζ

2
σ +

ζ

2
ρ

)∣∣∣∣s dqζ ≤
∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ [2− ζ

2
|σDqF(σ)|s +

ζ

2
|σDqF(ρ)|s

]
dqζ

= A1(q) |σDqF(σ)|s +A2(q) |σDqF(ρ)|s . (25)
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Similarly,∫ 1

0

∣∣∣∣qζ − 4

3

∣∣∣∣ ∣∣∣∣ρDqF

(
2− ζ

2
ρ+

ζ

2
σ

)∣∣∣∣s dqζ ≤ A1(q) |ρDqF(ρ)|s +A2(q) |ρDqF(σ)|s . (26)

Applying (25) and (26) to (24), we achieve the desired result.

Remark 3.7. Setting q → 1− in Theorem 3.6, we attain the subsequent inequality∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

∫ ρ

σ

F(κ)dκ
∣∣∣∣

≤ 5(ρ− σ)

24

[(
4|F′(σ)|s + |F′(ρ)|s

5

) 1
s

+

(
4|F′(ρ)|s + |F′(σ)|s

5

) 1
s

]
,

which is identified in [9, Remark 2].

§4 Examples

In this section, we provide examples that serve to illustrate our results and showcase the

applications of theorems.

Example 4.1. Let us assume the function F : [0, 2] → R defined as F(κ) = κ2. Then F is

q-differentiable. Based on these assumptions, we observe

ρDqF(κ) = 2DqF(κ) = [2]qκ + 2(1− q)

and

σDqF(κ) = 0DqF(κ) = [2]qκ.
These functions are convex on [0, 2]. By utilizing Theorem 3.2 to the function F(κ) = κ2, it

yields

1

3

[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
=

7

3

and

1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]
= 2− 2

[2]q
+

1

[3]q
.

So, the left-hand side of (14) is∣∣∣∣∣13
[
2F(σ)− F

(
σ + ρ

2

)
+ 2F(ρ)

]
− 1

ρ− σ

[∫ σ+ρ
2

σ

F(κ)σdqκ +

∫ ρ

σ+ρ
2

F(κ)ρdqκ

]∣∣∣∣∣ (27)

=

∣∣∣∣73 −
[
2− 2

[2]q
+

1

[3]q

]∣∣∣∣ .
Now, we let

|ρDqF(σ)| =
∣∣2DqF(0)

∣∣ = 2(1− q), |σDqF(ρ)| = |0DqF(2)| = 2[2]q,

|ρDqF(ρ)| =
∣∣2DqF(2)

∣∣ = 4, |σDqF(σ)| = |0DqF(0)| = 0.

Therefore, the right-hand side of (14) is
ρ− σ

4
[(A1(q) |σDqF(σ)|+A2(q) |σDqF(ρ)|) + (A1(q) |ρDqF(ρ)|+A2(q) |ρDqF(σ)|)]
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=
8 + 10q + 10q2 + 2q3

3[2]q[3]q
.

With reference to inequality (14), we acquire∣∣∣∣73 −
[
2− 2

[2]q
+

1

[3]q

]∣∣∣∣ ≤ 8 + 10q + 10q2 + 2q3

3[2]q[3]q
. (28)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The left terms
The right terms

Figure 1. In Example 4.1, depending on q ∈ [0, 1], MATLAB has been used to compute and
plot the graph of both sides of (28). Therefore, the validity of inequality (28) has been verified.

Example 4.2. Let us assume the function F : [0, 2] → R defined as F(κ) = κ2 and p = s = 2.

Then F is q-differentiable. Based on these assumptions, we observe

|ρDqF(κ)|s =
∣∣2DqF(κ)

∣∣2 = ([2]qκ + 2(1− q))
2

and

|σDqF(κ)|2 = |0DqF(κ)|2 = [2]2qκ2.

These functions are convex on [0, 2]. By utilizing Theorem 3.4, the left-hand side of inequality

(18) is similar to (27).

On the other hand, by (18), we have

|ρDqF(σ)|s =
∣∣2DqF(0)

∣∣2 = 4(1− q)2, |σDqF(ρ)|s = |0DqF(2)|2 = 4[2]2q,

|ρDqF(ρ)|s =
∣∣2DqF(2)

∣∣2 = 16, |σDqF(σ)|s = |0DqF(0)|2 = 0.

Therefore, the right-hand side of (18) is

ρ− σ

4

((
4

3

)p

− qp

[p+ 1]q

) 1
p

[(
(1 + 2q) |σDqF(σ)|s + |σDqF(ρ)|s

2[2]q

) 1
s

+

(
(1 + 2q) |ρDqF(ρ)|s + |ρDqF(σ)|s

2[2]q

) 1
s

]

=
1

2

(
16

9
− q2

[3]q

) 1
2

[
(2[2]q)

1
2 +

(
10 + 12q + 2q2

[2]q

) 1
2

]
.
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With reference to inequality (18), we have∣∣∣∣73 −
[
2− 2

[2]q
+

1

[3]q

]∣∣∣∣ ≤ 1

2

(
16

9
− q2

[3]q

) 1
2

[
(2[2]q)

1
2 +

(
10 + 12q + 2q2

[2]q

) 1
2

]
. (29)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

The left terms
The right terms

Figure 2. The graph of both sides of (28) in Example 4.2 has been computed and plotted using
MATLAB, contingent on q ∈ [0, 1]. Consequently, it has been confirmed that inequality (29) is
satisfied.

Example 4.3. Let us assume the function F : [0, 2] → R defined as F(κ) = κ2 and s = 2.

Then F is q-differentiable. Based on these assumptions, we observe

|ρDqF(κ)|s =
∣∣2DqF(κ)

∣∣2 = ([2]qκ + 2(1− q))
2

and

|σDqF(κ)|2 = |0DqF(κ)|2 = [2]2qκ2.

These functions are convex on [0, 2]. By utilizing Theorem 3.6, the left-hand side of inequality

(23) is similar to (27).

On the other hand, by (23), we have

|ρDqF(σ)|s =
∣∣2DqF(0)

∣∣2 = 4(1− q)2, |σDqF(ρ)|s = |0DqF(2)|2 = 4[2]2q,

|ρDqF(ρ)|s =
∣∣2DqF(2)

∣∣2 = 16, |σDqF(σ)|s = |0DqF(0)|2 = 0.

Therefore, the right-hand side of (23) is
ρ− σ

4
(A3(q))

1− 1
s ×[

(A1(q) |σDqF(σ)|s +A2(q) |σDqF(ρ)|s)
1
s + (A1(q) |ρDqF(ρ)|s +A2(q) |ρDqF(σ)|s)

1
s

]
=

1

2

(
4 + q

3[2]q

) 1
2

(2(4 + q + q2)[2]2q
3[2q][3]q

) 1
2

+

(
8(4 + 9q + 9q2 + 2q3)

3[2]q[3]q
+

2(4 + q + q2)(1− q)2

3[2]q[3]q

) 1
2

 .

With reference to inequality (23), we have∣∣∣∣73 −
[
2− 2

[2]q
+

1

[3]q

]∣∣∣∣ ≤ 1

2

(
4 + q

3[2]q

) 1
2

(2(4 + q + q2)[2]2q
3[2q][3]q

) 1
2
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+

(
8(4 + 9q + 9q2 + 2q3)

3[2]q[3]q
+

2(4 + q + q2)(1− q)2

3[2]q[3]q

) 1
2

]
. (30)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5
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3

3.5

The left terms
The right terms

Figure 3. The graph of both sides of (30) in Example 4.3 has been computed and plotted using
MATLAB, contingent on q ∈ [0, 1]. As a result, inequality (30) has been shown to be valid.

§5 Conclusion

This research has contributed novel findings to the realm of Milne’s rule-type inequalities

applied for differentiable convex functions in the framework of quantum calculus. First, we

revealed a novel integral identity. Leveraging this integral identity and convexity properties,

we examined these inequalities, crucial for Open-Newton’s Cotes formulas. We reported inno-

vative inequalities aimed at establishing error bounds in Milne’s rule, both within classical and

quantum calculus domains. Furthermore, we have provided numerical examples and graphical

analysis of these newly established inequalities. Our study demonstrates that these findings

not only refine but also expand previous findings in the field of integral inequalities. These

inequalities will be helpful for researchers who are working in the field of optimization theo-

ry and mathematical inequalities in the context of quantum calculus. In the future studies,

the authors can generalize the newly obtained results for the other type of convexities or for

fractional quantum integrals.
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[7] S Bermudo, P Kórus, Nápoles Valdés. On q-Hermite-Hadamard inequalities for general

convex functions, Acta Mathematica Hungarica, 2020, 162: 364-374.

[8] H Budak, H Kara. On Quantum Hermite-Jensen-Mercer Inequalities, Miskolc Math Notes,

2020, DOI: 10.18514/MMN.2020.3053.
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