Appl. Math. J. Chinese Univ.
2025, 40(3): 687-700

New perspectives on Milne’s rule inequalities with their

computational analysis via quantum calculus
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Abstract. In this study, we propose a novel method for establishing Milne’s rule-type inequal-
ities within the context of quantum calculus applied to differentiable convex functions. Initially,
we obtain a quantum integral identity, which serves as the foundation for deriving several new
Milne’s rule inequalities tailored for quantum differentiable convex functions. These inequali-
ties are particularly relevant in Open-Newton’s Cotes formulas, facilitating the determination
of bounds for Milne’s rule in both classical and g-calculus domains. Additionally, we conduct
computational analysis on these inequalities for convex functions and present mathematical ex-
amples and graphical representation to demonstrate the validity of our newly established results

within the realm of g-calculus.

81 Introduction

Quantum calculus, an area of mathematics, has gained prominence for its applications in
number theory, special functions, and quantum physics. Quantum calculus, often known as
g-calculus, is the study of calculus without limits. This field was pioneered by the renowned
mathematician Euler in the eighteenth century when he introduced the parameter ¢ into New-
ton’s work on infinite series. Based on Euler’s foundational work, Jackson (1910) introduced
g-definite integrals and began a symmetric analysis, which greatly advanced the study of g-
calculus [23]. Researchers have made significant contributions to the comprehension of mathe-
matical phenomena by investigating g-calculus, a crucial subfield of quantum calculus, in order
to establish g-analogues of classical inequalities. These g-analogues provide new viewpoints and
ideas, broadening the mathematical landscape and enabling progress in domains such as opti-
misation and mathematical analysis. Quantum calculus integrates mathematics and physics.
Many physicists utilise quantum calculus because it has numerous applications in quantum
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group theory. Additional research is recommended for people interested in contemporary quan-
tum calculus trends [3,12,17-19,24].

Agarwal reported the g-fractional derivative for the first time [1]. Al-Salam [2] defined g-
analogues of the Riemann-Liouville fractional integral operator. Tariboon and Ntouyas [32]
have recently disclosed an extensive investigation of g-integrals and g¢-derivatives in the do-
main [o,p] C R. By developing quantum analogues of well-known mathematical findings,
including Ostrowski, Holder, and Hermite-Hadamard inequality, as well as other integral in-
equalities employing classical convexity, their study has yielded notable advancements. Alp
et al. [4] have established a novel variant of Hermite-Hadamard inequality utilizing the left
quantum integral. By leveraging the right quantum integral, Bermudo et al. [7] unveiled a
new version of Hermite-Hadamard inequality. By involving Jensen-Mercer inequality, Budak
and Kara [8] have formulated an extended version of the Hermite-Jensen-Mercer inequality for
quantum integrals. Sitthiwirattham et al. [27] have obtained integral identity to find error
bounds for Maclaurin’s formulas in term of g-calculus. By combining g¢-derivatives/g-integrals
with h-derivatives/h-integrals, Shi et al. [31] have investigated a range of inequalities related to
q — h-integrals and revealed their connections to well-known results in different scientific and
engineering disciplines. On Milne-type inequality for co-ordinated convex functions, Shehzadi et
al. [30] have established a novel identity. Also, they presented some new inequalities for Milne-
type co-ordinated convex functions. Alqudah et al. [6] have proposed novel definitions of partial
g-operators. By leveraging these operators they derived new variants of Hermite-Hadamard in-
equalities on the co-ordinated convex functions. Vivas-Cortez et al. [34] proposed new quantum
Simpson’s and Newton’s type inequalities. Readers can find some recent interesting findings in
quantum calculus in [11,14, 20, 25, 36, 37].

Recently, numerous researchers have turned their focus to Milne’s type inequalities across
diverse fractional integrals such as Riemann—Liouville fractional integral [10], Conformable frac-
tional integral [13], Tempered fractional integrals [15, 16, 21,22, 35]. Mateen et al. [26] have
provided the computational analysis of some Milne’s rule type inequalities in g-calculus and
obtained better bounds to some existing ones. In [29], authors identified a novel quantum in-
tegral identity. By involving the newly established integral identity, they proved several new
inequalities of Milne’s rule type for quantum differentiable convex functions.

Inspired by current research endeavours, we formulate Milne-type inequalities by exploiting
the convexity property of the function within the context of g-calculus. We prove that the
inequalities obtained in this study extend certain existing ones. It is important to highlight
that our main findings can be reduced to classical calculus simply by setting ¢ — 17. The study
is divided into five sections, with the introduction being the first, in which we introduce the
fundamentals of quantum calculus and Milne-type inequalities along with recent advancements
in the field. Section 2 presents the necessary preliminaries of quantum calculus. In Section
3, we outline the main results of our study, detailing the newly derived inequalities. Section
4 provides numerical examples and graphical representations to validate the newly established
inequalities. Finally, Section 5 concludes with a summary of our findings and discusses potential

directions for future research.



Wali Haider, et al. New perspectives on Milne’s rule inequalities with their computational... 689

82 Preliminaries of ¢-Calculus

In the following section, we begin with examining the definitions and properties of g¢-
derivatives and g¢-integrals. In 2013, Tariboon and Ntouyas [32] introduced the g,-derivative
and integral along with a comprehensive exploration of their properties. We now recall the
following definitions from their seminal work.

Definition 2.1 (See [32] ). Let F : [0, p] = R be a continuous function. Then the g,-derivative
of F at s« € (o, p] is outlined by
F(>) — F(o +q(5 = 0))

DiF ) = e o)

(1)

The g,-integral is described as
| F©udut = (1= ) -0 Z F (o0 + ¢ 0)). )

Bermudo et al. [7] unveiled a novel approach involving the ¢” derivative and integral. They
also examined several fundamental properties of these operators. Here, we recapitulate the
definitions provided in their study

Definition 2.2 (See [7]). Let F : [0, p] = R be a continuous function. Then the ¢”-derivative

of F at s € [0, p) is outlined by

Flp+a(x—p)) = F()
A=q)p—2)

"DyF () = (3)

The g”-integral is described as

/ "EQPAC = (1 )0 -2 S F o+ a" (2 — 0). (4)

n=0

In [5] and [28], the authors provide the following formulas of g-integration by parts

Lemma 2.1 (See [5]). For continuous functions h,F : [0, p] — R, the subsequent equality is

valid .
10D+ (1= i (5)
1_
MO 20209 2 [ DR e + (1 4000,
Lemma 2.2 (See [28]). For continuous functlons h,F : [0, p] = R, the subsequent equality is
valid .
| 10rDiFC+ 1= i (©)
hOF(Co+ (1 =Qn)|°
= || R + (1 = sy - IR0 |

Lemma 2.3 (See [33]). The subsequent equality valid:
)a+1

b [eY _(,O—O'
/a (¢ —a)ody¢ = T

)

where o € R — {—1}.
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83 Main Results

First, we formulate the fundamental identity essential for obtaining the desired results by
employing quantum differentiable functions. In this investigation, ¢ is considered as a constant
with 0 < ¢ < 1, and [0, p] C R represents an interval with ¢ < p. The g-number is defined as

follows

lg==———=1+q+¢+---+¢"", nel

Lemma 3.1. Assume F : [0, p] = R be a g¢-differentiable function. ,D4F({) and ,D4F(() are
g-integrable on [o, p|, in this case, the following equality is valid

1 1 =" ,
5 [QF(J) —F (” ; p) + 2F(p)} - /U F(50)gdys + /+ F(5)Pdgs (7)
— 1 4
=227 [ (ae=3) oo (0= 004 T2 ) oo (-0 752
Proof. Through the utilization of the g-integral definition, we attain
! 4
L =/0 <QC— ) o DgF ((1—0 +Cg+p> dqC
4 [
- quDF< +p>d(—/ quF((l—C) +¢I2P ) dyC.
0 0
Likewise,
I, = < g)pDF< )JFC >q<
0
1
= QCPDF P+C)dC4/ quF<( ~0p+¢Z2 P )dC
0 0
Therefore,
4 1
= [ aconif (-0 T a3 [ op (0-00 +<TH )
p

d
4 !
—/0 QCquF(( —Q)p +C>dC+ /OquF(( —Q)p +<;U+ )dqg.
By Lemma 2.2, we attain

1
[ acomir (-0 +<”+”)dq< o)
— 0o atp 1
2 (0= Qrcs)] [ (a= a0+ a3 ) ac
o P79 Jo

p—0

2q o+p 2(1 — q) o+p

— F _ 71,+1F 1— n+1 n+1- T F

Py ( : ) P ;q (1—=g¢" o +q"—
0o

e

p—a P n=0




Wali Haider, et al. New perspectives on Milne’s rule inequalities with their computational... 691

o+p

:pfaF(O;p) “Gep ), Rt
Similarly,
[ (00T Y g = 2 [e () k)] "o

! +p B 4 P 2 o+p
[ arn(a-os T2 e = 2 [ Foorae— —2or (TH2). )

2

1
o+ 2 o+
| o (( —Qp+¢ p) dyC = - [F ( p) - F(p)] : (12)
0 p—0C 2
Substituting equalities (9)-(12) into equation (8), we arrive at
p—o..
= 1]
1 o+p 1 =t P
= - - - P
: [2F(U) F( : ) +2F(p)] — Va F(%)gdqwr/g;p F(2) dq%] . a3)
The proof of Lemma 3.1 is concluded. O

Theorem 3.2. Assume that the conditions outlined in Lemma 3.1 hold. If |?D,F({)| and
| D4F(¢)| are convex on [, p], then the subsequent inequality is valid

1 1 = ’
! {zma) F (" . f’) n zF(pﬂ -— [ | FCaedie+ / F<z>pdq%] (14)
< EZ (A0 1 DyF(0)] + Ax(@) [ DaF (p)]) + (Ai(q) I DyF (p)] + A2 (q) I DoF (o))
where
2-¢ 4+ 99 +9¢° + 2¢°
A = = )
o) = [ 5% o~ gl = g
g ‘ 44 q+ ¢
Aol = [ $ a5 dyg = SO
2(q) b 2 qC 3 s 62,131,
Proof. Applying the absolute value in Lemma 3.1, we obtain
1 1 = ’
. [QF(U) —F (U;p> +2F(p)] Ry fo F(5¢)odgo + /;p F(%)qu%] (15)
_ 1 4 2 —
§p40/0 3HquF( 2<0+g,0) +pDF<QCP+g‘7>}qu'
Since [P D,F(¢)| and |,D4F(¢)| are convex on [o, p), it yields
2 — 2 -
UDqF< 240+gp>‘_ =0 DF(o )|+ o DgF (p)] (16)
and
2 — 2 -
D (25504 §0)| < 255 DI+ § PDuFo)). (1

Substituting (16) and (17) in (15), w )
% {QF(J) —F (o;p) n 2F(p)] - i . M F(5¢) gy + /i F(%)qu%]

e acquire
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s”;(’/ C—f

Computing the quantum integrals, we have

2SS D)+ § D) + 255 PO + S Do) di

e (25 v [ s o]

< P (@) o DaF (0)] + Ax(@) | DyF(p)]) + (Ar(0) 17 DaF (p)] + Az () [ DyF()])].
Hence, the proof is concluded. O

Remark 3.3. If we assign ¢ — 17 in Theorem 3.2, then we attain the subsequent inequality

1 oc+p 1 ’ 5(p—0) 1 ,

- - - < A7

;e =7 (T52) w2k - 2 [ e < D e+ Rl
which is identified in [9, Remark 1].

Theorem 3.4. Assume that the conditions outlined in Lemma 3.1 hold. If |?D,F(¢)|” and
loDyF(¢)]” are convex on [o, p] and % + 1 =1 with p,s > 1, then the subsequent inequality is

valid
ot+p

3 [P —F (752 v opi] - [ [ redirs [ F(%)”dq%]

cr () -t [ mimgsanory

2[2],
(1+29) [’ DyF(p)|° + [P DyF(0)]*\ *
*( 22, ) ] |

Proof. By utilizing ¢-Holder’s inequality in (15), it yields

+p

é [2F(0) e (o;r/’> +2F(p)] _ pia V;z F(5¢)odyr + /U; F(%)pdq%]
<3 ([ e [(f oo (55 4
(et ) |

2 2
Since |?DyF|* and |,D,F|* are convex on [o, p|, we acquire

1 _ s 1 _
[ i (B350 50) | auc < [ 255 niF)r + S DiF | s 20
0 0

(18)

(19)

2 2
RESY oo 1 :
- 2[2]11 ‘UDQF(O’N +2[2]q |UDqF(p)| °
Similarly,
/0 D (25004 5o )| < S PDFOI + g DR @)

Here we use the fact that
|Bl — Bg| < B]f — Bg (22)
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for By > By > 0 and p > 1. Applying (20) and (21) to (19), we achieve

+p

% [QF(U) - (‘t”) + 2F(p)] ~ pia Vg F(5¢)odgs + /i F(%)pdq%]

< ((;1)1)_ [p?rpl]qf <(1+2q) 2 DoFo)l” + |0qu(p)s>i

212],
(1+2q) |PD,F(p)° + [P D,F(0)*\ *
*( 202, ) 1 |

Thus, the proof is concluded. O

Remark 3.5. Setting ¢ — 1~ in Theorem 3.4, we attain the subsequent inequality

% {2F(J) —F <U;p> +2F(p)} — /:F(%)d%’

p—o0

<P ((3) . pil> l(3|F'<o>|S4+ |F’<p>|“’)i n <3|F'<p>|84+ |F/<a>|8) ] |

which is obtained in [10, Corollary 1].

Theorem 3.6. Assume that the conditions outlined in Lemma 3.1 hold. If |?D,F(¢)|” and
loD4F(C)|” are convex on [o, p| for s > 1, then the subsequent inequality is valid:

ot+p
2

% [QF(O—) —F (a ;L p) + 2F(p)] - i - Va F(3)odgs + /i F(%)pdq%]

< 2T (5(@)'F [(A1(0) 1 DF (@) + Az(a) |- DF(p)])’

4 } |

+ (A1(q) [P DgF(p)|” + A2(q) [P DgF (o))
qC—%

where
1
As(Q) = /
0

Ai(q) and As(q) are defined as in Theorem 3.2.

(23)

w |=

w =

de¢ =

Proof. Employing ¢g-power mean inequality in (15), we acquire
atp
2

o (752 wori] 5 [ Rt [ o]

oo ([ ) (e )

2 —
“-3 3 "DqF( 2<U+gp)
: 2-¢ S\ ue)
+(/0 f'DqF( . p—|—20) dq<> ]

Since |?DyF|* and |,D,F|* are convex on [o, p|, we acquire

1 4 2 — s 1 4 2 — s s
[l =3 i (Bt + 50) [ s < [ foc— 3] 25 Do + S DiFor] g

(24)

4

4
QC—g

2
= A1(q) [o DgF (o) + A2(q) |- DgF (p)|” - (25)




694 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

Similarly,
! 4 P C C ° P S P S
3| o (55204 57)| dit < 4@ PDFOI + Al PDF@. (20)
Applying (25) and (26) to (24), we achieve the desired result. O

Remark 3.7. Setting ¢ — 1~ in Theorem 3.6, we attain the subsequent inequality

‘; {QF(J) _F <U’2Lp) +2F(p)] - pig /Up F(%)d%‘

5(p—0) [ (4F@F +IF(I\* . (AF O+ F@)\*
< o) | (FALLPLICY”, (1FL L)

which is identified in [9, Remark 2].

84 Examples

In this section, we provide examples that serve to illustrate our results and showcase the

applications of theorems.

Example 4.1. Let us assume the function F : [0,2] — R defined as F(») = »%. Then F is

g-differentiable. Based on these assumptions, we observe
P DyF(52) = 2DyF(5) = [2]g2¢ +2(1 — q)
and
o DqF(3¢) = 0 DgF(3) = [2]ge.
These functions are convex on [0,2]. By utilizing Theorem 3.2 to the function F(s) = 52, it

é [QF(a) —F (”;p> —|—2F(p): :g

yields

and

a+p
1 2

v —o 2L
o | e [P W ey

So, the left-hand side of (14) is

- [QF( ( ) +2F(p ] ia V; F(%)qu%—k/; F(%)pdq%]

:’;‘ [2 2, [311J

Now, we let

PDyF(0)] = [2DgF(0)] = 2(1 = q), [+ DgF(p)| = [oD4F(2)] = 2[2],,
”DyF(p)| = |?D,F(2)] = 4, lo DgF(0)] = [oDyF(0)] =
Therefore, the right-hand side of (14) is
EZ [(A1(@) e DoF (0) | + A2(a) [« DaF (0)]) + (A1(0) I DoF(p)| + As(q) 1" DyF(@)))]
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8+ 10g + 10¢* + 2¢*

3[2]4[3]4
With reference to inequality (14), we acquire

8 + 10q + 10¢% + 2¢°

7 2 1
Lo 24— l< (28)
3 2, 3l 3[2]4[3]q
2.8 T T
——The left terms
26 :\@\\(} —<&— The right terms | |
Y
2.4 0\()
.
< O,
22F RSN
o
N
2t O~
O~.
\a 9o a
181 S~
-0 oo
16
14t
e
F
12f *W*"'*"*——-shé,, Lo
Rl o S S
1 | | | | O o o

Figure 1. In Example 4.1, depending on ¢ € [0,1], MATLAB has been used to compute and
plot the graph of both sides of (28). Therefore, the validity of inequality (28) has been verified.

Example 4.2. Let us assume the function F : [0,2] — R defined as F(5) = 5 and p = s = 2.
Then F is g-differentiable. Based on these assumptions, we observe

PDFGo)|* = [2DgF(50)|” = (2045 +2(1 - )
and

lo DyF(30)[* = [0DF (2)[* = [2175¢%.

q
These functions are convex on [0,2]. By utilizing Theorem 3.4, the left-hand side of inequality

(18) is similar to (27).
On the other hand, by (18), we have
Dy (o S=PDF>F=4u—m% o« D4F(p)|" = [oDyF () = 4[]
PDF(p)|* = [2D,F(2)|* = 16, o D,F(0)]® = [oDgF(0)]* = 0.
Therefore, the rlght—hand side of (18) is

(6 5t

(1+M|H>HM|+VDF<M>W
1
5

16 ¢ % 10+12q—|—2q)
2q '

(O+%HA%H®V+MDJ@W)1
2[2],
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With reference to inequality (18), we have

ERE A BH O

35
— —@"@’é*@’e’e’e 09000 540000000
CQQQ'

(NI

. 2\ 2
[(2[2@)2 - () ] e

251

—#— The left terms
—%— The right terms

15

b
F—ne
—a,
%
ek g
e
I I I I | T S SV

1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2. The graph of both sides of (28) in Example 4.2 has been computed and plotted using
MATLAB, contingent on ¢ € [0,1]. Consequently, it has been confirmed that inequality (29) is
satisfied.

Example 4.3. Let us assume the function F : [0,2] — R defined as F(s) = 52 and s = 2.
Then F is g-differentiable. Based on these assumptions, we observe

s 2
PDF(2)|* = [PDgF(50)|” = ([2]g7¢ + 2(1 — @))”
and
lo DgF(30)|” = o DgF (5¢)[* = [2]35¢.
These functions are convex on [0,2]. By utilizing Theorem 3.6, the left-hand side of inequality
(23) is similar to (27).
On the other hand, by (23), we have
S 2 S
PDgF(0)[* = [PDgF(0)]" = 4(1 = q)°,  [-DgF(p)|° = loDgF(2)[* = 4[2]2,
: 2 :
"DyF(p)* = [*DgF(2)|” = 16, lo DgF(0)]" = [oDgF(0)* = 0.
Therefore, the right-hand side of (23) is

P 7 (As(g))'~

[(A1(@) s DF(@)] + A2(a) s DyF()|")

w =

X

W~

w [=
o [=

+ (A1(@) " DgF(p)I” + A2(q) [ DgF (o)[%)

}

_1(4+q>é 2(4+q+a°)27 : (8(4+9q+9q2+2q3) 2(4+q+q2)(1—Q)2)é
—2\3[2), 3(24][3]4 3(2]4[3]q 3(2]4[3]q

With reference to inequality (23), we have

i len =2 (el

[N

2(4 4 g+ ¢*)[2]2 :
3[24](3]4




Wali Haider, et al. New perspectives on Milne’s rule inequalities with their computational... 697

<8(4+9q+9q2+2q3) 2(4+q+q2)(1@2);]~ (30)

3[2)4[3lq 3(2]4[3]4

35 T T
—%—The left terms
—%— The right terms.

-
- ' o
O~
oy
e N
25 —O—— b
¢ 6”0'0'(}'(},,
070"}"0'0——9776,

151 1

o
S
L
A p
A
. . . . , PR o e e =
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3. The graph of both sides of (30) in Example 4.3 has been computed and plotted using
MATLAB, contingent on ¢ € [0,1]. As a result, inequality (30) has been shown to be valid.

85 Conclusion

This research has contributed novel findings to the realm of Milne’s rule-type inequalities
applied for differentiable convex functions in the framework of quantum calculus. First, we
revealed a novel integral identity. Leveraging this integral identity and convexity properties,
we examined these inequalities, crucial for Open-Newton’s Cotes formulas. We reported inno-
vative inequalities aimed at establishing error bounds in Milne’s rule, both within classical and
quantum calculus domains. Furthermore, we have provided numerical examples and graphical
analysis of these newly established inequalities. Our study demonstrates that these findings
not only refine but also expand previous findings in the field of integral inequalities. These
inequalities will be helpful for researchers who are working in the field of optimization theo-
ry and mathematical inequalities in the context of quantum calculus. In the future studies,
the authors can generalize the newly obtained results for the other type of convexities or for

fractional quantum integrals.
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