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Testing independence in Hilbert spaces using random

projection

HU Zhi-ming1,2 JIANG Tao4,1,∗ XU Jin-feng3

Abstract. As data becomes increasingly complex, measuring dependence among variables is

of great interest. However, most existing measures of dependence are limited to the Euclidean

setting and cannot effectively characterize the complex relationships. In this paper, we propose

a novel method for constructing independence tests for random elements in Hilbert spaces,

which includes functional data as a special case. Our approach is using distance covariance of

random projections to build a test statistic that is computationally efficient and exhibits strong

power performance. We prove the equivalence between testing for independence expressed on the

original and the projected covariates, bridging the gap between measures of testing independence

in Euclidean spaces and Hilbert spaces. Implementation of the test involves calibration by

permutation and combining several p-values from different projections using the false discovery

rate method. Simulation studies and real data examples illustrate the finite sample properties

of the proposed method under a variety of scenarios.

§1 Introduction

Recent technological advancements in science and engineering have resulted in an abundance

of complex data structures, such as high-dimensional, nonlinear, and infinite-dimensional da-

ta including functional data. Measuring and testing dependence among such complex data is

crucial for statistics, machine learning, and scientific discovery. Testing for independence has

long been a fundamental problem in statistics, and several desirable methods have been pro-

posed, including kernel-based criteria [7, 11, 12, 25, 31], distance correlation [26, 27], maximal

information coefficient [22], copula based measures [23, 24], projection correlation [13, 32], Ball
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covariance proposed recently [20], and others [17, 18, 28]. However, many of these techniques

were developed in the Euclidean setting and may not be directly applicable to complex data,

particularly functional data with infinite dimension. Therefore, it is crucial to establish an

efficient procedure for testing independence in these complex datasets.

Distance correlation [26, 27] is a widely used method for testing independence due to it-

s desirable theoretical properties and powerful performance in numerical studies. It has also

been extended to metric spaces [19], making it a useful tool for detecting dependence among

complex data including functional data, which can be viewed as random elements in Hilbert

space. Despite these advantages, the direct computation of distance correlation takes O(n2)

time, where n is the sample size, and the complexity of data often makes the computation of

pairwise distances between sample points prohibitively time-consuming. This issue is particu-

larly problematic for complex data, where the computation cost of distance covariance could

be substantial and limit its applicability in practice. Therefore, achieving a favorable trade-off

between computational efficiency and test performance for distance covariance in complex data

is crucial. While it may be difficult to simultaneously achieve both goals, sacrificing some pow-

er performance to increase computational efficiency may be necessary. Finding such a balance

would have a direct impact on the practical applicability of distance covariance for complex

data.

The aim of this paper is two-fold: to bridge the gap between measures of testing inde-

pendence in Euclidean spaces and Hilbert spaces [6], and to establish a method that reduces

computational complexity while maintain desirable power performance. We consider testing

the independence of two random elements X and Y in Hilbert spaces H1 and H2, respectively,

H0 : X and Y are independent vs. H1 : otherwise (1)

by randomly projecting them onto univariate variables Xf and Y g. We show in Section 2 that

testing independence of X and Y is equivalent to testing independence of their projections. As

a result, we can measure dependence between random elements in Hilbert spaces by measuring

their projections, and apply methods suitable for testing independence in Euclidean settings to

Hilbert spaces including functional data.

To reduce computational complexity, we combine the projection procedure with distance

covariance. Randomly projecting onto a number L of different directions and merging the

resulting p-values using the False Discovery Rate (FDR) [2], we account for a higher power

while reducing the influence of individual directions. This method has a time complexity of

O(n log(n)) using efficient numerical algorithms [16], and simulation studies show competitive

performance with small values of L. This approach builds upon the idea of combining random

projection and distance covariance used in [15] for random vectors, although their method

includes constant dependent on vector dimension, making it unsuitable for functional data

with infinite dimension. We generalize this idea for functional data using a different strategy

to overcome the dimensionality issue. While distance covariance is a special choice within our

framework, other methods for testing independence can be used instead.

The paper is organized as follows. Section 2.1 provides a brief review of distance covariance,
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its relevant properties, and the fast algorithm for its computation. Section 2.2 shows how the

independence of two random elements is equivalent to the independence of their projections

and establishes a testing procedure for independence based on distance covariance and random

projections in Section 2.3. Section 3 describes the implementation of the test and other practical

considerations. In Section 4, we conduct simulations to illustrate the finite sample properties

of the test and apply it to some real datasets. Finally, Section 5 provides some concluding

remarks. All technical proofs are provided in the Appendix.

§2 Theoretical Framework and Methodology

In functional data analysis, functions or curves can be viewed as elements in L2([0, 1]), a

space consisting of all square integrable functions defined on the interval [0, 1], or as realizations

of stochastic processes. However, these perspectives do not always coincide, unless under certain

joint measurability assumptions [14]. In this article, we adopt the random element perspective,

which links functional data to ordinary data in Euclidean spaces, since Euclidean spaces are

special cases of Hilbert spaces. We will establish a random projection distance covariance in

this setting.

2.1 Distance Covariance Estimation

We provide a brief introduction to distance covariance, as proposed by [27]. Let Z and W

be two random vectors with dimensions p and q, respectively, and with characteristic functions

fZ(t) and fW (s). The joint characteristic function is denoted by fZ,W (t, s). If the first moments

of Z and W are finite, then the squared distance covariance between Z and W is defined as the

weighted L2 distance between fZ,W (t, s) and fZ(t)fW (s):

V2(Z,W ) =
1

cpcq

∫
Rp+q

| fZ,W (t, s)− fZ(t)fW (s) |2

| t |1+p
p | s |1+q

q

dtds,

where |·|p is the Euclidean norm in Rp, cp =
√
πΓ((p+1)/2)

Γ(p/2) , cq =
√
πΓ((q+1)/2)

Γ(q/2) , and Γ(·) is the

complete gamma function. The nonnegative value V(Z,W ) is known as the distance covariance

(dCov).

The distance covariance has the following important property, established in Theorem 3 of

[27]: If E(|Z|p + |W |q) < ∞, then Z and W are independent if and only if V2(Z,W ) = 0.

If E|Z|2p < ∞ and E|W |2q < ∞, then the distance covariance between Z and W can be

expressed as

V2(Z,W ) =E[|Z − Z ′|p|W −W ′|q] + E|Z − Z ′|pE|W −W ′|q
− 2E[|Z − Z ′|p|W −W ′′|q],

where (Z,W ), (Z
′
,W

′
), and (Z

′′
,W

′′
) are i.i.d. Thus, an empirical distance covariance V2

n(Z,W )

can be defined based on a sample (Z,W ) = {(Zk,Wk) : k = 1, · · · , n} from the joint distribution
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of random vectors Z ∈ Rp and W ∈ Rq, where

aij = |Zi − Zj |p, ai· =
1

n

n∑
l=1

ail, a·j =
1

n

n∑
l=1

alj ,

a.. =
1

n2

n∑
k,l=1

akl, Aij = aij − ai· − a·j + a··,

i, j = 1, · · · , n, and similarly for W . The squared empirical distance covariance is then given

by

V2
n(Z,W ) =

1

n2

n∑
i,j=1

AijBij , (2)

where bij = |Wi −Wj |q and Bij = bij − bi· − b·j + b··, i, j = 1, · · · , n. Computing the sample

distance covariance typically requires O(n2) pairwise distance calculations and O(n2) memory

units for storing them. With the large datasets commonly encountered in the era of big data,

it is often impractical to implement an O(n2) algorithm on a personal computer.

Although computing the distance covariance for Z ∈ R and W ∈ R typically requires O(n2)

pairwise distance calculations, a fast algorithm is available for this case in [16]. Using the same

notation aij and bij as before, but now for (Zi,Wi) ∈ R × R, it has been shown (Szekely and

Rizzo, 2014; Huo and Szekely, 2016) that the unbiased estimator of V2(Z,W ) is given by

Λn(Z,W ) =
1

n(n− 3)

∑
i ̸=j

aijbij

− 2

n(n− 2)(n− 3)

n∑
i=1

ai·bi· +
a..b..

n(n− 1)(n− 2)(n− 3)
. (3)

This estimator can be computed with the fast algorithm proposed in [16], which has a

computational complexity of O(n log n) and storage requirements of O(n). The algorithm is

implemented in the ‘dcov2d’ function in the energy package.

2.2 Projection Representation of Independent Random Elements in

Hilbert Space

In this subsection, we explore the connection between independence of random elements in

Hilbert spaces and the independence of their projections. Throughout this paper, we consider

a separable Hilbert space H with associated norms ∥ · ∥ and inner products ⟨·, ·⟩. Let B(H)

denote the Borel σ-algebra of H, generated by the open sets, and let (Ω,E ,P) be a probability

space. We define a H-valued random element X as a mapping from Ω to H that is measurable

with respect to the σ-algebras E and B(H). This definition is analogous to the definition of

independence in Banach spaces [29].

For ease of reading and convenience of proofing we review the definition of independence of

two random elements X and Y , taking values in Hilbert spaces H1 and H2. Random elements

X and Y are independent if P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any A ∈ B(H1)

and B ∈ B(H2). Based on this definition, we present the following theorem, which establishes

a relationship between the random elements and their projections. The Theorem 1 (4) is the
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result of Lemma 1 in [18]. For easy reference, we restate this conclusion and give a different

proof in Appendix.

Theorem 1. Suppose that X and Y are random elements in Hilbert spaces H1 and H2 respec-

tively, then the following statements are equivalent

(1) X and Y are independent;

(2) ⟨X, f⟩ and Y are independent for all f ∈ H1;

(3) X and ⟨Y, g⟩ are independent for all g ∈ H2;

(4) ⟨X, f⟩ and ⟨Y, g⟩ are independent for all f ∈ H1 and g ∈ H2.

According to the property of distance covariance and Theorem 1, we can readily obtain the

following result, which is analogous to Lemma 4.1 in [15].

Corollary 1. Suppose that X and Y are random elements in Hilbert spaces H1 and H2 re-

spectively. If their first order moments exist, then X and Y are independent if and only if

V2(⟨X, f⟩, ⟨Y, g⟩) = 0 for all f ∈ H1 and g ∈ H2.

2.3 Distance Covariance of Random Projections

We provide a detailed procedure for testing the hypothesis (1) for two functional random

variables based on the results in Section 2.2. For convenience, we use Xf and Y g to denote

⟨X, f⟩ and ⟨Y, g⟩, respectively. Based on Theorem 2, the null hypothesis H0 can be stated as

follows

H
′

0: X
f and Y g are independent for all f ∈ H1 and g ∈ H2.

This hypothesis includes a family of sub-hypotheses of independence of real-valued random

variables. We can then define a total measure for the dependence as the integrated distance

covariance

T (X,Y ) =

∫ ∫
V2(Xf , Y g)µ1(df)µ2(dg), (4)

where µ1 and µ2 are nondegenerate Gaussian measures on H1 and H2, respectively. According

to Corollary 1, if H
′

0 holds and the conditions are satisfied, we have T (X,Y ) = 0.

Suppose that we have a sample (X1, Y1), · · · , (Xn, Yn) ∈ H1×H2, then the empirical version

of T (X,Y ) is given by

Tn(X,Y ) =

∫ ∫
V2
n(X

f , Y g)µ1(df)µ2(dg),

where V2
n(X

f , Y g) is defined by (2). Although Tn(X,Y ) can be used as the test statistic for

(1), it is difficult to compute directly. One possible approach is to use Monte Carlo simulation

to approximate the integral. Specifically, we can compute the empirical estimate as

TMC
n (X,Y ) =

1

m1m2

m1∑
i=1

m2∑
j=1

V2
n(X

fi , Y gj ),

where f1, · · · , fm1 and g1, · · · , gm2 are directions randomly generated by µ1 and µ2, respectively.

This estimate approximates Tn(X,Y ) well when the numbers m1 and m2 are large enough,

although it requires a significant amount of computation.
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Fortunately, the following theorem provides a feasible solution.

We defineM1 as the set of all f ∈ H1 such that ⟨X, f⟩ and Y are independent, M2 as the set

of all g ∈ H2 such that X and ⟨Y, g⟩ are independent, and M as the set of all (f, g) ∈ H1 ×H2

such that ⟨X, f⟩ and ⟨Y, g⟩ are independent. We denote the product measure on H1 × H2 as

µ1 × µ2.

The following theorem establishes the relationship between the independence of random

elements in Hilbert spaces and the measures of the sets M1, M2, and M.

Theorem 2. Let µ1 and µ2 be non-degenerate Gaussian measures on H1 and H2, respectively.

Then,

(1) X and Y are independent if and only if µ1(M1) = 1;

(2) X and Y are independent if and only if µ2(M2) = 1;

(3) X and Y are independent if and only if µ1 × µ2(M) = 1.

Remark 1. In [9], Theorem 4 presents a similar result for random elements in Banach spaces.

Their theorem is based on Theorem 1 in [5]. However, their conditions are much stronger than

ours. They require that all absolute values of the random element’s moments are finite, i.e.,

mn =
∫
||x||nP(dx) < ∞ for n = 1, 2, · · · , and the Carleman’s condition must be satisfied,∑

n≥1 m
−1/n
n = ∞.

According to Theorem 2, to test the null hypothesis H0: X and Y are independent, we can

randomly select f ∈ H1 and g ∈ H2 using µ1 and µ2, respectively, and then test the projected

null hypothesis Hfg
0 : Xf and Y g are independent.

Remark 2. If X is a random function and Y is a variable, we can test the independence of X

and Y by randomly selecting a projection of X and leaving Y unchanged. In other words, we

test the hypothesis Hf
0 , where f is randomly selected from H1 using µ1.

When both X and Y are random functions, we test the hypothesis Hfg
0 instead of H0. To

do so, we randomly select f ∈ H1 and g ∈ H2 using µ1 and µ2, respectively, and then test the

hypothesis Hfg
0 : Xf and Y g are independent.

To test hypothesis Hfg
0 , the test statistic we consider is

Πn = n · Λn(X
f , Y g), (5)

where Λn is defined in (3). Since Πn is the squared distance covariance of Xf and Y g, and Xf

and Y g are univariate, similar to Corollary 2 in [27], we have the following property for the test

statistic Πn.

Corollary 2. If X and Y are independent, the asymptotic distribution of Πn is given by

Πn
d−→

∞∑
i=1

λiZ
2
i ,

where Z2
i ∼ χ2

1 are i.i.d. random variables and λi are non-negative constants that depend on

the distribution of (X,Y ).

If Xf and Y g are dependent, then Πn tends to infinity almost surely as n → ∞.
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§3 Testing Procedure for Independence

Testing Hfg
0 instead of H0 has the advantage that the random variables are real, but it may

result in a loss of power and vary for different projections. To address these issues, we follow [4]

and sample several directions f1, · · · , fL and g1, · · · , gL from H1 and H2, respectively. We test

the projected hypotheses Hf1g1
0 , · · · ,HfLgL

0 and combine the resulting p-values to control the

final rejection rate to be at most α under H0. We use the FDR method [2, 3] for this purpose.

The testing procedure is described in the following algorithm

(1) Let Πn denote a test for checking Hfg
0 with f chosen by a non-degenerate Gaussian

measure µ1 on H1 and g chosen by a non-degenerate Gaussian measure µ2 on H2.

(2) Calibrate the test statistic for Hfg
0 by randomly permuting the index of the Y sample.

(3) Sample L directions f1, · · · , fL and g1, · · · , gL from H1 and H2, respectively.

(4) For each i = 1, . . . , L, test Hfigi
0 using Πn and record the corresponding p-value.

(5) Apply the FDR method to the p-values to control the final rejection rate to be at most

α under H0.

Algorithm 3.1 (Permutation Calibration for Hfg
0 )

(1) Compute the test statistic Πn = Λn(X
f , Y g) using the formula (3) for the sample

{(Xf
i , Y

g
i )}ni=1.

(2) For each ℓ, generate a random permutation Y ∗g,ℓ = (Y
(l)g
1 , · · · , Y (l)g

n ) of the vector

Y g = (Y g
1 , . . . , Y

g
n ).

(3) Compute the test statistic Vℓ = Λn(X
f , Y ∗g,ℓ) using the formula (3) for Xf and Y ∗g,ℓ.

(4) Repeat steps (2) and (3) for all ℓ = 1, · · · , B. Reject H0 if the p-value is less than a

prescribed level α, where the p-value is given by

p-value =

∑B
ℓ=1 I(Πn < Vℓ)

1 +B
.

Note that under the hypothesis Hfg
0 and random permutation, Xf and Y ∗g,ℓ are indepen-

dent.

We use the FDR method [2] to control the rejection rate to be at most α under H0, where

α is the significance level. The following algorithm is used to choose the final p-value.

Algorithm 3.2 (Testing Procedure for H0)

(1) For i = 1, · · · , L, compute the p-value pi of H
figi
0 using Algorithm 3.1.

(2) Set the final p-value of H0 as mini=1,··· ,L
L
i p(i), where p(1) ≤ · · · ≤ p(L).

The choice of random projection directions is critical since it can affect the power of the test.

Drawing directions that are almost orthogonal to the sample data can lead to unreliable results.

To avoid this issue, we use a data-driven method proposed by [4]. We need some preparation

before the statement. For a random function X(t), x ∈ T , where T is an interval of R, the
mean and covariance function of X(t) are defined

µ(t) = EX(t), c(t, s) = E[(X(t)− µ(t))(X(s)− µ(s))].
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The covariance operator C of covariance function c(t, s) is

C(f) =

∫
c(t, s)f(s)ds.f ∈ L2(T ),

where L2(T ) means the space of square integral functions. The pairs (λ1, e1) , (λ2, e2) , . . . are

the eigenelements of X (or of the covariance function c ). The empirical eigenpairs
{(

λ̂j , êj

)}
are estimates of (λ1, e1) , (λ2, e2) , . . ., which can be computed using the sample X1, · · · , Xn(See

Chapter 3 of [1] for details). The procedure of choosing random directions is

(1) Compute the empirical eigenpairs {(λ̂j , êj)} using the sample X1, · · · , Xn.

(2) Choose a tuning parameter jn := min{k : (
∑k

j=1 λ̂
2
j )/(

∑n−1
j=1 λ̂2

j ) ≥ r, 1 ≤ k ≤ n− 1} for

a given threshold r, such as r = 0.95.

(3) The random directions are generated by the data-driven Gaussian process h1 :=
∑jn

j=1 εj

×êj , where εj ∼ N (0, s2j ) and s2j is the sample variance of the scores in the jth functional

principal component.

Note that the Gaussian measure µ associated with h1 is degenerate and does not satisfy the

assumptions in Theorem 2. To obtain a non-degenerate Gaussian process, we add a Gaussian

process G that is tightly concentrated around zero, i.e., h1 + G. However, the choice of using

h1 or h1 + G has negligible influence in practice. We use this data-driven process to draw

projection directions f and g in the preceding algorithms.

For Y1, · · · , Yn, we use the same procedure to generate another Gaussian process h2 and

draw random directions g from it. This ensures that the directions are not orthogonal to the

sample data.

§4 Numerical Studies

We evaluate the finite sample performance of the proposed test using Algorithms 3.1 and 3.2

through numerical studies. In Section 4.1, we investigate the impact of the number of random

projections L on the test results. In Section 4.2, we compare our method with the generalization

of distance covariance proposed by [19]. Section 4.3 demonstrates the application of our test to

real data sets. We refer to our test as RPdcov and [19]’s test as Fdcov.

To examine the test’s performance on different spaces, we consider two scenarios in the

simulations. In the first scenario, both X and Y are functional, while in the second scenario,

X is functional and Y is scalar.

We also investigate the potential impact of different underlying processes and distribu-

tions. We use three random processes for functional data: the Wiener process with covari-

ance function Σ(s, t) = min(s, t), the fractional Brownian process with covariance function

Σ(s, t) = 1
2

(
|t|2 + |s|2 − |t− s|2

)
, and the Ornstein-Uhlenbeck process with covariance function

Σ(s, t) = 3 exp(−1
3 (s + t)). All processes are generated by the rproc2fdata function in the f-

da.usc package on the interval [0, 1]. We also consider the Gaussian distribution for scalar data.

Figure 1 displays the realizations of the considered processes.
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Figure 1. Realizations of Wiener, fractional Brownian, and Ornstein-Uhlenbeck processes from
left to right.

4.1 Effect of the Number of Random Projections

This subsection aims to investigate the effect of the number of random projections L on the

proposed test’s performance through simulation studies.

To consider various potential factors that could influence the test’s performance, we design

four scenarios for the simulations, which we present in Example 1.

Example 1.

(1a) Draw X independently from the Wiener, fractional Brownian, and Ornstein-Uhlenbeck

processes, respectively, and draw Y independently from a standard normal distribution.

In this case, X and Y are independent.

(1b) This scenario is identical to scenario (1a), except that Y is drawn independently from a

Wiener process.

(1c) X is a random process, and Y is a random variable. We consider two models: Y =

a⟨X,β⟩+ε and Y = ae⟨X,β⟩+ε, where ε is a standard normal random variable independent

of X, and β is a function. X is generated by the Wiener, fractional Brownian, and

Ornstein-Uhlenbeck processes, respectively, and a = 0.1 and 0.3. In this scenario, X and

Y are dependent.

(1d) X and Y are random processes. We consider models Y = aX + ε and Y = aX2 + ε,

where a ̸= 0 is a real constant and ε is a Wiener process independent of X. In this

scenario, X and Y are dependent. X is generated by the Wiener, fractional Brownian,

and Ornstein-Uhlenbeck processes, respectively.

Note that to demonstrate the proposed method’s performance for different relationships

between X and Y , we consider both linear and nonlinear relationships in scenarios (1c) and

(1d).



HU Zhi-ming, et al. Testing independence in Hilbert spaces using random projection 675

Figure 2. Empirical sizes of RPdcov tests for scenarios (1a) and (1b) with varying number of
projections and sample Sizes.

In the simulations, we vary the number of random projections L from 1 to 30, and consider

sample sizes of 50 and 100, respectively. We generate the random projection directions using the

data-driven method described in Section 3 and perform 300 permutations, following [27]. We

use two significant levels, α = 0.05 and α = 0.1, and carry out 10,000 Monte Carlo repetitions

for each simulated case.

Figure 2 shows the empirical sizes for scenarios (1a) and (1b) when the null hypothesis H0

is true. The empirical rejection rate curves exhibit an L-shape pattern, which is due to the

conservative correction of the false discovery rate. Under H0, the test method ensures that

the rejection rate is at most α. For small L (around 3), the tests calibrate the two levels for

different sample sizes reasonably well. For moderate to large L values, the empirical rejection

rates decrease and stabilize below α.

Figures 3 and 4 show the empirical rejection rates for scenarios (1c) and (1d), respectively.

The figures illustrate that the empirical powers with respect to L are almost constant or exhibit

mild decrements, except for lower values of L, where increasing values of L can provide a signif-

icant power gain. These findings suggest that choosing a relatively small number of projections,

such as L ∈ {1, 2, 3, 4, 5}, and particularly L = 3, can make a reasonable compromise between

correct calibration and power.
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Figure 3. Empirical power of RPdcov tests for scenario (1c) with respect to the number of
projections and sample sizes.

Figure 4. Empirical power of RPdcov tests for scenario (1c) with respect to the number of
projections and sample sizes.
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4.2 Comparison between RPdcov and Fdcov Tests

This subsection compares the proposed RPdcov method with Fdcov, an approach presented

in [19], in terms of power performance and computational time consumption. We consider the

following scenarios in the simulations

Example 2.

(2a) X and Y are independent. X is generated by a Wiener or Ornstein-Uhlenbeck process,

and Y is generated by a standard normal distribution or a Wiener process.

(2b) X is a random process and Y is a random variable. We employ two models: Y =

a⟨X,β⟩ + ε and Y = ae⟨X,β⟩ + ε, where ε is a normal random variable independent

of X and β(t) = sin(2πt). X is generated by Wiener or Ornstein-Uhlenbeck process,

respectively.

(2c) Both X and Y are random processes. We consider models Y = aX + ε and Y = aX2+ ε,

where a is a real constant and ε is a Wiener random process independent of X. X is

generated by Wiener or Ornstein-Uhlenbeck process, respectively.

We choose values of a equal to 0.1, 0.5, and 0.8 to indicate the closeness between X and Y .

We evaluate the performance of RPdcov and Fdcov using 28 settings denoted by Hk,δ, where

k = 0, 1, 2 and δ = 1, · · · , 12. Table 1 explains the meaning of each setting, with H0,1-H0,4,

H1,1-H1,12, and H2,1-H2,12 corresponding to Example 2 (2a), (2b), and (2c), respectively. We

perform 2,000 Monte Carlo repetitions for each setting.

Table 2 presents the empirical rejection rates of different simulation settings with L = 1, 3, 5

(indexed by the subscript of RPdcov), α = 0.05, and n = 100, 200. The results show a consistent

pattern. In the independent scenarios (H0,1, · · · ,H0,4), the empirical sizes are close to the

significance level. For most situations, Fdcov tends to have a larger power than the proposed

RPdcov test. This drop in performance for RPdcov compared to Fdcov is expected due to the

construction of RPdcov, which only measures dependence in a few directions. However, the loss

of power relative to Fdcov is acceptable, especially considering the significantly shorter running

times of RPdcov, particularly for large n. For example, when n = 100 and L = 3, the average

relative loss of power for RPdcov relative to Fdcov is 8.5%, while Fdcov takes 58 times longer

to run than RPdcov. This demonstrates one of the merits of RPdcov, which is its relatively

short running times.

The RPdcov statistic can be computed in O(n log(n)) time, which represents a significant

improvement over the O(n2) required by Fdcov. This reduction in computational complexity

is supported by Figure 5, and the analysis presented in Figure 6 confirms that the computa-

tional order of RPdcov is indeed O(n log(n)). This favorable trade-off between computational

efficiency and test performance makes RPdcov a promising tool for analyzing large datasets.
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Table 1. Simulation scenarios.

Hk,δ Y X model a
H0,1 N(0, 1) wiener independent
H0,2 N(0, 1) OU independent
H0,3 Wiener wiener independent
H0,4 Wiener OU independent
H1,1 scalar wiener Y = a⟨X,β⟩+ ε 0.1
H1,2 scalar wiener Y = a⟨X,β⟩+ ε 0.5
H1,3 scalar wiener Y = a⟨X,β⟩+ ε 0.8
H1,4 scalar OU Y = a⟨X,β⟩+ ε 0.1
H1,5 scalar OU Y = a⟨X,β⟩+ ε 0.5
H1,6 scalar OU Y = a⟨X,β⟩+ ε 0.8
H1,7 scalar wiener Y = ae⟨X,β⟩ + ε 0.1
H1,8 scalar wiener Y = ae⟨X,β⟩ + ε 0.5
H1,9 scalar wiener Y = ae⟨X,β⟩ + ε 0.8
H1,10 scalar OU Y = ae⟨X,β⟩ + ε 0.1
H1,11 scalar OU Y = ae⟨X,β⟩ + ε 0.5
H1,12 scalar OU Y = ae⟨X,β⟩ + ε 0.8
H2,1 functional wiener Y = aX + ε 0.1
H2,2 functional wiener Y = aX + ε 0.5
H2,3 functional wiener Y = aX + ε 0.8
H2,4 functional OU Y = aX + ε 0.1
H2,5 functional OU Y = aX + ε 0.5
H2,6 functional OU Y = aX + ε 0.8
H2,7 functional wiener Y = aX2 + ε 0.1
H2,8 functional wiener Y = aX2 + ε 0.5
H2,9 functional wiener Y = aX2 + ε 0.8
H2,10 functional OU Y = aX2 + ε 0.1
H2,11 functional OU Y = aX2 + ε 0.5
H2,12 functional OU Y = aX2 + ε 0.8

Figure 5. Computational time comparison of RPdcov and Fdcov tests for sample sizes n =
(10, 100, 500, 1000), with L = 3 projections. Measurements obtained using a 2.3 GHz Intel
Core i5 MacBook Pro.
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Table 2. Comparison of empirical sizes and powers for Fdcov and RPdcov tests with 1, 3, and
5 projections, using significance level α = 0.05 and sample sizes n = 100, 200.

Hk,δ

n = 100 n = 200

RPdcov1 RPdcov3 RPdcov5 Fdcov RPdcov1 RPdcov3 RPdcov5 Fdcov

H0,1 0.057 0.045 0.035 0.050 0.054 0.032 0.038 0.059

H0,2 0.043 0.050 0.035 0.048 0.051 0.048 0.047 0.045

H0,3 0.040 0.043 0.036 0.046 0.058 0.040 0.046 0.057

H0,4 0.047 0.044 0.039 0.058 0.055 0.047 0.036 0.041

H1,1 0.679 0.774 0.763 0.804 0.895 0.970 0.969 0.989

H1,2 0.965 1.000 1.000 1.000 0.983 1.000 1.000 1.000

H1,3 0.972 1.000 1.000 1.000 0.978 1.000 1.000 1.000

H1,4 0.595 0.639 0.703 0.738 0.819 0.918 0.937 0.977

H1,5 0.957 0.999 1.000 1.000 0.962 1.000 1.000 1.000

H1,6 0.965 1.000 1.000 1.000 0.972 1.000 1.000 1.000

H1,7 0.706 0.771 0.769 0.836 0.900 0.982 0.981 0.990

H1,8 0.964 1.000 1.000 1.000 0.970 1.000 1.000 1.000

H1,9 0.971 1.000 1.000 1.000 0.983 1.000 1.000 1.000

H1,10 0.634 0.704 0.702 0.776 0.847 0.929 0.949 0.971

H1,11 0.963 1.000 1.000 1.000 0.971 1.000 1.000 1.000

H1,12 0.945 1.000 1.000 1.000 0.981 1.000 1.000 1.000

H2,1 0.141 0.126 0.099 0.153 0.202 0.209 0.187 0.256

H2,2 0.881 0.985 0.986 0.995 0.943 1.000 1.000 1.000

H2,3 0.941 1.000 1.000 1.000 0.966 1.000 1.000 1.000

H2,4 0.127 0.101 0.099 0.135 0.195 0.157 0.179 0.245

H2,5 0.850 0.968 0.975 0.996 0.933 0.999 1.000 1.000

H2,6 0.933 0.997 1.000 1.000 0.949 1.000 1.000 1.000

H2,7 0.057 0.048 0.053 0.075 0.077 0.052 0.063 0.079

H2,8 0.573 0.628 0.635 0.768 0.815 0.937 0.966 0.991

H2,9 0.799 0.947 0.942 0.991 0.906 0.996 0.999 1.000

H2,10 0.046 0.042 0.056 0.059 0.078 0.061 0.051 0.065

H2,11 0.454 0.450 0.457 0.613 0.741 0.851 0.845 0.942

H2,12 0.744 0.877 0.866 0.967 0.861 0.992 0.998 1.000
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Figure 6. Computational time for RPdcov with sample sizes n = (10, 100, 500, 1000) and L = 3
projections. Measurements obtained using a 2.3 GHz Intel Core i5 MacBook Pro.

Figure 7. Spectrum of Absorbance (Left) and Fat Content (Right) for Tecator dataset.

4.3 Real Data Applications

We demonstrate the application of the new test to two datasets described in [10], which

are publicly available in the fda.usc library. Our goal is not to provide a comprehensive case

study, but rather to illustrate the potential utility of the test in assessing the dependence

between variables of interest before modeling the dataset.

Our analysis begins with the classical Tecator dataset, which has been studied in [8] and [1].

This dataset consists of finely chopped pure meat samples with varying levels of protein, fat,

and moisture content, as well as a spectrum of absorbances measured at wavelengths between

850 and 1050 using the near infrared transmission (NIT) principle. Figure 7 illustrates some

units of the original fat and absorbance data. Typically, the objective of analyzing this dataset

is to predict the fat content of a given meat sample using the spectrometric curve or one of

its derivatives. However, before establishing a regression model, it is necessary to determine

whether there is a relationship between the variables. Therefore, testing for dependence is

essential and should be considered as a first step.

We apply our proposed method to test for dependence between the fat content and spec-

trometric data in the Tecator dataset. Using L = 3 projections, we obtain a p-value of 0.003.

Consequently, we conclude that, at a significance level of α = 0.05, there is a significant rela-

tionship between the fat content and the spectrometric curve.
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Figure 8. Daily temperature (right) and log precipitation (left) data averaged over the period
from 1960 to 1994, recorded at 35 locations across Canada. Different colors mean different
locations.

We turn our attention to the Canadian weather dataset, a well-known benchmark dataset

in functional data analysis [21]. Figure 8 depicts the daily temperature and log precipitation

profiles for a geographic location in Canada. The primary objective is to investigate the presence

of a dependence between the two variables. The dataset comprises daily temperature and

precipitation data averaged over the period from 1960 to 1994, recorded at 35 locations across

Canada. Using our proposed method, we test for dependence in the dataset and obtain a p-

value of 0.03 with L = 3 projections. Based on this result, we conclude that, at a significance

level of α = 0.05, there is a significant correlation between the daily precipitation profile and

the daily temperature profile.

§5 Discussion

We have developed a test procedure for assessing independence in complex data represented

in Hilbert spaces, with functional data being a special case. Our procedure involves applying

random projections to the random elements in Hilbert spaces, thereby converting the testing

of independence for random elements into the testing of independence for real variables. This

approach enables the use of more traditional techniques to analyze complex data. We calibrate

the test using permutation and apply the false discovery rate (FDR) method to combine p-

values from L projections for increased power. Our simulation analysis suggests that a choice

of L ∈ {1, · · · , 5}, particularly L = 3, strikes a reasonable balance between maintaining size and

improving power. If the collected data differs from the simulated data, a data-driven method

for selecting the projection number is possible. Based on the empirical power performance in

Section 4.1, it appears that the power becomes invariant after the projection number exceeds

a certain threshold. In practice, one can calculate the p-value using increasing projection

numbers, plot the corresponding p − L curve, and identify a point at which the curve begins

to flatten. Although the proposed test may sacrifice some power compared to the functional

distance covariance test, the significant reduction in computational complexity is noteworthy.

In conclusion, we outline several promising applications of our methodology for testing the

independence of functional data and other forms of complex data. The equivalence between
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testing for the null hypothesis with the original and projected variables provides more options

for assessing independence in functional data, as there are numerous methods available for

testing independence in scalar data. For instance, although distance covariance is a reliable

measure of dependence, it requires a finite first moment; when this condition is not met, the

performance of distance covariance can be less efficient [32]. In such cases, we can use the

projection correlation method proposed by [32] instead. If robustness is a primary concern, a

rank-based method would be a prudent choice. Additionally, for other types of complex data, if

we can construct an appropriate Hilbert space, then the method presented in this paper could

be applied. For example, the color picture data, which are recorded as array with dimension

n×n×3, can be seen as elements in a Hilbert space since we can easily define a inner operation

for array.

Appendix: Technical Proofs

We present several useful lemmas before proving the theoretical results. LetH be a separable

Hilbert space with norm ∥ · ∥ and inner product ⟨·, ·⟩. The space H can be viewed as a metric

space with the metric

d(f, g) = ∥f − g∥ = ⟨f − g, f − g⟩1/2.
The Borel σ-field of H is the smallest σ-field containing all open subsets (relative to the norm-

based metric) of H and is denoted by B(H). The σ-field generated by the inverse images of sets

in B(H) is denoted by σ(X), and the smallest σ-field containing a class C of sets is denoted by

σ(C ). Let M be the class of all sets of the form {x ∈ H : ⟨x, f⟩ ∈ C}, where f ∈ H and C is an

open subset of R. We restate Theorems 7.1.1 and 7.1.2 in [14] as Lemmas 1 and 2, respectively.

Lemma 1. The σ-field σ(M ) is identical to B(H).

Lemma 2. Let X be a mapping from a probability space (Ω,F ,B) into (H,B(H)). Then,

(1) X is measurable if ⟨X, f⟩ is measurable for all f ∈ H, and

(2) if X is measurable, its distribution is uniquely determined by the (marginal) distributions

of ⟨X, f⟩ over f ∈ H.

We also state a useful result on page 251 of [29] as Lemma 3.

Lemma 3. If limn→∞ Xn = X and limn→∞ Yn = Y in probability, and each Xn is independent

of Yn, then X and Y are independent.

The support Sµ of a probability measure µ in a Hilbert space is defined as the smallest

closed (measurable) set with µ-measure 1. The following lemma is derived from results in [30].

Lemma 4. Assuming µ is a non-degenerate Gaussian measure on a separable Hilbert space H,

the support Sµ of µ is H.

Proof of Theorem 1. We prove the following equivalences

1 ⇒ 2: Since X and Y are independent, and ⟨X, f⟩ is a measurable function of X, it follows
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that ⟨X, f⟩ and Y are independent.

2 ⇒ 1: For any A ∈ B(H1) and B ∈ B(H2), by Lemma 1, we have A ∈ σ(MX), where

MX is the class of all sets of the form {x ∈ H1 : ⟨x, f⟩ ∈ C} for f ∈ H1 and C is an open

subset of R. For any A′ ∈ MX , A′ has the form A = {x ∈ H1 : ⟨x, f⟩ ∈ C} for some f ∈ H1

and some open subset C of R. Since ⟨X, f⟩ and Y are independent for any f ∈ H1, we have

P(X ∈ A′, Y ∈ B) = P(⟨X, f⟩ ∈ C, Y ∈ B) = P(⟨X, f⟩ ∈ C)P(Y ∈ B) = P(X ∈ A′)P(Y ∈ B).

Since A is an element of the sigma field generated by MX , it also hold that P(X ∈ A, Y ∈
B) = P(X ∈ A)P(Y ∈ B). Thus X and Y are independent.

1 ⇔ 3: The proof is the same as 1 ⇔ 2.

1 ⇒ 4: Since X and Y are independent, and ⟨X, f⟩ and ⟨Y, g⟩ are measurable functions of

X and Y , respectively, it follows that ⟨X, f⟩ and ⟨Y, g⟩ are independent for any f ∈ H1 and

g ∈ H2.

4⇒ 1: For anyA ∈ B(H1) andB ∈ B(H2), by Lemma 1, we haveA ∈ σ(MX) andB ∈ σ(MY ),

where MX is the class of all sets of the form {x ∈ H1 : ⟨x, f⟩ ∈ C} for f ∈ H1 and C is an open

subset of R, and MY is defined similarly. For any A′ ∈ MX and B′ ∈ MY , since ⟨X, f⟩ and

⟨Y, g⟩ are independent for any f ∈ H1 and g ∈ H2, we have P(X ∈ A′, Y ∈ B′) = P(⟨X, f⟩ ∈
C1, ⟨Y, f⟩ ∈ C2) = P(⟨X, f⟩ ∈ C1)P(⟨Y, f⟩ ∈ C2) = P(X ∈ A′)P(Y ∈ B′), where C1 and C2 are

open sets in R. Since A is an element of the sigma field generated by MX and B is an element

of the sigma field generated by MY , it also hold that P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Thus, X and Y are independent.

Proof of Theorem 2. We prove the following

(1) If X and Y are independent, then by Theorem 1 (2), ⟨X, f⟩ and Y are independent for

any f ∈ H1. Thus, µ1(M1) = 1. Now if µ1(M1) = 1, then by Lemma 4 and the definition of

support, the closure M̄1 of M1 is H1. For any f ∈ H1, since M1 is dense in H1, there exists

a sequence {fn}, where fn ∈ M1, such that fn → f as n → ∞. This yields ⟨fn, X⟩ → ⟨f,X⟩
as n → ∞. By the definition of M1, ⟨fn, X⟩ and Y are independent. Making use of Lemma 3,

we obtain that ⟨X, f⟩ and Y are independent for any f ∈ H1. According to Theorem 1 (2), X

and Y are independent.

(2) See proof in (1).

(3) If X and Y are independent, then by Theorem 1 (4), ⟨X, f⟩ and ⟨Y, g⟩ are independent for

any f ∈ H1 and g ∈ H2. Thus, µ1×µ2(M) = 1. Now if µ1×µ2(M) = 1, then by Lemma 4 and

the definition of support, the closure M̄ of M is H1 ×H2. For any f ∈ H1 and g ∈ H2, there

exist sequences {fk} and {gk} such that fk ∈ M1, gk ∈ M2, fk → f , and gk → g as k → ∞.

This yields ⟨fn, X⟩ → ⟨f,X⟩ and ⟨gk, Y ⟩ → ⟨g, Y ⟩ as k → ∞. By the definition of M, ⟨fk, X⟩
and ⟨gk, Y ⟩ are independent. By Lemma 3, we obtain that ⟨X, f⟩ and ⟨Y, g⟩ are independent

for any f ∈ H1 and g ∈ H2. According to Theorem 1 (4), X and Y are independent.

Proof of Corollary 2. After applying random projection, the random functions X and Y

are transformed into real variables ⟨X, f⟩ and ⟨Y, g⟩. The test statistic is then the same as the

one used in [27]. For the proof of Theorem 4, please refer to [27] or [19].
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