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Testing independence in Hilbert spaces using random

projection

HU Zhi-ming!*? JIANG Tao*!* XU Jin-feng?

Abstract. As data becomes increasingly complex, measuring dependence among variables is
of great interest. However, most existing measures of dependence are limited to the Euclidean
setting and cannot effectively characterize the complex relationships. In this paper, we propose
a novel method for constructing independence tests for random elements in Hilbert spaces,
which includes functional data as a special case. Our approach is using distance covariance of
random projections to build a test statistic that is computationally efficient and exhibits strong
power performance. We prove the equivalence between testing for independence expressed on the
original and the projected covariates, bridging the gap between measures of testing independence
in Euclidean spaces and Hilbert spaces. Implementation of the test involves calibration by
permutation and combining several p-values from different projections using the false discovery
rate method. Simulation studies and real data examples illustrate the finite sample properties

of the proposed method under a variety of scenarios.

§1 Introduction

Recent technological advancements in science and engineering have resulted in an abundance
of complex data structures, such as high-dimensional, nonlinear, and infinite-dimensional da-
ta including functional data. Measuring and testing dependence among such complex data is
crucial for statistics, machine learning, and scientific discovery. Testing for independence has
long been a fundamental problem in statistics, and several desirable methods have been pro-
posed, including kernel-based criteria [7, 11, 12, 25, 31], distance correlation [26, 27], maximal

information coefficient [22], copula based measures [23, 24], projection correlation [13, 32], Ball
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covariance proposed recently [20], and others [17, 18, 28]. However, many of these techniques
were developed in the Euclidean setting and may not be directly applicable to complex data,
particularly functional data with infinite dimension. Therefore, it is crucial to establish an

efficient procedure for testing independence in these complex datasets.

Distance correlation [26, 27] is a widely used method for testing independence due to it-
s desirable theoretical properties and powerful performance in numerical studies. It has also
been extended to metric spaces [19], making it a useful tool for detecting dependence among
complex data including functional data, which can be viewed as random elements in Hilbert
space. Despite these advantages, the direct computation of distance correlation takes O(n?)
time, where n is the sample size, and the complexity of data often makes the computation of
pairwise distances between sample points prohibitively time-consuming. This issue is particu-
larly problematic for complex data, where the computation cost of distance covariance could
be substantial and limit its applicability in practice. Therefore, achieving a favorable trade-off
between computational efficiency and test performance for distance covariance in complex data
is crucial. While it may be difficult to simultaneously achieve both goals, sacrificing some pow-
er performance to increase computational efficiency may be necessary. Finding such a balance
would have a direct impact on the practical applicability of distance covariance for complex
data.

The aim of this paper is two-fold: to bridge the gap between measures of testing inde-
pendence in Euclidean spaces and Hilbert spaces [6], and to establish a method that reduces
computational complexity while maintain desirable power performance. We consider testing
the independence of two random elements X and Y in Hilbert spaces H; and Hs, respectively,

Hj : X and Yare independent vSs. H; : otherwise (1)

by randomly projecting them onto univariate variables X/ and Y9. We show in Section 2 that
testing independence of X and Y is equivalent to testing independence of their projections. As
a result, we can measure dependence between random elements in Hilbert spaces by measuring
their projections, and apply methods suitable for testing independence in Euclidean settings to
Hilbert spaces including functional data.

To reduce computational complexity, we combine the projection procedure with distance
covariance. Randomly projecting onto a number L of different directions and merging the
resulting p-values using the False Discovery Rate (FDR) [2], we account for a higher power
while reducing the influence of individual directions. This method has a time complexity of
O(nlog(n)) using efficient numerical algorithms [16], and simulation studies show competitive
performance with small values of L. This approach builds upon the idea of combining random
projection and distance covariance used in [15] for random vectors, although their method
includes constant dependent on vector dimension, making it unsuitable for functional data
with infinite dimension. We generalize this idea for functional data using a different strategy
to overcome the dimensionality issue. While distance covariance is a special choice within our

framework, other methods for testing independence can be used instead.

The paper is organized as follows. Section 2.1 provides a brief review of distance covariance,
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its relevant properties, and the fast algorithm for its computation. Section 2.2 shows how the
independence of two random elements is equivalent to the independence of their projections
and establishes a testing procedure for independence based on distance covariance and random
projections in Section 2.3. Section 3 describes the implementation of the test and other practical
considerations. In Section 4, we conduct simulations to illustrate the finite sample properties
of the test and apply it to some real datasets. Finally, Section 5 provides some concluding
remarks. All technical proofs are provided in the Appendix.

§2 Theoretical Framework and Methodology

In functional data analysis, functions or curves can be viewed as elements in L?([0,1]), a
space consisting of all square integrable functions defined on the interval [0, 1], or as realizations
of stochastic processes. However, these perspectives do not always coincide, unless under certain
joint measurability assumptions [14]. In this article, we adopt the random element perspective,
which links functional data to ordinary data in Euclidean spaces, since Euclidean spaces are
special cases of Hilbert spaces. We will establish a random projection distance covariance in
this setting.

2.1 Distance Covariance Estimation

We provide a brief introduction to distance covariance, as proposed by [27]. Let Z and W
be two random vectors with dimensions p and ¢, respectively, and with characteristic functions
fz(t) and fw (s). The joint characteristic function is denoted by fz w (t,s). If the first moments
of Z and W are finite, then the squared distance covariance between Z and W is defined as the
weighted Lo distance between fz w (¢, s) and fz(t)fw (s):

vz - / [ Faw(t.s) = FsOFw () P o
RP+4a

CpCq |t |:117+p| s |<11+q

where |-|, is the Euclidean norm in R?, ¢, = W, Cq = W, and T'(+) is the

complete gamma function. The nonnegative value V(Z, W) is known as the distance covariance
(dCov).

The distance covariance has the following important property, established in Theorem 3 of
[27]: If E(|Z], 4+ |[W],) < oo, then Z and W are independent if and only if V?(Z, W) = 0.

If E[Z]2 < oo and E|W|2 < oo, then the distance covariance between Z and W can be

expressed as
V2(2,W) =E[|Z - Z'[,|W — W'|] + E|Z - Z'|,E|W — W',
- 2E[|Z - Z/|p‘W - W/l|q]7
where (Z, W), (Z ,W'),and (Z",W") arei.i.d. Thus, an empirical distance covariance V2(Z, W)
can be defined based on a sample (Z, W) = {(Z, W) : k = 1,--- ,n} from the joint distribution
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of random vectors Z € RP and W € R?, where

1o 1 «
aij = |Zi = Zjlp, @i = dau,  aj= -~ >y,
1=1 1=1
1 n
.._72 Z Ak, Aij:aij—ai.—a.j +a..,
Eyl=1
i,7 = 1,--- ,n, and similarly for W. The squared empirical distance covariance is then given
by
V2(2,W) Z AijBij, (2)
i,j=1

where b;; = |W; — Wj\q and B;; = b;; — b;. — b.j +b.,4,7=1,--- ,n. Computing the sample
distance covariance typically requires O(n?) pairwise distance calculations and O(n?) memory
units for storing them. With the large datasets commonly encountered in the era of big data,
it is often impractical to implement an O(n?) algorithm on a personal computer.

Although computing the distance covariance for Z € R and W € R typically requires O(n?)
pairwise distance calculations, a fast algorithm is available for this case in [16]. Using the same
notation a;; and b;; as before, but now for (Z;, W;) € R x R, it has been shown (Szekely and
Rizzo, 2014; Huo and Szekely, 2016) that the unbiased estimator of V2(Z, W) is given by

A(Z, W) = Z a;jbij

175]

a.b.,
_n(n—Z Z‘“b - Dmn—-2)n-3) ®)

This estimator can be computed with the fast algorithm proposed in [16], which has a

computational complexity of O(nlogn) and storage requirements of O(n). The algorithm is
implemented in the ‘dcov2d’ function in the energy package.

2.2 Projection Representation of Independent Random Elements in
Hilbert Space

In this subsection, we explore the connection between independence of random elements in
Hilbert spaces and the independence of their projections. Throughout this paper, we consider
a separable Hilbert space H with associated norms || - || and inner products (-,-). Let %(H)
denote the Borel o-algebra of H, generated by the open sets, and let (€2, &, P) be a probability
space. We define a H-valued random element X as a mapping from 2 to H that is measurable
with respect to the o-algebras & and %(H). This definition is analogous to the definition of
independence in Banach spaces [29].

For ease of reading and convenience of proofing we review the definition of independence of
two random elements X and Y, taking values in Hilbert spaces H; and 5. Random elements
X and Y are independent if P(X € A,Y € B) = P(X € A)P(Y € B) for any A € B(H1)
and B € %B(H3). Based on this definition, we present the following theorem, which establishes
a relationship between the random elements and their projections. The Theorem 1 (4) is the
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result of Lemma 1 in [18]. For easy reference, we restate this conclusion and give a different

proof in Appendix.

Theorem 1. Suppose that X and Y are random elements in Hilbert spaces H1 and Ho respec-
tively, then the following statements are equivalent

(1) X and Y are independent;

(2) (X, f) and'Y are independent for all f € Hq;

(3) X and (Y,g) are independent for all g € Ha;

(4) (X, f) and (Y, g) are independent for all f € Hy and g € Ha.

According to the property of distance covariance and Theorem 1, we can readily obtain the
following result, which is analogous to Lemma 4.1 in [15].

Corollary 1. Suppose that X and Y are random elements in Hilbert spaces Hi and Ho re-
spectively. If their first order moments exist, then X and Y are independent if and only if
V2((X, £),(Y,9)) =0 for all f € Hy and g € Hs.

2.3 Distance Covariance of Random Projections

We provide a detailed procedure for testing the hypothesis (1) for two functional random
variables based on the results in Section 2.2. For convenience, we use X7/ and Y? to denote
(X, f) and (Y, g), respectively. Based on Theorem 2, the null hypothesis Hy can be stated as
follows

H(l): X7 and Y9 are independent for all f € H, and g € Ho.

This hypothesis includes a family of sub-hypotheses of independence of real-valued random
variables. We can then define a total measure for the dependence as the integrated distance

covariance

70xY) = [ [V Y dais) (4)
where pp and pg are nondegenerate Gaussian measures on H; and Ha, respectively. According
to Corollary 1, if H(; holds and the conditions are satisfied, we have T(X,Y) = 0.

Suppose that we have a sample (X1,Y7), -, (X, Ys) € Hi X Ha, then the empirical version

of T(X,Y) is given by

7,00Y) = [ [V YO atdy).
where V2(Xf,Y9) is defined by (2). Although T,,(X,Y) can be used as the test statistic for

(1), it is difficult to compute directly. One possible approach is to use Monte Carlo simulation

to approximate the integral. Specifically, we can compute the empirical estimate as

1 my m2
TMO(X,Y) = V2(xTi vy
MO = i Y VYY)
where f1,---, fm, and g1, - - - , gm, are directions randomly generated by 11 and g, respectively.

This estimate approximates T, (X,Y) well when the numbers m; and mgy are large enough,

although it requires a significant amount of computation.
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Fortunately, the following theorem provides a feasible solution.

We define M7 as the set of all f € #H; such that (X, f) and Y are independent, M5 as the set
of all g € Hs such that X and (Y, g) are independent, and M as the set of all (f,g) € H1 x Ha
such that (X, f) and (Y, g) are independent. We denote the product measure on H; x Ho as
By X p2.

The following theorem establishes the relationship between the independence of random

elements in Hilbert spaces and the measures of the sets My, M5, and M.

Theorem 2. Let puy and po be non-degenerate Gaussian measures on Hi and Ha, respectively.
Then,

(1) X and Y are independent if and only if 1 (My) = 1;

(2) X and Y are independent if and only if po(Msz) = 1;

(8) X and Y are independent if and only if py X pa(M) = 1.

Remark 1. In [9], Theorem 4 presents a similar result for random elements in Banach spaces.
Their theorem is based on Theorem 1 in [5]. However, their conditions are much stronger than
ours. They require that all absolute values of the random element’s moments are finite, i.e.,
my, = [||z||["P(dz) < oo for n = 1,2,---, and the Carleman’s condition must be satisfied,
D>t mn ™ = co.

According to Theorem 2, to test the null hypothesis Hy: X and Y are independent, we can
randomly select f € Hi and g € Ha using p1 and po, respectively, and then test the projected
null hypothesis H({g : X7 and Y9 are independent.

Remark 2. If X is a random function andY is a variable, we can test the independence of X
and Y by randomly selecting a projection of X and leaving Y unchanged. In other words, we
test the hypothesis Hg, where f is randomly selected from Hi using .

When both X and Y are random functions, we test the hypothesis H({g instead of Hy. To
do so, we randomly select f € Hy and g € Ho using py and po, respectively, and then test the
hypothesis H({g : XF and Y9 are independent.

To test hypothesis H(J; 9, the test statistic we consider is
IL, = n- Ay (X7, YY), (5)
where A,, is defined in (3). Since II,, is the squared distance covariance of X/ and Y9, and X/

and Y9 are univariate, similar to Corollary 2 in [27], we have the following property for the test

statistic 11,,.
Corollary 2. If X and Y are independent, the asymptotic distribution of II,, is given by
o0
I, -5 3" nz2,
i=1

where Z? ~ x3 are i.i.d. random variables and )\; are mon-negative constants that depend on
the distribution of (X,Y).
If X7 and Y9 are dependent, then II,, tends to infinity almost surely as n — oo.
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§3 Testing Procedure for Independence

Testing H({ 9 instead of Hy has the advantage that the random variables are real, but it may
result in a loss of power and vary for different projections. To address these issues, we follow [4]
and sample several directions f1,--- , fr and g1, - ,gr from H; and Ho, respectively. We test
the projected hypotheses Hglgl, e ,H({LQL and combine the resulting p-values to control the
final rejection rate to be at most o under Hy. We use the FDR method [2, 3] for this purpose.

The testing procedure is described in the following algorithm

(1) Let II,, denote a test for checking Hg 9 with f chosen by a non-degenerate Gaussian
measure g1 on Hy and g chosen by a non-degenerate Gaussian measure po on Hs.

(2) Calibrate the test statistic for Hg 9 by randomly permuting the index of the Y sample.

(3) Sample L directions f1,---, fr, and ¢1,--- , gy from H; and Hs, respectively.

(4) For each i =1,..., L, test Hg“]” using II,, and record the corresponding p-value.

(5) Apply the FDR method to the p-values to control the final rejection rate to be at most
o under Hy.

Algorithm 3.1 (Permutation Calibration for H({g)

(1) Compute the test statistic II,, = A,(X/,Y9) using the formula (3) for the sample
(X Y)Y,

(2) For each /, generate a random permutation Y*9¢ = (Yl(l)g7~-~ ,Yél)g) of the vector
YI=(Y?,...,V9).

(3) Compute the test statistic V; = A, (X7, Y*9¢) using the formula (3) for X/ and Y*9-*.

(4) Repeat steps (2) and (3) for all £ = 1,---, B. Reject Hy if the p-value is less than a
prescribed level a, where the p-value is given by
Sy 11, < Vi)

1+ B '

Note that under the hypothesis H({ 9 and random permutation, X/ and Y*9¢ are indepen-

dent.

p-value =

We use the FDR method [2] to control the rejection rate to be at most o under Hp, where

« is the significance level. The following algorithm is used to choose the final p-value.
Algorithm 3.2 (Testing Procedure for Hy)

(1) For i =1,---, L, compute the p-value p; of Hgig” using Algorithm 3.1.

(2) Set the final p-value of Hy as min;— ... 1. %p(i), where p1) <--- < p(py.

The choice of random projection directions is critical since it can affect the power of the test.
Drawing directions that are almost orthogonal to the sample data can lead to unreliable results.
To avoid this issue, we use a data-driven method proposed by [4]. We need some preparation

before the statement. For a random function X(t), 2 € T, where T is an interval of R, the

mean and covariance function of X (¢) are defined

u(t) = EX(1), clt,s) = E[(X(t) — u())(X(s) — u(s))]
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The covariance operator C' of covariance function c(t, s) is

C(f) = [ elto)f(s)ds.f < LA(T),

where L?(T) means the space of square integral functions. The pairs (A1, e1), (A2, €2),... are
the eigenelements of X (or of the covariance function ¢ ). The empirical eigenpairs 5\j, éj)}
are estimates of (A1,e1), (A2, e2), ..., which can be computed using the sample X7, - -, X, (See
Chapter 3 of [1] for details). The procedure of choosing random directions is

(1) Compute the empirical eigenpairs {(;\j7 é;)} using the sample Xq,--- , X,,.

(2) Choose a tuning parameter j, := min{k : (Z?Zl 5\5)/(23:11 5\?) >r,1<k<n-—1}for
a given threshold r, such as r = 0.95.

(3) The random directions are generated by the data-driven Gaussian process hy := Z?’;l €;
xé;j, where g; ~ N (O,s?) and 53 is the sample variance of the scores in the jth functional

principal component.

Note that the Gaussian measure p associated with h; is degenerate and does not satisfy the
assumptions in Theorem 2. To obtain a non-degenerate Gaussian process, we add a Gaussian
process G that is tightly concentrated around zero, i.e., hy + G. However, the choice of using
hi1 or hy + G has negligible influence in practice. We use this data-driven process to draw
projection directions f and g in the preceding algorithms.

For Yi,---,Y,, we use the same procedure to generate another Gaussian process hg and
draw random directions ¢ from it. This ensures that the directions are not orthogonal to the

sample data.

§4 Numerical Studies

We evaluate the finite sample performance of the proposed test using Algorithms 3.1 and 3.2
through numerical studies. In Section 4.1, we investigate the impact of the number of random
projections L on the test results. In Section 4.2, we compare our method with the generalization
of distance covariance proposed by [19]. Section 4.3 demonstrates the application of our test to
real data sets. We refer to our test as RPdcov and [19]’s test as Fdcov.

To examine the test’s performance on different spaces, we consider two scenarios in the
simulations. In the first scenario, both X and Y are functional, while in the second scenario,

X is functional and Y is scalar.

We also investigate the potential impact of different underlying processes and distribu-
tions. We use three random processes for functional data: the Wiener process with covari-
ance function X(s,t) = min(s,t), the fractional Brownian process with covariance function
S(s,t) = 3 (|t|* + s> — |t — s|?), and the Ornstein-Uhlenbeck process with covariance function
S(s,t) = 3exp(—1(s +t)). All processes are generated by the rproc2fdata function in the f-
da.usc package on the interval [0, 1]. We also consider the Gaussian distribution for scalar data.
Figure 1 displays the realizations of the considered processes.
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wiener process fbrownian process OU process

i)

X
X

1 t 1

Figure 1. Realizations of Wiener, fractional Brownian, and Ornstein-Uhlenbeck processes from
left to right.

4.1

Effect of the Number of Random Projections

This subsection aims to investigate the effect of the number of random projections L on the

proposed test’s performance through simulation studies.

To consider various potential factors that could influence the test’s performance, we design

four scenarios for the simulations, which we present in Example 1.

Example 1.

(1a)

Draw X independently from the Wiener, fractional Brownian, and Ornstein-Uhlenbeck
processes, respectively, and draw Y independently from a standard normal distribution.
In this case, X and Y are independent.

This scenario is identical to scenario (la), except that Y is drawn independently from a
Wiener process.

X is a random process, and Y is a random variable. We consider two models: Y =
a({X,B)+eand Y = aelXP) t¢, where ¢ is a standard normal random variable independent
of X, and 3 is a function. X is generated by the Wiener, fractional Brownian, and
Ornstein-Uhlenbeck processes, respectively, and a = 0.1 and 0.3. In this scenario, X and
Y are dependent.

X and Y are random processes. We consider models Y = aX + ¢ and Y = aX? + ¢,
where a # 0 is a real constant and e is a Wiener process independent of X. In this
scenario, X and Y are dependent. X is generated by the Wiener, fractional Brownian,

and Ornstein-Uhlenbeck processes, respectively.

Note that to demonstrate the proposed method’s performance for different relationships

between X and Y, we consider both linear and nonlinear relationships in scenarios (1c) and

(1d).
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Figure 2. Empirical sizes of RPdcov tests for scenarios (1a) and (1b) with varying number of
projections and sample Sizes.

In the simulations, we vary the number of random projections L from 1 to 30, and consider
sample sizes of 50 and 100, respectively. We generate the random projection directions using the
data-driven method described in Section 3 and perform 300 permutations, following [27]. We
use two significant levels, a = 0.05 and o = 0.1, and carry out 10,000 Monte Carlo repetitions

for each simulated case.

Figure 2 shows the empirical sizes for scenarios (1a) and (1b) when the null hypothesis Hy
is true. The empirical rejection rate curves exhibit an L-shape pattern, which is due to the
conservative correction of the false discovery rate. Under Hj, the test method ensures that
the rejection rate is at most a. For small L (around 3), the tests calibrate the two levels for
different sample sizes reasonably well. For moderate to large L values, the empirical rejection

rates decrease and stabilize below «.

Figures 3 and 4 show the empirical rejection rates for scenarios (1c) and (1d), respectively.
The figures illustrate that the empirical powers with respect to L are almost constant or exhibit
mild decrements, except for lower values of L, where increasing values of L can provide a signif-
icant power gain. These findings suggest that choosing a relatively small number of projections,
such as L € {1,2,3,4,5}, and particularly L = 3, can make a reasonable compromise between

correct calibration and power.
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4.2 Comparison between RPdcov and Fdcov Tests

This subsection compares the proposed RPdcov method with Fdcov, an approach presented
in [19], in terms of power performance and computational time consumption. We consider the
following scenarios in the simulations

Example 2.

(2a) X and Y are independent. X is generated by a Wiener or Ornstein-Uhlenbeck process,
and Y is generated by a standard normal distribution or a Wiener process.

(2b) X is a random process and Y is a random variable. We employ two models: Y =
a(X,B) + e and Y = ae'XB) 4+ ¢ where ¢ is a normal random variable independent
of X and fS(t) = sin(2nt). X is generated by Wiener or Ornstein-Uhlenbeck process,
respectively.

(2¢) Both X and Y are random processes. We consider models Y = aX +¢ and Y = aX? +¢,
where a is a real constant and ¢ is a Wiener random process independent of X. X is

generated by Wiener or Ornstein-Uhlenbeck process, respectively.

We choose values of a equal to 0.1, 0.5, and 0.8 to indicate the closeness between X and Y.
We evaluate the performance of RPdcov and Fdcov using 28 settings denoted by H}, 5, where
k=0,1,2and 6 = 1,---,12. Table 1 explains the meaning of each setting, with Hy 1-Ho 4,
Hiy1-Hi 12, and Hs 1-Hj 12 corresponding to Example 2 (2a), (2b), and (2c), respectively. We
perform 2,000 Monte Carlo repetitions for each setting.

Table 2 presents the empirical rejection rates of different simulation settings with L = 1,3,5
(indexed by the subscript of RPdcov), a = 0.05, and n = 100, 200. The results show a consistent
pattern. In the independent scenarios (Ho1,--- ,Hp4), the empirical sizes are close to the
significance level. For most situations, Fdcov tends to have a larger power than the proposed
RPdcov test. This drop in performance for RPdcov compared to Fdcov is expected due to the
construction of RPdcov, which only measures dependence in a few directions. However, the loss
of power relative to Fdcov is acceptable, especially considering the significantly shorter running
times of RPdcov, particularly for large n. For example, when n = 100 and L = 3, the average
relative loss of power for RPdcov relative to Fdcov is 8.5%, while Fdcov takes 58 times longer
to run than RPdcov. This demonstrates one of the merits of RPdcov, which is its relatively
short running times.

The RPdcov statistic can be computed in O(nlog(n)) time, which represents a significant
improvement over the O(n?) required by Fdcov. This reduction in computational complexity
is supported by Figure 5, and the analysis presented in Figure 6 confirms that the computa-
tional order of RPdcov is indeed O(nlog(n)). This favorable trade-off between computational

efficiency and test performance makes RPdcov a promising tool for analyzing large datasets.
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Table 1. Simulation scenarios.

Hk,(; Y X model a
Ho N(0,1) wiener independent

Hp 2 N(0,1) ou independent

Ho 3 Wiener wiener independent

Ho .4 Wiener ou independent

Hi scalar wiener Y =a(X,8)+¢ 0.1
Hip scalar wiener Y =a(X,8)+e 0.5
Hi3 scalar wiener Y =a(X,8) 4+ 0.8
Hia scalar ou Y =a(X,8)+e 0.1
His scalar ou Y=a(X,8)+e 0.5
Hig scalar Oou Y=a(X,8)+e 0.
Hy 7 scalar wiener Y =aefX:8) +¢ 0.1
Hyg scalar wiener Y =aelXhB) +¢ 05
Hiyg scalar wiener Y = aelXP) +e 0.8
Hi10 scalar ou Y =aelXP 1+ 0.1
Hy 11 scalar ou Y =aefXh) +¢ 05
Hq12  scalar ou Y =aefXh) +¢ 0.8
Hs 1 functional wiener Y =aX +¢ 0.1
Hs 2 functional wiener Y =aX +¢ 0.5
Hjy 3 functional wiener Y =aX +¢ 0.8
Hs 4 functional OU Y=aX+¢ 0.1
Hy 5 functional OU Y=aX+¢ 0.5
Hy ¢ functional OU Y=aX+¢ 0.8
Ha 7 functional wiener Y =aX?2+¢ 0.1
Hs g functional wiener Y =aX2+¢ 0.5
Hy g functional wiener Y =aX2+¢ 0.8
Hs 10 functional OU Y =aX?2+¢ 0.1
Hs 11 functional OU Y =aX?+e 0.5
Hs 12 functional OU Y =aX?2+¢ 0.8

Vol. 40, No. 3

Figure 5. Computational time comparison of RPdcov and Fdcov tests for sample sizes n =
(10,100, 500, 1000), with L = 3 projections. Measurements obtained using a 2.3 GHz Intel

Core 15 MacBook Pro.
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Table 2. Comparison of empirical sizes and powers for Fdcov and RPdcov tests with 1,3, and
5 projections, using significance level & = 0.05 and sample sizes n = 100, 200.

n =100 n = 200
Hi. s RPdcovy, RPdcovs RPdcovs Fdcov RPdcovy, RPdcovs RPdcovs Fdcov
Hoy 1 0.057 0.045 0.035 0.050 0.054 0.032 0.038 0.059
Hy 0.043 0.050 0.035 0.048 0.051 0.048 0.047 0.045
Hy s 0.040 0.043 0.036 0.046 0.058 0.040 0.046 0.057
Hy 4 0.047 0.044 0.039 0.058 0.055 0.047 0.036 0.041
Hy, 0.679 0.774 0.763 0.804 0.895 0.970 0.969 0.989
Hy 0.965 1.000 1.000 1.000 0.983 1.000 1.000 1.000
Hy 3 0.972 1.000 1.000 1.000 0.978 1.000 1.000 1.000
Hy4 0.595 0.639 0.703 0.738 0.819 0.918 0.937 0.977
Hys 0.957 0.999 1.000 1.000 0.962 1.000 1.000 1.000
Hig 0.965 1.000 1.000 1.000 0.972 1.000 1.000 1.000
H, 7 0.706 0.771 0.769 0.836 0.900 0.982 0.981 0.990
Hig 0.964 1.000 1.000 1.000 0.970 1.000 1.000 1.000
Hyg 0.971 1.000 1.000 1.000 0.983 1.000 1.000 1.000
Hi 19 0.634 0.704 0.702 0.776 0.847 0.929 0.949 0.971
Hy 1 0.963 1.000 1.000 1.000 0.971 1.000 1.000 1.000
Hi 12 0.945 1.000 1.000 1.000 0.981 1.000 1.000 1.000
Hy 4 0.141 0.126 0.099 0.153 0.202 0.209 0.187 0.256
Hj 0.881 0.985 0.986 0.995 0.943 1.000 1.000 1.000
Hy 3 0.941 1.000 1.000 1.000 0.966 1.000 1.000 1.000
Hy 4 0.127 0.101 0.099 0.135 0.195 0.157 0.179 0.245
Hs 5 0.850 0.968 0.975 0.996 0.933 0.999 1.000 1.000
Hy¢ 0.933 0.997 1.000 1.000 0.949 1.000 1.000 1.000
Hy 7 0.057 0.048 0.053 0.075 0.077 0.052 0.063 0.079
Hyg 0.573 0.628 0.635 0.768 0.815 0.937 0.966 0.991
Hy g 0.799 0.947 0.942 0.991 0.906 0.996 0.999 1.000
Hs 1 0.046 0.042 0.056 0.059 0.078 0.061 0.051 0.065
Hs 11 0.454 0.450 0.457 0.613 0.741 0.851 0.845 0.942
Hs 12 0.744 0.877 0.866 0.967 0.861 0.992 0.998 1.000
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f—

Figure 6. Computational time for RPdcov with sample sizes n = (10, 100, 500, 1000) and L = 3
projections. Measurements obtained using a 2.3 GHz Intel Core i5 MacBook Pro.

Spectrometric curves fat

fa

Aosotances

Wavelength (mm)  index

Figure 7. Spectrum of Absorbance (Left) and Fat Content (Right) for Tecator dataset.

4.3 Real Data Applications

We demonstrate the application of the new test to two datasets described in [10], which
are publicly available in the fda.usc library. Our goal is not to provide a comprehensive case
study, but rather to illustrate the potential utility of the test in assessing the dependence
between variables of interest before modeling the dataset.

Our analysis begins with the classical Tecator dataset, which has been studied in [8] and [1].
This dataset consists of finely chopped pure meat samples with varying levels of protein, fat,
and moisture content, as well as a spectrum of absorbances measured at wavelengths between
850 and 1050 using the near infrared transmission (NIT) principle. Figure 7 illustrates some
units of the original fat and absorbance data. Typically, the objective of analyzing this dataset
is to predict the fat content of a given meat sample using the spectrometric curve or one of
its derivatives. However, before establishing a regression model, it is necessary to determine
whether there is a relationship between the variables. Therefore, testing for dependence is
essential and should be considered as a first step.

We apply our proposed method to test for dependence between the fat content and spec-
trometric data in the Tecator dataset. Using L = 3 projections, we obtain a p-value of 0.003.
Consequently, we conclude that, at a significance level of o = 0.05, there is a significant rela-

tionship between the fat content and the spectrometric curve.
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log precipitation: 1980—2009 (mean) Temperature: 1980—2009 (mean)

Figure 8. Daily temperature (right) and log precipitation (left) data averaged over the period
from 1960 to 1994, recorded at 35 locations across Canada. Different colors mean different
locations.

We turn our attention to the Canadian weather dataset, a well-known benchmark dataset
in functional data analysis [21]. Figure 8 depicts the daily temperature and log precipitation
profiles for a geographic location in Canada. The primary objective is to investigate the presence
of a dependence between the two variables. The dataset comprises daily temperature and
precipitation data averaged over the period from 1960 to 1994, recorded at 35 locations across
Canada. Using our proposed method, we test for dependence in the dataset and obtain a p-
value of 0.03 with L. = 3 projections. Based on this result, we conclude that, at a significance
level of @ = 0.05, there is a significant correlation between the daily precipitation profile and
the daily temperature profile.

§5 Discussion

We have developed a test procedure for assessing independence in complex data represented
in Hilbert spaces, with functional data being a special case. Our procedure involves applying
random projections to the random elements in Hilbert spaces, thereby converting the testing
of independence for random elements into the testing of independence for real variables. This
approach enables the use of more traditional techniques to analyze complex data. We calibrate
the test using permutation and apply the false discovery rate (FDR) method to combine p-
values from L projections for increased power. Our simulation analysis suggests that a choice
of L € {1,---,5}, particularly L = 3, strikes a reasonable balance between maintaining size and
improving power. If the collected data differs from the simulated data, a data-driven method
for selecting the projection number is possible. Based on the empirical power performance in
Section 4.1, it appears that the power becomes invariant after the projection number exceeds
a certain threshold. In practice, one can calculate the p-value using increasing projection
numbers, plot the corresponding p — L curve, and identify a point at which the curve begins
to flatten. Although the proposed test may sacrifice some power compared to the functional
distance covariance test, the significant reduction in computational complexity is noteworthy.

In conclusion, we outline several promising applications of our methodology for testing the
independence of functional data and other forms of complex data. The equivalence between
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testing for the null hypothesis with the original and projected variables provides more options
for assessing independence in functional data, as there are numerous methods available for
testing independence in scalar data. For instance, although distance covariance is a reliable
measure of dependence, it requires a finite first moment; when this condition is not met, the
performance of distance covariance can be less efficient [32]. In such cases, we can use the
projection correlation method proposed by [32] instead. If robustness is a primary concern, a
rank-based method would be a prudent choice. Additionally, for other types of complex data, if
we can construct an appropriate Hilbert space, then the method presented in this paper could
be applied. For example, the color picture data, which are recorded as array with dimension
n X n x 3, can be seen as elements in a Hilbert space since we can easily define a inner operation
for array.

Appendix: Technical Proofs

We present several useful lemmas before proving the theoretical results. Let H be a separable
Hilbert space with norm || - || and inner product (-,-). The space H can be viewed as a metric
space with the metric

a(f,9) =Ilf =gl =(f —g.f =)'
The Borel o-field of H is the smallest o-field containing all open subsets (relative to the norm-
based metric) of H and is denoted by Z(H). The o-field generated by the inverse images of sets
in #(H) is denoted by o(X), and the smallest o-field containing a class € of sets is denoted by
0(%). Let 4 be the class of all sets of the form {z € H : (z, f) € C}, where f € H and C is an
open subset of R. We restate Theorems 7.1.1 and 7.1.2 in [14] as Lemmas 1 and 2, respectively.

Lemma 1. The o-field o(#) is identical to B(H).

Lemma 2. Let X be a mapping from a probability space (2, F,B) into (H,B(H)). Then,
(1) X is measurable if (X, f) is measurable for all f € H, and

(2) if X is measurable, its distribution is uniquely determined by the (marginal) distributions

of (X, f) over f € H.

We also state a useful result on page 251 of [29] as Lemma 3.

Lemma 3. Iflim, . X, = X andlim,_, Y, =Y in probability, and each X,, is independent
of Yy, then X and Y are independent.

The support S, of a probability measure p in a Hilbert space is defined as the smallest

closed (measurable) set with p-measure 1. The following lemma is derived from results in [30].

Lemma 4. Assuming p is a non-degenerate Gaussian measure on a separable Hilbert space H,
the support S,, of p is H.

Proof of Theorem 1. We prove the following equivalences
1 = 2: Since X and Y are independent, and (X, f) is a measurable function of X, it follows
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that (X, f) and Y are independent.

2 = 1: For any A € #(H1) and B € #(Hz), by Lemma 1, we have A € o(#x), where
AMx is the class of all sets of the form {x € H; : (z, f) € C} for f € H; and C is an open
subset of R. For any A’ € .#x, A’ has the form A = {z € H; : (x, f) € C} for some f € H;
and some open subset C' of R. Since (X, f) and Y are independent for any f € H;, we have
P(X € A,Y € B) =P((X,f) € C,Y € B) = P((X, f) € O)P(Y € B) = P(X € AP(Y € B).
Since A is an element of the sigma field generated by .#x, it also hold that P(X € A,Y €
B) =P(X € A)P(Y € B). Thus X and Y are independent.

1 & 3: The proof is the same as 1 < 2.

1 = 4: Since X and Y are independent, and (X, f) and (Y, g) are measurable functions of
X and Y, respectively, it follows that (X, f) and (Y, g) are independent for any f € H; and
g € Hs.

4= 1: Forany A € #(H1) and B € #(Hz), by Lemma 1, we have A € o(#x) and B € o( My ),
where .#x is the class of all sets of the form {x € H; : (z, f) € C} for f € H; and C is an open
subset of R, and .#y is defined similarly. For any A’ € .#x and B’ € .#y, since (X, f) and
(Y, g) are independent for any f € H; and g € Ha, we have P(X € A" Y € B') =P((X, f) €
C1, (Y, f) € Co) =P({X, f) € C1)P({Y, f) € C2) =P(X € A)P(Y € B’), where C; and C are
open sets in R. Since A is an element of the sigma field generated by .#x and B is an element
of the sigma field generated by .#y, it also hold that P(X € A,Y € B) =P(X € A)P(Y € B).
Thus, X and Y are independent. O
Proof of Theorem 2. We prove the following

(1) If X and Y are independent, then by Theorem 1 (2), (X, f) and Y are independent for
any f € Hy. Thus, p;(M;) = 1. Now if p3(M;y) = 1, then by Lemma 4 and the definition of
support, the closure M; of My is H;. For any f € H;, since M, is dense in H;, there exists
a sequence {f,}, where f,, € My, such that f, — f as n — oco. This yields (f,, X) — (f, X)
as n — 0o. By the definition of My, (f,, X) and Y are independent. Making use of Lemma 3,
we obtain that (X, f) and Y are independent for any f € #H;. According to Theorem 1 (2), X
and Y are independent.

(2) See proof in (1).

(3) If X and Y are independent, then by Theorem 1 (4), (X, f) and (Y, g) are independent for
any f € Hy and g € Ha. Thus, pg X pa(M) = 1. Now if g X po(M) = 1, then by Lemma 4 and
the definition of support, the closure M of M is H; x Ho. For any f € H; and g € Hy, there
exist sequences {fx} and {gx} such that fr € My, g € Ma, fr = f, and g — g as k — oo.
This yields (fn, X) — (f, X) and (gx,Y) — (9,Y) as k — oco. By the definition of M, (fi, X)
and (g, Y) are independent. By Lemma 3, we obtain that (X, f) and (Y, g) are independent
for any f € H; and g € Hs. According to Theorem 1 (4), X and Y are independent.

O
Proof of Corollary 2. After applying random projection, the random functions X and Y

are transformed into real variables (X, f) and (Y, g). The test statistic is then the same as the
one used in [27]. For the proof of Theorem 4, please refer to [27] or [19].
O
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