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Slant kink-wave solutions and spreading of the free

boundary of the inhomogeneous pressureless Euler

equations

DONG Jian-wei1 QIAO Zhi-jun2,3 YUEN Man-wai4

Abstract. In this paper, we consider the inhomogeneous pressureless Euler equations. First,

we present a class of self-similar analytical solutions to the 1D Cauchy problem and investigate

the large-time behavior of the solutions, and particularly, we obtain slant kink-wave solutions

for the inhomogeneous Burgers (InhB) type equation. Next, we prove the integrability of the

InhB equation in the sense of Lax pair. Furthermore, we study the spreading rate of the moving

domain occupied by mass for the 1D Cauchy problem with compact support initial density. We

find that the expanding domain grows exponentially in time, provided that the solutions exist

and smooth at all time. Finally, we extend the corresponding results of the inhomogeneous

pressureless Euler equations to the radially symmetric multi-dimensional case.

§1 Introduction

In this paper, we consider the following inhomogeneous pressureless Euler equations (see

[8]):

ρt + (ρu)x = 0, (1.1)

(ρu)t + (ρu2)x = ρx, (1.2)

where the fluid density ρ = ρ(x, t) and the fluid velocity u = u(x, t) are unknown variables, ρx

is the external force. When the external force ρx is absent, system (1.1)-(1.2) is the standard

pressureless Euler equations, which is studied as the sticky particle model in cosmology [31] or

plasma physics [2].

As mentioned in [18], for the general case, the density ρ(x, t) is no longer a function, but a

measure. So researchers introduced various strongly related notions of weak solutions, such as
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measure solutions [1,17], duality solutions [3], duality solutions obtained by vanishing viscosi-

ty [4], mass and momentum potentials [5,7,12], together with generalized characteristics [28],

generalized potentials and variational principles [10,13,27]. In this paper, we consider the C1

solution of system (1.1)-(1.2). Although this is less natural than measure solution in general,

the results obtained in this paper for smooth solution are still important in mathematical sense.

In this paper, we first present a class of analytical solutions for system (1.1)-(1.2) with C1

smooth initial data. These solutions are of the form

ρ(x, t) =
f( x

a(t) )

a(t)
, u(x, t) =

a′(t)

a(t)
x, (1.3)

where f ≥ 0 ∈ C1 and a(t) > 0 ∈ C1. In fact, such analytical solutions are widely studied for

the compressible Euler and Navier-Stokes equations (see [11,15,16,29] for instance). However,

the analytical solutions of the pressureless Euler equations are rarely discussed because the

measure solutions are more natural than the analytical ones. In [30], Yuen constructed the

analytical solutions to the N -dimensional pressureless Euler equations in the form of

ρ(−→x , t) =
f

(
1

a(t)s

N∑
i=1

xsi

)
a(t)N

, −→u (−→x , t) = a′(t)

a(t)
−→x , a(t) = a0 + a1t, (1.4)

where the arbitrary function f ≥ 0 ∈ C1; s ≥ 1, a0 > 0 and a1 are arbitrary constants;
−→x = (x1, x2, · · · , xN ) ∈ RN . Obviously, when s = 1 and N = 1, we obtain a class of special

solutions (1.3) with a(t) = a0 + a1t for system (1.1)-(1.2) without the external force ρx. Using

the form (1.3), we can obtain a class of self-similar analytical solutions to system (1.1)-(1.2)

(see Theorem 2.1 below). For system (1.1)-(1.2), Ding and Huang [8] constructed an explicit

weak solution with the form of

ρ(x, t) = − ∂2

∂x2
min
y
F (y;x, t), ρ(x, t)u(x, t) =

∂2

∂x∂t
min
y
F (y;x, t) (1.5)

in the sense of distributions, where F (y;x, t) is a function depending on the initial data, and

they further proved that the solution u(x, t) converges to x as t tends to infinity. From Theorem

2.1 below, we can see that the solution u(x, t) we constructed for system (1.1)-(1.2) converges

to x or −x as t tends to infinity. When ρ > 0, (1.2) is equivalent to an inhomogeneous Burgers

(InhB) type equation (see (2.3) below), we obtain slant kink-wave solutions for this equation.

Next in the paper, we provide a Lax pair for the InhB equation and therefore it is integrable.

We show the integrability through considering the negative WKI flows and finally the InhB

model is a special case in the flow, and actually the two-component short pulse system is also

provided with the integrability (see the detailed derivation in Section 3).

The third topic of this paper is the spreading rate of the moving domain occupied by

mass for system (1.1)-(1.2) with ρ(−a(t), t) = ρ(a(t), t) = 0, where (−a(t), a(t)) is the moving

domain occupied by mass. By the form (1.3), we can easily give a special solution ρ(x, t) =
1− x2

a(t)2

a(t) , which satisfies ρ(−a(t), t) = ρ(a(t), t) = 0. For some special analytical solutions to the

spherically symmetric compressible Navier-Stokes equations with density-dependent viscosity

coefficients, Guo and Xin [11] proved that the free boundary tends to infinity at an algebraic

rate. For the non-radially symmetric compressible Euler equations, Sideris [25] proved that
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the diameter of a region occupied by the fluid surrounded by vacuum grows linearly in time

provided that the pressure is positive and there are no singularities. Both systems in [11,25]

contain the positive pressure, to our knowledge, there are no results about the spreading of the

moving domain occupied by mass for the system (1.1)-(1.2) in the literature. In this paper, we

will give such a result. For this, we need the following averaged quantities

m(t) =

∫ a(t)

−a(t)

ρ(x, t)dx, (1.6)

I(t) =

∫ a(t)

−a(t)

x2ρ(x, t)dx, (1.7)

F (t) =

∫ a(t)

−a(t)

xρ(x, t)u(x, t)dx, (1.8)

Ek(t) =
1

2

∫ a(t)

−a(t)

ρ(x, t)u2(x, t)dx, (1.9)

where Ek(t) denotes the kinetic energy and k is the abbreviation of kinetic. In fact, such kind

of averaged quantities were first introduced by Sideris [24] and further explored in [6] for inves-

tigating the formation of singularities of smooth solutions to the compressible Euler equations.

By exploring the relations among the above averaged quantities, we find that I(t), F (t) and

Ek(t) can be solved exactly if the initial data satisfy I(0), F (0), Ek(0) < +∞. This is crucial

to investigate the spreading rate of the moving domain since I(t) ≤ m(0)a(t)2 (see the proof of

Theorem 4.1 below).

In fact, our above results for the 1D pressureless Euler equations can be extended to the

radially symmetric multi-dimensional case. In [29], Yuen obtained the explicit functions of the

density and the velocity in N -dimensional radial symmetry for the equation of conservation of

mass, i.e.,

ρ(r, t) =
f( r

a(t) )

a(t)N
, u(r, t) =

a′(t)

a(t)
r, (1.10)

where f ≥ 0 ∈ C1, a(t) > 0 ∈ C1, and r = |−→x |. With the aid of (1.10), we can obtain

the self-similar analytical solutions to the radially symmetric multi-dimensional pressureless

Euler equations. In order to study the spreading rate of the moving domain occupied by mass

for the N -dimensional radially symmetric pressureless Euler equations with ρ(a(t), t) = 0 and

u(0, t) = 0, we need the following averaged quantities

m1(t) =

∫ a(t)

0

ρ(r, t)rN−1dr, (1.11)

I1(t) =

∫ a(t)

0

ρ(r, t)rN+1dr, (1.12)

F1(t) =

∫ a(t)

0

ρ(r, t)u(r, t)rNdr, (1.13)

E1k(t) =
1

2

∫ a(t)

0

ρ(r, t)u2(r, t)rN−1dr. (1.14)

We should remark that the averaged quantities (1.12)-(1.14) have been used in [9] for studying

the blowup of smooth solutions to the compressible Euler and Euler-Poisson equations with

radial symmetry and free boundary. For the averaged quantities (1.12)-(1.14), we can obtain
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the same relationships among them to the one-dimensional case and we can solve them exactly.

The plan of this paper is as follows. In Section 2, we give a class of self-similar analytical

solutions to the Cauchy problem of system (1.1)-(1.2) and investigate the large-time behavior

of the solutions. In Section 3, we prove that the InhB equation is still integrable in the sense

of Lax pair. In Section 4, we will study the spreading rate of the moving domain occupied

by mass for system (1.1)-(1.2) with compact support initial density. In Section 5, we extend

the corresponding results of the inhomogeneous pressureless Euler equations to the radially

symmetric multi-dimensional case.

§2 Analytical solutions

In this section, we consider the following Cauchy problem
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = ρx,

(ρ, u)|t=0 = (ρ0(x), u0(x)).

(2.1)

Our result is stated as follows.

Theorem 2.1 For the problem (2.1) with ρ0(x), u0(x) ∈ C1(R) and ρ0(x) > 0, there exist

solutions of the form

ρ(x, t) =
f( x

a(t) )

a(t)
, u(x, t) =

a′(t)

a(t)
x, a(t) =

a0 + a1
2

et +
a0 − a1

2
e−t, (2.2)

where f ≥ 0 ∈ C1, a0 > 0 and a1 are two constants satisfying ρ0(x) =
f( x

a0
)

a0
, u0(x) = a1

a0
x.

Moreover, we have the following large-time behavior of the solutions (2.2).

Case (i) If a0 + a1 > 0, then lim
t→+∞

a(t) = +∞, and for any fixed x ∈ R, one has

lim
t→+∞

ρ(x, t) = 0 and lim
t→+∞

u(x, t) = x;

Case (ii) If a0 + a1 = 0, then lim
t→+∞

a(t) = 0, and if we further assume that ρ0(x) ≥ C > 0

for some constant C, then we have lim
t→+∞

ρ(x, t) = +∞ and lim
t→+∞

u(x, t) = −x for any x ∈ R;

Case (iii) If a0 + a1 < 0, then lim
t→t0

a(t) = 0, and if we further assume that ρ0(x) ≥ C > 0

for some constant C, then we have lim
t→t0

ρ(x, t) = +∞ for any x ∈ R, where t0 = 1
2 ln

a1−a0

a1+a0
.

Proof. It is not difficult to verify that the solutions (1.3) satisfy (2.1)1. When ρ(x, t) > 0 ∈
C1(R), by (2.1)1 we know that (2.1)2 is equivalent to

ut + uux = x. (2.3)

Plugging u(x, t) = a′(t)
a(t) x into (2.3), we obtain

a′′(t)

a(t)
x = x, (2.4)

i.e.,

a′′(t)− a(t) = 0, (2.5)

which can be solved as

a(t) =
a0 + a1

2
et +

a0 − a1
2

e−t, (2.6)

where a0 > 0 and a1 are two constants satisfying ρ0(x) =
f( x

a0
)

a0
, u0(x) =

a1

a0
x.
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Case (i) If a0+a1 > 0, by (2.6) we know that lim
t→+∞

a(t) = +∞. In view of (2.2) and (2.1)3,

one has ρ0(x) =
f( x

a0
)

a0
, which together with ρ0(x) > 0 implies that f > 0, so by (2.2) we have

ρ(x, t) > 0, lim
t→+∞

ρ(x, t) = 0 and lim
t→+∞

u(x, t) = x for any fixed x ∈ R.

Case (ii) If a0+a1 = 0, then by (2.6) it holds a(t) = a0e
−t, which leads to lim

t→+∞
a(t) = 0 and

lim
t→+∞

u(x, t) = −x by (2.2). If we further assume that ρ0(x) ≥ C > 0 for some constant C, then

by ρ0(x) =
f( x

a0
)

a0
we know that f ≥ a0, C > 0, which together with (2.2) and lim

t→+∞
a(t) = 0

implies that lim
t→+∞

ρ(x, t) = +∞.

Case (iii) If a0 + a1 < 0, then by (2.6) we know that lim
t→t0

a(t) = 0, where t0 = 1
2 ln

a1−a0

a1+a0
.

If we further assume that ρ0(x) ≥ C > 0 for some constant C, then by ρ0(x) =
f( x

a0
)

a0
we know

that f ≥ a0C > 0, which together with (2.2) and lim
t→t0

a(t) = 0 implies that lim
t→t0

ρ(x, t) = +∞.

We complete the proof of Theorem 2.1. �
Remark 2.1 Case (i) of Theorem 2.1 implies that the C1 solutions of the problem (2.1)

can exist globally in time if ρ0(x), u0(x) ∈ C1(R), ρ0(x) > 0 and a0 + a1 > 0. The result

lim
t→+∞

u(x, t) = x is identical to [8].

Remark 2.2 Case (ii) of Theorem 2.1 indicates that the density will blow up everywhere

at infinite time if ρ0(x), u0(x) ∈ C1(R), a0 + a1 = 0 and ρ0(x) ≥ C > 0 for some constant C.

The result lim
t→+∞

u(x, t) = −x is not identical to [8].

Remark 2.3 Case (iii) of Theorem 2.1 means that the density will blow up everywhere at

a finite time if ρ0(x), u0(x) ∈ C1(R), a0 + a1 < 0 and ρ0(x) ≥ C > 0 for some constant C.

Remark 2.4 We remark that the solutions constructed in Theorem 2.1 are not unique

because f is not a concrete function. This is a class of solutions. However, we don’t know

whether this is the only class of solutions or not.

It is not hard to check the InhB equation (2.3) possesses the following explicit solutions

u(x, t) = x tanh(t+A), ∀A ∈ R, (2.7)

u(x, t) = x coth(t+B), ∀B ∈ R, (2.8)

which indicate that the solution (2.7) approaches a kink-wave along x-direction – called 45◦-

slant kink-wave when t goes to ±∞, while the solution (2.8) is more approximate to a blow-up

kink-wave along x-direction – called 45◦-blow-up-slant kink-wave when t goes to ±∞ since it

is discontinuous at t = −B.

However, the interesting thing is that the InhB equation is still integrable in the sense of

Lax pair. Let us discuss this in next section.

§3 Integrability of InhB equation (2.3) in the sense of Lax pair

A nonlinear PDE ut = K(u, ux, uxx, . . .) is called ‘integrable’ in the sense of Lax pair [14] if

the PDE is the compatibility condition of two operators L,M satisfying Lt = [M,L] where [·, ·]
refers to the commutator of two operators, and a pair of operators L andM usually correspond

to the spectral problem and the time auxiliary problem, respectively. Our strategy to derive the
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Lax pair for the InhB equation (2.3) is from an eigenvalue problem studied by Wadati, Konno

and Ichikowa [26] (see also [19]) and the negative order flows proposed by Qiao [21-23].

In spirit, the InhB equation (2.3) is able to be generated from the negative order flow of the

Wadati-Konno-Ichikowa (WKI) hierarchy. Let us consider the WKI spectral problem [26,19]

L · ψ = λψ, L = L (u, v) =
1

1− uv

(
i −u
−v −i

)
∂, ψ =

(
ψ1

ψ2

)
, (3.1)

which has its spectral gradients δλ
δu = λψ2

2 ,
δλ
δv = −λψ2

1 , that satisfy the following Lenard’s

eigenvalue problem [20]

K ·

(
δλ
δu
δλ
δv

)
= λJ ·

(
δλ
δu
δλ
δv

)
(3.2)

with the Lenard’s operators pair

K =
1

2i

(
− 1

2∂
2 u
w∂

−1 u
w∂

2 ∂3 + 1
2∂

2 u
w∂

−1 v
w∂

2

∂3 + 1
2∂

2 v
w∂

−1 u
w∂

2 − 1
2∂

2 v
w∂

−1 v
w∂

2

)
, (3.3)

J =

(
0 −∂2

∂2 0

)
, (3.4)

where w =
√
1− uv. The recursion operator L = J−1K is

L =
1

2i

(
∂ + v

2w∂
−1 u

w∂
2 − v

2w∂
−1 v

w∂
2

u
2w∂

−1 u
w∂

2 −∂ − u
2w∂

−1 v
w∂

2

)
. (3.5)

Apparently, the Gateaux derivative L∗ (ξ) of the spectral operator L in the direction ξ =

(ξ1, ξ2)
T ∈ B2 is

L∗ (ξ) =
1

1− uv

(
uξ2 −iξ1
iξ2 vξ1

)
L, (3.6)

which is an injective homomorphism.

Through lengthy calculations, one can obtain the inverse operators of L, J, K and L [21-23]

L−1 =

(
−i∂−1 ∂−1u

∂−1v i∂−1

)
, (3.7)

J−1 =

(
0 ∂−2

−∂−2 0

)
, (3.8)

K−1 = 2i

(
1
2∂

−1v∂−1v∂−1 ∂−3 − 1
2∂

−1v∂−1u∂−1

∂−3 − 1
2∂

−1u∂−1v∂−1 1
2∂

−1u∂−1u∂−1

)
, (3.9)

L−1 = 2i

(
∂−1 − 1

2∂
−1v∂−1u∂ − 1

2∂
−1v∂−1v∂

1
2∂

−1u∂−1u∂ −∂−1 + 1
2∂

−1u∂−1v∂

)
. (3.10)

Therefore, the entire (both positive and negative orders) WKI hierarchy of NLEEs is pro-

duced through (
u

v

)
t

= J ·Gm, m ∈ Z, (3.11)

Gm =

{
Lm ·G0, m = 0, 1, 2 . . . ,

Lm ·G−1, m = −1,−2, . . . ,
(3.12)
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where G0 ∈ KerJ , G−1 ∈ KerK, J, L and L−1 are defined by (3.4), (3.5) and (3.10), respec-

tively.

For any G =
(
G[1], G[2]

)T ∈ B2, the equation [V, L] = L∗ (K ·G)L−1 − L∗ (J ·G) has the

following operator solution

V = V (G) =

(
0 B̄

C̄ 0

)
+ Ā

(
−i u

v i

)
L, (3.13)

where Ā, B̄, C̄ are given by

Ā = Ā (G) =
1

2w

( u
w
G[1]

xx − v

w
G[2]

xx

)(−1)

, w =
√
1− uv,

B̄ = B̄ (G) =
1

4i

(
2G[2]

xx − ∂
u

w
·
( u
w
G[1]

xx − v

w
G[2]

xx

)(−1)
)
,

C̄ = C̄ (G) =
1

4i

(
2G[1]

xx + ∂
v

w
·
( u
w
G[1]

xx − v

w
G[2]

xx

)(−1)
)
.

Thus, the WKI hierarchy (3.11) has the following Lax form [21, 22]

Lt = [Wm, L] ,m ∈ Z, (3.14)

with the Lax operator

Wm =
∑

V (Gj)L
m−j , m ∈ Z. (3.15)

Here L, L−1 and V (Gj) are given by (3.1), (3.7) and (3.13) with G = Gj defined by (3.12),

respectively.

Let us discuss reductions of (3.11) below.

I. Positive case (m = 0, 1, 2, . . .)

• With G0 = (ax+ b, cx+ d)
T ∈ KerJ (a, b, c, d are independent of x), the positive order

category of (3.11) reads as the WKI hierarchy (corresponding to the isospectral case

λt = 0) (
u

v

)
t

= JLm ·

(
ax+ b

cx+ d

)
, m = 0, 1, 2, . . . , (3.16)

which has the following representative equations{
ut = −i

(
u
w

)
xx
,

vt = i
(
v
w

)
xx
,

m = 1, (3.17)

{
ut =

1
2

(
ux

w3

)
xx
,

vt =
1
2

(
vx

w3

)
xx
,

m = 2. (3.18)

They possess the standard Lax operators

W1 =

(
0 −i

(
u
w

)
x

i
(
v
w

)
x

0

)
L− 2

w

(
−i u

v i

)
L2, (3.19)

W2 =
1

2w3

(
0 ux

vx 0

)
L+

1

w3

(
uvx − uxv −iux
ivx uxv − uvx

)
L2 − 2

w

(
−i u

v i

)
L3, (3.20)

respectively.
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Apparently, the hierarchy (3.16) has the standard Lax representation Lt = [Wm, L], Wm =∑m−1
j=0 V (Gj)L

m−j , where V (Gj) are given by (3.13) withG = Gj = Lj ·(ax+ b, cx+ d)
T
, j ≥

0.

The well-known Harry-Dym equation is included in the special case of a = c = 0,

(u, v)Tt = JG1 = KG0,

which can be reduced to

st = −(
1√
s
)xxx, s = 1 + u, u = v.

II. Negative case (m = −1,−2, . . .)

• The negative order generator G−1 has the following two seed functions [22, 23]

G1
−1 = i

(
−v(−1)

−u(−1)

)
, (3.21)

G2
−1 = i

 a1x
2 −

(
v (a1u+ b1v)

(−1)
)(−1)

−b1x2 +
(
u (a1u+ b1v)

(−1)
)(−1)

 , (3.22)

where a1 = a1 (t) and b1 = b1 (t) are two arbitrarily given C∞-functions, and superscript

f (−1) =
∫
fdx. They generate two isospectral (λt = 0) negative order hierarchies of (3.1)

(u, v)
T
t = JLm+1 ·Gk

−1, m < 0, m ∈ Z, k = 1, 2, (3.23)

which have the standard Lax representation Lt = [W k
m, L] with W

k
m = −

∑−1
j=m V

(
Gk

j

)
Lm−j ,

k = 1, 2, where V
(
Gk

j

)
and L−1 are given by (3.13) with G = Gk

j = Lj+1 · Gk
j and by (3.1),

respectively. Thus, the hierarchies (3.23) are integrable.

(3.23) has the following representative equations{
ut = 4iu(−1) − 2i

(
uu(−1)v(−1)

)
x
,

vt = 4iv(−1) − 2i
(
vv(−1)u(−1)

)
x
,

m = −3, k = 1, (3.24)

and  ut = 2ib1 − i
(
u (a1u+ b1v)

(−1)
)
x
,

vt = 2ia1 − i
(
v (a1u+ b1v)

(−1)
)
x
,

m = −1, k = 2, (3.25)

which can respectively be changed to{
Qxt = 4iQ− 2i (RQQx)x ,

Rxt = 4iR− 2i (QRRx)x ,
(3.26)

and {
Qt = 2ib1x− iQx (a1Q+ b1R) ,

Rt = 2ia1x− iRx (a1Q+ b1R) ,
(3.27)

via the transformations u(−1) = Q, v(−1) = R.

Equation (3.26) is actually the two-component short pulse equation (2SPE)

[22,23] {
Qxt = Q− 1

2 (RQQx)x ,

Rxt = R− 1
2 (QRRx)x ,

here just t→ −1

4
it, (3.28)
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which is directly reduced to the regular short pulse equation

uxt = u− 1

6
(u3)xx, u = R = Q.

If we put R = Q∗ (complex conjugate), then we obtain the complex short pulse equation:

Qxt = Q− 1

2

(
|Q|2Qx

)
x
, integrable.

Equation (3.27) is actually the two-component inhomogeneous Burgers equation

(2IBE) {
Qt = b1x− 1

2Qx (a1Q+ b1R) ,

Rt = a1x− 1
2Rx (a1Q+ b1R) ,

(3.29)

which is directly reduced to the new inhomogeneous Burgers equation (2.3)

ut = x− uux, u = R = Q, a1(t) = b1(t) = 1.

(3.26) and (3.27) possess the standard Lax operators

W 1
−3 = −2iQR

(
−i Qx

Rx i

)
L− 2

(
0 Q

−R 0

)
+

(
−1 0

0 1

)
L−1, (3.30)

W 2
−1 = −i (a1Q+ b1R)

(
−i Qx

Rx i

)
L+

(
0 −b1
a1 0

)
, (3.31)

where L and L−1 are given by (3.1) and (3.7) with u = Qx, v = Rx, respectively.

Thus, the InhB equation (2.3) has the Lax pair Lt = [W 2
−1, L] with the following two

operators

L =
1

1− u2

(
i −u
−u −i

)
∂,

W 2
−1 = −u(−1)

(
−i u

u i

)
L+

1

2

(
0 i

−i 0

)
.

§4 Spreading of the moving domain occupied by mass

In this section, we consider the following Cauchy problem with compact support initial

density 
ρt + (ρu)x = 0, x ∈ (−a(t), a(t)),
(ρu)t + (ρu2)x = ρx, x ∈ (−a(t), a(t)),
(ρ(x, t), u(x, t))|t=0 = (ρ0(x), u0(x)), suppρ0(x) ⊂ (−a0, a0),
ρ(−a(t), t) = ρ(a(t), t) = 0,

(4.1)

where (−a(t), a(t)) is the moving domain occupied by mass and a0 = a(0) > 0 is a constant.

Similar to Theorem 2.1, we can construct a special solution to (4.1) as ρ(x, t) =
1− x2

a(t)2

a(t) ,

u(x, t) = a′(t)
a(t) x, where a(t) =

a0+a1

2 et + a0−a1

2 e−t, a0 > 0 and a1 are two constants satisfying

ρ0(x) =
1− x2

a2
0

a0
, u0(x) = a1

a0
x. Obviously, the moving domain (−a(t), a(t)) constructed above

grows exponentially in time when a0 + a1 > 0. However, for the general problem (4.1), such a

result is not obvious. In the following, we study the spreading rate of the moving domain for



626 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

(4.1) by using the method of averaged quantities.

Theorem 4.1 Assume that 0 < m(0), I(0), Ek(0) < +∞ and

I(0)

4
+
Ek(0) + F (0)

2
> 0. (4.2)

Let (ρ, u) be a C1 solution of (4.1), then we have

a(t) ≥ 1√
m(0)

{[
I(0)

4
+
Ek(0) + F (0)

2

]
e2t −

[
F (0)− Ek(0)

2
− I(0)

4

]
e−2t +

I(0)

2
− Ek(0)

} 1
2

.

(4.3)

Proof. By (1.6), (4.1)4 and (4.1)1, we obtain

m′(t) =

∫ a(t)

−a(t)

ρtdx+ ρ(a(t), t)a′(t)− ρ(−a(t), t)(−a′(t))

=

∫ a(t)

−a(t)

ρtdx = −
∫ a(t)

−a(t)

(ρu)xdx = 0, (4.4)

which implies that

m(t) = m(0). (4.5)

Similarly, we have

I ′(t) =

∫ a(t)

−a(t)

x2ρtdx = −
∫ a(t)

−a(t)

x2(ρu)xdx = 2

∫ a(t)

−a(t)

xρudx = 2F (t). (4.6)

In view of (1.8), (4.1)2, (4.1)4, integration by parts and (1.9), one has

F ′(t) =

∫ a(t)

−a(t)

x(ρu)t = −
∫ a(t)

−a(t)

x(ρu2)xdx+

∫ a(t)

−a(t)

x2ρdx

=

∫ a(t)

−a(t)

ρu2dx+

∫ a(t)

−a(t)

x2ρdx = 2Ek(t) + I(t). (4.7)

We multiply (4.1)1 and (4.1)2 by −1
2u

2 and u, respectively, and sum up the two resultant

equations to have
1

2
(ρu2)t +

1

2
(ρu3)x = xρu. (4.8)

Integrating (4.8) over [−a(t), a(t)] and using (1.9), (4.1)4 and (1.8), we get

E′
k(t) = F (t). (4.9)

By (4.7), (4.9) and (4.6) we know that

F ′′(t) = 2E′
k(t) + I ′(t) = 2F (t) + 2F (t) = 4F (t), (4.10)

which can be solved as

F (t) = c1e
2t + c2e

−2t, (4.11)

where c1 and c2 are two constants to be determined later. In view of (4.6), (4.9) and (4.11), we

obtain

I(t) = c1e
2t − c2e

−2t + c3, (4.12)

Ek(t) =
c1
2
e2t − c2

2
e−2t + c4, (4.13)

where c3 and c4 are two constants to be determined later. We plug (4.11)-(4.13) into (4.7) to

have

2c1e
2t − 2c2e

−2t = c1e
2t − c2e

−2t + 2c4 + c1e
2t − c2e

−2t + c3, (4.14)
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which implies that

c3 = −2c4. (4.15)

Let t = 0 in (4.11)-(4.13), then we get
F (0) = c1 + c2,

I(0) = c1 − c2 + c3,

Ek(0) =
c1
2 − c2

2 + c4,

(4.16)

which together with (4.15) lead to
c1 = I(0)

4 + Ek(0)+F (0)
2 ,

c2 = F (0)−Ek(0)
2 − I(0)

4 ,

c3 = I(0)
2 − Ek(0),

c4 = 2Ek(0)−I(0)
4 .

(4.17)

By (4.12) and (4.17), one has

I(t) =

[
I(0)

4
+
Ek(0) + F (0)

2

]
e2t −

[
F (0)− Ek(0)

2
− I(0)

4

]
e−2t +

I(0)

2
− Ek(0). (4.18)

In view of (1.7), (1.6) and (4.5), we obtain

I(t) ≤ a(t)2
∫ a(t)

−a(t)

ρdx = a(t)2m(t) = m(0)a(t)2, (4.19)

which together with (4.18) lead to (4.3). The proof of Theorem 4.1 is finished. �
Remark 4.1 The inequality (4.3) in Theorem 4.1 means that the moving domain occupied

by mass for the problem (4.1) grows exponentially in time.

Remark 4.2 We explain the reasonableness of the condition (4.2) in Theorem 4.1. On one

hand, by the Schwarz inequality, it holds

F (0)2 =

(∫ a(0)

−a(0)

xρ0u0dx

)2

≤
∫ a(0)

−a(0)

x2ρ0dx ·
∫ a(0)

−a(0)

ρ0u
2
0dx = 2I(0)Ek(0), (4.20)

where the equation holds if and only if kx
√
ρ0 =

√
ρ0u0, i.e., u0 = kx for some constant k. On

the other hand, by the Cauchy inequality, one has

I(0)

4
+
Ek(0)

2
≥
√
2I(0)Ek(0)

2
, (4.21)

where the equation holds if and only if I(0) = 2Ek(0). In view of (4.20) and (4.21), we obtain

I(0)

4
+
Ek(0)

2
≥ |F (0)|

2
,

which leads to
I(0)

4
+
Ek(0) + F (0)

2
≥ 0. (4.22)

So the condition (4.2) always holds except the case that all the three conditions I(0) = 2Ek(0),

F (0) < 0 and u0 = kx hold, where k is a constant.

Remark 4.3 From the proof of Theorem 4.1, we can obtain the exact formulations of F (t)

and Ek(t) for the problem (4.1)

F (t) =

[
I(0)

4
+
Ek(0) + F (0)

2

]
e2t −

[
F (0)− Ek(0)

2
− I(0)

4

]
e−2t, (4.23)

Ek(t) =

[
I(0)

8
+
Ek(0) + F (0)

4

]
e2t −

[
F (0)− Ek(0)

4
− I(0)

8

]
e−2t +

2Ek(0)− I(0)

4
. (4.24)
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§5 Radially symmetric multi-dimensional case

The multi-dimensional case of (1.1)-(1.2) is as follows

ρt + div(ρ−→u ) = 0, (5.1)

(ρ−→u )t + div(ρ−→u ⊗−→u ) = ρ−→x , (5.2)

where −→u = (u1, u2, · · · , uN ) and −→x = (x1, x2, · · · , xN ) ∈ RN (N ≥ 2). Let r = |−→x |, ρ(−→x , t) =
ρ(r, t) and −→u (−→x , t) = u(r, t)

−→x
r . Then, the system (5.1)-(5.2) becomes

ρt + (ρu)r +
N − 1

r
ρu = 0, (5.3)

(ρu)t + (ρu2)r +
N − 1

r
ρu2 = rρ. (5.4)

When ρ(r, t) > 0, by (5.3) we know that (5.4) is equivalent to

ut + uur = r. (5.5)

Using the form (1.10) and performing the similar procedures to the proof of Theorem 2.1, we

can easily obtain the following theorem.

Theorem 5.1 For system (5.3)-(5.4) and ρ|t=0 = ρ0(r), u|t=0 = u0(r) ∈ C1 and ρ0(r) > 0,

there exists solutions of the form

ρ(r, t) =
f( r

a(t) )

a(t)N
, u(r, t) =

a′(t)

a(t)
r, a(t) =

a0 + a1
2

et +
a0 − a1

2
e−t, (5.6)

where f ≥ 0 ∈ C1, a0 > 0 and a1 are two constants satisfying ρ0(r) =
f( r

a0
)

aN
0

, u0(r) = a1

a0
r.

Moreover, we have the following large-time behavior of the solutions

Case (i) If a0+a1 > 0, then lim
t→+∞

a(t) = +∞, and for any fixed r ≥ 0, one has lim
t→+∞

ρ(r, t) =

0 and lim
t→+∞

u(r, t) = r;

Case (ii) If a0 + a1 = 0, then lim
t→+∞

a(t) = 0, and if we further assume that ρ0(r) ≥ C > 0

for some constant C, then we have lim
t→+∞

ρ(r, t) = +∞ and lim
t→+∞

u(r, t) = −r for any r ≥ 0;

Case (iii) If a0 + a1 < 0, then lim
t→t0

a(t) = 0, and if we further assume that ρ0(r) ≥ C > 0

for some constant C, then we have lim
t→t0

ρ(r, t) = +∞ for any r ≥ 0, where t0 = 1
2 ln

a1−a0

a1+a0
.

In the following we study the spreading of the moving domain occupied by mass for system

(5.3)-(5.4), and the corresponding problem is
ρt + (ρu)r +

N−1
r ρu = 0, r ∈ (0, a(t)),

(ρu)t + (ρu2)r +
N−1
r ρu2 = rρ, r ∈ (0, a(t)),

(ρ, u)|t=0 = (ρ0(r), u0(r)), suppρ0(r) ⊂ {−→x ∈ RN : |−→x | < a0}),
ρ(a(t), t) = 0, u(0, t) = 0,

(5.7)

where {−→x ∈ RN : |−→x | < a(t)} is the moving domain occupied by mass and a0 = a(0) > 0 is

a constant. Obviously, (5.7) can be satisfied if we take ρ(r, t) =
1− r2

a(t)2

a(t)N
and u(r, t) = a′(t)

a(t) r,

where a(t) = a0+a1

2 et + a0−a1

2 e−t, a0 > 0 and a1 are two constants satisfying ρ0(r) =
1− r2

a2
0

aN
0

,

u0(r) = a1

a0
r. Similar to Theorem 4.1, by using the averaged quantities (1.11)-(1.14), we can

obtain the following theorem.
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Theorem 5.2 Assume that 0 < m1(0), I1(0), E1k(0) < +∞ and

I1(0)

4
+
E1k(0) + F1(0)

2
> 0. (5.8)

Let (ρ, u) be a C1 solution of (5.7). Then, we have

a(t) ≥ 1√
m1(0)

×
{[

I1(0)

4
+
E1k(0) + F1(0)

2

]
e2t −

[
F1(0)− E1k(0)

2
− I1(0)

4

]
e−2t +

I1(0)

2
− E1k(0)

} 1
2

.

(5.9)

Proof. By (1.11), (5.7)4 and (5.7)1, we obtain

m′
1(t) =

∫ a(t)

0

ρtr
N−1dr = −

∫ a(t)

0

(ρurN−1)rdr = 0, (5.10)

which implies that

m1(t) = m1(0). (5.11)

Similarly,

I ′1(t) =

∫ a(t)

0

ρtr
N+1dr = −

∫ a(t)

0

(ρu)rr
N+1dr − (N − 1)

∫ a(t)

0

ρurNdr

= 2

∫ a(t)

0

ρurNdr = 2F1(t). (5.12)

In view of (1.13), (5.7)2, (5.7)4, integration by parts and (1.14), one has

F ′
1(t) =

∫ a(t)

0

(ρu)t · rNdr = −
∫ a(t)

0

(ρu2)r · rNdr − (N − 1)

∫ a(t)

0

ρu2rN−1dr +

∫ a(t)

0

ρrN+1dr

=

∫ a(t)

0

ρu2rN−1dr +

∫ a(t)

0

ρrN+1dr = 2E1k(t) + I1(t). (5.13)

We multiply (5.7)1 and (5.7)2 by − 1
2u

2rN−1 and urN−1, respectively, and sum up the two

resultant equations to have
1

2
(ρu2)t · rN−1 +

1

2
(ρu3rN−1)r = ρurN . (5.14)

Integrating (5.14) over [0, a(t)] and using (1.14) and (5.7)4, we get

E′
1k(t) = F1(t). (5.15)

It follows from (1.12), (1.11) and (5.11) that

I1(t) ≤ a(t)2
∫ a(t)

0

ρrN−1dr = a(t)2m1(t) = m1(0)a(t)
2. (5.16)

We omit the rest of the proof because it is the same as the one of Theorem 4.1. �
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