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Slant kink-wave solutions and spreading of the free
boundary of the inhomogeneous pressureless Euler

equations

DONG Jian-weil QIAO Zhi-jun®? YUEN Man-wai*

Abstract. In this paper, we consider the inhomogeneous pressureless Euler equations. First,
we present a class of self-similar analytical solutions to the 1D Cauchy problem and investigate
the large-time behavior of the solutions, and particularly, we obtain slant kink-wave solutions
for the inhomogeneous Burgers (InhB) type equation. Next, we prove the integrability of the
InhB equation in the sense of Lax pair. Furthermore, we study the spreading rate of the moving
domain occupied by mass for the 1D Cauchy problem with compact support initial density. We
find that the expanding domain grows exponentially in time, provided that the solutions exist
and smooth at all time. Finally, we extend the corresponding results of the inhomogeneous

pressureless Euler equations to the radially symmetric multi-dimensional case.

81 Introduction

In this paper, we consider the following inhomogeneous pressureless Euler equations (see
8)):

pr + (pu)e =0, (1.1)

(pu): + (pu®), = pr, (1.2)

where the fluid density p = p(z,t) and the fluid velocity u = u(x,t) are unknown variables, px

is the external force. When the external force pz is absent, system (1.1)-(1.2) is the standard

pressureless Euler equations, which is studied as the sticky particle model in cosmology [31] or
plasma physics [2].

As mentioned in [18], for the general case, the density p(z,t) is no longer a function, but a

measure. So researchers introduced various strongly related notions of weak solutions, such as
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measure solutions [1,17], duality solutions [3], duality solutions obtained by vanishing viscosi-
ty [4], mass and momentum potentials [5,7,12], together with generalized characteristics [28],
generalized potentials and variational principles [10,13,27]. In this paper, we consider the C*
solution of system (1.1)-(1.2). Although this is less natural than measure solution in general,
the results obtained in this paper for smooth solution are still important in mathematical sense.

In this paper, we first present a class of analytical solutions for system (1.1)-(1.2) with C*
smooth initial data. These solutions are of the form

f(a?t)) a’(t)
l) = t) =
plx,t) ) u(z,t) o) x,
where f > 0 € C! and a(t) > 0 € C!. In fact, such analytical solutions are widely studied for

(1.3)

the compressible Euler and Navier-Stokes equations (see [11,15,16,29] for instance). However,
the analytical solutions of the pressureless Euler equations are rarely discussed because the
measure solutions are more natural than the analytical ones. In [30], Yuen constructed the
analytical solutions to the N-dimensional pressureless Euler equations in the form of

1 &,

= _f<a(t)sz§1xi> (7 _a'(t)7 _

p( 7t)_W’ ( ,t)—w . a(t) = ag+ ait, (1.4)

where the arbitrary function f > 0 € C'; s > 1, ag > 0 and a; are arbitrary constants;
7 = (x1,79,-- ,xx) € RN, Obviously, when s = 1 and N = 1, we obtain a class of special
solutions (1.3) with a(t) = ag + a1t for system (1.1)-(1.2) without the external force pz. Using
the form (1.3), we can obtain a class of self-similar analytical solutions to system (1.1)-(1.2)
(see Theorem 2.1 below). For system (1.1)-(1.2), Ding and Huang [8] constructed an explicit

weak solution with the form of
2 2

*? . _ :
p(l‘,t) - 7@ HllelF(y,fE,t), p(I,t)U(IE,t) - OOt IIllelF(y,.T,t) (15)

in the sense of distributions, where F'(y;x,t) is a function depending on the initial data, and

they further proved that the solution u(x,t) converges to x as t tends to infinity. From Theorem
2.1 below, we can see that the solution u(zx,t) we constructed for system (1.1)-(1.2) converges
to x or —z as ¢ tends to infinity. When p > 0, (1.2) is equivalent to an inhomogeneous Burgers
(InhB) type equation (see (2.3) below), we obtain slant kink-wave solutions for this equation.

Next in the paper, we provide a Lax pair for the InhB equation and therefore it is integrable.
We show the integrability through considering the negative WKI flows and finally the InhB
model is a special case in the flow, and actually the two-component short pulse system is also
provided with the integrability (see the detailed derivation in Section 3).

The third topic of this paper is the spreading rate of the moving domain occupied by
mass for system (1.1)-(1.2) with p(—a(t),t) = p(a(t),t) = 0, where (—a(t),a(t)) is the moving
dom&:in occupied by mass. By the form (1.3), we can easily give a special solution p(z,t) =
%, which satisfies p(—a(t),t) = p(a(t),t) = 0. For some special analytical solutions to the
spherically symmetric compressible Navier-Stokes equations with density-dependent viscosity
coefficients, Guo and Xin [11] proved that the free boundary tends to infinity at an algebraic

rate. For the non-radially symmetric compressible Euler equations, Sideris [25] proved that



DONG Jian-wes, et al. Slant kink-wave solutions and spreading of the free boundary of... 619

the diameter of a region occupied by the fluid surrounded by vacuum grows linearly in time
provided that the pressure is positive and there are no singularities. Both systems in [11,25]
contain the positive pressure, to our knowledge, there are no results about the spreading of the
moving domain occupied by mass for the system (1.1)-(1.2) in the literature. In this paper, we
will give such a result. For this, we need the following averaged quantities

a(t)
m(t) = / p(x, t)dz, (1.6)

—a(t)

a(t)
I(t) = / z?p(x,t)dr, (1.7)

—a(t)

a(t)
F(t):[ o zp(z, t)u(z,t)de, (1.8)

a(t)
Belt) =4 / P O (1.9)
—al(t

where Ej(t) denotes the kinetic energy and k is the abbreviation of kinetic. In fact, such kind
of averaged quantities were first introduced by Sideris [24] and further explored in [6] for inves-
tigating the formation of singularities of smooth solutions to the compressible Euler equations.
By exploring the relations among the above averaged quantities, we find that I(t), F(t) and
Ey(t) can be solved exactly if the initial data satisfy I(0), F(0), Ex(0) < 4o0. This is crucial
to investigate the spreading rate of the moving domain since I(t) < m(0)a(t)? (see the proof of
Theorem 4.1 below).

In fact, our above results for the 1D pressureless Euler equations can be extended to the
radially symmetric multi-dimensional case. In [29], Yuen obtained the explicit functions of the
density and the velocity in N-dimensional radial symmetry for the equation of conservation of

mass, i.e.,
T

f(a(t)) a'(t)
= — = 1-1
where f > 0 € C, a(t) > 0 € C', and r = |Z|. With the aid of (1.10), we can obtain

the self-similar analytical solutions to the radially symmetric multi-dimensional pressureless

Euler equations. In order to study the spreading rate of the moving domain occupied by mass
for the N-dimensional radially symmetric pressureless Euler equations with p(a(t),¢) = 0 and
u(0,t) = 0, we need the following averaged quantities

a(t)
my(t) = /0 p(r,t)yrN " dr, (1.11)
I(t) = /a(t) p(r, t)rN Hdr, (1.12)
ao(t)
Fi(t) = /0 p(r, tyu(r, t)rN dr, (1.13)
a(t)
Eq(t) = %/ p(r, t)u? (r, t)rN ~Ldr, (1.14)

0
We should remark that the averaged quantities (1.12)-(1.14) have been used in [9] for studying
the blowup of smooth solutions to the compressible Euler and Euler-Poisson equations with
radial symmetry and free boundary. For the averaged quantities (1.12)-(1.14), we can obtain
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the same relationships among them to the one-dimensional case and we can solve them exactly.

The plan of this paper is as follows. In Section 2, we give a class of self-similar analytical
solutions to the Cauchy problem of system (1.1)-(1.2) and investigate the large-time behavior
of the solutions. In Section 3, we prove that the InhB equation is still integrable in the sense
of Lax pair. In Section 4, we will study the spreading rate of the moving domain occupied
by mass for system (1.1)-(1.2) with compact support initial density. In Section 5, we extend
the corresponding results of the inhomogeneous pressureless Euler equations to the radially

symmetric multi-dimensional case.

82 Analytical solutions

In this section, we consider the following Cauchy problem
pt + (pu)e =0,
(pu)s + (pu?), = pz, (2.1)
(P, w)]e=0 = (po(x), uo(x)).
Our result is stated as follows.
Theorem 2.1 For the problem (2.1) with po(),uo(z) € C*(R) and po(z) > 0, there exist

solutions of the form

1Gw) a’(t) atai 4 ao—a
t) = a t) = t) = t —t 2.2
where f > 0 € C!, ap > 0 and a; are two constants satisfying po(z) = f(a‘l()b), up(z) = Za.

Moreover, we have the following large-time behavior of the solutions (2.2).
Case (i) If ap + a1 > 0, then tlir+n a(t) = +oo, and for any fixed x € R, one has
——+o00
lim p(z,t) =0 and tl}rﬁloou(x,t) =

t—+4oo
Case (ii) If ag + a1 = 0, then , 1iin a(t) = 0, and if we further assume that po(z) > C > 0
— 100
for some constant C, then we have lim p(z,t) = 400 and lim wu(x,t) = —z for any = € R;
t—-+oo t—+oo

Case (iii) If ap + a1 < 0, then tlintl a(t) = 0, and if we further assume that po(z) > C > 0
—to

a;—ag
aitao”’

Proof. It is not difficult to verify that the solutions (1.3) satisfy (2.1);. When p(z,t) > 0 €
C1(R), by (2.1); we know that (2.1)3 is equivalent to

Uy + Uy, = T. (2.3)

for some constant C, then we have tlin? p(x,t) = +oo for any x € R, where tg = %ln
—to

Plugging u(zx,t) = aa'((f))x into (2.3), we obtain

CLI/ (t)

o) T =, (2.4)
ie.,
a”’(t) —a(t) =0, (2.5)
which can be solved as
a(t) = 2 ‘; Lot 20, (2.6)

™

where ag > 0 and a; are two constants satisfying po(z) = f%‘), ug(z) = L.
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Case (i) If ap+ a1 > 0, by (2.6) we know that t_lgp a(t) = +o0. In view of (2.2) and (2.1)3,
o0
one has po(x) = f(a?), which together with po(z) > 0 implies that f > 0, so by (2.2) we have
plx,t) >0, t_lgToo p(x,t) =0 and 75_1)1{%1100 u(z,t) = x for any fixed z € R.
Case (ii) If ag+a; = 0, then by (2.6) it holds a(t) = age™*, which leads to tlilf a(t) = 0 and

lim w(z,t) = —x by (2.2). If we further assume that po(z) > C > 0 for some constant C, then

t—+o00

by po(z) = f(f) we know that f > ag,C' > 0, which together with (2.2) and lim a(t) =0

t——+oo

implies that tE+mm px,t) = +o0.

Case (iii) If ap + a1 < 0, then by (2.6) we know that tlir? a(t) = 0, where to = § In 4100
—to

a1tao”
If we further assume that po(z) > C > 0 for some constant C, then by po(z) = f(—fo) we know
that f > apC > 0, which together with (2.2) and tli)ntlo a(t) = 0 implies that tll)r?O plz,t) = +oo.

We complete the proof of Theorem 2.1. [J

Remark 2.1 Case (i) of Theorem 2.1 implies that the C! solutions of the problem (2.1)
can exist globally in time if po(z),uo(z) € CY(R), po(z) > 0 and ag + a3 > 0. The result
75_l)i_~_1rnoo u(z,t) = z is identical to [8].

Remark 2.2 Case (ii) of Theorem 2.1 indicates that the density will blow up everywhere
at infinite time if pg(x),up(z) € C1(R), ag + a1 = 0 and po(z) > C > 0 for some constant C.
The result tiigloo u(z,t) = —x is not identical to [8].

Remark 2.3 Case (iii) of Theorem 2.1 means that the density will blow up everywhere at
a finite time if po (), ug(x) € C1(R), ag + a1 < 0 and po(z) > C > 0 for some constant C.

Remark 2.4 We remark that the solutions constructed in Theorem 2.1 are not unique
because f is not a concrete function. This is a class of solutions. However, we don’t know
whether this is the only class of solutions or not.

It is not hard to check the InhB equation (2.3) possesses the following explicit solutions
u(z,t) = vtanh(t + A), VA € R, (2.7)
u(z,t) = zcoth(t + B), VB € R, (2.8)
which indicate that the solution (2.7) approaches a kink-wave along xz-direction — called 45°-
slant kink-wave when ¢ goes to +o0o, while the solution (2.8) is more approximate to a blow-up
kink-wave along z-direction — called 45°-blow-up-slant kink-wave when ¢ goes to £oo since it
is discontinuous at t = —B.
However, the interesting thing is that the InhB equation is still integrable in the sense of
Lax pair. Let us discuss this in next section.

§3 Integrability of InhB equation (2.3) in the sense of Lax pair

A nonlinear PDE w; = K (u, uz, Uy, . - .) is called ‘integrable’ in the sense of Lax pair [14] if
the PDE is the compatibility condition of two operators L, M satisfying L; = [M, L] where [-, ]
refers to the commutator of two operators, and a pair of operators L and M usually correspond
to the spectral problem and the time auxiliary problem, respectively. Our strategy to derive the
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Lax pair for the InhB equation (2.3) is from an eigenvalue problem studied by Wadati, Konno
and Ichikowa [26] (see also [19]) and the negative order flows proposed by Qiao [21-23].

In spirit, the InhB equation (2.3) is able to be generated from the negative order flow of the
Wadati-Konno-Ichikowa (WKI) hierarchy. Let us consider the WKI spectral problem [26,19]

1 ) —U (0
L-Yv=M.L=1L = 0 = 3.1
¥ =M, L=L(uv) 1_uv<_v _i>,w <¢2>, (3.1)
which has its spectral gradients 2—2 = M3, g—f}‘ = —\?, that satisfy the following Lenard’s

eigenvalue problem [20]

2N 2N
K- ngj =\J - %—K (3.2)

with the Lenard’s operators pair

_192ug9—-1u 92 3 192u 9—1v 92
= l ( 328 fanU w—(?u 2 a " %({92?;8_11{;}82 > ) (33)
0 -0
J = < 52 0 ) ; (3.4)
where w = v/1 — uv. The recursion operator £ = J 'K is
P ( Ot ap0 L0 0o ) . (3.5)
20\ §=07'%0 —0— 50720

Apparently, the Gateaux derivative L, (£) of the spectral operator L in the direction £ =

(&1,6)" € B2 is
L. () 1 ( ubz —i& )L, (3.6)

T 1-w €9 v€q

which is an injective homomorphism.

Through lengthy calculations, one can obtain the inverse operators of L, J, K and £ [21-23]

-1 ( -0t 07l ) ’ (3.7)

o~y 97!
gl = ( 0_872 a—; ) : (3.8)
e v evel I
J— ( gal—l_uéi;;alua " ;ig_;zg_izg ) , (3.10)

Therefore, the entire (both positive and negative orders) WKI hierarchy of NLEEs is pro-
duced through
(“) =J-Gm, meL, (3.11)
¢

v

(3.12)

o _§LmGo, m=012.,
") LGy, m=—-1,-2,...,
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where Go € KerJ, G_; € KerK, J, £ and £~ are defined by (3.4), (3.5) and (3.10), respec-

tively.
For any G = (Gm,Gm)T € B2, the equation [V,L] = L, (K -G) L™ — L. (J - G) has the

following operator solution

V:V(G)=<OC B;>+A<;i Z)L (3.13)

where A, B, C are given by

- (=1
A—A@) = - (EGQ; - EGﬁ) , w=+v1—uo,
2w \w w
_ 1 U [u v (=1
B_B I e - N I AL I
© = 3 (20802 (Zal - tom) ™).
- = 1 voosu v (=1
C=0@) = 4 (2GL3JK +o-- (EGQJC - EGLE;) ) .
Thus, the WKI hierarchy (3.11) has the following Lax form [21, 22]
Ly = [Wpn,L],m€Z, (3.14)
with the Lax operator
W= V(G) L™, meL. (3.15)
Here L, L™! and V (G;) are given by (3.1), (3.7) and (3.13) with G = G; defined by (3.12),

respectively.
Let us discuss reductions of (3.11) below.
I. Positive case (m =0,1,2,...)

e With Gy = (ax + b, cx + d)T € KerJ (a, b, c,d are independent of z), the positive order
category of (3.11) reads as the WKI hierarchy (corresponding to the isospectral case

A+ =0)
b
Y g [ ) =012, (3.16)
v/, cx+d
which has the following representative equations
e fzv(ﬁ)wm’ m=1, (3.17)
vy =1 (E)a;x ’

— 1 (ug
t (;ij)rw’ m=2. (3.18)
2

0 —i (%) 2 ( =i u\ .,
Wi=|[ w/z | [ 2 ol z2, 3.19
(2(3})96 0) w(v z) ( )

1 0  u, 1 UV — UgV —iUy 2 -1 u
Wy = — T )L+ — o T -= L3, (3.20
2 2w3<1}m O> +w3<ivm umvuvm> w(v z) ( )

respectively.
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Apparently, the hierarchy (3.16) has the standard Lax representation Ly = [W,,, L], Wi,
Z;”:_Ol V (G,) L™, where V (G;) are given by (3.13) with G = G; = L7 -(ax + b,cx +d)" , j >
0.

The well-known Harry-Dym equation is included in the special case of a = ¢ =0,
(U,U)Z = JGl = KG(),

which can be reduced to 1
st = —(—4=)pzz,s = 1 +u,u=v.
Vs

V)

II. Negative case (m = —1,—2,.

e The negative order generator G_; has the following two seed functions [22, 23]

_p(=D
1 . v
Gl =i ( oo | (3.21)
(-1
ax? — (v (a1u+ blv)(fl))
Gt —i N (3.22)
—byz? + (u (a1u + blv)(71)>
where a; = ay (t) and by = by (t) are two arbitrarily given C°°-functions, and superscript
fED = [ fdz. They generate two isospectral (A; = 0) negative order hierarchies of (3.1)
(u, )] =JL™.GF m <0, meZ, k=1,2, (3.23)

which have the standard Lax representation L, = [Wk L] with Wk = — Z]_:lm Vv (Gf) Lm=i
k = 1,2, where V (G;“) and L~! are given by (3.13) with G = G? = LIt G’? and by (3.1),
respectively. Thus, the hierarchies (3.23) are integrable.

(3.23) has the following representative equations

{ Uy = 4iu—D — 94 (uu(fl)v(’l))

@ =3, k=1, 3.24
vy = 4ivtD) — 20 (oo -Dyt-0) ™ (3.24)
and
up = 2ib; — 1 (u (a1u+ blv)(71)> ,
2 m=-1, k=2, (3.25)

v = 2ia; — 1 (v (a1u + blv)(_l)) ,
which can respectively be changed to ’

{ Qui = 4iQ = 21 (RQQ,), , (3.26)
Ry = 4iR — 2i (QRRx)x ;
and

Qi = 2ibix — iQ, (m1Q + b1 R), (3.27)

Ry = 2iayz — iRy (a1Q + b1 R) ,
via the transformations u(-" = Q, v(-1 = R.

Equation (3.26) is actually the two-component short pulse equation (2SPE)
22,23]
Ryt =R—

(QRR.). . here just t — —iit, (3.28)

N ho =
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which is directly reduced to the regular short pulse equation

1
Uzt = U — E(US)MM u=R=0Q.

If we put R = Q* (complex conjugate), then we obtain the complex short pulse equation:
Qo =Q — % (|Q\2Qx)x, integrable.
Equation (3.27) is actually the two-component inhomogeneous Burgers equation
(2IBE)
Qi =biz — 3Q, (11Q + b R),
Ri=a1x — 1R, (a1Q + b1 R),
which is directly reduced to the new inhomogeneous Burgers equation (2.3)
U =T — Ulg,u =R =0Q,a1(t) =b1(t) = 1.
(3.26) and (3.27) possess the standard Lax operators

Lo i Q. )\, (0 @ -1 0\, ,
wl, = 22@R<Rw i)L 2<_R o>+<o 1>L , (3.30)

W2, = —i(a1Q + b1 R) ( ; Qﬂ; >L+ ( 21 *b(l) ) : (3.31)

where L and L~ are given by (3.1) and (3.7) with u = Q., v = R,, respectively.
Thus, the InhB equation (2.3) has the Lax pair L, = [W?2,, L] with the following two

operators

(3.29)

~
Il
—_
[
<
(V]
7N
| ~.
<
|
N——
2

i 1{0 i
w2, o= 0 T8 Y ) ps :
-1 “ w o 2\ =i 0

84 Spreading of the moving domain occupied by mass

In this section, we consider the following Cauchy problem with compact support initial
density
pe+ (pu)e =0, z € (—a(t),a(t)),
(pu)e + (pu?)e = pz, x € (=a(t),a(t)),
(p(x, 1), u(z, t))|i=0 = (po(x),uo(x)), supppo(x) C (—ao,ao),

p(=a(t),t) = pla(t),t) = 0,

where (—a(t),a(t)) is the moving domain occupied by mass and ay = a(0) > 0 is a constant.

22

1——z=
Similar to Theorem 2.1, we can construct a special solution to (4.1) as p(x,t) = a‘zg)Q,

(4.1)

u(z,t) = 2,((:))@ where a(t) = %t%el + 2-%e~t g5 > (0 and ay are two constants satisfying
122
po(z) = a:?’, uo(z) = ¢tz. Obviously, the moving domain (—a(t),a(t)) constructed above

grows exponentially in time when ag + a1 > 0. However, for the general problem (4.1), such a
result is not obvious. In the following, we study the spreading rate of the moving domain for
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(4.1) by using the method of averaged quantities.

Theorem 4.1 Assume that 0 < m(0), I(0), Ex(0) < +oo and
10) | Eu(0) + F(0)

4 2

Let (p,u) be a C! solution of (4.1), then we have

> 0. (4.2)

1 10) | Ex(0)+ F(0)] 5 [F(O0)—Ex(0) I0)| —5 , 1(0)
“(t)z\/m{{zx + 2 ]e _{ 2 Ty +2_E’“(0)}
(4.3)
Proof. By (1.6), (4.1)4 and (4.1);, we obtain
a(t)
m'(t)= [ e+ pla(®).00'(0) - p(~a(t). O)(~a'(0)
—al(t)
a(t) a(t)
= /_a(t) prdr = — /_a(t)(pu)wda: =0, (4.4)
which implies that
m(t) = m(0). (4.5)

Similarly, we have
a(t) a(t) a(t)
I'(t) = / 2 pde = —/ 22 (pu)pdr = 2/ xpudr = 2F(t). (4.6)
—a(t) —af(t) —af(t)
In view of (1.8), (4.1)2, (4.1)4, integration by parts and (1.9), one has

a(t) a(t) a(t)
F'(t) = / z(pu)y = —/ z(pu?) pda —|—/ 2% pdx
—a(t) —a(t) —a(t)

a(t) a(t)

= / puldx + / x?pdr = 2B, (t) + I(t). (4.7)
—af(t) —a(t)

We multiply (4.1); and (4.1)> by —3u? and u, respectively, and sum up the two resultant

equations to have

S(0) (o) = mpu. (4.8)
Integrating (4.8) over [—a(t), a(t)] and using (1.9), (4.1)4 and (1.8), we get
EL(t) = F(t). (4.9)

By (4.7), (4.9) and (4.6) we know that
F"(t) = 2E;,(t) + I'(t) = 2F(t) + 2F (t) = 4F (t), (4.10)

which can be solved as

F(t) = c1e®’ + cpe™?, (4.11)
where ¢; and ¢y are two constants to be determined later. In view of (4.6), (4.9) and (4.11), we
obtain

I(t) = c1e® — cpe™ 4 ¢, (4.12)
Ey(t) = %e% - %"e*% + e, (4.13)

where ¢3 and ¢4 are two constants to be determined later. We plug (4.11)-(4.13) into (4.7) to

have

2c1€%t — 2c0e7 2 = 1€t — coe T + 2¢4 + 1% — coe 2 + 3, (4.14)
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which implies that

c3 = —2¢4. (4.15)
Let ¢t =0 in (4.11)-(4.13), then we get
F(O) =1 + Ca,
1(0) = c1 —c2 +c3, (4.16)

Ep(0) =5 — % +c,

which together with (4.15) lead to
o = 1O | BOLFO)
_ F(0)-Ex(0) _ I(0)
4

2
ez =10 _ B(0),
_ 2E,(0)—1(0)
= 2B -1(0)

(4.17)

By (4.12) and (4.17), one has

=" E’“(‘”;F(O)] e [F(O) SO IO o O o), )
In view of (1.7), (1.6) and (4.5), we obtain
a(t)
I(t) < a(t)2/ pdx = a(t)*m(t) = m(0)a(t)?, (4.19)
—a(t)

which together with (4.18) lead to (4.3). The proof of Theorem 4.1 is finished. O

Remark 4.1 The inequality (4.3) in Theorem 4.1 means that the moving domain occupied
by mass for the problem (4.1) grows exponentially in time.

Remark 4.2 We explain the reasonableness of the condition (4.2) in Theorem 4.1. On one
hand, by the Schwarz inequality, it holds

a(0) 2 rao) a(0)
F(0)? = / zpoupdr | < / x2pod - / pouddz = 21(0)Ex(0), (4.20)

—a(0) —a(0) —a(0)
where the equation holds if and only if kx/pg = \/pouo, i.e., ug = kx for some constant k. On
the other hand, by the Cauchy inequality, one has

1(0)  Ex(0) 21(0)Ex(0)
ot ’“2 > 5 Ay (4.21)

where the equation holds if and only if 7(0) = 2E(0). In view of (4.20) and (4.21), we obtain
10) | B0)  [FO)]
4 2 = 2

10) , Eu(0)+ F(0)

which leads to

> 0. (4.22)
4 2
So the condition (4.2) always holds except the case that all the three conditions 1(0) = 2E}(0),
F(0) < 0 and ug = kx hold, where k is a constant.
Remark 4.3 From the proof of Theorem 4.1, we can obtain the exact formulations of F(t)
and Ej(t) for the problem (4.1)
I E F F0)—-FE I
riy - [10), BOTFO] o0 [FO-BO _1O] o0 (g
4 2 2 4
I(0 Er(0)+ F(0 F(0) — Ex(0 I(0 2E;(0) —I(0

8 4 -8 4
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85 Radially symmetric multi-dimensional case

The multi-dimensional case of (1.1)-(1.2) is as follows
p +div(pd) =0, (5
(pU); +div(pd @ W) = p’, (5.
where U = (u1,ug, - ,uy) and T = (21,22, ,zy) € RN (N >2). Let r = | 7], p(7,1)
p(r,t) and W (7, t) = u(r, t)% Then, the system (5.1)-(5.2) becomes

[N
NN

pt + (pu)r + pu =0, (5.3)
N -1
(pu)e + (pu?), + " pu? = rp. (5.4)
When p(r,t) > 0, by (5.3) we know that (5.4) is equivalent to
Up + vy =7 (5.5)

Using the form (1.10) and performing the similar procedures to the proof of Theorem 2.1, we
can easily obtain the following theorem.

Theorem 5.1 For system (5.3)-(5.4) and p|i—o = po(r), u|t=0 = uo(r) € C* and po(r) > 0,
there exists solutions of the form

i 7’lt)) a'(t) ag + ay ap — aj
t) = a t) = t) = t —t 5.6
p(r? ) a(t)N ’ U(’r, ) a(t) T? a’( ) 2 € + 2 € Y ( )
where f > 0 € C!, ag > 0 and a; are two constants satisfying po(r) = f(‘}:?), ug(r) = —Z(l) .

)
Moreover, we have the following large-time behavior of the solutions

Case (i) If agp+a;1 > 0, then . 1121 a(t) = +o0, and for any fixed r > 0, one has , ligl plr,t) =
—+00 — 00
0and lim wu(r,t) =r;
t—+o0

Case (ii) If ag + a1 = 0, then . lim a(t) =0, and if we further assume that pg(r) > C >0

—+0o0
for some constant C, then we have lim p(r,t) = +oc0 and lim wu(r,t) = —r for any r > 0;
t——+oo t——+oo

Case (iii) If ap + a1 < 0, then tlir? a(t) = 0, and if we further assume that po(r) > C > 0
—to

for some constant C, then we have lim p(r,t) = 400 for any r > 0, where t; = %ln Lt
t—to ai+ao

In the following we study the spreading of the moving domain occupied by mass for system
(5.3)-(5.4), and the corresponding problem is

pt + (pu), + Nr_lpu =0, re€(0,a(t)),
(pu)e + (pu?)r + X2 pu? = rp, 1€ (0,a(t)),

(p,u)li=0 = (po(r), uo(r)), supppo(r) C {T € RN : [7] < ap}),
p(a(t),t) =0, U(Ovt) =0,

where {Z € RN : |Z| < a(t)} is the moving domain occupied by mass and ag = a(0) > 0 is

r

1- '
a constant. Obviously, (5.7) can be satisfied if we take p(r,t) = #)(?,2 and u(r,t) = LWy

where a(t) = %0fLel 4 %781e~! gy > 0 and a; are two constants satisfying po(r) = —

N
0
ug(r) = £r. Similar to Theorem 4.1, by using the averaged quantities (1.11)-(1.14), we can

obtain the following theorem.
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Theorem 5.2 Assume that 0 < m4(0), I1(0), F1£(0) < +o00 and
1,(0) N E15(0) + F1(0)

- - > 0. (5.8)
Let (p,u) be a C! solution of (5.7). Then, we have
1
a(t) > ———=
m1(0)
0(0)  E(0) + Fi(0 Fi(0) - E(0)  L(0 (0 5
DO B0+ BO)] o [F1(0) = Eir(0) _ L(O)] o Lil )—Em(O) .
4 2 2 4 2
(5.9)
Proof. By (1.11), (5.7)4 and (5.7)1, we obtain
a(t) a(t)
mi(t) = / perN " tdr = —/ (purN=1),.dr =0, (5.10)
0 0
which implies that

Similarly,

a(t) a(t) a(t)
I(t) = / perN T ldr = —/ (pu),rNFldr — (N — 1)/ pur™ dr
0 0 0

a(t)
= 2/ pur™Ndr = 2F (t). (5.12)

0
In view of (1.13), (5.7)2, (5.7)4, integration by parts and (1.14), one has

a(t) a(t) a(t) a(t)
Fl(t) = / (pu); - N dr = —/ (pu®), -rNdr — (N — 1)/ purN "ty —|—/ prN
0 0 0 0

a(t) a(t)
= / purN Ldr 4 / prNTldr = 2E1, (1) + 1L (t). (5.13)
0 0

We multiply (5.7)1 and (5.7)2 by —3u?r¥ =1 and ur™¥~!, respectively, and sum up the two

resultant equations to have

S ()N (N ), = pur, (5.14)
Integrating (5.14) over [0, a(?)] and using (1.14) and (5.7)4, we get
Ey(t) = Fu(t). (5.15)
It follows from (1.12), (1.11) and (5.11) that
a(t)
I(t) < a(t)2/0 prN 7Ydr = a(t)®my(t) = m1(0)a(t)?. (5.16)

We omit the rest of the proof because it is the same as the one of Theorem 4.1. [J
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