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The effect of dispersal on a predator-prey model with

Holling type-II functional response

WANG Ling-shu ZHANG Mei∗ ZHANG Ya-nan WANG Yan

Abstract. A predator-prey model with prey dispersal and Holling type-II functional response

is investigated. In this model, the time delay due to the gestation of the predator and stage-

structure for the predator are considered. By analyzing the corresponding characteristic equa-

tions, the local stability of each of the nonnegative equilibria is discussed. The existence of

Hopf bifurcations at the positive equilibrium is established. By using Lyapunov functionals and

LaSalle’s invariance principle, sufficient conditions are obtained for the global stability of the

positive equilibrium, the nonnegative boundary equilibrium and the trivial equilibrium of the

model, respectively. Numerical simulations are carried out to illustrate the main results.

§1 Introduction

The effect of dispersal on ecological system is an important topic from mathematical as

well as ecological point of view. Since the pioneering work by Skellem [14], many works have

focused on the effect of spatial factors which play a crucial rule in the persistence and stability

of a population. Some of the mathematical models dealt with a single population dispersing

among patches. Some of them dealt with competition and predator-prey interactions in patchy

environments(see, for examples, [1,2,4,9] and references therein). We note that many authors

always assumed that the intrinsic growth rates are all continuous and bounded above and below

by positive constants. This means that every specy lives in a suitable environment. However,

the actual living environments of endangered species are not always like this. Because of the

ecological effects of human activities and industry, e.g., the location of manufacturing industries

and pollution of the atmosphere, rives and soil, more and more habitats have been broken into

patches and some of the patches have been polluted. In some of these patches, and sometimes
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even in every patch, species will become extinct without contributions from other patches, and

hence the species live in a week patchy environment.

In [1,2], Cui and Chen proposed and studied population models with week patchy envi-

ronment. In [4], Freedman and Takeuchi are concerned with a model of a single species that

disperse among the n patches of a heterogeneous environment with barriers between patches,

and with a predator for which the dispersal between patches does not involve a barrier. In

[9], Xu and Ma considered the following predator-prey model with prey dispersal between two

patches

ẋ1(t) = r1x(t)− a11x
2
1(t)− a12x1(t)y(t) +D21x2(t)−D12x1(t),

ẋ2(t) = −r2x2(t) +D12x1(t)−D21x2(t),

ẏ(t) = a21x1(t− τ)y(t− τ)− ry(t)− a22y
2(t).

(1)

In model (1), it is assumed that the ecosystem is composed of two isolated patches and the

breeding area is damaged in patch 2. x1(t) and x2(t) represent the densities of the prey at

time t in patches 1 and 2, respectively; y(t) represents the density of the predator population

at time t in patch 1. The parameters a11, a12, a21, a22, D12, D21, r1, r2 and r are positive

constants, where D12 and D21 are the dispersal rates of the prey between the two patches, a11

and a22 are the intra-specific competition rates of the prey and the predator in patch 1, a12 is

the capturing rate of the predator in patch 1, a21/a12 is the conversion rate of nutrients into

the reproduction of the predator, r1 is the intrinsic growth rate of the prey in patch 1, r2 and

r are the death rates of the prey in patch 2 and the predator. τ ≥ 0 is a constant delay due

to the gestation of the predator, that is, mature adult predators only can contribute to the

reproduction of the predator biomass. In [9], by using an iteration technique, a threshold is

derived for the permanence and extinction of the model (1).

In the classical predator-prey models, it is assumed that each individual predator admits

the same ability to feed on prey and each individuals prey admits the same risk to be attacked

by predators. This assumption seems not to be realistic for many animals. In the natural

world, there are many species whose individuals pass though an immature stage during which

they are raised by their parents, and the reproductive rate during this stage can be ignored.

Stage-structured models have received great attention in the last two decades (see, for example,

[10,15,16] and references therein). In [16], Tian and Xu considered a Holling type II functional

response predator-prey model with stage structure for the predator. It is assumed that the

predator is divided into two groups, one immature and the other mature, and that only mature

predators can attack prey and have reproductive ability, while immature predators do not attack

prey and have no reproductive ability.

In this paper, motivated by the works of [9] and [16], we are concerned with the effects

of prey dispersal between two patches, Holling type II functional response, stage-structure for

the predator and time delay due to the gestation of predator on the global dynamics of a

predator-prey model. To this end, we study the following delayed differential model

ẋ1(t) = r1x1(t)− a11x
2
1(t)−

a12x1(t)y2(t)

1 +mx1(t)
+D21x2(t)−D12x1(t),

ẋ2(t) = −r2x2(t) +D12x1(t)−D21x2(t),
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ẏ1(t) =
a21x1(t− τ)y2(t− τ)

1 +mx1(t− τ)
− (r + d1)y1(t),

ẏ2(t) = ry1(t)− d2y2(t),
(2)

where x1(t) and x2(t) represent the densities of the prey at time t in patches 1 and 2, respec-

tively; y1(t) and y2(t) represent the densities of the immature and mature predator at time t in

patch 1. The parameters a11, a12, a21, D12, D21, r, r1, r2, d1, d2 and m are positive constants,

in which r is the transformation rate from the immature individuals to mature individuals for

the predator; d1 and d2 are the death rate of the immature predator and mature predator,

respectively; x/(1 +mx) is the Holling type II functional response. Other parameters are the

same biological significance as model (1). In model (2), we assume that only mature predator

can capture the prey in patch 1.

The initial conditions for model (2 ) take the form

x1(θ) = φ1(θ) ≥ 0, x2(θ) = φ2(θ) ≥ 0, y1(θ) = ϕ1(θ) ≥ 0, y2(θ) = ϕ2(θ) ≥ 0, θ ∈ [−τ, 0),

φ1(0) > 0, φ2(0) > 0, ϕ1(0) > 0, ϕ2(0) > 0, (φ1(θ), φ2(θ), ϕ1(θ), ϕ2(θ)) ∈ C([−τ, 0], R4
+0),

(3)

where R4
+0 = {(z1, z2, z3, z4) : zi ≥ 0, i = 1, 2, 3, 4}.

It is well known by the fundamental theory of functional differential equations [6] that model

(2) has a unique solution (x1(t), x2(t), y1(t), y2(t)) satisfying initial conditions (3). It is easy

to show that all solutions of model (2) with initial conditions (3) are defined on [0,+∞] and

remain positive for all t ≥ 0.

The organization of this paper is as follows. In the next section, we prove the boundedness

of solutions of model (2) with initial conditions (3). In section 3, by using the theory on char-

acteristic equation of delay differential equations developed by [6], we discuss the local stability

of each of feasible equilibria of model (2). We establish the existence of Hopf bifurcations at

the positive equilibrium. In Section 4, by means of Lyaponov functionals and LaSalle’s invari-

ance principle, we obtain sufficient conditions for the global stability of each of the nonnegative

equilibria of model (2). Some numerical simulations are presented in Section 5 to illustrate the

main results. The paper ends with a brief discussion in Section 6.

§2 Boundedness of solutions

In this section, we show the boundedness of the positive solutions of model (2)-(3).

Lemma 2.1 For model (2)-(3), there are positive constants M1 and M2, such that each

positive solution (x1(t), x2(t), y1(t), y2(t)) of model (2)-(3) satisfies

lim sup
t→+∞

xi(t) ≤ M1, lim sup
t→+∞

yi(t) ≤ M2(i = 1, 2),

that is, positive solutions of (2)-(3) are ultimately bounded.

Proof. Let (x1(t), x2(t), y1(t), y2(t)) be any positive solution of (2)-(3). Define

f(t) = x1(t− τ) + x2(t− τ) +
a12
a21

(y1(t) + y2(t)).
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Calculating the derivative of f(t) along positive solutions of (2)-(3), it follows that

ḟ(t) ≤ r1x1(t− τ)− a11x
2
1(t− τ)− r2x2(t− τ)− a12

a21
d1y1(t)−

a12
a21

d2y2(t)

≤ −df(t)− a11

(
x1(t− τ)− r1 + d

2a11

)2

+
(r1 + d)2

4a11

≤ −df(t) +
(r1 + d)2

4a11
,

(4)

where d = min{r2, d1, d2}. We derive from (4) that

lim sup
t→+∞

f(t) ≤ (r1 + d)2

4a11d
.

If we choose

M1 =
(r1 + d)2

4a11d
, M2 =

a21(r1 + d)2

4a11a12d
,

then

lim sup
t→+∞

xi(t) ≤ M1, lim sup
t→+∞

yi(t) ≤ M2(i = 1, 2).

This completes the proof. �
Lemma 2.2 For any positive solution (x1(t), x2(t), y1(t), y2(t)) of model (2)-(3), we have

lim inf
t→+∞

x1(t) ≥
|(r1 − a21M2)(r2 +D21)− r2D12|

a11(r2 +D21)
:= x1,

where M2 is defined in Lemma 2.1.

Proof. Let (x1(t), x2(t), y1(t), y2(t)) be any positive solution of (2)-(3). By Lemma 2.1,

it follows that lim supt→+∞ y2(t) ≤ M2. Hence, for ε > 0 sufficiently small, there is a T0 > 0

such that if t > T0, y2(t) < M2 + ε. For ε > 0 sufficiently small, we derive from the first and

the second equations of model (1.2) that for t > T0,

ẋ1(t) ≥ r1x1(t)− a11x
2
1(t)− a12(M2 + ε)x1(t) +D21x2(t)−D12x1(t),

ẋ2(t) = −r2x2(t) +D12x1(t)−D21x2(t).
(5)

By comparison and Lemma 2.2 of [10], it follows from (5) that

lim inf
t→+∞

x1(t) ≥
|(r1 − a12M2)(r2 +D21)− r2D12|

a11(r2 +D21)
.

This completes the proof. �

§3 Local stability and Hopf bifurcations

In this section, we are concerned with the local stability of each of nonnegative equilibria of

model (2) by analyzing the corresponding characteristic equations.

It is easy to show that model (2) always has a trivial equilibrium E0(0, 0, 0, 0). Model (2)

has a nonnegative (i.e., predator-extinction) equilibrium E1(x
′
1, x

′
2, 0, 0) provided that

r1(r2 +D21) > r2D12,

where

x′
1 =

r1(r2 +D21)− r2D12

a11(r2 +D21)
, x′

2 =
D12

r2 +D21
x′
1.

Further, if the following holds

(H1)
r1(r2 +D21)− r2D12

a11(r2 +D21)
>

d2(r + d1)

a21r −md2(r + d1)
> 0,
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then model (2) has a positive equilibrium E+(x
+
1 , x

+
2 , y

+
1 , y

+
2 ), where

x+
1 =

d2(r + d1)

a21r −md2(r + d1)
, x+

2 =
D12

r2 +D21
x+
1 ,

y+1 =
a21x

+
1

a12(r + d1)

(
r1 −

r2D12

r2 +D21
− a11x

+
1

)
, y+2 =

r

d2
y+1 .

3.1 Local stability of boundary equilibria

The characteristic equation of model (2) at the equilibrium E0(0, 0, 0, 0) is of the form

(λ+ d2)(λ+ r + d1)
[
λ2 + (r2 +D21 +D12 − r1)λ+ r2D12 − r1(r2 +D21)

]
= 0. (6)

Clearly, equation (6) always has two negative real roots λ1 = −d2, λ2 = −(r + d1). All other

roots of (6) are determined by the following equation:

λ2 + (r2 +D21 +D12 − r1)λ+ r2D12 − r1(r2 +D21) = 0. (7)

If r2D12 > r1(r2 + D21), then we have D12 > r1. In this case, equation (7) has two negative

real roots. Hence, E0 is locally asymptotically stable. If r2D12 < r1(r2 + D21), equation (7)

has a positive real root. Accordingly, the equilibrium E0 is unstable.

The characteristic equation of model (2) at the equilibrium E1(x
′
1, x

′
2, 0, 0) takes the form[

λ2 + (r2 +D21 +D12 + 2a11x
′
1 − r1)λ+ r1(r2 +D21)− r2D12

]
×
[
λ2 + (r + d1 + d2)λ+ d2(r + d1)−

a21x
′
1

1 +mx′
1

e−λτ

]
= 0.

(8)

Noting that

r2 +D21 +D12 + 2a11x
′
1 − r1 = r2 +D21 + a11x

′
1 +

D12D21

r2 +D21
> 0,

it is easy to show that the equation

λ2 + (r2 +D21 +D12 + 2a11x
′
1 − r1)λ+ r1(r2 +D21)− r2D12 = 0

always has two negative real roots. All other roots are given by the roots of equation

λ2 + (r + d1 + d2)λ+ d2(r + d1)−
a21x

′
1

1 +mx′
1

e−λτ = 0. (9)

Let g(λ) = λ2 +(r+ d1 + d2)λ+ d2(r+ d1)− a21x
′
1

1+mx′
1
e−λτ . If (H1) holds, it then follows that for

nonnegative real λ,

g(0) = d2(r + d1)−
a21x

′
1

1 +mx′
1

=
a21r −md2(r + d1)

1 +mx′
1

(
d2(r + d1)

a21r −md2(r + d1)
− r1(r2 +D21)− r2D12

a11(r2 +D21)

)
< 0,

lim
λ→+∞

g(λ) = +∞, g′(λ) = 2λ+ r + d1 + d2 +
a21x

′
1

1 +mx′
1

e−λτ > 0.

Hence, g(λ) = 0 has a positive real root. Accordingly, the equilibrium E1 is unstable.

If the following holds

(H2) 0 <
r1(r2 +D21)− r2D12

a11(r2 +D21)
<

d2(r + d1)

a21r −md2(r + d1)
,
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then g(0) > 0. When τ = 0, equation (9) reduces to

λ2 + (r + d1 + d2)λ+ d2(r + d1)−
a21x

′
1

1 +mx′
1

= 0. (10)

It is easy to show that equation (10) always has two negative real roots. Hence, the equilibrium

E1 is locally asymptotically stable.

If iω(ω > 0) is a solution of (9), it is not difficult to show that

ω4 + h1ω
2 + h0 = 0, (11)

where

h1 = (r + d1)
2 + d22 > 0, h0 = (d2(r + d1))

2 −
(

ra21x
′
1

1+mx′
1

)2
> 0.

In this case, equation (11) has no positive real roots. Accordingly, the roots of equation (9) have

only negative real parts. By the general theory on characteristic equations of delay differential

equation from [6], the equilibrium E1 is locally asymptotically stable for all τ ≥ 0.

In conclusion, we have the following results.

Theorem 3.1 For model (2)-(3), we have

(i) If r2D12 > r1(r2 +D21), then the equilibrium E0(0, 0, 0, 0) is locally asymptotically stable

for all τ ≥ 0; if r2D12 < r1(r2 +D21), then E0 is unstable.

(ii) Let r2D12 < r1(r2 + D21) hold. If (H2) holds, then the equilibrium E1(x
′
1, x

′
2, 0, 0) is

locally asymptotically stable for all τ ≥ 0; if (H1) holds, then E1 is unstable.

3.2 Local stability of positive equilibrium and Hopf bifurcations

Now, we study the local stability of the positive equilibrium E+(x
+
1 , x

+
2 , y

+
1 , y

+
2 ) of model

(1.2). The characteristic equation of model (2) at the equilibrium E+ takes the form

P (λ) +Q(λ)e−λτ = 0, (12)

where
P (λ) = λ4 + p3λ

3 + p2λ
2 + p1λ+ p0, Q(λ) = q2λ

2 + q1λ+ q0,

α = 2a11x
+
1 +D12 +

a12y
+
2

(1 +mx+
1 )

2
− r1,

p3 = r + d1 + d2 + r2 +D21 + α,

p2 = d2(r + d1) + (r + d1 + d2)(r2 +D21 + α) + α(r2 +D21)−D12D21,

p1 = (r + d1 + d2)(α(r2 +D21)−D12D21) + d2(r + d1)(r2 +D21 + α),

p0 = d2(r + d1)(α(r2 +D21)−D12D21),

q2 = −d2(r + d1),

q1 = −d2(r + d1)

(
r2 +D21 + α− a12y

+
2

(1 +mx+
1 )

2

)
,

q0 = −d2(r + d1)

(
α(r2 +D21)−D12D21 −

a12y
+
2

(1 +mx+
1 )

2
(r2 +D21)

)
.

When τ = 0, equation (12) reduces to

λ4 + p3λ
3 + (p2 + q2)λ

2 + (p1 + q1)λ+ p0 + q0 = 0. (13)
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By direct calculations, we obtain

p2 + q2 = (r + d1 + d2)(r2 +D12 + α) + α(r2 +D12)−D12D21,

p1 + q1 = (r + d1 + d2)[α(r2 +D12)−D12D21] + d2(r + d1)
a12y

∗
2

(1 +mx∗
1)

2
,

p0 + q0 = d2(r + d1)
a12y

∗
2

(1 +mx∗
1)

2
> 0.

Hence, if α(r2 +D12) > D12D21, then

p3 > 0, p2 + q2 > 0, and p1 + q1 > 0.

Hence the roots of equation (13) have only negative real parts. Accordingly, the positive

equilibrium E+ is locally asymptotically stable when τ = 0.

If λ = iω(ω > 0) is a solution of (12), separating the real and imaginary parts, we obtain

that
(q2ω

2 − q0) cosωτ − q1ω sinωτ = ω4 − p2ω
2 + p0,

(q2ω
2 − q0) sinωτ + q1ω cosωτ = p3ω

3 − p1ω.
(14)

Squaring and adding the two equations of (14), it follows that

ω8 + h3ω
6 + h2ω

4 + h1ω
2 + h0 = 0, (15)

where

h3 = p23 − 2p2, h2 = p22 + 2p0 − q22 − 2p1p3, h1 = p21 + 2q0q2 − q21 − 2p0p2, h0 = p20 − q20 .

Letting z = ω2, equation (15) can be written as

h(z) = z4 + h3z
3 + h2z

2 + h1z + h0 = 0. (16)

A direct calculation shows that

h3 = α2 + r2 + (d1 + d2)
2 + (r2 +D21)

2 + 2D12D21 > 0,

h2 = [α(r2 +D21)−D12D21]
2 + [(r + d1)

2 + d22][α
2 + (r2 +D21)

2 + 2D12D21] > 0,

h1 = [α(r2 +D21)−D12D21]
2[(r + d1)

2 + d22],

+d22(r + d1)
2 a12y

+
2

(1+mx+
1 )2

[2α− a12y
+
2

(1+mx+
1 )2

]

h0 = d22(r + d1)
2 a12y

∗
2

(1+mx∗
1)

2 [(r2 +D21)(2α− a12y
+
2

(1+mx+
1 )2

)− 2D12D21].

If the following holds

(H3) 2α >
2D12D21

r2 +D12
+

a12y
+
2

(1 +mx+
1 )

2
,

we have h1 > 0 and h0 > 0. Hence, equation (16) has no positive real roots. Accordingly, if

(H1) and (H3) hold, then the equilibrium E+ is locally asymptotically stable for all τ ≥ 0.

In the following, we assume that

(H4) 0 < 2α− a12y
+
2

(1 +mx+
1 )

2
<

2D12D21

r2 +D12
.

In this case, we have h1 > 0 and h0 < 0. Therefore, equation (16) has a unique positive root

z+, that is, (12) admits a pair of purely imaginary roots of the form ±iω0. Denote

τk =
1

ω0
arccos

q1ω
2
0(p3ω

2
0 − p1) + (q2ω

2
0 − q0)(ω

4
0 − p2ω

2
0 + p0)

(q1ω0)2 + (q2ω2
0 − q0)2

+
2kπ

ω0
, k = 0, 1, 2 · · · (17)
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Noting that if α(r2 +D12) > D12D21 holds, then E+ is locally stable when τ = 0, and by the

general theory on characteristic equation of delay differential equation from [7](Theorem 4.1),

E∗ remains stable for τ < τ0.

Differentiating the two sides of (12) with respect τ , it follows that(
dλ

dτ

)−1

=
4λ3 + 3p3λ

2 + 2p2λ+ p1
−λ(λ4 + p3λ3 + p2λ2 + p1λ+ p0)

+
2q2λ+ q1

λ(q2λ2 + q1λ+ q0)
− τ

λ
.

Direct calculation, one obtains that

sign

{
d(Reλ)

dτ

}
λ=iω0

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iω0

= sign

{
Re

[
4λ3 + 3p3λ

2 + 2p2λ+ p1
−λ(λ4 + p3λ3 + p2λ2 + p1λ+ p0)

+
2q2λ+ q1

λ(q2λ2 + q1λ)

]
λ=iω0

}

= sign

{
− (p1 − 3p3ω

2
0)(p3ω

2
0 − p1) + 2(p2 − 2ω2

0)(ω
4
0 − p2ω

2
0 + p0)

(p1ω0 − p3ω3
0)

2 + (ω4
0 − p2ω2

0 + p0)2

}

− q21 + 2q2(q0 − q2ω
2
0)

(q0 − q2ω2
0)

2 + (q1ω0)2

}
.

It follows from (14) that

(p1ω0 − p3ω
3
0)

2 + (ω4
0 − p2ω

2
0 + p0)

2 = (q0 − q2ω
2
0)

2 + (q1ω0)
2.

Hence, we obtain that

sign

{
d(Reλ)

dτ

}
λ=iω0

= sign

{
4ω6

0 + 3h3ω
4
0 + 2h2ω

2
0 + h1

(q2ω2
0 − q0)2 + (q1ω0)2

}
> 0.

Therefore, the transversal condition holds and a Hopf bifurcation occurs at τ = τ0.

From what has been discussed previously, we obtain the following results.
Theorem 3.2 For model (2)-(3), assume that α(r2+D12) > D12D21 and (H1) hold. Then

the following results hold true:

(i) If (H3) holds, then the equilibrium E+ is locally asymptotically stable for all τ ≥ 0.

(ii) Let (H4) hold, then h(z) has at least one positive root z+, the equilibrium E+ of model

(2) is locally asymptotically stable for τ ∈ [0, τ0) and is unstable if τ > τ0. Further, model

(2) undergoes a Hopf bifurcation at E+ when τ = τ0.

§4 Global stability

Now, we are concerned with the global stability of the positive equilibrium E+(x
+
1 , x

+
2 , y

+
1 ,

y+2 ), the predator-extinction equilibrium E1(x
′
1, x

′
2, 0, 0) and the trivial equilibrium E0(0, 0, 0, 0)

of model (2), respectively. The strategy of proofs is to use Lyapunov functionals and LaSalle’s

invariance principle.

Theorem 4.1 Assume that (H1) holds, then the positive equilibrium E+ of model (2) is

globally attractive provided
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(H5) x1 >
r1(r2 +D21)− r2D12

a11(r2 +D21)
− d2(r + d1)

a21r −md2(r + d1)
.

Here, x1 is defined in Lemma 2.2.

Proof Let (x1(t), x2(t), y1(t), y2(t)) be any positive solution of model (2)-(3). Model (1.2)

can be rewritten as

ẋ1(t) =
D21

x+
1

[
−x2(t)(x1(t)− x+

1 ) + x1(t)(x2(t)− x+
2 )
]
− a11x1(t)(x1(t)− x+

1 )

−a12x1(t)y2(t)

1 +mx1(t)
+

a12y
+
2

1 +mx+
1

x1(t),

ẋ2(t) =
D12

x+
2

[
−x1(t)(x2(t)− x+

2 ) + x2(t)(x1(t)− x+
1 )
]
,

ẏ1(t) =
a21x1(t− τ)y2(t− τ)

1 +mx1(t− τ)
− (r + d1)y1(t),

ẏ2(t) = ry1(t)− d2y2(t).

(18)

Define

V1(t) = x1(t)− x+
1 − x+

1 ln
x1(t)

x+
1

+ k1

(
x2(t)− x+

2 − x+
2 ln

x2(t)

x+
2

)
+c1

(
y1(t)− y+1 − y+1 ln

y1(t)

y+1

)
+ c2

(
y2(t)− y+2 − y+2 ln

y2(t)

y+2

)
.

where k1 = D21x
+
2 /(D12x

+
1 ), c1 = a12(1 + mx+

1 )/a21, c2 = c1(r + d1)/r. Calculating the

derivative of V1(t) along positive solutions of (18), it follows that

V̇1(t) = −D21

x+
1

(√
x2(t)

x1(t)
(x1(t)− x+

1 )−

√
x1(t)

x2(t)
(x2(t)− x+

2 )

)2

− a11(x1(t)− x+
1 )

2

−a12(1 +mx+
1 )

x1(t)y2(t)

1 +mx1(t)
+ a12(1 +mx+

1 )
x1(t− τ)y2(t− τ)

1 +mx1(t− τ)

−a12(1 +mx+
1 )

y+1
y1(t)

· x1(t− τ)y2(t− τ)

1 +mx1(t− τ)
+

a12y
+
2

1 +mx+
1

(x1(t)− x+
1 )

c1(r + d1)y
+
1 + c2d2y

+
2 − c2ry

+
2

y1(t)

y2(t)
.

(19)

Define

V+(t) = V1(t)+

a12(1 +mx+
1 )

∫ t

t−τ

[
x1(u)y2(u)

1 +mx1(u)
− x+

1 y
+
2

1 +mx+
1

− x+
1 y

+
2

1 +mx+
1

ln
(1 +mx+

1 x2(u)y2(u))

x+
1 y

+
2 (1 +mx1(u))

]
du.

(20)

A direct calculation shows that

V̇+(t) = −D21

x+
1

(√
x2(t)

x1(t)
(x1(t)− x+

1 )−

√
x1(t)

x2(t)
(x2(t)− x+

2 )

)2

−a12x
+
1 y

+
2

[
(1 +mx+

1 )y
+
1 x1(t− τ))y2(t− τ)

x+
1 y

+
2 y1(t)(1 +mx1(t− τ))

− 1− ln
(1 +mx+

1 )y
+
1 x1(t− τ))y2(t− τ)

x+
1 y

+
2 y1(t)(1 +mx1(t− τ))

]
−a12x

+
1 y

+
2

[
y+2 y1(t))

y+1 y2(t)
− 1− ln

y+2 y1(t))

y+1 y2(t)

]
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−a12x
+
1 y

+
2

[
x+
1 (1 +mx1(t))

x1(t)(1 +mx+
1 )

− 1− ln
x+
1 (1 +mx1(t))

x1(t)(1 +mx+
1 )

]
−(x1(t)− x+

1 )
2

[
a11 −

a12y
+
2

(1 +mx+
1 )x1(t)

]
.

Because (H5) holds, we have a11 >
a12y

+
2

(1+mx+
1 )x1(t)

. Note that the function g(x) = x − 1 − lnx

is always non-negative for any x > 0, and g(x) = 0 if and only if x = 1. Therefore, we have

V̇+(t) ≤ 0, with equality if and only if x1(t) = x+
1 , x2(t) = x+

2 , y1(t) = x+
1 , y2(t) = x+

2 .

Hence, the only invariant set in M = {(x1, x2, y1, y2) : V̇+(t) = 0} is M = {(x+
1 , x

+
2 , y

+
1 , y

+
2 )}.

Therefore, the global asymptotic attractive of E+ follows from LaSalle’s invariance principle

for delay differential systems (see, for example, [5]). This completes the proof.

Theorem 4.2 Assume that (H2) holds, then the equilibrium E1(x
′
1, x

′
2, 0, 0) of model (2)-(3)

is globally asymptotically stable.

Proof By Theorem 3.1, we see that if (H2) holds, the equilibrium E1 is locally asymp-

totically stable for all τ ≥ 0. Hence, we only prove that all positive solutions of model (2)-(3)

converge to E1. Let (x1(t), x2(t), y1(t), y2(t)) be any positive solution of model (2)-(3). For

convenience, we rewrite model (1.2) as following

ẋ1(t) =
D21

x′
1

[−x2(t)(x1(t)− x′
1) + x1(t)(x2(t)− x′

2)]− a11x1(t)(x1(t)− x′
1)−

a12x1(t)y2(t)

1 +mx1(t)
,

ẋ2(t) =
D12

x+
2

[−x1(t)(x2(t)− x′
2) + x2(t)(x1(t)− x′

1)] ,

ẏ1(t) =
a21x1(t− τ)y2(t− τ)

1 +mx1(t− τ)
− (r + d1)y1(t),

ẏ2(t) = ry1(t)− d2y2(t).

(21)

Define

V21(t) = x1(t)− x′
1 − x′

1 ln
x1(t)

x′
1

+ k2

(
x2(t)− x′

2 − x′
2 ln

x2(t)

x′
2

)
+ c3 (y1(t) + y2(t)),

where k2 = D21x
′
2/(D12x

′
1), c3 = a12(1 +mx′

1)/a21. Calculating the derivative of V21(t) along

positive solutions of model (21), we obtain

V̇21(t) =
x1(t)− x′

1

x1(t)
ẋ1(t) + k2

x2(t)− x′
2

x2(t)
ẋ2(t) + c3 (ẏ1(t) + ẏ2(t))

= −D21

x′
1

(√
x2(t)

x1(t)
(x1(t)− x′

1)−

√
x1(t)

x2(t)
(x2(t)− x′

2)

)2

− a11(x1(t)− x′
1)

2

−a12(1 +mx′
1)

x1(t)y2(t)

1 +mx1(t)
+ a12(1 +mx′

1)
x1(t− τ)y2(t− τ)

1 +mx1(t− τ)

−c1d1y1(t)− (c1d2 − a12x
′
1)y2(t).

(22)

Define

V2(t) = V21(t) + a12(1 +mx′
1)

∫ t

t−τ

x1(s)y2(s)

1 +mx1(s)
ds. (23)

A direct calculation shows that
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V̇2(t) = −D21

x′
1

(√
x2(t)

x1(t)
(x1(t)− x′

1)−

√
x1(t)

x2(t)
(x2(t)− x′

2)

)2

− a11(x1(t)− x′
1)

2

−c1d1y1(t)− (c1d2 − a12x
′
1)y2(t).

(24)

Hence, it follows from (24) that if (H2) holds, then V̇2(t) ≤ 0 with equality if and only if

x1(t) = x′
1, x2(t) = x′

2 , y1(t) = 0 and y2(t) = 0. Using a similar argument as that in the proof

of Theorem 4.1, we show that the only invariant set in M = {(x1, x2, y1, y2) : V̇2(t) = 0} is

M = {(x′
1, x

′
2, 0, 0)}. Accordingly, the global asymptotic stability of E1 follows from LaSalle’s

invariant principle for delay differential systems. This completes the proof.

Theorem 4.3 Let r1(r2 +D21) < r2D12, then the trivial equilibrium E1(0, 0, 0, 0) of model

(2) is globally asymptotically stable.

Proof By Theorem 3.1, we see that if r1(r2 +D21) < r2D12, E0 is locally asymptotically

stable. Hence, we only prove that all positive solutions of model (2)-(3) converge to E0. Let

(x1(t), x2(t), y1(t), y2(t)) be any positive solution of model (2)-(3). Define

V0(t) = x1(t) +
D21

r2 +D21
x2(t) +

a12
a21

(y1(t) + y2(t)) + a12

∫ t

t−τ

x1(u)y2(u)

1 +mx1(u)
du.

Calculating the derivative of V0(t) along positive solutions of model (2), we have

V̇0(t) = ẋ1(t) +
D21

r2 +D21
ẋ2(t) +

a12
a21

(ẏ1(t) + ẏ2(t)) +
a12x1(t)y2(t)

1 +mx1(t)
− a12x1(t− τ)y2(t− τ)

1 +mx1(t− τ)

−D12r2 − r1(r2 +D21)

r2 +D21
x1(t)− a11x

2
1(t)−

a12
a21

d1y1(t)−
a12
a21

d2y2(t).

(25)

If r1(r2 + D21) < r2D12, it then follows from (25) that V̇0(t) ≤ 0. Clearly, we see from (25)

that V̇0(t) = 0 if and only if x1(t) = 0, x2(t) = 0, y1(t) = 0 and y2(t) = 0. Accordingly, the

global asymptotic stability of E0 follows from LaSalle’s invariant principle for delay differential

systems. This completes the proof.

§5 Numerical simulation

In this section, we give two examples to illustrate the main results in Section 3 and Section

4.

Example 1 In model (2), let a11 = 0.25, a12 = 1.5, a21 = 3.2,m = 0.55, D12 = 0.5, D21 =

0.1, r = 2, r1 = 0.25, r2 = 0.5, d1 = 0.2, d2 = 0.2. It is easy to show that r2D12− r1(r2+D21) =

0.1 > 0, model (2) has only the trivial equilibrium E0(0, 0, 0, 0). By Theorem 4.3, we see that

the equilibrium E0 is globally asymptotically stable. Numerical integration can be carried out

using the standard MATLAB algorithm. Numerical simulation illustrates the result above (see,

Figure 1).
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Figure 1. The temporal solution found by numerical integration of model (2) with τ = 0.1 and
(φ1(0), φ2(0), ϕ1(0), ϕ2(0)) = (0.6, 0.6, 0.6, 0.6).

Example 2 In model (2), let a11 = 4, a12 = 2, a21 = 1,m = 0.2, D12 = 4, D21 = 2, r =

3, r1 = 2, r2 = 1, d1 = 0.2, d2 = 0.2. Noting that r1(r2 +D21) − r2D12 = 2 > 0, model (2) has

a nonnegative boundary equilibrium E1(0.1667, 0.2222, 0, 0). Clearly, 0 < r1(r2+D21)−r2D12

a11(r2+D21)
=

0.1667 < d2(r+d1)
a21r−md2(r+d1)

= 0.2228. By Theorem 4.2, we see that the equilibrium E1 is globally

asymptotically stable. Numerical simulation illustrates the result above (see Figure 2).
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Figure 2. The temporal solution found by numerical integration of model (2) with τ = 0.1 and
(φ1(0), φ2(0), ϕ1(0), ϕ2(0)) = (0.6, 0.6, 0.6, 0.6).

Example 3 In model (2), let a11 = 4, a12 = 2, a21 = 1,m = 0.2, D12 = 4, D21 = 2, r =

3, r1 = 2, r2 = 1, d1 = 0.2, d2 = 0.2.

By calculation, we obtain r1(r2+D21)−r2D12

a11(r2+D21)
= 0.6061 > d2(r+d1)

a21r−md2(r+d1)
= 0.1112 > 0, and

therefore, the model (2) has a unique positive equilibrium E+(0.1112, 0.1011, 0.1501, 1.5010).

Noting that 0 < 2α − a12y
+
2

(1+mx+
1 )2

= 2.8029 < 2D12D21

r2+D12
= 3.6364 and τ0 = 1.6524. By Theorem
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3.2, we see that the equilibrium E+ is locally asymptotically stable if 0 ≤ τ < τ0 and model (2)

undergoes a Hopf bifurcation at E+ when τ = τ0. Numerical simulation illustrates the previous

result(see Figures 3 and 4).
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Figure 3. The temporal solution found by numerical integration of model (2) with τ = 0.1 and
(φ1(0), φ2(0), ϕ1(0), ϕ2(0)) = (0.6, 0.6, 0.6, 0.6).
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Figure 4. The temporal solution found by numerical integration of model (2) with τ = τ0 and
(φ1(0), φ2(0), ϕ1(0), ϕ2(0)) = (0.6, 0.6, 0.6, 0.6).

§6 Discussion

In this paper, we have investigated the global dynamics of a delayed predator-prey model

with prey dispersal and Holling type-II functional response. By analysing the corresponding

characteristic equations, the local stability of each of feasible equilibria has been established.
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From the analysis in Sections 3 and 4, if r1(r2 + D21) < r2D12, then the trivial equilibrium

E0(0, 0, 0, 0) is globally asymptotically stable. If r1(r2 +D21) > r2D12 and r1(r2+D21)−r2D12

a11(r2+D21)
<

d2(r+d1)
a21r−md2(r+d1)

hold, then the equilibrium E1(x
′
1, x

′
2, 0, 0) is globally asymptotically stable. If

x1 > r1(r2+D21)−r2D12

a11(r2+D21)
− d2(r+d1)

a21r−md2(r+d1)
> 0 holds, then the positive equilibrium E+ is globally

attractive. At the positive equilibrium, a threshold τ0 for the time delay is identified such that

below it, the equilibrium is locally asymptotically stable, but if the delay is greater than the

threshold, sustained oscillation arise.
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