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The effect of dispersal on a predator-prey model with

Holling type-1I functional response

WANG Ling-shu ZHANG Mei* ZHANG Ya-nan WANG Yan

Abstract. A predator-prey model with prey dispersal and Holling type-II functional response
is investigated. In this model, the time delay due to the gestation of the predator and stage-
structure for the predator are considered. By analyzing the corresponding characteristic equa-
tions, the local stability of each of the nonnegative equilibria is discussed. The existence of
Hopf bifurcations at the positive equilibrium is established. By using Lyapunov functionals and
LaSalle’s invariance principle, sufficient conditions are obtained for the global stability of the
positive equilibrium, the nonnegative boundary equilibrium and the trivial equilibrium of the

model, respectively. Numerical simulations are carried out to illustrate the main results.

81 Introduction

The effect of dispersal on ecological system is an important topic from mathematical as
well as ecological point of view. Since the pioneering work by Skellem [14], many works have
focused on the effect of spatial factors which play a crucial rule in the persistence and stability
of a population. Some of the mathematical models dealt with a single population dispersing
among patches. Some of them dealt with competition and predator-prey interactions in patchy
environments(see, for examples, [1,2,4,9] and references therein). We note that many authors
always assumed that the intrinsic growth rates are all continuous and bounded above and below
by positive constants. This means that every specy lives in a suitable environment. However,
the actual living environments of endangered species are not always like this. Because of the
ecological effects of human activities and industry, e.g., the location of manufacturing industries
and pollution of the atmosphere, rives and soil, more and more habitats have been broken into

patches and some of the patches have been polluted. In some of these patches, and sometimes
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even in every patch, species will become extinct without contributions from other patches, and
hence the species live in a week patchy environment.

In [1,2], Cui and Chen proposed and studied population models with week patchy envi-
ronment. In [4], Freedman and Takeuchi are concerned with a model of a single species that
disperse among the n patches of a heterogeneous environment with barriers between patches,
and with a predator for which the dispersal between patches does not involve a barrier. In
[9], Xu and Ma considered the following predator-prey model with prey dispersal between two
patches

() = ra(t) — ann2?(t) — a1 (H)y(t) + Doyza(t) — Disxy(t),

L'Cg(t) = —Tgxg(t) + Dlgxl(t) — D21x2(t), (1)

9(t) = azra1(t — 1)yt — 7) — ry(t) — azy®(t).
In model (1), it is assumed that the ecosystem is composed of two isolated patches and the
breeding area is damaged in patch 2. z1(t) and z5(t) represent the densities of the prey at
time ¢ in patches 1 and 2, respectively; y(t) represents the density of the predator population
at time t in patch 1. The parameters ay1, a2, ao1, a2, D13, Day, 71, 79 and r are positive
constants, where D15 and Ds; are the dispersal rates of the prey between the two patches, a1y
and ago are the intra-specific competition rates of the prey and the predator in patch 1, a5 is
the capturing rate of the predator in patch 1, as; /a2 is the conversion rate of nutrients into
the reproduction of the predator, r; is the intrinsic growth rate of the prey in patch 1, ro and
r are the death rates of the prey in patch 2 and the predator. 7 > 0 is a constant delay due
to the gestation of the predator, that is, mature adult predators only can contribute to the
reproduction of the predator biomass. In [9], by using an iteration technique, a threshold is
derived for the permanence and extinction of the model (1).

In the classical predator-prey models, it is assumed that each individual predator admits
the same ability to feed on prey and each individuals prey admits the same risk to be attacked
by predators. This assumption seems not to be realistic for many animals. In the natural
world, there are many species whose individuals pass though an immature stage during which
they are raised by their parents, and the reproductive rate during this stage can be ignored.
Stage-structured models have received great attention in the last two decades (see, for example,
[10,15,16] and references therein). In [16], Tian and Xu considered a Holling type II functional
response predator-prey model with stage structure for the predator. It is assumed that the
predator is divided into two groups, one immature and the other mature, and that only mature
predators can attack prey and have reproductive ability, while immature predators do not attack
prey and have no reproductive ability.

In this paper, motivated by the works of [9] and [16], we are concerned with the effects
of prey dispersal between two patches, Holling type II functional response, stage-structure for
the predator and time delay due to the gestation of predator on the global dynamics of a

predator-prey model. To this end, we study the following delayed differential model

i1(t) = ray(t) —anai(t) — Cm

IEQ(t) = 77’21’2@) + D12l’1(t) — D21$2(t)7

+ Do1x2(t) — Dygx1(t),
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. ag1x1(t — 7)y2(t — 7)
yi(t) =
1+ ma(t—1)
U2(t) = ry1(t) — daya(2),
where x1(t) and x5(t) represent the densities of the prey at time ¢ in patches 1 and 2, respec-

- (T + dl)yl (t)v (2)

tively; y1(t) and yo(t) represent the densities of the immature and mature predator at time ¢ in
patch 1. The parameters a11, a12, a1, D12, Da1, 7, 71, T2, d1, do and m are positive constants,
in which r is the transformation rate from the immature individuals to mature individuals for
the predator; dy and ds are the death rate of the immature predator and mature predator,
respectively; /(1 4+ mz) is the Holling type II functional response. Other parameters are the
same biological significance as model (1). In model (2), we assume that only mature predator

can capture the prey in patch 1.

The initial conditions for model (2 ) take the form

21(0) = ¢1(0) = 0,22(0) = @2(0) > 0,51(0) = $1(0) = 0,92(0) = ¢2(0) = 0,0 € [-7,0),

©1(0) > 0, 92(0) > 0,$1(0) > 0, ¢2(0) > 0, (p1(8), p2(8), ¢1(0), $2(0)) € C([—T, 0],Rio)v )

3

where Rio ={(z1,22,23,24) : 2; > 0,0 =1,2,3,4}.

It is well known by the fundamental theory of functional differential equations [6] that model
(2) has a unique solution (z1(t),x2(t), y1(t), y2(t)) satisfying initial conditions (3). It is easy
to show that all solutions of model (2) with initial conditions (3) are defined on [0, +o0] and

remain positive for all ¢ > 0.

The organization of this paper is as follows. In the next section, we prove the boundedness
of solutions of model (2) with initial conditions (3). In section 3, by using the theory on char-
acteristic equation of delay differential equations developed by [6], we discuss the local stability
of each of feasible equilibria of model (2). We establish the existence of Hopf bifurcations at
the positive equilibrium. In Section 4, by means of Lyaponov functionals and LaSalle’s invari-
ance principle, we obtain sufficient conditions for the global stability of each of the nonnegative
equilibria of model (2). Some numerical simulations are presented in Section 5 to illustrate the

main results. The paper ends with a brief discussion in Section 6.

82 Boundedness of solutions

In this section, we show the boundedness of the positive solutions of model (2)-(3).
Lemma 2.1 For model (2)-(3), there are positive constants My and Ma, such that each
positive solution (x1(t), x2(t), y1(t),y2(t)) of model (2)-(3) satisfies
limsupa;(t) < M, liriliul)yi(t) < Ms(i=1,2),

t——+oo

that is, positive solutions of (2)-(3) are ultimately bounded.
Proof. Let (x1(t),x2(t), y1(t), y2(t)) be any positive solution of (2)-(3). Define
a
J(t) = a1t = 7) + a2t = 1)+ = (n(0) + 02()).
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Calculating the derivative of f(t) along positive solutions of (2)-(3), it follows that
: a a
) <rmi(t—7) —ana?(t —7) — rowa(t — 7) — —2dyy (t) — —2day(t)
az1 a1

T1 + d 2 (7’1 —+ d)2
< —df(t) — t—71)— 4
< —df(t) —an <931( ) S, ) a1, (4)
(r1+d)?
< —df (¢t -
< —afy +
where d = min{rq, d1, d2}. We derive from (4) that
- (r1 +d)*
lim su ) < —— .
t—)+oopf( )< 4ai1d
If we choose
M — (’I“l + d)2 _ (121(7‘1 + d)2
! 4a11d ’ 2 4a11a12d

then
limsup z;(t) < My, limsupy;(t) < My(i = 1,2).

t—+oo t—+oo

This completes the proof. [
Lemma 2.2 For any positive solution (z1(t), z2(t), y1(t),y2(t)) of model (2)-(3), we have

|(r1 — a1 Ma)(r2 + Do1) —roD1a|

liminf 4 (t) > =y,

t—r+o0 ar1(r2 + Day)
where My is defined in Lemma 2.1.
Proof. Let (z1(t),z2(t),y1(t),y2(t)) be any positive solution of (2)-(3). By Lemma 2.1,
it follows that limsup, , , . y2(t) < M. Hence, for ¢ > 0 sufficiently small, there is a Ty > 0
such that if ¢ > Tp, y2(t) < Ma + . For € > 0 sufficiently small, we derive from the first and
the second equations of model (1.2) that for ¢ > Ty,
Z1(t) > rx1(t) — ap12?(t) — a1o(Ma + )21 (t) + Darwa(t) — D1z (t),
Z2(t) = —raza(t) + D12z (t) — Darxa(t).
By comparison and Lemma 2.2 of [10], it follows from (5) that
lim inf 1 (¢) > (11 — a12M3)(rg + Day) — 7”2D12|'
ty 400 a11(r2 + Da1)
This completes the proof. U

(5)

83 Local stability and Hopf bifurcations

In this section, we are concerned with the local stability of each of nonnegative equilibria of
model (2) by analyzing the corresponding characteristic equations.

It is easy to show that model (2) always has a trivial equilibrium Fy(0,0,0,0). Model (2)
has a nonnegative (i.e., predator-extinction) equilibrium F; (2, 25, 0,0) provided that

r1(r2 + Da1) > 12Dy,

where
,  ri(re + Do) —r9D12 Dy
T, = Ty = ——F

x].
ai1(rz + Da1) ro+ Doy !
Further, if the following holds

r1(r2 + Da1) — 2 D12 da(r + dy)
(H1)

a11(re + Da1) a1 — mda(r 4 dy)

>0,
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then model (2) has a positive equilibrium E, (x],z3,y]", y5 ), where

+_ da(r + di) v+ D o
Iy = p— y Lo = L1
ag1T m 2(7‘ + dl) T2 + D21
+
+ 21T T2D12 + + L
= ™ — — a11r 5 ==
Y1 alz('f"f'dl) ( 1 o +D21 11 1) Yo d2y1

3.1 Local stability of boundary equilibria

The characteristic equation of model (2) at the equilibrium E((0,0,0,0) is of the form
(A+d2)A+74d1) [N + (12 + Dot + D1a —r1)A+719D12 — 71(ra + Da1)] = 0. (6)
Clearly, equation (6) always has two negative real roots A\; = —da, Ay = —(r + d;). All other
roots of (6) are determined by the following equation:
A+ (19 + Doy + D1z — 11)A + 12D15 — 11(r2 + D21) = 0. (7)
If r9D19 > r1(re + Dsy), then we have Dqo > r1. In this case, equation (7) has two negative

real roots. Hence, Fjy is locally asymptotically stable. If 7o D19 < r1(r2 4+ Da1), equation (7)
has a positive real root. Accordingly, the equilibrium FEj is unstable.

The characteristic equation of model (2) at the equilibrium Fj(zf, x5, 0,0) takes the form
[)\2 + (7“2 + Doy + Do + 2a11x’1 — 7"1))\ +7r (7"2 + D21> — T2D12]

8)
anTi (
A d do) A+ d dqi) — —==1 | = .
X | A% 4 (r+dy + da) o(r +dq) T
Noting that
/ ,  DiaDay
9 4 Doy + Dig +2a112y — 11 = 19 + Doy + anay + ———— >0,
T2 +D21

it is easy to show that the equation
)\2 + (7’2 + D21 + D12 + 2@11%’1 - 7‘1))\ + 7’1(’1"2 + Dgl) — T2D12 = 0

always has two negative real roots. All other roots are given by the roots of equation
!/
aglxl

A2 di + do)\+d di) — ———e " =0. 9
+ (r+dy + da) A + da(r + dy) T+ mal © (9)
Let g(\) = A2+ (r+dy +d2) A\ +do(r+dy) — %e’”. If (H;) holds, it then follows that for
nonnegative real A,
(0) = dafr + dy) - 12200
= T —
g 2 ! 14+ ma)
_ ag1r — mda(r + dy) < do(r + dq) B Tl(T2+D21)—T2D12>
1+ ma) ag1r — mda(r + dy) a11(re + Day)
<0,
a1y s

: B Sy
Jm g(A) =+oo, g(N)=2A+r+di+da+ T

Hence, g(A\) = 0 has a positive real root. Accordingly, the equilibrium Ej; is unstable.
If the following holds
Do1) —roD d d
(Hy) 0 < r1(re + Da1) — roD1a < 2(r +dy) ’
a11(re + Da1) a1 — mda(r 4 dy)

> 0.
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then ¢g(0) > 0. When 7 = 0, equation (9) reduces to

agll‘/l

A2 di +do)X+d d) — ——— =
+ (r+dy +do) X+ da(r + dy) 1+ ma,

It is easy to show that equation (10) always has two negative real roots. Hence, the equilibrium

(10)

F is locally asymptotically stable.
If iw(w > 0) is a solution of (9), it is not difficult to show that

w + hw? + hy =0, (11)
where ,
hy = (r+di)?+d3>0, hog= (da(r +dp))* — (Iﬁfxl&) > 0.

In this case, equation (11) has no positive real roots. Accordingly, the roots of equation (9) have
only negative real parts. By the general theory on characteristic equations of delay differential
equation from [6], the equilibrium Ej is locally asymptotically stable for all 7 > 0.

In conclusion, we have the following results.

Theorem 3.1 For model (2)-(3), we have

(i) If roD1s > r1(r2 + Da1), then the equilibrium Eg(0,0,0,0) is locally asymptotically stable
for all 7 > 0; if roD1o < r1(ro + Day1), then Ey is unstable.

(ii) Let roD1s < r1(r2 + Da1) hold. If (Hz) holds, then the equilibrium Ej(a},x},0,0) is

locally asymptotically stable for all 7 > 0; if (Hy) holds, then Ey is unstable.

3.2 Local stability of positive equilibrium and Hopf bifurcations

Now, we study the local stability of the positive equilibrium E+(x1+,:c;r,yfr,y2+) of model
(1.2). The characteristic equation of model (2) at the equilibrium F, takes the form

PN+ Qe =0, (12)
where
PA) =X+ p3sX3 + pa X2 + pid+po, Q) = A + ¢1d + qo,
+
_ + a12Yo
o = 2(1111’1 + D12 + m -7,

p3=r+di +da+r2+ Do+,

p2 = da(r +dy) + (r +dy +d2)(r2 + Da1 + @) + a(r2 + Da1) — D12 Doy,
p1 = (r+dy +d2)(a(ry + D21) — D12Doy) + da(r + di)(r2 + Doy + ),
po = da(r + di)(a(re + Da1) — D12Da1),

g2 = —da(r + du),

¢ = —d (r+d)<r +D +a—a12y’j>
1 2 1 2 21 (1+mxi")2 )

+

a12Y9
= —ds(r +d + Doy1) — D19 Doy — —F5— +D .
qo o(r +dy) (a(rz 21) 12021 (1+mxf)2(r2 21))

When 7 = 0, equation (12) reduces to
A+ psA® + (2 4+ ¢2) A% + (p1+ @)X+ po + qo = 0. (13)
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By direct calculations, we obtain
P2+ q2 = (r+di +d2)(r2 + Di2 + @) + a(ry + Di2) — D12 Doy,

a12y3
= di +d D12) — D12D d d)———————
p1+q = (r+di +da)[a(rs + Di2) 12D21] + da(r + 1)(1+mxiﬁ)2,
a12Y3
po +qo = da(r + 1)(1+mm2

Hence, if a(re + D12) > D12D2q, then

p3 >0, p2+ g2 >0, and p1 + ¢ > 0.
Hence the roots of equation (13) have only negative real parts. Accordingly, the positive
equilibrium E. is locally asymptotically stable when 7 = 0.

If A =iw(w > 0) is a solution of (12), separating the real and imaginary parts, we obtain

that
(QQw2 — qo) COSWT — QW SinwT = wt — p2w2 + Po,

14
(gow? — qo) sinwT + qrw cos wT = P3w> — prw. (14)

Squaring and adding the two equations of (14), it follows that
w8 + h3w6 + h2w4 + h1w2 + h() = 0, (15)

where
hs = p3 — 2p2, ho = D3+ 2po — ¢35 — 2p1p3, h1 = p? + 2q0q2 — 47 — 2pop2, ho = PE — G3.
Letting z = w?, equation (15) can be written as
h(z) = 2* 4+ h32® + ho2® 4+ hyz + ho = 0. (16)

A direct calculation shows that

hs = o +r? 4 (d1 4+ d2)* + (r2 + D21)? + 2D12D91 > 0,

he = [a(re + Da1) — D12Do1 | + [(r + d1)? + d3][a® + (ra + Da1)? + 2D12D9q] > 0,

hi = [a(r2 + Da1) — D12 Do JP[(r + d1)? + d3],

a1ayd a2y
+d%(’l” + d1)2 (1+7:ly$21+)2 [QQ - (1_,’_::;?)2}
a > a T
ho = d3(r + d1)? raye[(r2 + Da1) (20 — ﬁ) —2D12Do1].

If the following holds

2D12D2 a12yy
ro+ D1z (1+maf)?’

(Hg) 2c0 >

we have hy > 0 and hy > 0. Hence, equation (16) has no positive real roots. Accordingly, if
(H;) and (Hs) hold, then the equilibrium E; is locally asymptotically stable for all 7 > 0.

In the following, we assume that

a12yy 2D12D2y

Hy) 0<2a— .
(Hq) “ (1+ma)2 " 1o+ Dio

In this case, we have hy > 0 and hg < 0. Therefore, equation (16) has a unique positive root

z4, that is, (12) admits a pair of purely imaginary roots of the form +iwg. Denote

1 2 2 2 4 2 o
re = L arccos 20 Pah = P1) (g2 — 0)(wo —pawy Tpo) | 2hT 4o (g

wo (q1w0)? + (2w — q0)? wo
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Noting that if a(ry + D12) > D12D2; holds, then E; is locally stable when 7 = 0, and by the
general theory on characteristic equation of delay differential equation from [7](Theorem 4.1),
E* remains stable for 7 < 7.
Differentiating the two sides of (12) with respect 7, it follows that
A\ AN + 3psA? 4 2po X + py 20\ + @1 T
(d7'> T AN N A2 piA o) M@A2+ @A+ qo) A
Direct calculation, one obtains that

—1
sign { d(Re)) } = sign | Re <d/\)
dr A=iwo dr .
A=iwq

R 4N3 + 3p3>\2 + 2p2>\ +p1 2(]2)\ +q1
= sign { Re N +
- >\:iw0

M+ p3dd +paeA2 +p1d+po) A2+ q1))

_ sign { (1 — 3psw) (pswd — p1) + 2(p2 — 2w5) (wo — 2w + po) }
(Prwo — pswp)® + (wh — p2wi + po)®

4t +242(90 — q2w3) }
(90 — q2w5)? + (qrwo)?
It follows from (14) that
2

(prwo — paw()® + (wg — pawd + po)” = (g0 — @wi)® + (qrwo)?.
Hence, we obtain that
. d(R€>\) . 4&]8 —+ 3h3w3‘ —+ 2}7,2{.«]3 —+ h1
sign{ ——= = sign 5 5 5
dr A=iwp (q2w5 — q0)* + (qrwo)

> 0.

Therefore, the transversal condition holds and a Hopf bifurcation occurs at 7 = 9.

From what has been discussed previously, we obtain the following results.
Theorem 3.2 For model (2)-(3), assume that a(re+ D12) > D12Day and (Hy) hold. Then

the following results hold true:

(i) If (H3) holds, then the equilibrium E. is locally asymptotically stable for all 7 > 0.

(ii) Let (Hy) hold, then h(z) has at least one positive root z,, the equilibrium E, of model
(2) is locally asymptotically stable for T € [0,79) and is unstable if T > 19. Further, model
(2) undergoes a Hopf bifurcation at Ey when 7 = 79.

84 Global stability

Now, we are concerned with the global stability of the positive equilibrium E (z], 23,9,
v ), the predator-extinction equilibrium Ej (2}, 5, 0,0) and the trivial equilibrium E;(0, 0,0, 0)
of model (2), respectively. The strategy of proofs is to use Lyapunov functionals and LaSalle’s
invariance principle.

Theorem 4.1 Assume that (Hy) holds, then the positive equilibrium E of model (2) is
globally attractive provided



610 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

(Hs) 21 > ri(ra + Da1) —raDia da(r + di)
- a11(ra + Do) agyr —mda(r +dy)’

Here, 1 1is defined in Lemma 2.2.

Proof Let (x1(t),22(t),y1(t), y2(t)) be any positive solution of model (2)-(3). Model (1.2)
can be rewritten as
iy (t) = % [—22(t)(21(t) — o) + 21 (t)(22(t) — 23)] — anz1(t)(21(t) - 2])
(t) ai2yy
t) 14+ maf (),
(

. Dy, 18
ia(t) = 2 [~oi(B)(aa(t) = af) + 2a(t) (s (1) — a])] (%)
2
. ag1x1(t — 7)y2(t — 7)
= - t
yl(t) 1—|—mx1(t—7) (T+d1)y1( )a
Yo (t) = ry1(t) — daya(l).
Define
Vi(t) = 21(t) — o —af (xg (t) — 2§ —xf In :vQ_(f)
Lo
t
+ar (yl(t)—yl *1 y1+ )+02( y;—yilnmi))
Y1 Ya
where k1 = Doyag /(D1227), ¢1 = a1a(1 + ma{)/az, ca = c1(r + dy)/r. Calculating the

derivative of Vi (t) along positive solutions of (18), it follows that

2
m(t)z—ijﬁ< ()~ af) - ,/j;g(xa(t)—x;)) —an(@m() ~ o)’

O (= Tys(t - 7)

et me) T Tt ) (19)
v w1yt —1) a2y

‘“12(1+m1+)y1(t)' 1+ mar(t—7) 1+mx1+( (t) = i)

t
ca(r+ dl)yl+ + 62d2y2 czrysr y )
Yo (1)
Define
Vi) =WVi(t)+
t +,+ +,+ 1 +
a1s(1+ mxf)/ [ﬂﬁl(u)W(U) %Y _ T Yo —In ( ;"T% 172(“)3!2(“))} du.
t—r L1 +mai(u)  14+mzf 1+ ma] 7 ys (1 4+ mzq(u))
(20)
A direct calculation shows that
2
; Doy xo(1) T z1(t) +
Vi(t) = —=2 t)—at) - t) —
+() xir ( xl(t)(ﬂ?l() 1‘1) x2(t)(332() $2)
s mat )yt (= )a =) (o mad )yt e — 7))galt - o)
YR syl )+ ma(t— 7)) T yd () (1 +mzi(t — 7))

apatyl {yiyl(t)) S y;yl(t))}
P Lyl ) A0
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vt [ a0
1279 Yo T+ n T
2O + may) 2O+ may)
~(aa(0) )7 o -
' T G maa ()]
Because (Hs) holds, we have ay; > % Note that the function g(z) =2 —1—Inz
mil)l x

is always non-negative for any = > 0, and g(z) = 0 if and only if 2 = 1. Therefore, we have
Vi(t) < 0, with equality if and only if x1(t) = z7, z2(t) = x, yi(t) = =T, y(t) = =3
Hence, the only invariant set in M = {(x1,x2,y1,12) : Vi(t) =0} is M = {(zf, 23, 97,99}
Therefore, the global asymptotic attractive of F follows from LaSalle’s invariance principle

for delay differential systems (see, for example, [5]). This completes the proof.

Theorem 4.2 Assume that (Hs) holds, then the equilibrium E; (2}, 24,0,0) of model (2)-(3)
is globally asymptotically stable.

Proof By Theorem 3.1, we see that if (Hz) holds, the equilibrium E; is locally asymp-
totically stable for all 7 > 0. Hence, we only prove that all positive solutions of model (2)-(3)
converge to Ey. Let (z1(t),z2(t),y1(t), y2(t)) be any positive solution of model (2)-(3). For

convenience, we rewrite model (1.2) as following

(1) = 2 [alt)on () = 1)+ 1 (0)(aa(t) = 75)] — anan (O (8 — o) - AL,
) = 22 [ (0)(r2(t) = #5) + 92(6)(m (1) — )]
inte) = 2L TT) o o),
2(0) = rin(0) ~ ().
1)
Define
w1 (t) xo(t)

Vgl(t) = zl(t) — l’/l — LI}/l In

+ ko <l’2(t) —ah —ahln ) + c3 (y1(t) + y2(1)),

/ /

1 2

where ko = Daj2h/(D122)), c3 = ai2(1 + mah)/ag;. Calculating the derivative of Va;(t) along
positive solutions of model (21), we obtain

- zy(t) — 2y . Ta(t) — a5

Vor(t) = ——a4 (¢ kg ————=
21(t) Z1(t) + k2 25()

a1 () da(t) + ez (91 (t) + 92(t))

D?( 220 2, (1)~ ) - xl(t)(w(t)x@) (@) =AY gy

Ty 1 (t) T (t)

—c1dyyi(t) — (erda — ar22)ya(t).

Define .

Va(t) = Var () + aza(1 + ma’) /t, mds (23)

A direct calculation shows that
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7D21

/
Ty

Va(t) = ( (@1(8) = 2h) = [ 5 (@2(t) = wé)) —api (21 (t) - 27)° (24)

—c1diyr (t) — (erdy — a1z ya(t).
Hence, it follows from (24) that if (Hs) holds, then Va(t) < 0 with equality if and only if
x1(t) = 2, xo(t) = x4 , y1(t) = 0 and yo(¢) = 0. Using a similar argument as that in the proof
of Theorem 4.1, we show that the only invariant set in M = {(z1,x2,y1,92) : Va(t) = 0} is
M = {(z},245,0,0)}. Accordingly, the global asymptotic stability of E; follows from LaSalle’s
invariant principle for delay differential systems. This completes the proof.

Theorem 4.3 Let r1(ra + Da1) < roD1a, then the trivial equilibrium E1(0,0,0,0) of model
(2) is globally asymptotically stable.

Proof By Theorem 3.1, we see that if r1(r2 + Da1) < r9D12, Ey is locally asymptotically
stable. Hence, we only prove that all positive solutions of model (2)-(3) converge to Ey. Let
(x1(t), 22(t), y1(t), y2(t)) be any positive solution of model (2)-(3). Define

t
Volt) = 22(0) + Pt 2 () sale) +ane | T,
Calculating the derivative of V;(t) along positive solutions of model (2), we have

L a1281 (t)y2(t)  arpa1(t — 1)y (t — 7)
Vo(#) = #1() + 1+ mai(t) 1+ ma(t—7)

21 . a2 , . .
_ t — t t
D)+ 200 + ) +
Dyorg — 11 (r2 + Da1) 9 a2 a2
— t) — t) — —d t) — —d t).
ro + Doy z1(t) — an1wy(t) a1 191(t) . 212(1)

(25)
If 71 (ro 4 Dg1) < r2Dia, it then follows from (25) that Vo(t) < 0. Clearly, we see from (25)
that Vo(t) = 0 if and only if z;(t) = 0,z2(t) = 0,71(t) = 0 and ya(t) = 0. Accordingly, the
global asymptotic stability of Ey follows from LaSalle’s invariant principle for delay differential
systems. This completes the proof.

85 Numerical simulation

In this section, we give two examples to illustrate the main results in Section 3 and Section

Example 1 In model (2), let a;; = 0.25,a12 = 1.5,a21 = 3.2,m = 0.55, D15 = 0.5, Dy; =
0.1,r=2,71 =0.25,72 = 0.5,d; = 0.2,d2 = 0.2. Tt is easy to show that r9D12 —ri(re + Da1) =
0.1 > 0, model (2) has only the trivial equilibrium Fy(0,0,0,0). By Theorem 4.3, we see that
the equilibrium Ej is globally asymptotically stable. Numerical integration can be carried out
using the standard MATLAB algorithm. Numerical simulation illustrates the result above (see,

Figure 1).
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Figure 1. The temporal solution found by numerical integration of model (2) with 7 = 0.1 and
(@1(0)7 P2 (0)7 ¢1 (0)7 ¢2 (0)) = (O6a 067 06a 06)

Example 2 In model (2), let a1 = 4,a12 = 2,a21 = 1,m = 0.2,D152 = 4,D9; = 2,1 =
3,7’1 = 277"2 = 1,d1 = O.Q,dg =0.2. NOtng that ’/’1(7‘2 + D21) — ’/‘2D12 =2> 07 model (2) has

a nonnegative boundary equilibrium E;(0.1667,0.2222,0,0). Clearly, 0 < % =

0.1667 < #% = 0.2228. By Theorem 4.2, we see that the equilibrium E} is globally
asymptotically stable. Numerical simulation illustrates the result above (see Figure 2).
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\ _ \ _
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Figure 2. The temporal solution found by numerical integration of model (2) with 7 = 0.1 and
(¢1(0), 92(0), #1(0), 92(0)) = (0.6, 0.6, 0.6, 0.6).

Example 3 In model (2), let a1 = 4,a12 = 2,a91 = 1,m = 0.2, D15 = 4, D91 = 2,1 =
3,7‘1 = 2,7"2 = 1,d1 :0.2,d2 =0.2.
By calculation, we obtain % = 0.6061 > #‘% = 0.1112 > 0, and
therefore, the model (2) has a unique positive equilibrium E,(0.1112,0.1011,0.1501, 1.5010).
+

Noting that 0 < 20 — 1 = 2.8029 < T343521 = 3.6364 and 79 = 1.6524. By Theorem
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3.2, we see that the equilibrium E is locally asymptotically stable if 0 < 7 < 75 and model (2)

undergoes a Hopf bifurcation at £ when 7 = 79. Numerical simulation illustrates the previous
result(see Figures 3 and 4).
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Figure 3. The temporal solution found by numerical integration of model (2) with 7 = 0.1 and

((pl(o)) P2 (0)7 $1 (0)7 03} (0)) = (06’ 0.6,0.6, 06)
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Figure 4. The temporal solution found by numerical integration of model (2) with 7 = 7y and

(‘Pl(o)a P2 (0)7 1 (0)7 b2 (0)) = (0'6’ 0.6,0.6, 06)

86 Discussion

In this paper, we have investigated the global dynamics of a delayed predator-prey model
with prey dispersal and Holling type-II functional response. By analysing the corresponding
characteristic equations, the local stability of each of feasible equilibria has been established
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From the analysis in Sections 3 and 4, if r1(re + Da1) < roDia, then the trivial equilibrium
E5(0,0,0,0) is globally asymptotically stable. If 71 (rg + Da1) > ro D12 and % <
M hold, then the equilibrium Fi(z],25,0,0) is globally asymptotically stable. If
az1r mdQ(r+d1) 1 2

Dyy)—ryD dy(r+d . ey .
2 > Tl(?i(rijlf) 12 a21r—27(r:d2(;)+d1) > 0 holds, then the positive equilibrium E. is globally

attractive. At the positive equilibrium, a threshold 7y for the time delay is identified such that

below it, the equilibrium is locally asymptotically stable, but if the delay is greater than the

threshold, sustained oscillation arise.
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