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On the synchronizable system by groups and the

generalized synchronizable system

WANG Yan-yan

Abstract. In this paper, the synchronizable system by groups and the generalized synchroniz-
able system are studied for a coupled system of wave equations. Moreover, situations possessing

different groupings are also discussed.

81 Introduction

In the researches of the exact boundary synchronization for hyperbolic systems (see [2]-[3]),
Lei et al. [1] defined and studied the synchronizable system, which has synchronization solutions
in the absence of boundary controls. Then for the synchronizable system, the exact boundary
synchronization can be further investigated. Li et al. [4]-[5] extended this work to the partially
synchronizable system. This paper aims to study the corresponding synchronizable system by
groups and the generalized synchronizable system, respectively.

Consider the following coupled system of wave equations with homogeneous Dirichlet bound-
ary condition

U'"— AU+ AU =0 in (0,+00) x Q, (1)
U=0 on (0, +00) x T, '

in which, U = (u(l), .. ,u(N))T denotes the state variable, “’ 7 is the partial derivative with
2

n

respect to the time variable ¢, A = 3 — is the Laplacian operator with respect to the space
i=1 0%;

variable z, A = (a;;) is the coupled matrix of order N with constant components, and  C R”

is a bounded domain with smooth boundary I". The initial data is given by
t=0: (U,U") = (Uy(),Us(2)). (1.2)

Correspondingly, we will consider the following coupled system of wave equations with
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Dirichlet boundary controls
U’'— AU+ AU =0 1in (0,400) x Q,
U=0 on (0,400) x Iy, (1.3)
U=DH on (0,400) x I'y,
in which, I' = ToUT; with ToNT; = @ and mes(T';) # 0, H = (R, ..., AT is the boundary
control (M < N), D is the boundary control matrix of order N x M with full column-rank and
with constant components.

In what follows, we first recall in Section 2 the properties of system (1.1) to be a synchroniz-
able system, and the application on the exact boundary synchronization for the corresponding
system (1.3) with Dirichlet boundary controls. Then we consider the synchronizable system by
groups and the generalized synchronizable system in Section 3 and 5, respectively. In partic-
ular, we discuss furthermore in Section 4 the situations that system (1.1) possesses different

groupings.

82 Synchronizable system

Definition 2.1 (cf. [1]). System (1.1) is a synchronizable system if there exists an initial
data (Ug(x), U (x)) such that the solution U = U (¢, z) to the corresponding problem (1.1)—(1.2)
is a synchronization solution

uV(t,z) = =uN(t, ) = u(t, x), (2.1)
where u(t, z) is called the synchronizable state, and u(t, x) £ 0.

The initial data (1.2) of a synchronization solution must be the synchronization one, that

is, Up(z) = (u(()l)(x), e u(()N) (z))T and Uy (z) = (ugl)(ac), e ,ugN)(x))T must satisfy

)E~-~EuéN)éao, uﬁl)E-“EugN)éfn. (22)

ul!

For non-trivial synchronization solution, it is required that (Uy(z), Ui(x)) # (0,0).
Let ¢ = (1,...,1)T be the synchronization basis, and C; be the corresponding synchro-
nization matrix of order (N — 1) x N with full row-rank: Ker(C;) = Span{e}. Then the

synchronization (2.1) can be rewritten as

C1U(t,x) =0, (2.3)
and for the synchronizable system, there exists a synchronizable state u(t,z) (# 0) such that
Ul(t,z) = u(t, x)e. (2.4)

Theorem 2.1 (cf. [1]). System (1.1) is a synchronizable system if and only if the coupling
matrix A satisfies the following condition of Cy-compatibility
AKer(Cy) C Ker(Cy), (2.5)
or equivalently, there exists a constant a such that Ae = ae, that is, the following row-sum
condition holds
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N
Zaij =a, izl,...,N,
j=1

where a is independent of i =1,... N.

Then the synchronizable state u = u(t, ) satisfies

v —Au+au=0 1in (0,+00) x Q,
(2.6)
u=0 on (0,400) x T,
with the initial data
t=0: (u,u) = (g, 1), (2.7)

where (lg, 1) is given by (2.2), and (Go,01) Z (0,0) for non-trivial synchronizable state.
Since the condition of Cy-compatibility (2.5) is independent of the initial data, we have

Theorem 2.2 (cf. [1]). If system (1.1) is a synchronizable system, then it always possesses

a synchronization solution for any given synchronization initial data.

For system (1.3) with Dirichlet boundary controls, by definition, it is exactly synchronizable
(see [3]) if there exists T > 0, such that for any given initial data (Uy, U;) € (L?(Q)x H~1(Q))V,
there exists a boundary control H € L2 (0,+o00; (L?(I'1))*) with compact support in [0, 77,
such that the solution U = U(¢,z) to problem (1.3) and (1.2) satisfies the synchronization
requirement

t>T: CiU(t,x) =0, z € Q. (2.8)

Thus by Theorem 2.2, we have

Corollary 2.3 (cf. [1]). If system (1.1) is a synchronizable system, then the exact boundary
synchronization (2.8) of system (1.3) is equivalent to that for any given initial data (Uy,Uy) €
(L?(Q) x H=Y(Q))N, there exists a boundary control H, such that the corresponding solution

U =U(t,x) attains a synchronizable state at time t =T, that is,

CL(U(T,2),U'(T,z)) = (0,0), = € Q. (2.9)

83 Synchronizable system by groups

Correspondingly, the synchronizable system by p groups can be defined to be the system
possessing synchronization solutions by p linearly independent groups. Let ng,n1,...,n, be a
series of integers satisfying

0=ng<ng <---<np=N. (3.1)
After a suitable arrangement of the components of the state variable, we can give the following

Definition 3.1. System (1.1) is a synchronizable system by p groups if there exists an
initial data (Up(x),U;(z)) such that the solution U = U(¢, ) to problem (1.1)—(1.2) is a syn-
chronization solution by p groups
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u(l)(t7 )= = u(”l)(t, x) = uy(t, x),
(n1+1) =...=qn2) EY
U t,x) = =u t,x) = uz(t,x),
(t,x) (t,z) 2(t, ) (3.2)
(np-1+1) =...=qym) 2
u\"p (t, ) ul™)(t, x) = up(t,x),

where u(t, ) = (u1(t,x),ua(t,x),...,uy(t,x))T is called the synchronizable state by p groups,

and the p components of u(t,z) are linearly independent.
Clearly, the initial data of a synchronization solution by groups must be the corresponding

synchronization initial data by groups, that is, Uy(z) = (uél)(z), N ,uéN) (z))T and Uy (z) =
(“gl) (z),... 7u§N>(x))T must satisfy

ugl)(aj) =...= ugnl)(x) 2 w1 (),
(n1+1) _ _ (n92) A
u; z)=--=u; (x) = upn(x),
@) (@) 2 (o) 53
u (@) == u™ (@) = iy (w)
for i = 0,1, respectively.
Let {e1,...,ep} be the synchronization basis by p groups, defined by
1, np_1+1<1e<ny,
(ex)i = (3.4)
0, others
for k =1,...,p. And let C, be the synchronization matrix by groups, a full row-rank matrix
of order (N — p) x N, determined by
Ker(C,) = Span{es, ..., ep}. (3.5)
Then, the requirement (3.2) for the synchronization by groups can be rewritten as
CyU(t,z) =0, (3.6)

and for the synchronizable system by p groups, the corresponding requirement becomes that
there exists a synchronizable state by p groups u(t,z) = (ui(t,z),...,uy(t,z))" with p linearly

independent components, such that

U(t,x) =ui(t,x)er + - +up(t, x)e, = (€1, ..., ep)ult, ). (3.7)

Theorem 3.1. System (1.1) is a synchronizable system by p groups if and only if the
coupling matriz A satisfies the following condition of Cp,-compatibility
AKer(C,) C Ker(C,), (3.8)

namely, there exists a square matrix flp of order p, such that the following row-sum condition
by blocs holds
Aler,. . ep) = (e1,...,ep) Ay, (3.9)
where e, ..., e, and Cp are given by (3.4) and (3.5), respectively.
Then, the synchronizable state by p groups u = u(t,z) = (u1(t,x),...,uy(t,x))T satisfies
u’ — Au+ Ayu=0 in (0, +00) x €,

(3.10)
u=0 on (0,+00) x T,
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with the initial data
t=0: u=(up1,--- ,uop)T, u = (uig, ... 7ulp)T7 (3.11)

given by (3.3).

Proof. Assume that U = U(t, z) is a synchronization solution by p linearly independent groups
to system (1.1), satisfying (3.6). Multiplying the equations in (1.1) by C), from the left, we have
C,AU = 0,

then by (3.7), we get
CLAU(t,z) = CpAerus (t,z) + - - - + CpAeyu,(t, ) = 0.
By assumption that uq (¢, z), ..., u,(t, z) are linearly independent, we get
Cple; =--- = CpAe, =0,

then from (3.5), we obtain the condition of Cp-compatibility (3.8).

Plugging U = (eq,...,ep)u into (1.1), and noting the condition of Cp-compatibility (3.9),
we get (3.10). Moreover, the initial condition (3.11) can be obtained by (3.3).

On the other hand, if A satisfies the condition of C)-compatibility (3.8), namely, (3.9), we
can take u = u(t, ) satisfying (3.10) with (uo1,...,uop)" being linearly independent, then the
components of u(t, z) are linearly independent. Therefore, U = U(t,z) = (e, ..., ep)u(t, z) is

a synchronization solution by p linearly independent groups to system (1.1). O

Remark 3.2. For the synchronizable system, the initial data of a non-trivial synchronizable
state are not zeros. However, for the synchronizable system by p groups, the linear indepen-
dence for the p components u; (¢, z),...,upy(t, x) of the synchronizable state u(t,x) by p groups
on the whole solvable domain does not imply the linear independence for their initial data
(uwo1, u11), - - -, (Uop, u1p). On the contrary, the example below shows that their initial data can
be linearly dependent.

Example 3.3. Let u(t,z) = (u1(t,z),u2(t,z))T be the synchronizable state by 2 groups.
Assume that u; (¢, z) and ug(t, ) satisfy

uf — Aup =0 in (0, 400) x £,
uy — Aug +ug =0 in (0,400) X £, (3.12)
up =ug =0 on (0,400) x T’
with the same initial data
t=0: u1:u2§ﬂ0, u/lzuééﬁl, (3.13)

where (g, 41) # (0,0). Then we still have that u; (¢, z) and uz(¢,x) are linearly independent.
In fact, if u; (¢, ) and ug(¢, x) are linearly dependent, noting that they have the same initial

data, we have ui(t,z) = uz(t,z). Then by (3.12) we have uy(t,z) = uz(t,z) = 0, and this

contradicts to (g, @) # (0,0). O

Noting that the condition of Cp-compatibility (3.8) is independent of the initial data, from
Theorem 3.1 we have
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Theorem 3.2. If system (1.1) is a synchronizable system by p groups, then it always pos-
sesses a corresponding synchronization solution by p groups for any given synchronization initial
data (3.3) by p groups.

Thus, for a given grouping, the synchronizable system by groups can be equivalently de-
fined as the system that always possesses a synchronization solution by groups for any given
synchronization initial data by groups.

For the corresponding system (1.3) with Dirichlet boundary controls, the exact boundary
synchronization by p groups (see [3]) means that there exists a moment 7' > 0, such that
for any given initial data (Up,U;) € (L*(Q) x H~1(Q))"N, there exists a boundary control
H e L3 _(0,+00; (L*(T1))M) with compact support in [0, T, such that the solution U = U (¢, )

to the problem (1.3) and (1.2) satisfies the following synchronization by p groups requirement
t>T: CU(t,z) =0, x €. (3.14)
Then by Theorem 3.2 we have

Corollary 3.3. If system (1.1) is a synchronizable system by p groups, then the ezact
boundary synchronization by p groups (2.8) of system (1.3) is equivalent to that for any given
initial data (Ug,Uy) € (L2(2) x H=Y(Q))N, there exists a boundary control H, such that the
solution U = U(t,x) satisfies at time t =T,

Cp(U(T,z),U(T,z)) = (0,0), = €Q, (3.15)
that is, there exists (u(T,z),u'(T,z)) € (L*(2) x H=(Q))? such that
(U(T,z),U(T,x)) = (e1,...,ep) (w(T,z),u (T, x)), = € Q. (3.16)

84 Synchronizable systems by groups with different groupings

Different from the synchronizable system, for the synchronizable system by groups, since
there are many ways of groupings, we can get different kinds of synchronization solutions by

groups.

Example 4.1. Let N = 8, and state variable U = (u(l), e ,u(g))T. The synchronization
solution by 3 groups to system (1.1) can be
uM =@ 43 = 4@ =) 40 = (D = 4®) (4.1)
corresponding to the synchronization basis by 3 groups
e1 =(1,1,0,0,0,0,0,0)", e> = (0,0,1,1,1,0,0,0), e5 = (0,0,0,0,0,1,1,1)";
On the other hand, it can also be
uM =@ 48 =4O @) =40 = () = 4®) (4.2)
corresponding to the synchronization basis by 3 groups
é1 =(1,1,0,0,0,0,0,0)T, é; = (0,0,1,0,1,0,0,0)*, é3 = (0,0,0,1,0,1,1,1)T.

O
Definition 4.2. {ej,...,e,} is called as a synchronization basis by p groups if each com-

ponent of e, (k=1,...,p) is either O or 1, and e +--- + e, = (1,...,1)T.
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Clearly, the aforementioned results, true for {es,...,e,} given by (3.4), still hold for a
general synchronization basis by p groups {e1,...,ep}.
Then for the synchronizable system (1.1) by 2 groups, we have

Theorem 4.1. If system (1.1) is a synchronizable system by 2 groups under two different

groupings, then it is a synchronizable system.

Proof. Assume that system (1.1) is a synchronizable system by 2 groups with respect to {e, e}
and with respect to {é1,é2}, and
Span{ey, ea} # Span{éy, éa}.
It is easy to see that
Span{ey, ea} N Span{éy,és} = Span{e},

where e = (1,...,1)T. By Theorem 3.1, both Span{e;, ez} and Span{é;, és} are invariant for
A, thus Span{e} is also invariant for A, that is, A satisfies the condition of C}-compatibility
(2.5), then system (1.1) is a synchronizable system. O

For general cases of groupings, we have

Theorem 4.2. If system (1.1) is a synchronizable system by p groups with respect to
{e1,...,ep} and a synchronizable system by p groups with respect to {é1,...,é3}, then it is
a synchronizable system by q groups with respect to {e,... ey}, where {e],... ey} is a syn-
chronization basis by q groups, determined by

Span{ej,...,e;} = Span{ey,...,e,} NSpan{éy, ..., é5}, (4.3)
and 1 < g < min(p, p).

Proof. Since system (1.1) is a synchronizable system by p groups with respect to {ei,...,ep}
and a synchronizable system by p groups with respect to {é1,...,é;}, by Theorem 3.1, both
Span{ei,...,e,} and Span{éy,...,¢é;} are invariant for A, thus Span{ej, ..., e;} given by (4.3)
is also invariant for A. In what follows, we need to show that (4.3) indeed determines a
synchronization basis by groups, namely, {e],...,e;} is a series of non-zero vectors consisted of
0 and 1, such that e] +---+e; = (1,..., 1), therefore system (1.1) is a synchronizable system
by g groups with respect to {ej,...,e;}.

We apply the induction with respect to p.

For p = 1, obviously, Span{ey,...,e,} N Span{e} = Span{e}, in which e = (1,...,1)T is a
synchronization basis.

Supposing that it is true for p — 1, we now consider the case for p.

If Span{é,...,é;} C Span{ei,...,e,}, then {é1,...,é5} is a synchronization basis by
groups, determined by (4.3).

If not, then there exists a £ = (£1,...,&n)T € Span{éy, ..., &5}, namely,

& =¢, V(i.j) € R,
where R = {(,5) : (éx)i = (éx); =1, 1 <k <p, 1 <i,j < N}, but £ & Span{ey,...,e,}, that
is, there exist iy # jo,
(i0, jo) € R,
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where R = {(4,7) : (ex); = (ex); =1, 1 <k <p, 1 <4,j <N}, such that &, # &;,. Hence
(i0, jo) & R.
Without loss of generality, assume that (e1);, = (e1);, = 1, while (é1);, =1, (é2);, = 1. Then
we can easily get
Span{es,...,ep} NSpan{és,...,é;} = Span{e1,...,e,} NSpan{éy + é2,é3,...,6;5},

in which {é; + é2,és,...,é;} is a synchronization basis by (p — 1) groups. By the induction
assumption, the right-hand side of the above formula determines a synchronization basis by
groups, then the left-hand side determines a synchronization basis by groups. Hence the con-
clusion is also true for p.

Clearly, 1 < ¢ < min(p, p). In fact, (4.3) implies that ¢ < min(p, p), and e € Span{ej, ..., e;}
shows that ¢ > 1.

The proof is complete. O

The proof shows that the grouping corresponding to the synchronization basis by groups
{ex,... ,e;‘} given by (4.3) is a combination of the original two groupings. For instance, in
Example 4.1,

Span{ey, e2, ez} N Span{éy, és,é3} = Span{e],e5},
where

el =(1,1,0,0,0,0,0,0)T, e =(0,0,1,1,1,1,1,1)T,
then it follows from the synchronization (4.1) by 3 groups with respect to {ej, e, e3} and the
synchronization (4.2) by 3 groups with respect to {é1,és, €3} that system (1.1) possesses the
synchronization by 2 groups with respect to {e},e5},

uM =@ 43 = @ = 40 = 46 = (M) = 4,8,
More generally, we have

Corollary 4.3. If system (1.1) is a synchronizable system by py groups with respect to
{egk), ey egz)} forallk=1,... K, then it is a synchronizable system by q groups with respect

to {e7,...,e;}, where {e7,... e} is a synchronization basis by groups determined by
Span{ey,...,e;} = ﬂ Spam{egk)7 e 761()?}’ (4.4)
1<k<K

and 1 < g <min(py,...,pK).

85 Generalized synchronizable system

Similarly to the synchronizable system by groups, we can define the generalized synchro-
nizable system as the system possessing generalized synchronization solutions by p linearly
independent groups.

According to [6], denote ©,, € M(N="P)*XN(R) (0 < p < N) as the generalized synchronization
matrix that is a full row-rank matrix, and denote {e1,...,¢€,} as the corresponding generalized

synchronization basis given by

Ker(©,) = Span{ei, ..., €} (5.1)
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Then, for system (1.1), the generalized synchronization solution U = U(t, ) with respect to

0, is the solution satisfying

©,U(t,z) =0, (5.2)

that is, there exists u(t,z) = (u1(t, ), u2(t, ), ..., upy(t,z))T such that the solution
Ut,x) =u1(t,x)er + - - +up(t, x)ep = (€1, ..., ep)ult, ), (5.3)
which is also called the generalized synchronization solution with respect to {e1,...,€,}, and

u(t, x) is called the corresponding generalized synchronizable state.

Definition 5.1. System (1.1) is a generalized synchronizable system with respect to ©,, if
there exists an initial data (Uy(x),U;(x)) such that the corresponding solution U = U(t, ) to
problem (1.1)—(1.2) is a generalized synchronization solution (5.3) with respect to ©,, and the
components of the corresponding generalized synchronizable state u(t, z) are linearly indepen-
dent.

Remark 5.2. Now we explain, from the standpoint of the generalized synchronization,
that for the synchronizable system by groups (resp., generalized synchronizable system), the
components of the synchronizable state by groups (resp., generalized synchronizable state) are
supposed to be linearly independent. In fact, assume that system (1.1) possesses a generalized
synchronization solution (5.3) with respect to {e1,...,€,}. If the components of the gener-
alized synchronizable state u(t,x) = (u1(t,2),...,uy(t,z))T are linearly dependent, then let
1(t,z),...,05(t, ) be the maximal linearly independent ones in ui(¢,z),...,uy(t, z), where
p < p. There exists a full column-rank matrix @ of order p x p, such that

u(t, z) = Qu(t, x),
where (t,z) = (@1(t,),...,4;(t,r))T. Denote (é1,...,é) = (e1,---,€,)Q, then the general-
ized synchronization solution (5.3) with respect to {e1,...,¢€,} turns into
Ult,z) = (&,...,&)u(t, x),
which is actually a generalized synchronization solution with respect to {€i,...,¢éz}, and the
components of the corresponding generalized synchronizable state (¢, x) are linearly inde-
pendent. Thus it is sufficient to consider the case that the components of the generalized

synchronizable state u(t, z) are linearly independent (at least for one initial data).

In what follows, we first consider the properties of system (1.1) to be a generalized synchro-
nizable system with respect to ©,,.

First, the initial data of a generalized synchronization solution with respect to ©, must
be the generalized synchronization initial data with respect to ©,, namely, the initial data
(Uo(x), Uy (z)) must satisfy

0, (Us(x), U () = 0,

that is, there exist do(z) = (uo1(2), ..., uop(z))" and 41 (z) = (u11(z), ..., u1p(x))" such that

(Uo(x), U1 (2)) = (€1, .., €p)(to(x), 41 (x)). (5.4)

Then, similarly to Theorem 3.1, we have
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Theorem 5.1. System (1.1) is a generalized synchronizable system with respect to O, if

and only if the coupling matriz A satisfies the condition of ©,-compatibility

AKer(0,) C Ker(0,), (5.5)
that is, there exists a square matrix flp of order p, such that
Aler, ... 6p) = (€1,...,6p) A, (5.6)

Then the generalized synchronizable state u = u(t,z) given in (5.3) satisfies
u' — Au+ Ayu=0 in (0,+00) x Q,
u=0 on (0,4+00) x T’
with the initial data
t=0: (u,u) = (do(x), 01 (x)), (5.8)
where (lg(z), 41 (x)) are given by (5.4).

Similarly to Theorem 3.2, we have

Theorem 5.2. If system (1.1) is a generalized synchronizable system with respect to ©,,
then it possesses a corresponding generalized synchronization solution for any given generalized

synchronization initial data with respect to ©p.

For the corresponding system (1.3) with Dirichlet boundary controls, the generalized exact
boundary synchronization with respect to ©, (see [6]) means that there exists T > 0, such
that for any given initial data (Up, U;) € (L?(2) x H~1(Q))", there exists a boundary control
H e L2 _(0,+00; (L*(T'1))M) with compact support in [0, T, such that the solution U = U (¢, )
to problem (1.3) and (1.2) satisfies the generalized synchronization requirement

t>T: 0,U(t,x) =0, z € Q. (5.9)

Similarly to Corollary 3.3, we have

Corollary 5.3. If system (1.1) is a generalized synchronizable system with respect to ©,,
then the generalized exact boundary synchronization with respect to O, for system (1.3) is
equivalent to that for any given initial data (Up,U1) € (L3(2) x H=1(Q))N, there exists a

boundary control H, such that the solution satisfies at timet =T,

0,(U(T,z),U'(T,z)) = (0,0), z € Q, (5.10)
that is, there exists (u(T,z),u (T, x)) € (L*(Q) x H~Y(Q))P such that
(U(T,z),U"(T,z)) = (e1,-..,6) (u(T,z),u'(T,z)), x €. (5.11)

For the case with different groupings, similarly to Corollary 4.3, we have

Corollary 5.4. If system (1.1) is a generalized synchronizable system with respect to @Z(;lz)

Jorall k =1,..., K, then it is a generalized synchronizable system with respect to ©y, where
O satisfies
Ker(©}) = ﬂ Ker(@gz)), (5.12)
1<k<K

and q as the dimension of Ker(©}) satisfies 0 < ¢ < min(py,...,pk).
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Remark 5.3. Different from Corollary 4.3 for the synchronization by groups, the above
result for the generalized synchronization includes the case ¢ = 0: Ker(©f) = {0} in (5.12),
thus the generalized synchronization solution with respect to ©f is actually the zero solution.

This is a trivial case.
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