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On the synchronizable system by groups and the

generalized synchronizable system

WANG Yan-yan

Abstract. In this paper, the synchronizable system by groups and the generalized synchroniz-

able system are studied for a coupled system of wave equations. Moreover, situations possessing

different groupings are also discussed.

§1 Introduction

In the researches of the exact boundary synchronization for hyperbolic systems (see [2]–[3]),

Lei et al. [1] defined and studied the synchronizable system, which has synchronization solutions

in the absence of boundary controls. Then for the synchronizable system, the exact boundary

synchronization can be further investigated. Li et al. [4]–[5] extended this work to the partially

synchronizable system. This paper aims to study the corresponding synchronizable system by

groups and the generalized synchronizable system, respectively.

Consider the following coupled system of wave equations with homogeneous Dirichlet bound-

ary condition U ′′ −∆U +AU = 0 in (0,+∞)× Ω,

U = 0 on (0,+∞)× Γ,
(1.1)

in which, U = (u(1), . . . , u(N))T denotes the state variable, “ ′ ” is the partial derivative with

respect to the time variable t, ∆ =
n∑

i=1

∂2

∂x2
i

is the Laplacian operator with respect to the space

variable x, A = (aij) is the coupled matrix of order N with constant components, and Ω ⊂ Rn

is a bounded domain with smooth boundary Γ. The initial data is given by

t = 0 : (U,U ′) = (U0(x), U1(x)). (1.2)

Correspondingly, we will consider the following coupled system of wave equations with
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Dirichlet boundary controls
U ′′ −∆U +AU = 0 in (0,+∞)× Ω,

U = 0 on (0,+∞)× Γ0,

U = DH on (0,+∞)× Γ1,

(1.3)

in which, Γ = Γ0∪Γ1 with Γ̄0∩ Γ̄1 = ∅ and mes(Γ1) ̸= 0, H = (h(1), . . . , h(M))T is the boundary

control (M ≤ N), D is the boundary control matrix of order N ×M with full column-rank and

with constant components.

In what follows, we first recall in Section 2 the properties of system (1.1) to be a synchroniz-

able system, and the application on the exact boundary synchronization for the corresponding

system (1.3) with Dirichlet boundary controls. Then we consider the synchronizable system by

groups and the generalized synchronizable system in Section 3 and 5, respectively. In partic-

ular, we discuss furthermore in Section 4 the situations that system (1.1) possesses different

groupings.

§2 Synchronizable system

Definition 2.1 (cf. [1]). System (1.1) is a synchronizable system if there exists an initial

data (U0(x), U1(x)) such that the solution U = U(t, x) to the corresponding problem (1.1)–(1.2)

is a synchronization solution

u(1)(t, x) ≡ · · · ≡ u(N)(t, x)
∆
= u(t, x), (2.1)

where u(t, x) is called the synchronizable state, and u(t, x) ̸≡ 0.

The initial data (1.2) of a synchronization solution must be the synchronization one, that

is, U0(x) = (u
(1)
0 (x), . . . , u

(N)
0 (x))T and U1(x) = (u

(1)
1 (x), . . . , u

(N)
1 (x))T must satisfy

u
(1)
0 ≡ · · · ≡ u

(N)
0

∆
= û0, u

(1)
1 ≡ · · · ≡ u

(N)
1

∆
= û1. (2.2)

For non-trivial synchronization solution, it is required that (U0(x), U1(x)) ̸≡ (0, 0).

Let e = (1, . . . , 1)T be the synchronization basis, and C1 be the corresponding synchro-

nization matrix of order (N − 1) × N with full row-rank: Ker(C1) = Span{e}. Then the

synchronization (2.1) can be rewritten as

C1U(t, x) ≡ 0, (2.3)

and for the synchronizable system, there exists a synchronizable state u(t, x) ( ̸≡ 0) such that

U(t, x) = u(t, x)e. (2.4)

Theorem 2.1 (cf. [1]). System (1.1) is a synchronizable system if and only if the coupling

matrix A satisfies the following condition of C1-compatibility

AKer(C1) ⊆ Ker(C1), (2.5)

or equivalently, there exists a constant a such that Ae = ae, that is, the following row-sum

condition holds
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N∑
j=1

aij = a, i = 1, . . . , N,

where a is independent of i = 1, . . . , N .

Then the synchronizable state u = u(t, x) satisfiesu′′ −∆u+ au = 0 in (0,+∞)× Ω,

u = 0 on (0,+∞)× Γ,
(2.6)

with the initial data

t = 0 : (u, u′) = (û0, û1), (2.7)

where (û0, û1) is given by (2.2), and (û0, û1) ̸≡ (0, 0) for non-trivial synchronizable state.

Since the condition of C1-compatibility (2.5) is independent of the initial data, we have

Theorem 2.2 (cf. [1]). If system (1.1) is a synchronizable system, then it always possesses

a synchronization solution for any given synchronization initial data.

For system (1.3) with Dirichlet boundary controls, by definition, it is exactly synchronizable

(see [3]) if there exists T > 0, such that for any given initial data (U0, U1) ∈ (L2(Ω)×H−1(Ω))N ,

there exists a boundary control H ∈ L2
loc(0,+∞; (L2(Γ1))

M ) with compact support in [0, T ],

such that the solution U = U(t, x) to problem (1.3) and (1.2) satisfies the synchronization

requirement

t ≥ T : C1U(t, x) ≡ 0, x ∈ Ω. (2.8)

Thus by Theorem 2.2, we have

Corollary 2.3 (cf. [1]). If system (1.1) is a synchronizable system, then the exact boundary

synchronization (2.8) of system (1.3) is equivalent to that for any given initial data (U0, U1) ∈
(L2(Ω) × H−1(Ω))N , there exists a boundary control H, such that the corresponding solution

U = U(t, x) attains a synchronizable state at time t = T , that is,

C1(U(T, x), U ′(T, x)) ≡ (0, 0), x ∈ Ω. (2.9)

§3 Synchronizable system by groups

Correspondingly, the synchronizable system by p groups can be defined to be the system

possessing synchronization solutions by p linearly independent groups. Let n0, n1, . . . , np be a

series of integers satisfying

0 = n0 < n1 < · · · < np = N. (3.1)

After a suitable arrangement of the components of the state variable, we can give the following

Definition 3.1. System (1.1) is a synchronizable system by p groups if there exists an

initial data (U0(x), U1(x)) such that the solution U = U(t, x) to problem (1.1)–(1.2) is a syn-

chronization solution by p groups
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
u(1)(t, x) ≡ · · · ≡ u(n1)(t, x)

∆
= u1(t, x),

u(n1+1)(t, x) ≡ · · · ≡ u(n2)(t, x)
∆
= u2(t, x),

. . .

u(np−1+1)(t, x) ≡ · · · ≡ u(np)(t, x)
∆
= up(t, x),

(3.2)

where u(t, x) = (u1(t, x), u2(t, x), . . . , up(t, x))
T is called the synchronizable state by p groups,

and the p components of u(t, x) are linearly independent.
Clearly, the initial data of a synchronization solution by groups must be the corresponding

synchronization initial data by groups, that is, U0(x) = (u
(1)
0 (x), . . . , u

(N)
0 (x))T and U1(x) =

(u
(1)
1 (x), . . . , u

(N)
1 (x))T must satisfy

u
(1)
i (x) ≡ · · · ≡ u

(n1)
i (x)

∆
= ui1(x),

u
(n1+1)
i (x) ≡ · · · ≡ u

(n2)
i (x)

∆
= ui2(x),

. . .

u
(np−1+1)
i (x) ≡ · · · ≡ u

(np)
i (x)

∆
= uip(x)

(3.3)

for i = 0, 1, respectively.

Let {e1, . . . , ep} be the synchronization basis by p groups, defined by

(ek)i =

 1, nk−1 + 1 ≤ i ≤ nk,

0, others
(3.4)

for k = 1, . . . , p. And let Cp be the synchronization matrix by groups, a full row-rank matrix

of order (N − p)×N , determined by

Ker(Cp) = Span{e1, . . . , ep}. (3.5)

Then, the requirement (3.2) for the synchronization by groups can be rewritten as

CpU(t, x) ≡ 0, (3.6)

and for the synchronizable system by p groups, the corresponding requirement becomes that

there exists a synchronizable state by p groups u(t, x) = (u1(t, x), . . . , up(t, x))
T with p linearly

independent components, such that

U(t, x) = u1(t, x)e1 + · · ·+ up(t, x)ep = (e1, . . . , ep)u(t, x). (3.7)

Theorem 3.1. System (1.1) is a synchronizable system by p groups if and only if the

coupling matrix A satisfies the following condition of Cp-compatibility

AKer(Cp) ⊆ Ker(Cp), (3.8)

namely, there exists a square matrix Ãp of order p, such that the following row-sum condition

by blocs holds

A(e1, . . . , ep) = (e1, . . . , ep)Ãp, (3.9)

where e1, . . . , ep and Cp are given by (3.4) and (3.5), respectively.

Then, the synchronizable state by p groups u = u(t, x) = (u1(t, x), . . . , up(t, x))
T satisfiesu′′ −∆u+ Ãpu = 0 in (0,+∞)× Ω,

u = 0 on (0,+∞)× Γ,
(3.10)
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with the initial data

t = 0 : u = (u01, . . . , u0p)
T, u′ = (u11, . . . , u1p)

T, (3.11)

given by (3.3).

Proof. Assume that U = U(t, x) is a synchronization solution by p linearly independent groups

to system (1.1), satisfying (3.6). Multiplying the equations in (1.1) by Cp from the left, we have

CpAU = 0,

then by (3.7), we get

CpAU(t, x) = CpAe1u1(t, x) + · · ·+ CpAepup(t, x) = 0.

By assumption that u1(t, x), . . . , up(t, x) are linearly independent, we get

CpAe1 = · · · = CpAep = 0,

then from (3.5), we obtain the condition of Cp-compatibility (3.8).

Plugging U = (e1, . . . , ep)u into (1.1), and noting the condition of Cp-compatibility (3.9),

we get (3.10). Moreover, the initial condition (3.11) can be obtained by (3.3).

On the other hand, if A satisfies the condition of Cp-compatibility (3.8), namely, (3.9), we

can take u = u(t, x) satisfying (3.10) with (u01, . . . , u0p)
T being linearly independent, then the

components of u(t, x) are linearly independent. Therefore, U = U(t, x) = (e1, . . . , ep)u(t, x) is

a synchronization solution by p linearly independent groups to system (1.1).

Remark 3.2. For the synchronizable system, the initial data of a non-trivial synchronizable

state are not zeros. However, for the synchronizable system by p groups, the linear indepen-

dence for the p components u1(t, x), . . . , up(t, x) of the synchronizable state u(t, x) by p groups

on the whole solvable domain does not imply the linear independence for their initial data

(u01, u11), . . . , (u0p, u1p). On the contrary, the example below shows that their initial data can

be linearly dependent.

Example 3.3. Let u(t, x) = (u1(t, x), u2(t, x))
T be the synchronizable state by 2 groups.

Assume that u1(t, x) and u2(t, x) satisfy
u′′
1 −∆u1 = 0 in (0,+∞)× Ω,

u′′
2 −∆u2 + u2 = 0 in (0,+∞)× Ω,

u1 = u2 = 0 on (0,+∞)× Γ

(3.12)

with the same initial data

t = 0 : u1 = u2
∆
= û0, u′

1 = u′
2

∆
= û1, (3.13)

where (û0, û1) ̸= (0, 0). Then we still have that u1(t, x) and u2(t, x) are linearly independent.

In fact, if u1(t, x) and u2(t, x) are linearly dependent, noting that they have the same initial

data, we have u1(t, x) ≡ u2(t, x). Then by (3.12) we have u1(t, x) ≡ u2(t, x) ≡ 0, and this

contradicts to (û0, û1) ̸= (0, 0). �

Noting that the condition of Cp-compatibility (3.8) is independent of the initial data, from

Theorem 3.1 we have



WANG Yan-yan. On the synchronizable system by groups and the generalized... 575

Theorem 3.2. If system (1.1) is a synchronizable system by p groups, then it always pos-

sesses a corresponding synchronization solution by p groups for any given synchronization initial

data (3.3) by p groups.

Thus, for a given grouping, the synchronizable system by groups can be equivalently de-

fined as the system that always possesses a synchronization solution by groups for any given

synchronization initial data by groups.

For the corresponding system (1.3) with Dirichlet boundary controls, the exact boundary

synchronization by p groups (see [3]) means that there exists a moment T > 0, such that

for any given initial data (U0, U1) ∈ (L2(Ω) × H−1(Ω))N , there exists a boundary control

H ∈ L2
loc(0,+∞; (L2(Γ1))

M ) with compact support in [0, T ], such that the solution U = U(t, x)

to the problem (1.3) and (1.2) satisfies the following synchronization by p groups requirement

t ≥ T : CpU(t, x) ≡ 0, x ∈ Ω. (3.14)

Then by Theorem 3.2 we have

Corollary 3.3. If system (1.1) is a synchronizable system by p groups, then the exact

boundary synchronization by p groups (2.8) of system (1.3) is equivalent to that for any given

initial data (U0, U1) ∈ (L2(Ω) × H−1(Ω))N , there exists a boundary control H, such that the

solution U = U(t, x) satisfies at time t = T ,

Cp(U(T, x), U ′(T, x)) ≡ (0, 0), x ∈ Ω, (3.15)

that is, there exists (u(T, x), u′(T, x)) ∈ (L2(Ω)×H−1(Ω))p such that

(U(T, x), U ′(T, x)) = (e1, . . . , ep)(u(T, x), u
′(T, x)), x ∈ Ω. (3.16)

§4 Synchronizable systems by groups with different groupings

Different from the synchronizable system, for the synchronizable system by groups, since

there are many ways of groupings, we can get different kinds of synchronization solutions by

groups.

Example 4.1. Let N = 8, and state variable U = (u(1), . . . , u(8))T. The synchronization

solution by 3 groups to system (1.1) can be

u(1) ≡ u(2), u(3) ≡ u(4) ≡ u(5), u(6) ≡ u(7) ≡ u(8), (4.1)

corresponding to the synchronization basis by 3 groups

e1 = (1, 1, 0, 0, 0, 0, 0, 0)T, e2 = (0, 0, 1, 1, 1, 0, 0, 0)T, e3 = (0, 0, 0, 0, 0, 1, 1, 1)T;

On the other hand, it can also be

u(1) ≡ u(2), u(3) ≡ u(5), u(4) ≡ u(6) ≡ u(7) ≡ u(8), (4.2)

corresponding to the synchronization basis by 3 groups

ê1 = (1, 1, 0, 0, 0, 0, 0, 0)T, ê2 = (0, 0, 1, 0, 1, 0, 0, 0)T, ê3 = (0, 0, 0, 1, 0, 1, 1, 1)T.

�
Definition 4.2. {e1, . . . , ep} is called as a synchronization basis by p groups if each com-

ponent of ek (k = 1, . . . , p) is either 0 or 1, and e1 + · · ·+ ep = (1, . . . , 1)T.
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Clearly, the aforementioned results, true for {e1, . . . , ep} given by (3.4), still hold for a

general synchronization basis by p groups {e1, . . . , ep}.
Then for the synchronizable system (1.1) by 2 groups, we have

Theorem 4.1. If system (1.1) is a synchronizable system by 2 groups under two different

groupings, then it is a synchronizable system.

Proof. Assume that system (1.1) is a synchronizable system by 2 groups with respect to {e1, e2}
and with respect to {ê1, ê2}, and

Span{e1, e2} ̸= Span{ê1, ê2}.
It is easy to see that

Span{e1, e2} ∩ Span{ê1, ê2} = Span{e},
where e = (1, . . . , 1)T. By Theorem 3.1, both Span{e1, e2} and Span{ê1, ê2} are invariant for

A, thus Span{e} is also invariant for A, that is, A satisfies the condition of C1-compatibility

(2.5), then system (1.1) is a synchronizable system.

For general cases of groupings, we have

Theorem 4.2. If system (1.1) is a synchronizable system by p groups with respect to

{e1, . . . , ep} and a synchronizable system by p̂ groups with respect to {ê1, . . . , êp̂}, then it is

a synchronizable system by q groups with respect to {e∗1, . . . , e∗q}, where {e∗1, . . . , e∗q} is a syn-

chronization basis by q groups, determined by

Span{e∗1, . . . , e∗q} = Span{e1, . . . , ep} ∩ Span{ê1, . . . , êp̂}, (4.3)

and 1 ≤ q ≤ min(p, p̂).

Proof. Since system (1.1) is a synchronizable system by p groups with respect to {e1, . . . , ep}
and a synchronizable system by p̂ groups with respect to {ê1, . . . , êp̂}, by Theorem 3.1, both

Span{e1, . . . , ep} and Span{ê1, . . . , êp̂} are invariant for A, thus Span{e∗1, . . . , e∗q} given by (4.3)

is also invariant for A. In what follows, we need to show that (4.3) indeed determines a

synchronization basis by groups, namely, {e∗1, . . . , e∗q} is a series of non-zero vectors consisted of

0 and 1, such that e∗1 + · · ·+ e∗q = (1, . . . , 1)T, therefore system (1.1) is a synchronizable system

by q groups with respect to {e∗1, . . . , e∗q}.
We apply the induction with respect to p̂.

For p̂ = 1, obviously, Span{e1, . . . , ep} ∩ Span{e} = Span{e}, in which e = (1, . . . , 1)T is a

synchronization basis.

Supposing that it is true for p̂− 1, we now consider the case for p̂.

If Span{ê1, . . . , êp̂} ⊆ Span{e1, . . . , ep}, then {ê1, . . . , êp̂} is a synchronization basis by

groups, determined by (4.3).

If not, then there exists a ξ = (ξ1, . . . , ξN )T ∈ Span{ê1, . . . , êp̂}, namely,

ξi = ξj , ∀(i, j) ∈ R̂,

where R̂ = {(i, j) : (êk)i = (êk)j = 1, 1 ≤ k ≤ p̂, 1 ≤ i, j ≤ N}, but ξ ̸∈ Span{e1, . . . , ep}, that
is, there exist i0 ̸= j0,

(i0, j0) ∈ R,



WANG Yan-yan. On the synchronizable system by groups and the generalized... 577

where R = {(i, j) : (ek)i = (ek)j = 1, 1 ≤ k ≤ p, 1 ≤ i, j ≤ N}, such that ξi0 ̸= ξj0 . Hence

(i0, j0) ̸∈ R̂.

Without loss of generality, assume that (e1)i0 = (e1)j0 = 1, while (ê1)i0 = 1, (ê2)j0 = 1. Then

we can easily get

Span{e1, . . . , ep} ∩ Span{ê1, . . . , êp̂} = Span{e1, . . . , ep} ∩ Span{ê1 + ê2, ê3, . . . , êp̂},
in which {ê1 + ê2, ê3, . . . , êp̂} is a synchronization basis by (p̂ − 1) groups. By the induction

assumption, the right-hand side of the above formula determines a synchronization basis by

groups, then the left-hand side determines a synchronization basis by groups. Hence the con-

clusion is also true for p̂.

Clearly, 1 ≤ q ≤ min(p, p̂). In fact, (4.3) implies that q ≤ min(p, p̂), and e ∈ Span{e∗1, . . . , e∗q}
shows that q ≥ 1.

The proof is complete.

The proof shows that the grouping corresponding to the synchronization basis by groups

{e∗1, . . . , e∗q} given by (4.3) is a combination of the original two groupings. For instance, in

Example 4.1,

Span{e1, e2, e3} ∩ Span{ê1, ê2, ê3} = Span{e∗1, e∗2},
where

e∗1 = (1, 1, 0, 0, 0, 0, 0, 0)T, e∗2 = (0, 0, 1, 1, 1, 1, 1, 1)T,

then it follows from the synchronization (4.1) by 3 groups with respect to {e1, e2, e3} and the

synchronization (4.2) by 3 groups with respect to {ê1, ê2, ê3} that system (1.1) possesses the

synchronization by 2 groups with respect to {e∗1, e∗2},
u(1) ≡ u(2), u(3) ≡ u(4) ≡ u(5) ≡ u(6) ≡ u(7) ≡ u(8).

More generally, we have

Corollary 4.3. If system (1.1) is a synchronizable system by pk groups with respect to

{e(k)1 , . . . , e
(k)
pk } for all k = 1, . . . ,K, then it is a synchronizable system by q groups with respect

to {e∗1, . . . , e∗q}, where {e∗1, . . . , e∗q} is a synchronization basis by groups determined by

Span{e∗1, . . . , e∗q} =
∩

1≤k≤K

Span{e(k)1 , . . . , e(k)pk
}, (4.4)

and 1 ≤ q ≤ min(p1, . . . , pK).

§5 Generalized synchronizable system

Similarly to the synchronizable system by groups, we can define the generalized synchro-

nizable system as the system possessing generalized synchronization solutions by p linearly

independent groups.

According to [6], denote Θp ∈ M(N−p)×N (R) (0 ≤ p < N) as the generalized synchronization

matrix that is a full row-rank matrix, and denote {ϵ1, . . . , ϵp} as the corresponding generalized

synchronization basis given by

Ker(Θp) = Span{ϵ1, . . . , ϵp}. (5.1)
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Then, for system (1.1), the generalized synchronization solution U = U(t, x) with respect to

Θp is the solution satisfying

ΘpU(t, x) ≡ 0, (5.2)

that is, there exists u(t, x) = (u1(t, x), u2(t, x), . . . , up(t, x))
T such that the solution

U(t, x) = u1(t, x)ϵ1 + · · ·+ up(t, x)ϵp = (ϵ1, . . . , ϵp)u(t, x), (5.3)

which is also called the generalized synchronization solution with respect to {ϵ1, . . . , ϵp}, and
u(t, x) is called the corresponding generalized synchronizable state.

Definition 5.1. System (1.1) is a generalized synchronizable system with respect to Θp, if

there exists an initial data (U0(x), U1(x)) such that the corresponding solution U = U(t, x) to

problem (1.1)–(1.2) is a generalized synchronization solution (5.3) with respect to Θp, and the

components of the corresponding generalized synchronizable state u(t, x) are linearly indepen-

dent.

Remark 5.2. Now we explain, from the standpoint of the generalized synchronization,

that for the synchronizable system by groups (resp., generalized synchronizable system), the

components of the synchronizable state by groups (resp., generalized synchronizable state) are

supposed to be linearly independent. In fact, assume that system (1.1) possesses a generalized

synchronization solution (5.3) with respect to {ϵ1, . . . , ϵp}. If the components of the gener-

alized synchronizable state u(t, x) = (u1(t, x), . . . , up(t, x))
T are linearly dependent, then let

ũ1(t, x), . . . , ũp̃(t, x) be the maximal linearly independent ones in u1(t, x), . . . , up(t, x), where

p̃ < p. There exists a full column-rank matrix Q of order p× p̃, such that

u(t, x) = Qũ(t, x),

where ũ(t, x) = (ũ1(t, x), . . . , ũp̃(t, x))
T. Denote (ϵ̃1, . . . , ϵ̃p̃) = (ϵ1, . . . , ϵp)Q, then the general-

ized synchronization solution (5.3) with respect to {ϵ1, . . . , ϵp} turns into

U(t, x) = (ϵ̃1, . . . , ϵ̃p̃)ũ(t, x),

which is actually a generalized synchronization solution with respect to {ϵ̃1, . . . , ϵ̃p̃}, and the

components of the corresponding generalized synchronizable state ũ(t, x) are linearly inde-

pendent. Thus it is sufficient to consider the case that the components of the generalized

synchronizable state u(t, x) are linearly independent (at least for one initial data).

In what follows, we first consider the properties of system (1.1) to be a generalized synchro-

nizable system with respect to Θp.

First, the initial data of a generalized synchronization solution with respect to Θp must

be the generalized synchronization initial data with respect to Θp, namely, the initial data

(U0(x), U1(x)) must satisfy

Θp(U0(x), U1(x)) ≡ 0,

that is, there exist û0(x) = (u01(x), . . . , u0p(x))
T and û1(x) = (u11(x), . . . , u1p(x))

T such that

(U0(x), U1(x)) = (ϵ1, . . . , ϵp)(û0(x), û1(x)). (5.4)

Then, similarly to Theorem 3.1, we have
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Theorem 5.1. System (1.1) is a generalized synchronizable system with respect to Θp if

and only if the coupling matrix A satisfies the condition of Θp-compatibility

AKer(Θp) ⊆ Ker(Θp), (5.5)

that is, there exists a square matrix Ãp of order p, such that

A(ϵ1, . . . , ϵp) = (ϵ1, . . . , ϵp)Ãp. (5.6)

Then the generalized synchronizable state u = u(t, x) given in (5.3) satisfiesu′′ −∆u+ Ãpu = 0 in (0,+∞)× Ω,

u = 0 on (0,+∞)× Γ
(5.7)

with the initial data

t = 0 : (u, u′) = (û0(x), û1(x)), (5.8)

where (û0(x), û1(x)) are given by (5.4).

Similarly to Theorem 3.2, we have

Theorem 5.2. If system (1.1) is a generalized synchronizable system with respect to Θp,

then it possesses a corresponding generalized synchronization solution for any given generalized

synchronization initial data with respect to Θp.

For the corresponding system (1.3) with Dirichlet boundary controls, the generalized exact

boundary synchronization with respect to Θp (see [6]) means that there exists T > 0, such

that for any given initial data (U0, U1) ∈ (L2(Ω)×H−1(Ω))N , there exists a boundary control

H ∈ L2
loc(0,+∞; (L2(Γ1))

M ) with compact support in [0, T ], such that the solution U = U(t, x)

to problem (1.3) and (1.2) satisfies the generalized synchronization requirement

t ≥ T : ΘpU(t, x) ≡ 0, x ∈ Ω. (5.9)

Similarly to Corollary 3.3, we have

Corollary 5.3. If system (1.1) is a generalized synchronizable system with respect to Θp,

then the generalized exact boundary synchronization with respect to Θp for system (1.3) is

equivalent to that for any given initial data (U0, U1) ∈ (L2(Ω) × H−1(Ω))N , there exists a

boundary control H, such that the solution satisfies at time t = T ,

Θp(U(T, x), U ′(T, x)) ≡ (0, 0), x ∈ Ω, (5.10)

that is, there exists (u(T, x), u′(T, x)) ∈ (L2(Ω)×H−1(Ω))p such that

(U(T, x), U ′(T, x)) = (ϵ1, . . . , ϵp)(u(T, x), u
′(T, x)), x ∈ Ω. (5.11)

For the case with different groupings, similarly to Corollary 4.3, we have

Corollary 5.4. If system (1.1) is a generalized synchronizable system with respect to Θ
(k)
pk

for all k = 1, . . . ,K, then it is a generalized synchronizable system with respect to Θ∗
q , where

Θ∗
q satisfies

Ker(Θ∗
q) =

∩
1≤k≤K

Ker(Θ(k)
pk

), (5.12)

and q as the dimension of Ker(Θ∗
q) satisfies 0 ≤ q ≤ min(p1, . . . , pK).
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Remark 5.3. Different from Corollary 4.3 for the synchronization by groups, the above

result for the generalized synchronization includes the case q = 0: Ker(Θ∗
0) = {0} in (5.12),

thus the generalized synchronization solution with respect to Θ∗
0 is actually the zero solution.

This is a trivial case.
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[4] Y Li, C Wang. On a partially synchronizable system for a coupled system of wave equations in

one dimension, Commun Anal Mech, 2023, 15(3): 470-493.

[5] Y Li, C Wang, Y Wang. On the partially synchronizable system for a coupled system of wave

equations with different wave speeds, DCDS-S, 2024, 17(8): 2566-2584.

[6] Y Wang. Generalized exact boundary synchronization for a coupled system of wave equations

with Dirichlet boundary controls, Chin Ann Math, Ser B, 2020, 41(4): 511-530.

School of Mathematics, Sichuan University, Chengdu 610065, China.

School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

Email: yanyanwang@fudan.edu.cn


