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A sharp lower bound for the weighted Lehmer mean

involving complete p-elliptic integrals

ZHAO Tie-hong! CHU Yu-ming**

Abstract. In the article, we provide a sharp lower bound for the weighted Lehmer mean of the
complete p-elliptic integrals of the first and second kinds, which is the extension of the previous

results for complete p-elliptic integrals.

81 Introduction

For p € (1,00) and z € [0, 1], the generalized sine function sin, « and its half-period =, are

defined as the inverse function of

: /”’ dt
arcsin,z:= | ——
0o (1—1tr)»

1
@::arcsinplz/ dt - = _7T :13<171_1>’
2 o (1—tv)» psin(z/p) p \p  p
respectively, where B is the beta function defined by B(a,b) = [I'(a)T'(b)] /T'(a 4+ b) (a,b > 0)

and I'(z) = fooo t*~le~tdt is the classical Euler gamma function. Clearly, sin, = sin and 7, = 7

and

in the case when p = 2.
The Legendre’s complete elliptic integrals of the first and second kind [1,2] are respectively
defined by, for r € (0, 1),

/2 do 1 dt
) :/o V1= r2sin?0 :/0 JA-2)1 - ree)

H0)=mn/2, H(17)=o00,
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and

/2 L ——
E(r)= / V1 —7r2sin?0do = / —dt
&0)=mn/2, &(1)=1.
In 2016, Takeuchi [3] introduced the complete p-elliptic integrals K, and E, of the first and
second kind by applying the generalized trigonometric functions to Legendres complete elliptic
integrals, which are defined by

v/ de ! dt
K, = K = _
! »lr) /0 (1 —rpsind §)1-1/p /0 (1—t)/p(1 — prp)1=1/p’

mp/2 Lo/q _ g\ 1/P
E,=E\(r)= / (1 —rPsinh 0)!/7do = / <> dt.
0

1—tp
0
Moreover, the complete p-elliptic integrals can be represented by [3, Proposition 2.8]
11 11
K,(r)="2F (1 - = 1;T”> and  E,(r) = "2 F (—7 = 1;7‘”) : (L.1)
2 PP 2 pp

where F(a,b;c;x) is the Gaussian hypergeometric function [2,3] defined as

) e = (a,n)(b, n) z"
F(a,b;c;z) := o F1(a,b;c;) = nZ:O on)  al’ (lz| < 1),

for real parameters a, b, c with ¢ #20,—1,—2,--- and (a,0) =1, (a,n) =ala+1)---(a+n—1)
is the shifted factorial function. Recently, the Legendres complete elliptic integrals and their
generalizations (or related functions) have attracted the attention of many researchers. For

their recent research progress, we recommend the literatrue [4-21] to readers.

Let t € R and z,y > 0. Then the weighted ¢ order Holder mean [20,21] of a and b with
weight w € (0,1) is defined as

Hy(z,y;w) = [wa' + (1 —w)y']"" (t#0) and Ho(z,y;w) =2"y' ™", (L2)
For w = 1/2, it reduces to the classical ¢-th Holder mean Hy(z,y) = Hi(x,y;1/2). The s-th
Lehmer mean Ls(z,y) [22] of 2 and y is defined by

g5t 4ystl

Lo(z,y) =~ T (1.3)
It is worth pointing out that some properties of Hy(a,b) and Ls(a,b) are very close as the
Sisters, in particular, several classical bivariate means are the special cases of Holder mean and

Lehmer mean, such as

2x
Hfl(xvy) = L,1($,y) = Y

z+y’

HO(xay) = Lfé(xay) = \/‘Ta

r+y
Hl(.’E,y):Lo(ﬂl,y): 9

are the harmonic, geometric and arithmetic means of x and y, respectively. Furthermore, the

inequalities between Holder mean and Lehmer means were established by Liu [23] and we refer

to [24-26] for more properties.

In 1990, Anderson, Vamanamurthy and Vuorinen [2, Theorem 3.31] proved that the inequal-
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ity
K(ME([r) > 3, (1.4)
holds for all r € (0,1).
Later, Wang et al. [27] gave a generalization of inequality (1.4) and proved that the inequal-
ity
Hy(K(r), E(r) > 7, (1.5)
holds for all r € (0,1) if and only if ¢t > —1/2.
Recently, Wang et al. [20, Theorem 1.1] also extended (1.5) to the case of complete p-elliptic

integrals and proved the following theorem.

Theorem 1.1. ([20]). Let p € (1,00). Then the inequalities

H, (K, (r). By(r): 1/p) > 2L, (1.6)
and

H, (K, (r), By(r); 1/p) < 2L, (L7)
hold for all r € (0,1) if and only if s > so = (1 —p)/2 and t <ty =log(l — 1/p)/log(m,/2).

As shown in (1.2), we extend the definition of Lehmer mean (1.3) to the weighted s-order
Lehmer mean of x and y as
w4+ (1 —w)ys+!
wz® + (1 —w)y*
It is easy to verify that Lg(x,y;w) is continuous and strictly increasing with respect to s € R
for fixed w € (0,1) and z,y > 0 with = # y.

Ly(z,y;w) = (1.8)

Motived by Theorem 1.1, it makes sense to establish the weighted Lehmer mean inequality
for complete p-elliptic integrals. As a tool of proof, we first present the inequalities between
the weighted Holder mean and weighted Lehmer mean, which is an extension of [23, Theorem

1]. Our main result is the following.
Theorem 1.2. Let p > 2. Then the inequality
Lo (K, (r), By(r):1/p) > 72, (L9)
holds for all r € (0,1) if and only if s > s.(p), where
AL PIES

s.(p) = 4 B
-1, p> 3.

82 Preliminaries

Throughout this paper, we denote ' = ¢/1—r? for r € (0,1) with p > 1. Recall the

derivative formulas [3, Propositions 2.1 and 2.2] for the complete p-elliptic integrals of the first
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and second kind

dK, _ E,-r?K, dE, _ E,-K,
dr rr'p ’ dr r ’
d(E, —r'?K,) 1 dK, - E,) 7 'E
- = - 1 P K p p = p.
dr (p—1)r P dr 7P
To facilitate the presentation, we denote by
K E,—r?K
fry=2F,  g(r)= - ERY
E, (p—Dr'*(Ky, — Ey) 91
() KM+ (s+1)(p-1)K,E; —s(p—1)E;*! (2.1)
s\T") =: )

(= DE + (s + ) KB, — sK; ™
for r € (0,1) with p € (1,00) and s € R.

Lemma 2.1. ([2, Monotone I'Hopital Rule]) Let —oco < a < b < oo, and f,g : [a,b] = R
be continuous that are differentiable on (a,b) such that f(a) = g(a) = 0 or f(b) = g(b) = 0.
Assume that ¢'(x) # 0 for each x € (a,b). If f'/g’ is (strictly) increasing (decreasing) on (a,b),
then so is f/g.

Lemma 2.2. For p > 1, then the functions

(1) (E, —r'PK))/rP is strictly increasing from (0,1) onto ((p — 1)mp/(2p),1);

(i1) (K, — Ep)/r? is strictly increasing from (0,1) onto (m,/(2p),o0);
(i11) v'"PE, is strictly increasing from (0,1) onto (m,/2,00);
() [p(K, — E,) — P E,] /r?F is strictly increasing from (0,1) onto ((p* + 1)m,/(4p?), +00).
Proof. Parts (i), (i7) and (ii3) follow from [28, Lemma 3.4 (1), (4) and (7)]. For part (iv), we
denote p1(r) = p(K, — E,) —rPE, and ps(r) = r?’. Then by Lemma 2.1, Lemma 2.2 (iv) can
be derived from p;(0) = p2(0) = 0 and Lemma 2.2 (i%), (ii¢) together with

4 1/F K, —F / 1
wmr) 1 o/ R k] p) and im0 g 40 T 1+ .
wh(r)y 2\ rP prp =0t pa(r)  root ph(r) 4 P

O
Lemma 2.3. (See [20, Lemma 2.7]) For p > 1 and s € R, the function f*~1(r)g(r) is strictly
increasing on (0,1) if and only if s > (1 —p)/2. In particular, the inequality g(r) > fP+D/2(y)
holds for all r € (0,1).

Lemma 2.4. Forp > 1 and s € R, then we have
1 1 1 1 log h 1
(1) im 0L L gy, 10890) Lo gy loshs(r) st
r—0t+ 1P p r—0t 1P 2p r—0+ rP P

Proof. (1) By ’'Hépital Rule, it follows from Lemma 2.2 (1) and (2) that

_ P _ _
lim log f(r) 1 lim (Ep " K, K, Ep> :1<p 1 N 1) 1
p

= !
r—0+ 7P P r—0+ rPr'’? K, rPE,

p p
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(2) An elementary calculation together with Lemma 2.2 (2) and (4) leads to
. Eﬁ —(p— 1)7"’ng +(p—-2)r'"K,E,

li .
r—0+ rép
i K= B+ (0= 7Ky (K — E)) - K, [p(K, — By) — r"E))
r—0+ sz
2
= lim Ky~ Ep + (p = Vmp lim K,—-E, m lim p(Kp — E,) —17E,
r—0+ rP 2 r—0+ rpP 2 0+ r2p
(', eV o m@P ) T 1Y
2p 2 2p 2 4p? 8 p)
This in conjunction with Lemma 2.2 (1) and (2) together with 'Hépital Rule implies that
1 1 - 1)K E
lim szlim (p ) Ky _ D 1
r—o0t 7P proot | B, —rPK, 1P(K,—E),)
1. E; — (p—)r'"K7 + (p - 2)r'" K, E, r? rP
=—— lim . . +1
p r—0t r2p Ep _ ,,,/pr Kp _ Ep
__1m (11>2.2p.2p _pil
p 8 D (p—Dmp, m, 2p

(3) The ’'Hopital Rule together with Lemma 2.2(1) and (2) enables us to know that
lim log hs(7)

r—0+ rpP
~ m (s+1)(E}—2r""K,E, +r'"K})
r—0+ prey’p
[ VE:)’ + (p— ) E; K~ YK, — E,)?
[KS+1 +(s+1)(p— 1)K Es—s(p—DE; ! [(p-1)E™ + (s + 1)KSE, — sK; 1]
B s+1 i E,(E —r’pK)+r’pr(Kp—Ep)
h 7‘—>0+ rP
(p—1)mp

_4(s—|—1) T [(p— )y LT _s+1
- opm2 2 o T

As mentioned in the introduction, the inequalities between Hi(x,y;1/2) and Ls(z,y; 1/2[)]
had been studied in [23]. For w # 1/2, it is clear that Hy(x,y;w) and Ls(z,y;w) are non-
symmetric but the relations Hy(x,y; w) = Hy(y,x; 1 —w) and Lg(z,y; w) = Ls(y, z; 1 —w) allow
us to only consider the case that x > y > 0 with w € (0,1). We now present the comparison

inequalities between Hy(x,y;w) and Lg(x,y;w) in Proposition 2.5.

Proposition 2.5. Let s € R and w € (0,1) with w # 1/2. The following statements are true.

o In the case w € (0,1/2),
(1) Hast1(x,y;w) < Lg(x,y; w) holds for x >y > 0 if and only if s € [-1,—-1/2];
(2) Hosy1(x,y;w) > Ls(x,y;w) holds for x >y > 0 if and only if s € (—oo0, —1].

« In the case w € (1/2,1),
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(3) Haspa (2, y;w)
(4) H23+1 (I, Y; U})

Equalities hold for all x,y > 0 when s = —1 or 0. Moreover, inequalities (1) and (3) are best

Ly(z,y;w) holds for x >y > 0 if and only if s € [0,00);
Ls

<
> Ly(x,y;w) holds for x >y > 0 if and only if s € [-1/2,0].

possible in the sense that 2s+ 1 cannot be replaced by any larger function of s, and inequalities
(2) and (4) are best possible in the sense that 2s+ 1 cannot be replaced by any smaller function
of s.
Proof. For the special values s = —1 or s = 0, it is verified directly from (1.2) and (1.8) that
Hosi1(x,y;w) = Lg(z,y;w) for all z,y > 0.

To see that this is the best possible observe that

Hi(14¢,1;w) =1+ we + %w(l —w)(t—1)e* +---
and
L1+ 1;w)=14we+w(l —w)se® +--- .

Thus Hi(1 +¢,1;w) < (>)Ls(1 +¢&,1;w) for small enough € > 0 implies that ¢ < (>)2s + 1.

By homogeneity it suffices to prove the inequalities of Proposition 2.5 for z > 1 and y = 1.

For = > 1, we denote

1 w4+ 1w
= 1 2s+1 4 1 ) =1 hatdi N e
o(x) 55 11108 (wz + w) — log o Tl w )
o1(x) = w(l + 5 — s2)x* T + (1 - 2w)z* + (1 — w)(s — x — s1),

(z) =
@2(x) = (s+ 1) [w(l + 25 — 2s2)2> + (1 — 2w)z® + w — 1],
(z) =

©3 s(s+1)[2w(2s+ 1)(1 — z)a® + 1 — 2w,
wg(x) =ws(s+1)(2s+1)[s — (1 + s)z].

By differentiating ¢(x) several times, one has

¢'(z) = (wz® + 1 — w) zuw(;;lw—le _ :j}l)((i)}x23+1 F1-w) (2.2)
¢1(z) = p2(@), (2.3)
Ph(x) = 2" p3(2), (24)
¢s(x) = 20"y (2), (255)
oh(z) = —ws(2s + 1) (s + 1)2. (2.6)

We now divide the proof into two cases.
Case 2.1 w € (0,1/2).

(1) s € (—1,—1/2]. Then it follows from (2.6) that @4(x) is decreasing on (1,c0), which in
conjunction with (2.5) and ¢4(1) = —ws(s + 1)(2s + 1) < 0 yields p3(z) is decreasing on
(1,00). By the same argument, p3(1) = (1 —2w)s(s + 1) < 0 and ¢1(1) = ¢2(1) =0
together with (2.2)-(2.4) lead to the conclusion that p(z) < 0 for = € (1,00) and so

H23+1(x,y;w) < Ls(l‘,y;’LU), (27)
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holds for all z >y > 0.

(2) s € (—oo0,—1). Then it follows from (2.6) that ¢4(z) is decreasing on (1, 00), which in
conjunction with (2.5), ¢4(1) = —ws(s+1)(2s+1) > 0 and @4(0c0) = —oo implies that there
exists x1 € (1,00) such that ¢3(z) is strictly increasing on (1,z1) and strictly decreasing
on (x1,00). According to this with ¢3(1) = (1 — 2w)s(s + 1) > 0 and ¢3(c0) = 0, it can
be easily seen that p3(x) > 0 for € (1,00). The same argument as (1) together with
(2.2)-(2.4) and ¢1(1) = @2(1) = 0 leads to the conclusion that

Hosq1(z,y;w) > Lg(x, y; w), (2.8)
holds for all x > y > 0.

(3) s € (—1/2,0). Then it follows from ¢3(1) = (1 — 2w)s(s + 1) < 0 and (2.4) that there
exists 25 € (1,00) such that ¢o(z) is strictly decreasing on (1,23). This in conjunction
with ¢1(1) = @2(1) = 0 and (2.2), (2.3) yields p(x) < 0 for € (1,22). On the other hand,
(00) = 0o enables us to know that p(x) > 0 for € (x3, 00) with enough large z3 > 1.

log w

(4) s € (0,00). Then it is easy to see that ¢3(1) > 0 and ¢(c0) = 357 < 0. According

this with the same approach as (3), it follows that there exist x4, 25 € (1,00) such that
o(x) >0 for z € (1,24) and ¢(x) < 0 for = € (x5, 00).

Case 2.2 w € (1/2,1).

(1) s € [-1/2,0). Then it follows from (2.6) and 4(1) = —ws(s + 1)(2s + 1) > 0 that
wps(x) is strictly increasing on (1,00). This in conjunction with (2.2)-(2.4) and @3(1) =
(I -2w)s(s+1) >0, p1(1) = p2(1) = 0 implies that ¢(z) > 0 for x € (1,00), that is
Hasa (2, y;w) > Ls(2, y; w), (2.9)
for all x > y > 0.

(2) s € (0,00). In this case, 3(1) = (1 —2w)s(s+1) < 0 and p4(1) = —ws(s+1)(2s+1) < 0.
This in conjunction with (2.2)-(2.6) and ¢1(1) = p2(1) = 0 yields ¢(z) < 0 for = € (1, 00),
which is equivalently

Hosi1(z,y;w) < Lg(z,y; w), (2.10)
holds for all x >y > 0.

(3) s € (—o0,—1)U(—1,—1/2). Then we claim that ¢5(1)-p(c0) < 0. Indeed, if s € (—o0, —1),
then p3(1) = (1 — 2w)s(s + 1) < 0 and p(c0) = log2(sl—;1w) > 0; if s € (—1,—1/2), then
w3(1) = (1 —2w)s(s + 1) > 0 and p(c0) = —oo. In the case w € (0,1/2), the same
approach to (3) and (4) leads to the conclusion that there are different signs of ¢(x) as z

close to 1 and oo.

Therefore, inequalities (2.7)-(2.10) complete the proof of Proposition 2.5. O
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83 Proof of Theorem 1.2

Proof of Theorem 1.1. Let

1 s+l 4 (1 _ l) Est1
O, (r) =log r P P/

; . — log %.
K+ (1-1) B

By the monotonicity of Lg(z,y;w) with respect to s, it suffices to prove

Q. (p)(r) >0 (3.1)

for r € (0,1) with p > 2 instead of (1.9).

We divide into two cases 2 < p < 3 and p > 3 to complete the proof of (3.1).

Case 1: 2 <p < 3. In this case, we denote s, = —(p + 1)/4. Differentiation of ®,(r) yields

SR Bl (54 1) (1- 1) By fote
P p

p P rr'P T

QIS(T) - 1 +1 1 +1
LR+ (1 - 5) E;

s gs—1 E,—r"PK, s (1 _ l) Es—1 K,—E,

p=P P P

rr'P r

G (1-3) B
_ = DB (K, — By) [(p - VBT + (s + DEGE, —sK
- p2r [%Kﬁ + (1 - %) E;} [%K;Jrl N (1 ~ %) Ef,“} [¢s( ) 1}7 (3.2)
where (1), g(r), hy(r) are defined as in (2.1) and 6(r) = [/(r)]* " g(r)h(r).

Let © = f(r) for short. Then x > 1 for r € (0,1). It follows from Lemma 2.3 that g(r) >
x(P+1)/2 Moreover, h,(r) can be rewritten as
w4 s+ Dp-Dr—sp—1)

hi(r) = p—1)+(s+1)as — sastt
This gives
) i 4I%Tp+(3fp)(p71)z+(p271) A() (53)
s, (1) > — s = Op(T), 3.3
Ap-1)+B-pa T +(p+ )2’ '
for x > 1.

A simple calculation yields

vt (3.4)
¥ (@) = (p+1)B-p)z—1)a"T {zx((p C1e 1) 4 (pz_ R

P 2[3—p+(p+1)x+4(p_1)x%+1}
- (3.5)

for x > 1. It follows from (3.4) and (3.5) that gi;p(:r) > 1 for > 1. This in conjunction with
(3.2) and (3.3) implies that @, (r) is strictly increasing on (0, 1).

Therefore, inequality (3.1) follows from the monotonicity of @, (r) and @, (0F;p) = 0.
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Case 2: p > 3. In this case, s, = —1. Then inequality (1.9) reduces to
Tp

L_, (KP(T>7EP(T); 1/p)=H_ (Kp(r), Ep(r>§ 1/p) > o
which is valid from (1.6).

Now it remains to prove s.(p) is the best possible parameter.

From Lemma 2.4 we clearly see that

1 s L] .1 . loghs
lim 280) _ (o gy 08I0y loga() o Toshs(r)
r—0+ rP r—0+ rp r—s0+ rp 0+ rp
-1 +1 +1 2 +1
=Pl —<s+p). (3.6)
P 2p P P 4
For 2 < p < 3, if s < s.(p) = —(p+ 1)/4, then it follows from (3.6) that there exists

51 € (0,1) such that ¢4(r) < 1 for r € (0,81). This in conjunction with (3.2) and ®4(0";p) =0
yields ®4(r) < 0 for r € (0,61).
For p > 3, if s < —1, then we clearly see that

lim ®4(r) = —log ™ —log Too = 0, (3.7)
r—1- 2 2
where the last inequality follows from the monotonicity of m, and 7o = 2. Inequality (3.7)

shows that there exists d2 € (0,1) such that ®,(r) < 0 for r € (d2,1).

Remark 3.1. For 2 < p < 3, then 1/p € (0,1/2). As an application, Proposition 2.5 and (1.6)

enable us to know that
T
L_per (Kp(r), Ep(r);1/p) 2 Hip (Ky(r), Ep(r); 1/p) > ?p
for all 7 € (0,1).

For p > 1, we now prove
log(1 -1 1
Og(/p)<—1<:>””<1—><1, (3.8)
log(m,/2) 2\ "y
since m, > 2.
By substituting « = 7/p € (0,7) into (3.8), it can be easily obtained that

%(L}>:MWﬂ0_Qm)

2 D wsinu  Co(u)’
Clearly, one has (1(0) = (2(0) = (i (7)) = (o(m) =0, {1 (7/2) = (5(7/2) = 0 and
G -2 Q) 2
Ch(u)  meosu’  (§(u) wsinu’

This in conjunction with Lemma 2.1 implies that (;(u)/(2(u) is strictly decreasing on (0,7/2)
and (7 (u)/Ca(u) is strictly increasing on (7/2, ), which together with ’'Hépital Rule gives
/
e si O (C)
G (u) - u=0t Co(u)  u—0+ C5(u)
/
G )y G0 GO
u—T CQ(U) u—mT §2(U)

Proposition 2.5 together with (1.7) and (3.8) enables us to give the following corollary.

=1

, ue(0,7/2),

=1, we(n/2,m).
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Corollary 3.2. Let p € [2,00). Then the inequality

L, (Ky(r), By(r): 1/p) < 2L,
holds for all r € (0,1) if s <log(1 —1/p)/log(m,/2).
Remark 3.3. As in Lemma 2.4, we can compute

Ing(T)*% pP—p+1 lim logg(r)*%rp:7p3+4p27p+2

r1—1>r(r)l+ 72 - 2p3 7 S0+ 72p 24p3 ’
fimn log hy(r) — *EtrP _(s+1) [p?+1+2s—p(s+1)]
r—0+ 2P 2p3 ’
which gives
St )
0+ r2p B 96p3 ' (39)

When 1 < p < (V865 —27)/2 = 1.20544 - - -, it follows from (3.2) and (3.9) that ®(r) < 0 for
r € (0,7) with small 7 > 0, which yields s.(p) > —(p + 1)/4. While (v/865 —27)/2 < p < 2,
computer experiments show that ®_ e (r) > 0 for r € (0,1). In other words, s.(p) in Theorem

1.2 can be extended as s.(p) = —(p +1)/4 for (v/865 —27)/2 <p < 3.
Unfortunately, we don’t establish the inequality as (1.9) for p € (1,2) but Remark 3.3

provides us some informations. A sufficient condition for the parameter s such that the inverse
inequality of (1.9) in Corollary 3.2 holds has been obtained, but this is not the optimal constant

from computer experiments. This allows us to pose the following problem.

Problem 3.4. Find the best possible functions s.(p) for p € (1,2) and s*(p) for p € (1,00)
such that the inequality

Lo (K, (1), By(r); 1/p) > 22,
holds for all r € (0,1) if and only s > s.(p) and the inequality

L, (Ky(r), By(r); 1/p) < 2L,
holds for all r € (0,1) if and only s < s*(p).
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