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A sharp lower bound for the weighted Lehmer mean

involving complete p-elliptic integrals

ZHAO Tie-hong1 CHU Yu-ming2,∗

Abstract. In the article, we provide a sharp lower bound for the weighted Lehmer mean of the

complete p-elliptic integrals of the first and second kinds, which is the extension of the previous

results for complete p-elliptic integrals.

§1 Introduction

For p ∈ (1,∞) and x ∈ [0, 1], the generalized sine function sinp x and its half-period πp are

defined as the inverse function of

arcsinp x :=

∫ x

0

dt

(1− tp)
1
p

and
πp

2
:= arcsinp 1 =

∫ 1

0

dt

(1− tp)
1
p

=
π

p sin(π/p)
=

1

p
B

(
1

p
, 1− 1

p

)
,

respectively, where B is the beta function defined by B(a, b) = [Γ(a)Γ(b)] /Γ(a + b) (a, b > 0)

and Γ(x) =
∫∞
0

tx−1e−tdt is the classical Euler gamma function. Clearly, sinp = sin and πp = π

in the case when p = 2.

The Legendre’s complete elliptic integrals of the first and second kind [1,2] are respectively

defined by, for r ∈ (0, 1),
K (r) =

∫ π/2

0

dθ√
1− r2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− r2t2)

,

K (0) = π/2, K (1−) = ∞,
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and E (r) =

∫ π/2

0

√
1− r2 sin2 θdθ =

∫ 1

0

√
1− r2t2

1− t2
dt,

E (0) = π/2, E (1) = 1.

In 2016, Takeuchi [3] introduced the complete p-elliptic integrals Kp and Ep of the first and

second kind by applying the generalized trigonometric functions to Legendres complete elliptic

integrals, which are defined by

Kp =: Kp(r) =

∫ πp/2

0

dθ

(1− rp sinpp θ)
1−1/p

=

∫ 1

0

dt

(1− tp)1/p(1− rptp)1−1/p
,

Ep =: Ep(r) =

∫ πp/2

0

(1− rp sinpp θ)
1/pdθ =

∫ 1

0

(
1− rptp

1− tp

)1/p

dt.

Moreover, the complete p-elliptic integrals can be represented by [3, Proposition 2.8]

Kp(r) =
πp

2
F

(
1− 1

p
,
1

p
; 1; rp

)
and Ep(r) =

πp

2
F

(
−1

p
,
1

p
; 1; rp

)
, (1.1)

where F (a, b; c;x) is the Gaussian hypergeometric function [2,3] defined as

F (a, b; c;x) := 2F1(a, b; c;x) =
∞∑

n=0

(a, n)(b, n)

(c, n)

xn

n!
, (|x| < 1),

for real parameters a, b, c with c ̸= 0,−1,−2, · · · and (a, 0) = 1, (a, n) = a(a+1) · · · (a+ n− 1)

is the shifted factorial function. Recently, the Legendres complete elliptic integrals and their

generalizations (or related functions) have attracted the attention of many researchers. For

their recent research progress, we recommend the literatrue [4–21] to readers.

Let t ∈ R and x, y > 0. Then the weighted t order Hölder mean [20,21] of a and b with

weight w ∈ (0, 1) is defined as

Ht(x, y;w) =
[
wxt + (1− w)yt

]1/t
(t ̸= 0) and H0(x, y;w) = xwy1−w. (1.2)

For w = 1/2, it reduces to the classical t-th Hölder mean Ht(x, y) = Ht(x, y; 1/2). The s-th

Lehmer mean Ls(x, y) [22] of x and y is defined by

Ls(x, y) =
xs+1 + ys+1

xs + ys
. (1.3)

It is worth pointing out that some properties of Ht(a, b) and Ls(a, b) are very close as the

Sisters, in particular, several classical bivariate means are the special cases of Hölder mean and

Lehmer mean, such as

H−1(x, y) = L−1(x, y) =
2xy

x+ y
, H0(x, y) = L− 1

2
(x, y) =

√
xy,

H1(x, y) = L0(x, y) =
x+ y

2
,

are the harmonic, geometric and arithmetic means of x and y, respectively. Furthermore, the

inequalities between Hölder mean and Lehmer means were established by Liu [23] and we refer

to [24–26] for more properties.

In 1990, Anderson, Vamanamurthy and Vuorinen [2, Theorem 3.31] proved that the inequal-
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ity √
K(r)E(r) >

π

2
, (1.4)

holds for all r ∈ (0, 1).

Later, Wang et al. [27] gave a generalization of inequality (1.4) and proved that the inequal-

ity

Ht(K(r),E(r)) >
π

2
, (1.5)

holds for all r ∈ (0, 1) if and only if t ≥ −1/2.

Recently, Wang et al. [20, Theorem 1.1] also extended (1.5) to the case of complete p-elliptic

integrals and proved the following theorem.

Theorem 1.1. ([20]). Let p ∈ (1,∞). Then the inequalities

Hs (Kp(r),Ep(r); 1/p) >
πp

2
, (1.6)

and

Ht (Kp(r),Ep(r); 1/p) <
πp

2
, (1.7)

hold for all r ∈ (0, 1) if and only if s ≥ s0 = (1− p)/2 and t ≤ t0 = log(1− 1/p)/ log(πp/2).

As shown in (1.2), we extend the definition of Lehmer mean (1.3) to the weighted s-order

Lehmer mean of x and y as

Ls(x, y;w) =
wxs+1 + (1− w)ys+1

wxs + (1− w)ys
. (1.8)

It is easy to verify that Ls(x, y;w) is continuous and strictly increasing with respect to s ∈ R
for fixed w ∈ (0, 1) and x, y > 0 with x ̸= y.

Motived by Theorem 1.1, it makes sense to establish the weighted Lehmer mean inequality

for complete p-elliptic integrals. As a tool of proof, we first present the inequalities between

the weighted Hölder mean and weighted Lehmer mean, which is an extension of [23, Theorem

1]. Our main result is the following.

Theorem 1.2. Let p ≥ 2. Then the inequality

Ls (Kp(r),Ep(r); 1/p) >
πp

2
, (1.9)

holds for all r ∈ (0, 1) if and only if s ≥ s∗(p), where

s∗(p) =

−p+ 1

4
, 2 ≤ p ≤ 3,

−1, p > 3.

§2 Preliminaries

Throughout this paper, we denote r′ = p
√
1− rp for r ∈ (0, 1) with p > 1. Recall the

derivative formulas [3, Propositions 2.1 and 2.2] for the complete p-elliptic integrals of the first
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and second kind

dKp

dr
=

Ep − r′pKp

rr′p
,

dEp

dr
=

Ep −Kp

r
,

d(Ep − r′pKp)

dr
= (p− 1)rp−1Kp,

d(Kp −Ep)

dr
=

rp−1Ep

r′p
.

To facilitate the presentation, we denote by

f(r) =:
Kp

Ep
, g(r) =:

Ep − r′pKp

(p− 1)r′p(Kp −Ep)
,

hs(r) =:
Ks+1

p + (s+ 1)(p− 1)KpE
s
p − s(p− 1)Es+1

p

(p− 1)Es+1
p + (s+ 1)Ks

pEp − sKs+1
p

,

(2.1)

for r ∈ (0, 1) with p ∈ (1,∞) and s ∈ R.

Lemma 2.1. ([2, Monotone l’Hôpital Rule]) Let −∞ < a < b < ∞, and f, g : [a, b] → R
be continuous that are differentiable on (a, b) such that f(a) = g(a) = 0 or f(b) = g(b) = 0.

Assume that g′(x) ̸= 0 for each x ∈ (a, b). If f ′/g′ is (strictly) increasing (decreasing) on (a, b),

then so is f/g.

Lemma 2.2. For p > 1, then the functions

(i) (Ep − r′pKp)/r
p is strictly increasing from (0, 1) onto ((p− 1)πp/(2p), 1);

(ii) (Kp −Ep)/r
p is strictly increasing from (0, 1) onto (πp/(2p),∞);

(iii) r′−pEp is strictly increasing from (0, 1) onto (πp/2,∞);

(iv) [p(Kp −Ep)− rpEp] /r
2p is strictly increasing from (0, 1) onto

(
(p2 + 1)πp/(4p

2),+∞
)
.

Proof. Parts (i), (ii) and (iii) follow from [28, Lemma 3.4 (1), (4) and (7)]. For part (iv), we

denote µ1(r) = p(Kp −Ep)− rpEp and µ2(r) = r2p. Then by Lemma 2.1, Lemma 2.2 (iv) can

be derived from µ1(0) = µ2(0) = 0 and Lemma 2.2 (ii), (iii) together with

µ′
1(r)

µ′
2(r)

=
1

2

(
Ep

r′p
+

Kp −Ep

prp

)
and lim

r→0+

µ1(r)

µ2(r)
= lim

r→0+

µ′
1(r)

µ′
2(r)

=
πp

4

(
1 +

1

p2

)
.

Lemma 2.3. (See [20, Lemma 2.7]) For p > 1 and s ∈ R, the function fs−1(r)g(r) is strictly

increasing on (0, 1) if and only if s ≥ (1− p)/2. In particular, the inequality g(r) > f (p+1)/2(r)

holds for all r ∈ (0, 1).

Lemma 2.4. For p > 1 and s ∈ R, then we have

(1) lim
r→0+

log f(r)

rp
=

1

p
; (2) lim

r→0+

log g(r)

rp
=

p+ 1

2p
; (3) lim

r→0+

log hs(r)

rp
=

s+ 1

p
.

Proof. (1) By l’Hôpital Rule, it follows from Lemma 2.2 (1) and (2) that

lim
r→0+

log f(r)

rp
=

1

p
lim

r→0+

(
Ep − r′pKp

rpr′pKp
+

Kp −Ep

rpEp

)
=

1

p

(
p− 1

p
+

1

p

)
=

1

p
.
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(2) An elementary calculation together with Lemma 2.2 (2) and (4) leads to

lim
r→0+

E2
p − (p− 1)r′pK2

p + (p− 2)r′pKpEp

r2p

= lim
r→0+

(Kp −Ep)
2 + (p− 1)rpKp(Kp −Ep)−Kp [p(Kp −Ep)− rpEp]

r2p

= lim
r→0+

(
Kp −Ep

rp

)2

+
(p− 1)πp

2
lim

r→0+

Kp −Ep

rp
− πp

2
lim

r→0+

p(Kp −Ep)− rpEp

r2p

=

(
πp

2p

)2

+
(p− 1)πp

2
· πp

2p
− πp

2
· πp(p

2 + 1)

4p2
=

π2
p

8

(
1− 1

p

)2

.

This in conjunction with Lemma 2.2 (1) and (2) together with l’Hôpital Rule implies that

lim
r→0+

log g(r)

rp
=

1

p
lim

r→0+

[
(p− 1)Kp

Ep − r′pKp
− Ep

r′p(Kp −Ep)

]
+ 1

= −1

p
lim

r→0+

[
E2

p − (p− 1)r′pK2
p + (p− 2)r′pKpEp

r2p
· rp

Ep − r′pKp
· rp

Kp −Ep

]
+ 1

= −1

p
·
π2
p

8

(
1− 1

p

)2

· 2p

(p− 1)πp
· 2p
πp

+ 1 =
p+ 1

2p
.

(3) The l’Hôpital Rule together with Lemma 2.2(1) and (2) enables us to know that

lim
r→0+

log hs(r)

rp

= lim
r→0+

{
(s+ 1)

(
E2

p − 2r′pKpEp + r′pK2
p

)
prpr′p

×

[(
Ks

p + (p− 1)Es
p

)2
+ (p− 1)s2Es−1

p Ks−1
p (Kp −Ep)

2
]

[
Ks+1

p + (s+ 1)(p− 1)KpEs
p − s(p− 1)Es+1

p

] [
(p− 1)Es+1

p + (s+ 1)Ks
pEp − sKs+1

p

]


=
4(s+ 1)

pπ2
p

lim
r→0+

[
Ep(Ep − r′pKp)

rp
+

r′pKp (Kp −Ep)

rp

]
=

4(s+ 1)

pπ2
p

· πp

2

[
(p− 1)πp

2p
+

πp

2p

]
=

s+ 1

p
.

As mentioned in the introduction, the inequalities between Ht(x, y; 1/2) and Ls(x, y; 1/2)

had been studied in [23]. For w ̸= 1/2, it is clear that Ht(x, y;w) and Ls(x, y;w) are non-

symmetric but the relations Ht(x, y;w) = Ht(y, x; 1−w) and Ls(x, y;w) = Ls(y, x; 1−w) allow

us to only consider the case that x > y > 0 with w ∈ (0, 1). We now present the comparison

inequalities between Ht(x, y;w) and Ls(x, y;w) in Proposition 2.5.

Proposition 2.5. Let s ∈ R and w ∈ (0, 1) with w ̸= 1/2. The following statements are true.

• In the case w ∈ (0, 1/2),

(1) H2s+1(x, y;w) ≤ Ls(x, y;w) holds for x > y > 0 if and only if s ∈ [−1,−1/2];

(2) H2s+1(x, y;w) ≥ Ls(x, y;w) holds for x > y > 0 if and only if s ∈ (−∞,−1].

• In the case w ∈ (1/2, 1),
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(3) H2s+1(x, y;w) ≤ Ls(x, y;w) holds for x > y > 0 if and only if s ∈ [0,∞);

(4) H2s+1(x, y;w) ≥ Ls(x, y;w) holds for x > y > 0 if and only if s ∈ [−1/2, 0].

Equalities hold for all x, y > 0 when s = −1 or 0. Moreover, inequalities (1) and (3) are best

possible in the sense that 2s+1 cannot be replaced by any larger function of s, and inequalities

(2) and (4) are best possible in the sense that 2s+1 cannot be replaced by any smaller function

of s.

Proof. For the special values s = −1 or s = 0, it is verified directly from (1.2) and (1.8) that

H2s+1(x, y;w) = Ls(x, y;w) for all x, y > 0.

To see that this is the best possible observe that

Ht(1 + ε, 1;w) = 1 + wε+
1

2
w(1− w)(t− 1)ε2 + · · ·

and

Ls(1 + ε, 1;w) = 1 + wε+ w(1− w)sε2 + · · · .
Thus Ht(1 + ε, 1;w) ≤ (≥)Ls(1 + ε, 1;w) for small enough ε > 0 implies that t ≤ (≥)2s+ 1.

By homogeneity it suffices to prove the inequalities of Proposition 2.5 for x > 1 and y = 1.

For x > 1, we denote

φ(x) =
1

2s+ 1
log

(
wx2s+1 + 1− w

)
− log

(
wxs+1 + 1− w

wxs + 1− w

)
,

φ1(x) = w(1 + s− sx)x2s+1 + (1− 2w)xs+1 + (1− w)(s− x− sx),

φ2(x) = (s+ 1)
[
w(1 + 2s− 2sx)x2s + (1− 2w)xs + w − 1

]
,

φ3(x) = s(s+ 1) [2w(2s+ 1)(1− x)xs + 1− 2w] ,

φ4(x) = ws(s+ 1)(2s+ 1) [s− (1 + s)x] .

By differentiating φ(x) several times, one has

φ′(x) =
w(1− w)xs−1φ1(x)

(wxs + 1− w) (wxs+1 + 1− w) (wx2s+1 + 1− w)
, (2.2)

φ′
1(x) = φ2(x), (2.3)

φ′
2(x) = xs−1φ3(x), (2.4)

φ′
3(x) = 2xs+1φ4(x), (2.5)

φ′
4(x) = −ws(2s+ 1)(s+ 1)2. (2.6)

We now divide the proof into two cases.

Case 2.1 w ∈ (0, 1/2).

(1) s ∈ (−1,−1/2]. Then it follows from (2.6) that φ4(x) is decreasing on (1,∞), which in

conjunction with (2.5) and φ4(1) = −ws(s + 1)(2s + 1) ≤ 0 yields φ3(x) is decreasing on

(1,∞). By the same argument, φ3(1) = (1 − 2w)s(s + 1) < 0 and φ1(1) = φ2(1) = 0

together with (2.2)-(2.4) lead to the conclusion that φ(x) < 0 for x ∈ (1,∞) and so

H2s+1(x, y;w) < Ls(x, y;w), (2.7)
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holds for all x > y > 0.

(2) s ∈ (−∞,−1). Then it follows from (2.6) that φ4(x) is decreasing on (1,∞), which in

conjunction with (2.5), φ4(1) = −ws(s+1)(2s+1) > 0 and φ4(∞) = −∞ implies that there

exists x1 ∈ (1,∞) such that φ3(x) is strictly increasing on (1, x1) and strictly decreasing

on (x1,∞). According to this with φ3(1) = (1 − 2w)s(s + 1) > 0 and φ3(∞) = 0, it can

be easily seen that φ3(x) > 0 for x ∈ (1,∞). The same argument as (1) together with

(2.2)-(2.4) and φ1(1) = φ2(1) = 0 leads to the conclusion that

H2s+1(x, y;w) > Ls(x, y;w), (2.8)

holds for all x > y > 0.

(3) s ∈ (−1/2, 0). Then it follows from φ3(1) = (1 − 2w)s(s + 1) < 0 and (2.4) that there

exists x2 ∈ (1,∞) such that φ2(x) is strictly decreasing on (1, x2). This in conjunction

with φ1(1) = φ2(1) = 0 and (2.2), (2.3) yields φ(x) < 0 for x ∈ (1, x2). On the other hand,

φ(∞) = ∞ enables us to know that φ(x) > 0 for x ∈ (x3,∞) with enough large x3 > 1.

(4) s ∈ (0,∞). Then it is easy to see that φ3(1) > 0 and φ(∞) = logw
2s+1 < 0. According

this with the same approach as (3), it follows that there exist x4, x5 ∈ (1,∞) such that

φ(x) > 0 for x ∈ (1, x4) and φ(x) < 0 for x ∈ (x5,∞).

Case 2.2 w ∈ (1/2, 1).

(1) s ∈ [−1/2, 0). Then it follows from (2.6) and φ4(1) = −ws(s + 1)(2s + 1) ≥ 0 that

φ3(x) is strictly increasing on (1,∞). This in conjunction with (2.2)-(2.4) and φ3(1) =

(1− 2w)s(s+ 1) > 0, φ1(1) = φ2(1) = 0 implies that φ(x) > 0 for x ∈ (1,∞), that is

H2s+1(x, y;w) > Ls(x, y;w), (2.9)

for all x > y > 0.

(2) s ∈ (0,∞). In this case, φ3(1) = (1−2w)s(s+1) < 0 and φ4(1) = −ws(s+1)(2s+1) < 0.

This in conjunction with (2.2)-(2.6) and φ1(1) = φ2(1) = 0 yields φ(x) < 0 for x ∈ (1,∞),

which is equivalently

H2s+1(x, y;w) < Ls(x, y;w), (2.10)

holds for all x > y > 0.

(3) s ∈ (−∞,−1)∪(−1,−1/2). Then we claim that φ3(1)·φ(∞) < 0. Indeed, if s ∈ (−∞,−1),

then φ3(1) = (1 − 2w)s(s + 1) < 0 and φ(∞) = log(1−w)
2s+1 > 0; if s ∈ (−1,−1/2), then

φ3(1) = (1 − 2w)s(s + 1) > 0 and φ(∞) = −∞. In the case w ∈ (0, 1/2), the same

approach to (3) and (4) leads to the conclusion that there are different signs of φ(x) as x

close to 1 and ∞.

Therefore, inequalities (2.7)-(2.10) complete the proof of Proposition 2.5.
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§3 Proof of Theorem 1.2

Proof of Theorem 1.1. Let

Φs(r) = log

 1
pK

s+1
p +

(
1− 1

p

)
Es+1

p

1
pK

s
p +

(
1− 1

p

)
Es

p

− log
πp

2
.

By the monotonicity of Ls(x, y;w) with respect to s, it suffices to prove

Φs∗(p)(r) > 0 (3.1)

for r ∈ (0, 1) with p ≥ 2 instead of (1.9).

We divide into two cases 2 ≤ p ≤ 3 and p > 3 to complete the proof of (3.1).

Case 1 : 2 ≤ p ≤ 3. In this case, we denote s∗ = −(p+ 1)/4. Differentiation of Φs(r) yields

Φ′
s(r) =

s+1
p Ks

p
Ep−r′pKp

rr′p − (s+ 1)
(
1− 1

p

)
Es

p
Kp−Ep

r

1
pK

s+1
p +

(
1− 1

p

)
Es+1

p

−
s
pK

s−1
p

Ep−r′pKp

rr′p − s
(
1− 1

p

)
Es−1

p
Kp−Ep

r

1
pK

s
p +

(
1− 1

p

)
Es

p

=
(p− 1)Es−1

p (Kp −Ep)
[
(p− 1)Es+1

p + (s+ 1)Ks
pEp − sKs+1

p

]
p2r

[
1
pK

s
p +

(
1− 1

p

)
Es

p

] [
1
pK

s+1
p +

(
1− 1

p

)
Es+1

p

] [
ϕs(r)− 1

]
, (3.2)

where f(r), g(r), hs(r) are defined as in (2.1) and ϕs(r) = [f(r)]
s−1

g(r)hs(r).

Let x = f(r) for short. Then x > 1 for r ∈ (0, 1). It follows from Lemma 2.3 that g(r) >

x(p+1)/2. Moreover, hs(r) can be rewritten as

hs(r) =
xs+1 + (s+ 1)(p− 1)x− s(p− 1)

(p− 1) + (s+ 1)xs − sxs+1
.

This gives

ϕs∗(r) >
x

p−3
4

[
4x

3−p
4 + (3− p)(p− 1)x+ (p2 − 1)

]
4(p− 1) + (3− p)x− p+1

4 + (p+ 1)x
3−p
4

:= ϕ̂p(x), (3.3)

for x > 1.

A simple calculation yields

ϕ̂p(1) = 1, (3.4)

ϕ̂′
p(x) =

(p+ 1)(3− p)(x− 1)x
p−7
4

[
2x

(
(p− 1)2x

p−1
2 − 1

)
+ (p− 1)2(x− 1)x

p+1
4

]
2
[
3− p+ (p+ 1)x+ 4(p− 1)x

p+1
4

]2
≥ 0, (3.5)

for x > 1. It follows from (3.4) and (3.5) that ϕ̂p(x) ≥ 1 for x > 1. This in conjunction with

(3.2) and (3.3) implies that Φs∗(r) is strictly increasing on (0, 1).

Therefore, inequality (3.1) follows from the monotonicity of Φs∗(r) and Φs∗(0
+; p) = 0.
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Case 2 : p > 3. In this case, s∗ = −1. Then inequality (1.9) reduces to

L−1 (Kp(r),Ep(r); 1/p) = H−1 (Kp(r),Ep(r); 1/p) >
πp

2
,

which is valid from (1.6).

Now it remains to prove s∗(p) is the best possible parameter.

From Lemma 2.4 we clearly see that

lim
r→0+

log ϕs(r)

rp
= (s− 1) lim

r→0+

log f(r)

rp
+ lim

r→0+

log g(r)

rp
+ lim

r→0+

log hs(r)

rp

=
s− 1

p
+

p+ 1

2p
+

s+ 1

p
=

2

p

(
s+

p+ 1

4

)
. (3.6)

For 2 ≤ p ≤ 3, if s < s∗(p) = −(p + 1)/4, then it follows from (3.6) that there exists

δ1 ∈ (0, 1) such that ϕs(r) < 1 for r ∈ (0, δ1). This in conjunction with (3.2) and Φs(0
+; p) = 0

yields Φs(r) < 0 for r ∈ (0, δ1).

For p > 3, if s < −1, then we clearly see that

lim
r→1−

Φs(r) = − log
πp

2
< − log

π∞

2
= 0, (3.7)

where the last inequality follows from the monotonicity of πp and π∞ = 2. Inequality (3.7)

shows that there exists δ2 ∈ (0, 1) such that Φs(r) < 0 for r ∈ (δ2, 1).

Remark 3.1. For 2 < p ≤ 3, then 1/p ∈ (0, 1/2). As an application, Proposition 2.5 and (1.6)

enable us to know that

L− p+1
4

(Kp(r),Ep(r); 1/p) ≥ H 1−p
2

(Kp(r),Ep(r); 1/p) >
πp

2
for all r ∈ (0, 1).

For p > 1, we now prove

log(1− 1/p)

log(πp/2)
< −1 ⇐⇒ πp

2

(
1− 1

p

)
< 1, (3.8)

since πp > 2.

By substituting u = π/p ∈ (0, π) into (3.8), it can be easily obtained that

πp

2

(
1− 1

p

)
=

u(π − u)

π sinu
:=

ζ1(u)

ζ2(u)
.

Clearly, one has ζ1(0) = ζ2(0) = ζ1(π) = ζ2(π) = 0, ζ ′1(π/2) = ζ ′2(π/2) = 0 and

ζ ′1(u)

ζ ′2(u)
=

π − 2u

π cosu
,

ζ ′′1 (u)

ζ ′′2 (u)
=

2

π sinu
.

This in conjunction with Lemma 2.1 implies that ζ1(u)/ζ2(u) is strictly decreasing on (0, π/2)

and ζ1(u)/ζ2(u) is strictly increasing on (π/2, π), which together with l’Hôpital Rule gives

ζ1(u)

ζ2(u)
<


lim

u→0+

ζ1(u)

ζ2(u)
= lim

u→0+

ζ ′1(u)

ζ ′2(u)
= 1, u ∈ (0, π/2),

lim
u→π−

ζ1(u)

ζ2(u)
= lim

u→π−

ζ ′1(u)

ζ ′2(u)
= 1, u ∈ (π/2, π).

Proposition 2.5 together with (1.7) and (3.8) enables us to give the following corollary.
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Corollary 3.2. Let p ∈ [2,∞). Then the inequality

Ls (Kp(r),Ep(r); 1/p) <
πp

2
,

holds for all r ∈ (0, 1) if s ≤ log(1− 1/p)/ log(πp/2).

Remark 3.3. As in Lemma 2.4, we can compute

lim
r→0+

log f(r)− rp

p

r2p
=

p2 − p+ 1

2p3
, lim

r→0+

log g(r)− p+1
2p rp

r2p
=

7p3 + 4p2 − p+ 2

24p3
,

lim
r→0+

log hs(r)− s+1
p rp

r2p
=

(s+ 1)
[
p2 + 1 + 2s− p(s+ 1)

]
2p3

,

which gives

lim
r→0+

log ϕ− p+1
4
(r)

r2p
=

(p+ 1)
(
p+

√
865+27

2

)(
p−

√
865−27

2

)
96p3

. (3.9)

When 1 < p < (
√
865− 27)/2 = 1.20544 · · · , it follows from (3.2) and (3.9) that Φs(r) < 0 for

r ∈ (0, τ) with small τ > 0, which yields s∗(p) > −(p + 1)/4. While (
√
865 − 27)/2 ≤ p < 2,

computer experiments show that Φ− p+1
4
(r) > 0 for r ∈ (0, 1). In other words, s∗(p) in Theorem

1.2 can be extended as s∗(p) = −(p+ 1)/4 for (
√
865− 27)/2 ≤ p ≤ 3.

Unfortunately, we don’t establish the inequality as (1.9) for p ∈ (1, 2) but Remark 3.3

provides us some informations. A sufficient condition for the parameter s such that the inverse

inequality of (1.9) in Corollary 3.2 holds has been obtained, but this is not the optimal constant

from computer experiments. This allows us to pose the following problem.

Problem 3.4. Find the best possible functions s∗(p) for p ∈ (1, 2) and s∗(p) for p ∈ (1,∞)

such that the inequality

Ls (Kp(r),Ep(r); 1/p) >
πp

2
,

holds for all r ∈ (0, 1) if and only s ≥ s∗(p) and the inequality

Ls (Kp(r),Ep(r); 1/p) <
πp

2
,

holds for all r ∈ (0, 1) if and only s ≤ s∗(p).
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