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Higher-order optimality conditions for multiobjective
optimization through a new type of

directional derivatives

HUANG Zheng-gang

Abstract. This paper deals with extensions of higher-order optimality conditions for scalar
optimization to multiobjective optimization. A type of directional derivatives for a multiobjec-
tive function is proposed, and with this notion characterizations of strict local minima of order
k for a multiobjective optimization problem with a nonempty set constraint are established,
generalizing the corresponding scalar case obtained by Studniarski [3]. Also necessary not suffi-
cient and sufficient not necessary optimality conditions for this minima are derived based on our
directional derivatives, which are generalizations of some existing scalar results and equivalent

to some existing multiobjective ones. Many examples are given to illustrate them there.

81 Introduction

The strict local minimizer of order k (k > 1 an integer) as one class of minima for scalar
optimization problems was first used by Hestenes [1] for the values kK = 1 and k = 2 to prove
sufficient conditions. Let X, R? with p a positive integer and R, respectively, be a real normed
vector space, the p-dimensional Euclidean space and the set of all real numbers. We recall that
let a function f : X—R and a subset SCX, a point 2° € S is said to be a strict local minimizer
of order k, denoted z° € Strl(k, f,S), for the scalar optimization problem

min{f(z) : z € S} (1)
if there exist o > 0 and a neighborhood U of z° such that
f@)> fe®) +a|lz—2|F VYeeUNS\ {«°}. (2)

There are other names for strict local efficiency of order k in literatures: firm or isolated effi-
ciency of order k (see, e.g., [2,8]). Under the assumption that these minimizers are often exactly

those satisfied an kth directional derivatives test, Auslender [2] derived optimality conditions
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characterizing such minima. Studniarski [3] generalized the Auslender’s results to any extended
real-valued function f and any subset S of R™ by using directional derivatives that are gen-
eralizations of lower and upper Hadamard directi onal derivatives. Applying lower and upper
Studniarski derivatives, Jiménez [4] deduced optimality conditions of strict local minimizer of
order k for problem (1) extending results of [3]. About fifteen years ago, Ginchev [5] extended
the scalar notion of strict local minimizer of order k to unconstrained multiobjective problems.
Recall that given z° € R”, f : R®*=RP and C C RP? is a closed, convex and pointed cone, and
C* C RP is the positive polar cone of C. 20 is called a strict local (Pareto) minimizer of order

k for f (on R™) if 2° is a strict local minimizer of order k for the scalar function

¢(x) = sup{(€, f(x) — f(2”)) : £ € C*and || £ || = 1},
i.e., there exist a > 0 and a neighborhood U of x° such that
sup{{¢, f(z) — f(a°)) : € € C*and | € | =1} > a || & —2” ||*, Vo e U\ {z°}. 3)

Remark 1.1 Naturally, we define a strict local minima of order k for a multiobjective
optimization problem with a set constraint (problem (4) below) by substituting U in (3) with
uns.

Jiménez [6] extended the notion (2) to vector optimization with an objective function defined
on a normed space and with an arbitrary set constraint, then the stronger notion of superstrict
local minimizer of order k& with the final space RP was introduced. Moreover, necessary con-
ditions for strict and superstrict local minimizer of order k were established in [6]. Sufficient
conditions for the latter were derived by the same author in [7]. Here we underline that these
scalar and multiobjective (vector) optimality conditions [4,6,7] via directional derivatives used
in these papers result from or are closely related to the scalar characterizations of strict local
minima of order k [3]. Inspired and encouraged by works of [3,4,6], in this paper we first in-
troduce a type of lower (upper) directional derivatives for a multiobjective function, which is
the extension of lower (upper) Studniarski derivatives; then we establish both necessary and
sufficient conditions of strict local minimizer of order k (k > 1) for (4) that extend the scalar
characterizations [3]; finally we derive necessary not sufficient and sufficient not necessary con-
ditions for this minima for (4) extending scalar conditions [3,4,6]. Of course, there exist some
other good papers about this topic via directional derivatives in recent years, e.g., [13,14].

This paper is structured as follows. In the next section (Section 2), some preliminaries and
notations needed in the sequel are presented. In Section 3, the notions of indicator functions
and lower (upper) directional derivatives of order k for a multiobjective function are introduced.
In Section 4, necessary and sufficient conditions for strict local minimizer of order k (k > 1) for
(4) are developed. Finally in Section 5, our results are compared with some before results of

scalar and multiobjective optimization.

82 Preliminaries and notations

Let RY and NT be the nonnegative orthant of R? and the set of all positive integers respec-
tively. Denote by C' a closed, convex and pointed cone in RP and C* the positive polar cone of
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C,ie,C*={¢ecRP:(£y)>0forallyc C}. Let R=RU{+occ}, [ ={¢ € C*:|| £ |=1},
and let & > 1 be an integer unless distinguishing the cases & > 1 and k = 1. As it is usual,
intconeM and clM denote the interior of the cone generated by and the closure of a set M C R",

respectively.
In this paper, we consider the multiobjective optimization problem
min{f(z) : x € S} (4)
where f = (f1, f2, -+, fp) : R® — RP is an arbitrary mapping, S C R” is a nonempty set, the
point 2° € S unless otherwise stated, and C' = RE .
We now recall some well-known notions and results needed in the sequel.
Definition 2.1 Let M be a nonempty set of R”. The tangent cone to M at x° € clM is
T(M,z%) :={ve X :3t, >0,3z, € M,x, — 2°such that t,(z, — 2°) = v}.
Definition 2.2 Let M be a nonempty set of R”. Then a mapping I; : R® — R defined by
0 if x e M,
4o ifx g M
is said to be the indicator function of the set M.
Definition 2.3 Let a function h : R™ — R be finite at 2° € R”. We call the following limits

0 — h(y0
dh(z°,v) = liminf hz” + tu) = (')
(t,u)—(01,v) t

IM(JZ) =

and

dh(z°,v) = limsup M +tu) — W)
(t,u)—(0+,v) t
the lower and upper Hadamard directional derivative of h at 2% in the direction v € R",
respectively.
Moreover, we call
lim h(x® + tu) — h(z?)
(t,u)—(0t+,v) t
the Hadarmard directional derivative of h at 2° in the direction v € R"™, denoted by dh(z°,v),
when this limit exists.

When dh(z°,v) exists for all v € R, we say that h is Hadamard directional differentiable
at 0.
Definition 2.4 [3,4] Let h : R® — R be finite at ° € R®. The lower (resp. upper)
Studniarski derivative of order k for h at z° in the direction v € R™ is defined by
d*h(z°,v) = liminf ha® + tu,z — h(x0)7
(t,u)—=(0F,v) t

0 _ 0

resp. Ekh mo,v = limsup hia” + tu) — h(2")
&
(t:u)=(0F v) ¢

).

Ifk=1, dlh(xo,v) and Elh(xo,v) are the lower and upper Hadamard derivative, respec-
tively.

Definition 2.5 [9] Let R? be the extended Euclidean space of RP which is defined as the
cartesian product of p copies of R. The operations of addition and scalar multiplication in RP
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are performed componentwise whenever the respective operations in R are defined. There, we
adopt the conventions 0 - (+00) = (+00) -0 =0 € R.
Studniarski derived characterizations of strict local minima of order k for (1) as follows.
Theorem 2.1 [3, Theorem 2.1] Let f:R™ — R and 2" € S C R™.
(i) If & > 1, then the following three conditions are equivalent:
(a) 2° € Strl(k, f, S);
(b) for all v € R™\ {0}, we have
d*(f + Is)(a",v) > 0;
() the previous inequality holds for all v € K(2°)\ {0};
(ii) If k¥ = 1, the analogous equivalences are true with condition (¢) replaced by the following
one:
(¢') the previous inequality holds for all v € T'(S,z°) \ {0}.
Here, K (2°) = T(S,2°) N {v e R" : df (2, v) < 0}.
Sufficient conditions of superstrict local minima of order k for (4) were deduced by Jiménez
as follows.
Theorem 2.2 [7, Theorem 3.1(b)= (a)] If Yo € R™\{0},3i,1 < i < p, such that d"(f; +
Is)(2%,v) > 0, then z° € SStrl(k, £, S).
For strict and superstrict efficiency of order k for (4), the relation between them is as follows.
Theorem 2.3 [6, Corollary 3.10] Let f : R™ — RP and 2 € S C R™. Then
(i) Let & > 1. 20 € SStrl(k, f, S) = 20 € Strl(k, £, S); the converse is not true.
(i) Let k = 1. 20 € SStrl(1, £, S) & 20 € Strl(1, f, 9).
Theorem 2.4 [11, Charpter 2, Proposition 1.1] Let function v : [0, +00) x R" — R, ((v) :=

liminf ~y(¢,u) and f(v) := limsup ~(¢,u). Then the functions ¢ : R” — Rand §: R* — R
(t;u)=(0%,v) (t,u)—(0F,v)
are lower and upper semicontinuous, respectively.

83 Indicator function and directional derivatives

In this section, we introduce a concept of a indicator function with values in RP extend-
ing the usual indicator function (Definition 2.2), and a type of directional derivatives for a
multiobjective function extending the scalar lower (upper) Studniarski derivatives (Definition
2.4).

Definition 3.1 Let M be a nonempty set of R™. We call the mapping I, = (Ij(é), II(\/2[)7 s
I](sz))) : R — RP with each component I](\? defined as Definition 2.2, i.e., I](L? = Iyt =
1,2,---,p, the indicator function of the set M.

Obviously, this concept reduces to Definition 2.2 when p = 1.

From Definitions 2.2 and 3.1, we can easily deduce that for any € € I,

Eoly = Iy (5)
We next give a notion of directional derivatives for a multiobjective function.
Definition 3.2 Let a function h : R® — R? and 2z° € R™. Then the lower and upper
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directional derivatives of order k for h at z¥ in the direction v € R™ are defined by
h(z® + tu) — h(x°
drh(z°,v) = sup liminf (€ h(a” + :) (z )>, ©)
ger(tu)=(0t,v) t

and
Jh(2® 4+ tu) — h(2

d"h(z°,v) = sup limsup
€€l (t,u)—(0F,v)
respectively.

Remark 3.1 (i) Clearly, since £ € I' = {1} when p = 1, those derivatives reduce to lower
and upper Studniarski derivatives of order 1 (lower and upper Hadmard directional derivatives)

respectively.
(i) It immediately holds from Definition 3.2 that
aER(a®,0) = supd* (€ o B) (2%, v) )
ger
and
d"h(z®,v) = Zu};d (€0 h)(2°,v) (9)
€

for any v € R".
(iii) We have that
dfh(z,v) # min d"h;(z°,v)
1<i<p
and
d"h(z°,v) # max " hi(2,v)
1<i<p
for all v € R™ \ {0}.
The reason is that I' := {£ e RE : || £ |[= 1} # {e; € R? 1 ¢; = (0,---,0,1,0,---,0) with its
ith component 1 and others 0, ¢ =1,2,--- ,p}.

(iv) If h is of C? class and Vh(x?) = 0, it is easy to derive that

d?h(2°,v) = d2h(2°,v) = V2h(2°)(v,v)
since I" = {1}.

We also have the following properties of the above new derivatives.

Proposition 3.1 dfh(2°,) (vesp. d%h(z?,-)) is lower (resp. upper) semicontinous and posi-
tively homogeneous of degree k on R™.

Proof Let £ € T' and v € R". Take any € > 0, by Theorem 2.4, dk(g o h)(x?,-) is lower
semicontinuous at v, i.e., taking any ¢ (0 < € < €), there exists § > 0 such that for all
u € B(v,9)

dk(f oh)(z%,u) > dk(§ o h)(z°,v) — €.
Consequently
sup d® (€ o h)(2°,u) > supd® (& o h)(2°,v) —€ .

gel ger
Hence
sup d” (€ o h)(2°,u) > supd® (€ o h) (2, v) — €.
ger ¢er
It follows from (8) that
drh(x®,u) > dih(z°,v) — e

So dfh(x0,) is lower semicontinous at v € R™.
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Let any A > 0, we can easily to see from Definition 3.2 that dFh(z%, Av) = A\¢dFh(2°,v). So
dFh(z°,-) is positively homogeneous of degree k on R”™.

Analogously, d*h(z?,-) is upper semicontinous and positively homogenously of degree k on
R™.

Observing that £ o (h +Ig) = £ o h + Ig, using (8) and the fact that d"(¢ + Ig)(z°,v) >
dkcp(zo, v) for a scalar function ¢ : R® — R, we have the following immediate consequence.

Proposition 3.2 Let function f : R™ — RP and 2° € S C R™. Then it holds that

i (f +1s) (2% v) > dj f(2°v), Vv €R™

We have the following relations between our directional derivatives and Studniarski deriva-
tives.

Proposition 3.3 Suppose f = (f1, f2, -+, fp) : R* = RP, k > 1, and 2° € R™. Then, for any
given v € R™ \ {0}, we have
(1) Fi =i(v),1 <i<p,d"fi(a°,v) > 0= df f(z°,v) > 0.
(i) Ji = i(v),1 <i<p, d fi(z°,0) >0 & d5f(°,v) > 0.

Proof (i) Let v € R™\ {0}, there exists ¢ = i(v),1 < i < p, such that

d* fi(z°,v) > 0.

Put £ = (0,---,0,1,0,---,0) € T', with the ith component & =1 and each of the rest equal to
0, then we immediately obtain the conclusion from (8).

(if) “=-" is similar to that in (i).

“e=" If dF f(2°,v) > 0, then from the definition (7) there exists ¢ €T satisfying
(€ f(a + tu) — f(a°))

lim sup >0
(t,u)—(0F ) tk
ie.,
J 2N
2 & (S 4 tu) = £;(2%)
limsup = - > 0. (10)
(t,u)—(0F ) 13
Since
P
>0 & (fi(@® +tu) — f;(2°) :
L Hu ) (6 ) - )
imsup T < Z lim sup 5 )
(t.u)—(0+,v) t =\ ()= 0+ 0) t

then noticing (10) there exists i = i(v),1 < i < p, such that
E(F (20 _£(0
i SUAGT )~ £G7)
(tu)—(0+,v) t

> 0.

Thus, we have

>0

Ekfi(zo,v) —  limsup fi(z® + tu) — fi(2)
()= (0% ) t*
due to that & > 0.
Notice that the implications in (i) and (ii) in Proposition 3.3 are different (since the converse
in (i) is not true as showed in Remark 4.1 in Sect. 4). Indeed, it is because of the difference

between “liminf” and “limsup”.
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Rahmo and Studniarski [10] gave higher-order directional derivatives d*h(z°,v) and Ekh(xo,
v) C RP (with the help of the symbols of scalar derivatives of order k above for simplicity) for
multiobjective programming to derive higher-order optimality conditions, and stated
d*h(z%v) = (d"hi (2°,0),d"ha (2%, ), - -, d"hy(2°,0)) (11)
and
d°h(a®,v) = @ hy(2°,0), 8 ha(2°,0), -, d hy(a®, ).
We deduce the relation between these derivatives and our directional derivatives as follows.
Proposition 3.4 For any v € R™, it follows that
() dfh(a", v) > sup [£ o d*h(a", )
€

(i) d¥h(2°,v) < sup[¢ oakh(xo,v)}.
ger
Proof (i) For any v € R™, it holds from (8) that

dFh(z°,v)
B ?é?dk(é o h)(a®,v)
&1 - [h(2® + tu) — by ()] &p - [hp(a® + tu) — hp(fﬂo)])

= lim inf
ilélr) (t,ul)Ig(lgtu) ( tk oot th cer
. 0 _ 0 . 0 - 0
t,u)—(0t,v t,u)—(0T,v
= sup 327, & dhi(a®,v)
el
= sup[€ o d"h(z0,v)].
ger
(ii) Analogous to that in (i).

> sup

84 Higher-order optimality conditions

In this section, we shall deduce characterizations of strict local minima of order k for function
f in (4), which are the corresponding extensions of Theorem 2.1, and shall deduce necessary
not sufficient and sufficient not necessary conditions for this minima for (4). From now on we
let K(z%) :=T(S,2%) N{v e R": d} f(z",v) <0}
Theorem 4.1 (i) If k > 1, then the following conditions are equivalent:
(a) 20 € Strl(k, £, S);
(b) for all v € R™\ {0}, we have
A (f +1g)(2°,v) > 0;
(c) for all v € K(2°) \ {0}, we have
di (f +1s) (%, v) > 0;
(d) for any v € R™ \ {0}, there exists 5 = B(v) > 0 such that
di (f +1s)(z%0) 2 B [l v |I*;
(e) for any v € K(2°) \ {0}, there exists 3 = 5(v) > 0 such that
di (f +1s)(z°0) > B [l v |I*;
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(ii) If k = 1, then those conditions above are equivalent when K (2°) is replaced by T'(S,x°) in
(c) and (e).

Proof (i) (a)= (b): Contrary to the conclusion, suppose that (b) is false, then there exists
v € R™\ {0} satisfying dF(f + Ls)(z°,v) < 0. Hence, for any ¢ € I' we have that for each § > 0
and each V C R”,

(& (f +Tg) (2 + tu) — (f +Ls)(2"))

inf <0. 12
t€(071§1)7u€V tk - ( )
In particular, we may choose § and V such that
VC{ueX:||u—v||<@=c} (13)
and
2 +tu €U forall t € (0,0) and all u € V, (14)

where U is such as in Remark 1.1 (or (3)).

Take any e > 0. By (12), there exists t € (0,0) and u" € V satisfying

(€ (f +1s)(a + t'u) — (f +1s)(2"))

% <e. (15)
Then
2 4+tu €8s (16)
By (13)
v —v|<e
So
' ||>c. (17)
Hence, from (14) and (16) we have
DL+t eUNS. (18)

From (5), (16), (17) and the assumption of (a), we obtain

o6 (fHTs) (@ + ) — (f +1s)(20))

'k
t
Since € > 0 is arbitrary, then it follows that

>a-c>0.

0> a- > 0,
which is a contradiction.

(b)= (c) is trivial.

(c)= (a): If the set W := {u € K(a°) :|| u || = 1} # 0, then since W C R" is compact
and d¥(f +Ig)(«, ) is lower semicontinuous by Proposition 3.1, we deduce from (c) that there
exists m = min{d}(f +Ls)(z",v) : v € W} > 0. Suppose z° & Strl(k, f, S), then we can choose
a sequence {x,} C S satisfying x,, — 2°, x,, # 2°, for any ¢ € T, such that

(& flan) = f@) < 5 [l on —a® ||* forall me N*. (19)

For each n € Nt let t,, :=|| x,, —2° || and v, := (z, —2°)/ || 2, —2° ||. Then t,, — 0T, and we
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may assume, without loss of generality, that v,, — v with || v ||= 1. Thus, v € T(S,2°) \ {0}.
Moreover, it follows from the definition of lower limit, £ > 1 and (18) that

0 _ 0
d; f(z°,v) < supliminf (€ (@ + twun) = f(27))
gern—too tn

i g &7 = 7@0)

¢er n—-+4o0o t’ﬂ

m
< sup lim (— ¢!
= sup I (Gt

= 0.

Sov € {veR":d}f(z°v) <0}
Hence v € W, which implies df (f + Ls)(z°,v) > m.
Then, there exists from (8) £ € I' such that Ek(é o (f+1s))(z",v) > 2. So, there exist 6 > 0
and a neighborhood V' of v such that

U +I)(0 + i) — (f T)a)  m

tk 2

for all t € (0,0) and all u € V satisfying 20 + tu € S.
For z,, € S, t, < and v,, € S for all n € N large enough and (20), we have

3 Zn) — f(a0 m
(€ f( % £( )>>?

(20)

which contradicts (19).
Therefore, (a)< (b)< (c).
(c)=> (e): For v € K(2°)\ {0}, by (c) there exists n € R such that

0 _ 0
sup liming & FINE 80 = (f +1s)(2”)
cer(t,u)—(0F,v) t

=n>0.

So, for any @ satisfying 0 < 8 < n we have

0 _ 0
sup liming & FIDE 00 = (f +15)(2?)
cer(t,u)—(0%,v) t

> B.

Then, there exists é € I' such that
(€, (f +1s) (@ + tu) — (f +1s)(2"))
(t,u)—(0F v) tk
It follows from 8 = 3 || v ||* that
¢ 0 _ 0
g (©U I+ 00) = (7 1))
(t,u)—(0t,v) t
Consequently

> B

k
>Bvl".

dr (f +Is) (@ v) = B v "
by the definition (6).
(e)= (c) is trivial.
(b)= (d): Similar to that (c)= (e).
(d)= (b) is trivial.
Thus, (a) & (b) & (¢) & (d) < (e).
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If W = (), the proof is valid for any m > 0.
(ii) Analogous to that in (i).
Remark 4.1 (i) When p = 1 this theorem reduces to the scalar characterizations (Theorem

2.1) since our derivatives reduce to lower (upper) Studniarski derivatives.

(ii) By means of this theorem, we can infer that the converse of Proposition 3.3 (i) is not
true.

Proof For any v € R"\{0}, if d¥ f(2°,v) > 0, then
Ay (f +1Is) (2", v) > 0 (21)
for all v € R™ \ {0} due to Proposion 3.2.
By Theorem 4.1 (a)<(b), we have
x¥ € Strl(k, f, S) < the inequality (21) holds.

Suppose on the contrary that the converse of Proposition 3.3 (i) is true, i.e., there exists
i =1(v),1 <i<p,such that
d*(f; + Is)(z°,v) > 0.
Then 2° € SStrl(k, f, S) by Theorem 2.2.
Thus, 2° € Strl(k, f, S) = 2° € SStrl(k, f, S), which contradicts Theorem 2.3 (i).

Obviously, Theorem 4.1 can be employed as a sufficiency of 2% € Strl(k, f, S) for (4). But
it is difficult to check from the view of practical point since it involves the indicator function
I with values in RP. This drawback can be eliminated as the following corollary shows due to
Proposition 3.2.

Corollary 4.1 (Sufficient conditions of strict local minima of order k for (4)) (i) If k£ > 1,
then each of the following conditions is a sufficiency for 2% € Strl(k, f, S):
(a) dF f(2°,v) > 0 for all v € R\ {0};
(b) df f(2°,v) > 0 for all v € K(2°) \ {0};
(c) for any v € R™\ {0}, there exists 5 = B(v) > 0 such that
di f(2°,0) = B || v ||
(d) for any v € K(z°) \ {0}, there exists 3 = B(v) > 0 such that
di f(2°0) 2 Bl v "
(ii) If k = 1, then each of the conditions above is a sufficiency of 2 € Strl(1, f, S) when K ()
in (b) and (d) is replaced by T'(S,z°) .

We give an example to illustrate Corollary 4.1.

Example 4.1 (i) (The case k > 1) Let f : R — R? be defined by f(x) = (f1(x), f2())
—22 ifz>0, x? if z >0,

where f(z) = fa(z) = 2®=0€Randlet S =[-1,1] CR.
x2 if x <0, —2? ifz <0,

We have sup(, f(z) — f(20)) = 22 > 122 = L |2 — a0 |2 for all 2 € UN S\ {2°}. By

£er

Remark 1.1, z° € Strl(2, f, S) [take a = 1 and U = R]. On the other hand, for any v € R\ {0}
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we have
d?f(2°v) = sup liminf Ef1(tu) + & fa(tu)
: ’ ger(t,u)—(0,v) t2

(=& +&)? ifv >0,
¢el | (& — &) ifu <0,
= 2> 0,
which satisfies the sufficient conditions (a), (b), (c¢) and (d) in Corollary 4.1 (take 8 = 1). Hence

the same conclusion as the above is obtained.

(ii) (The case k = 1) Let f: R — R? be given by
(0, z(2 — sin %)) if x #0,
(0,0) it x =0,
20 =0 and S = R;. We can easily obtain that 2° € Strl(1, f, S) from Remark 1.1 (take a = 1
and U is an arbitrary neighborhood of 2°). Let f = (0,1). By computation, we have that
T(S,2°) = Ry, and for any v € T(S, z°)\{0} it follows that

dif(0,0) = liminf 1(¢, £(0+ tu))

(t,u)=(0F,v)
1

= (tﬂlti)rg(igf’v) u(2 — sin )

= v>0.

By Corollary 4.1, we have the same conclusion as the above.

() =

Remark 4.2 Each of the sufficient conditions in this corollary is not necessary as the
following example shows.

Example 4.2 Let f : R?2 — R? be defined by
fz1,22) = (laa [ = Jan ) if a2 =0, for all z = (z1,72) € R%. Let 2 = (0,0) € R?
(0,0) if 29 £ 0
and S =R x {0}.
For all z = (z1,0) € UN S\ {2°} = {(21,0) : z; € R and 21 # 0}, where U is an arbitrary
neighborhood of 2%, we can compute that zu?@,f(x) — f(2%) = iug(fl | 21 |F & | 21 |) =
€ €

w1 |F> L |ay [F= 4 || o — 2% ||F. So, 2° € Strl(k, f, S) due to Remark 1.1. However, from easy
computation we have that K(z°) = R x {0} and df f(2°,v) = 0 for all v € K(2°) \ {(0,0)},
which doesn’t satisfy each of the sufficient conditions in Corollary 4.1.

We give the necessary optimality condition for strict local minimizer of order k for (4) as
follows.

Theorem 4.2 (Necessary condition of strict local minima of order k for (4)) If z° € Strl(k, f, S),
then

d¥ f(2%v) >0

for all v € T(S,2°) \ {0}.

Proof Contrary to the conclusion, suppose that there exists v € T'(S,2°) \ {0} satisfying
d¥ f(z°,v) < 0. By the definition (7), for all £ € I and any ¢ > 0, there exist § = 6(¢) > 0 and
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a neighborhood V of v such that

(€ f (@ +tu) — f(2°))
tk

<e (22)
for all t € (0,0) and all u € V.

We may assume, without loss of generality, that § and V satisfy conditions (13) and (14).
Since v € T'(S, 2%) \ {0}, it follows that

(2° +tV)N S # 0.

Thus, there exist ¢t € (0,0) and v € V satisfying (13), (14) and (22). The remaining part
of the proof is the same as in Theorem 4.1 (a)= (b).

We present an example to illustrate Theorem 4.2.

Example 4.3 (i) (The case k > 1) Let 2° = 0 € R, f : R — R? be defined by f(z) =

(22/2, [ t*sin(1/t?)dt if z # 0, and let S = [0,1)

(0,0) it x =0,

By usual calculus, we can verify that ””—22 > [y t?sin(1/t%)dt for all z € S. So it is easy to
obtain 20 € Strl(2, f,S). Moreover, taking £ = (1,0) € I' C R? we have from the definition (7)
that

(20 4 tu) — F(a0
(t,u)—(0F ,v) t

2,2
lim 2
(tu)—(0+,0) 12

L s
= 5’0 >0
for all v € T(S,2°)\{0} = Ry \ {0}. By Theorem 4.2, we obtain the same conclusion as the

above.

(ii) (The case k=1) Let f : R? — R? be defined by f(z1,22) = (sinez,z) if @2 70,
(0,0) if 25 =0
all z = (z1,22) € R%,2° = (0,0) € R? and S = {0} x [0, §].

Since su;lz(g, f@x)—f(2%) = Su%)(fl sinwo+&379) = 9 =| my |=|| x—2° || for all = (0, 22) €
SNU, wieere U is a small enoiéh neighborhood of z°. So, z° € Strl(1, f,.S). On the other
hand, we can compute dZ f(2°,v) = vy > 0 for all v € T(S,2%) \ {(0,0)} = {0} x R:\{(0,0)},
which satisfies the necessary condition in Theorem 4.2.

Remark 4.3 The necessary condition in this theorem is not sufficient as the following
example shows.

Example 4.4 Let 2° = (0,0) € R?, f : R? — R? be defined by

(= lar |22 [F) ifa £0,
(0,0) if 2y =0,
for all z = (x1,72) € R?, and let S = {0} x R.

It is easy to verify that 20 & Strl(k, f,S). But for all v = (0,v2) € T(S,2°) \ {(0,0)} =
{0} x R\ {(0,0)} we have d* f(z°,v) =| vy [¥> 0, which satisfies the necessary condition in
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Theorem 4.2.

85 Comparison with some previous results

In this section, we compare our results with some previous necessary and sufficient optimality
conditions for strict local minimizer of order k in scalar and multiobjective optimization.

Studniarski [3] and Jiménez and Novo [4], respectively, established the necessary and suffi-
cient optimality conditions of strict minimizer of order k for the scalar problem (1) as follows

Proposition 5.1 (3, Theorem 2.2) If 2° € Strl(k, f,S), then Ekf(xo,v) > 0 for all v €
T(s,2%)\ {0}.

Proposition 5.2 (3, Corollary 2.1) (i) If k = 1 and df (z°,v) > 0 for all v € T(S, 2°)\ {0}, then
20 € Strl(1, £, S); (i) If k > 1 and d” f(2°,v) > 0 for all v € K (2°)\ {0}, then 20 € Strl(k, £, S).

Proposition 5.3 (4, Theorem 2.2) If 2° € Strl(k, f, G N Q) then d*(f + Ig)(z°,v) > 0, Vv €
Co(G,2°) NT(Q, z°)\{0}. Here, Co(G,2°) := {v € X : dg(x°,v) € intcone(—C — g(z°))}.

Proposition 5.4 (4, Theorem 3.1) Let k > 1. If Vo € C(G,z°) N T(Q, 2°) N C(f,2°)\{0} we
have d (f+1g)(z°,v) > 0, then 20 € Strl(k, f, GNQ). Where, C(f,z°) :== {v € X : df(2°,v) <
0}.

Proposition 5.5 (4, Theorem 3.2) If Vv € C(G, 2°)NT(Q, z°)\{0} we have d(f+1g)(z°,v) >
0, then 2° € Strl(1, f,G N Q). Here, C(G,2°) := {v € X : dg(2°,v) € clcone(—C — g(z°))}.

We can easily see that if X = R™ in [4], there are conclusions as follows:

(i) Theorem 4.2 reduces to Proposition 5.1 (see also [4, Theorem 2.1]);

(ii) When p = 1, Corollary 4.1 (b) in (i) and (ii) is advantageous over Proposition 5.2 (ii)
due to Proposition 3.3 (i) in which the converse is not true;

(iii) When p = 1 and do not consider the constraint ¢ in [4], Theorem 4.1 (a)=(c) reduces
to Proposition 5.3, Theorem 4.1 (i) (c)=-(a) reduces to Proposition 5.4, and Theorem 4.1 (ii)
(¢)=(a) reduces to Proposition 5.5.

Jiménez established the following necessary conditions for multiobjective problems in terms
of upper Studniarski derivatives.

Proposition 5.6 (6, Theorem 4.1 (ii)) If 2° € Strl(k, f,C), then Vv € T(C,2°) \ {0} 3i €
{1,2,---,p} such that Ekfi(xo, v) > 0. Here, C represents the constraint set of the multiobjec-
tive problem in [6].

Obviously, our result (Theorem 4.2) is equivalent to this proposition by Proposition 3.3 (ii).

Luu established the necessary conditions for multiobjective problems as follows.

Proposition 5.7 (8, Theorem 5.1) Let 2° € Strl(k, f, M). Assume that int.S # () and there
exists the derivative dgg(z°, u) at 20 in all directions u € X. Then, for every v € T(C, 2%)N{u :
dsg(z°,u) € —int S} \ {0}, there exists 4, i € {1,2,--- , p}, such that ngi(xo,v) > 0. Here, M
represents the constraint set of the multiobjective problem in [8].

If X = R” and do not consider the constraint g in [8], then T(C,2°) = T(C,2°) N {u :
dsg(z®,u) € —int S}. So, Proposition 5.6 is Proposition 5.7.

Rahmo and Studniarski derived the necessary conditions for multiobjective optimization in

terms of upper Studniarski derivatives.
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Proposition 5.8 (10, Theorem 11 (b)) Let 2° € Strl(k, f,S). Then there exists 3 > 0 such
that d' f(a,v) ¢ B(0,8 || v |[*) = R, for all v € T(S,2°) N {u € X : dg(2°,u) < 0}.

If X = R™ and do not consider the constraint g in [10], we can prove that Theorem 4.2 <
Proposition 5.8.

Proof Let 2° € Strl(k, f, S). Then by Theorem 4.2, d* (2%, v) > 0 for all v € T(S,2°)\ {0}.
Consequently, we have from Proposition 3.3 (ii) that for all v € T'(S,2°)\ {0}, d* f(2°,v) > 0 &
Ji=i(v),1 <i<p, Ekfi(xo,v) > 0 < 38 > 0, such that 3kfi(x0,v > B || v||F< 38 > 0,such
that d" f(2°,v) ¢ B(0, 8 || v ||) — RP,. Here, d" f(a°,v) = (@" f1(2°,0),d" fo(z®,v), -~ ,d f,
(29,0)) by (11).

Thus, if X = R™ and do not consider the constraint g in multiobjective problems, we have
Theorem 4.2 < Proposition 5.6 < Proposition 5.7 < Proposition 5.8.

Luu established the following necessary condition for multiobjective problems in terms of
lower Studniarski derivatives.

Proposition 5.9 (8, Theorem 5.2) Let x° be a feasible point for (P). Assume that there is
the derivative dgg(x%;v) in all directions v € X, and there exits ig € {1,2,--- ,p} such that

dgfioc(xo,v) >0Vve Ke(z")n{u:dsg(x®,u) € —Sg@)}
where f;,“(-) = fi,(-) + Ic(-), in which I (-) is the indicator function of C' and Sg(z0) =
cleone(S + g(2°)). Then 2° € Strl(k, f, S).

If X = R™ and do not consider the constraint g in problem (P) in [8], we can easily to see that
when &k > 1, Proposition 5.9 is a consequence of Theorem 4.1 (¢) = (a). Indeed, by Proposition
3.3 (i) for any given v € R™ \ {0}, the requirement of our derivative d¥(f + I)(z°%v) > 0 is
weaker than that of the derivative dk(fi +1)(2%,v) > 0, where i = i(v),i € {1,2,--- ,p}; when
k = 1, the condition that d} f(z° v) > 0 is weaker than or equivalent to that df;(z°,v) > 0 due
to (8), where i = i(v),i € {1,2,--- ,p}.

Jiménez and Novo studied problem (4) and obtained one of sufficient optimality conditions
as follows.

Proposition 5.10 [12, Corollary 5.13] If f = (f1, f2, -, fp) : R* — RP is stable at 2° € S C
X and for any v € T(S,2°) \ {0}, Ji € {1,2,---,p} such that

dfi(z° v) >0
then 20 € Strl(1, £, ).

Clearly, our result (Corollary 4.1 (ii)) has weaker assumptions than this proposition because
we do not need to require that f be stable at 2°, and because the condition that d} f(z",v) > 0
is weaker than or equivalent to that df;(x°,v) > 0 by (8), where i = i(v),i € {1,2,--- ,p}.

86 Conclusions

Using a new type of directional derivatives, we have obtained some necessary and sufficient
conditions of strict local minima of order k for a multiobjective optimization problem with a
nonempty set constraint, which are generalization of some before scalar results and are equiv-
alent to some before multiobjective ones. Of course, there are other works in future needed to
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do:

(i) to establish characterizations of superstrict local minima of order k for (4);

@

(k>

i) to analyze and get the gap between the strict and superstrict local minima of order k

1) for (4) when results in (i) are obtained.
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