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Higher-order optimality conditions for multiobjective

optimization through a new type of

directional derivatives

HUANG Zheng-gang

Abstract. This paper deals with extensions of higher-order optimality conditions for scalar

optimization to multiobjective optimization. A type of directional derivatives for a multiobjec-

tive function is proposed, and with this notion characterizations of strict local minima of order

k for a multiobjective optimization problem with a nonempty set constraint are established,

generalizing the corresponding scalar case obtained by Studniarski [3]. Also necessary not suffi-

cient and sufficient not necessary optimality conditions for this minima are derived based on our

directional derivatives, which are generalizations of some existing scalar results and equivalent

to some existing multiobjective ones. Many examples are given to illustrate them there.

§1 Introduction

The strict local minimizer of order k (k ≥ 1 an integer) as one class of minima for scalar

optimization problems was first used by Hestenes [1] for the values k = 1 and k = 2 to prove

sufficient conditions. Let X, Rp with p a positive integer and R, respectively, be a real normed

vector space, the p-dimensional Euclidean space and the set of all real numbers. We recall that

let a function f : X→R and a subset S⊂X, a point x0 ∈ S is said to be a strict local minimizer

of order k, denoted x0 ∈ Strl(k, f, S), for the scalar optimization problem

min{f(x) : x ∈ S} (1)

if there exist α > 0 and a neighborhood U of x0 such that

f(x) > f(x0) + α ∥ x− x0 ∥k, ∀x ∈ U ∩ S \ {x0}. (2)

There are other names for strict local efficiency of order k in literatures: firm or isolated effi-

ciency of order k (see, e.g., [2,8]). Under the assumption that these minimizers are often exactly

those satisfied an kth directional derivatives test, Auslender [2] derived optimality conditions
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characterizing such minima. Studniarski [3] generalized the Auslender’s results to any extended

real-valued function f and any subset S of Rn by using directional derivatives that are gen-

eralizations of lower and upper Hadamard directi onal derivatives. Applying lower and upper

Studniarski derivatives, Jiménez [4] deduced optimality conditions of strict local minimizer of

order k for problem (1) extending results of [3]. About fifteen years ago, Ginchev [5] extended

the scalar notion of strict local minimizer of order k to unconstrained multiobjective problems.

Recall that given x0 ∈ Rn, f : Rn→Rp and C ⊂ Rp is a closed, convex and pointed cone, and

C∗ ⊂ Rp is the positive polar cone of C. x0 is called a strict local (Pareto) minimizer of order

k for f (on Rn) if x0 is a strict local minimizer of order k for the scalar function

φ(x) = sup{⟨ξ, f(x)− f(x0)⟩ : ξ ∈ C∗and ∥ ξ ∥ = 1},
i.e., there exist α > 0 and a neighborhood U of x0 such that

sup{⟨ξ, f(x)− f(x0)⟩ : ξ ∈ C∗and ∥ ξ ∥ = 1} > α ∥ x− x0 ∥k, ∀x ∈ U \ {x0}. (3)

Remark 1.1 Naturally, we define a strict local minima of order k for a multiobjective

optimization problem with a set constraint (problem (4) below) by substituting U in (3) with

U ∩ S.

Jiménez [6] extended the notion (2) to vector optimization with an objective function defined

on a normed space and with an arbitrary set constraint, then the stronger notion of superstrict

local minimizer of order k with the final space Rp was introduced. Moreover, necessary con-

ditions for strict and superstrict local minimizer of order k were established in [6]. Sufficient

conditions for the latter were derived by the same author in [7]. Here we underline that these

scalar and multiobjective (vector) optimality conditions [4,6,7] via directional derivatives used

in these papers result from or are closely related to the scalar characterizations of strict local

minima of order k [3]. Inspired and encouraged by works of [3,4,6], in this paper we first in-

troduce a type of lower (upper) directional derivatives for a multiobjective function, which is

the extension of lower (upper) Studniarski derivatives; then we establish both necessary and

sufficient conditions of strict local minimizer of order k (k ≥ 1) for (4) that extend the scalar

characterizations [3]; finally we derive necessary not sufficient and sufficient not necessary con-

ditions for this minima for (4) extending scalar conditions [3,4,6]. Of course, there exist some

other good papers about this topic via directional derivatives in recent years, e.g., [13,14].

This paper is structured as follows. In the next section (Section 2), some preliminaries and

notations needed in the sequel are presented. In Section 3, the notions of indicator functions

and lower (upper) directional derivatives of order k for a multiobjective function are introduced.

In Section 4, necessary and sufficient conditions for strict local minimizer of order k (k ≥ 1) for

(4) are developed. Finally in Section 5, our results are compared with some before results of

scalar and multiobjective optimization.

§2 Preliminaries and notations

Let Rp
+ and N+ be the nonnegative orthant of Rp and the set of all positive integers respec-

tively. Denote by C a closed, convex and pointed cone in Rp and C∗ the positive polar cone of
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C, i.e., C∗ = {ξ ∈ Rp : ⟨ξ, y⟩ ≥ 0 for all y ∈ C}. Let R = R ∪ {+∞}, Γ = {ξ ∈ C∗ :∥ ξ ∥= 1},
and let k ≥ 1 be an integer unless distinguishing the cases k > 1 and k = 1. As it is usual,

intconeM and clM denote the interior of the cone generated by and the closure of a setM ⊂ Rn,

respectively.

In this paper, we consider the multiobjective optimization problem

min{f(x) : x ∈ S} (4)

where f = (f1, f2, · · · , fp) : Rn → Rp is an arbitrary mapping, S ⊂ Rn is a nonempty set, the

point x0 ∈ S unless otherwise stated, and C = Rp
+.

We now recall some well-known notions and results needed in the sequel.

Definition 2.1 Let M be a nonempty set of Rn. The tangent cone to M at x0 ∈ clM is

T (M,x0) := {v ∈ X : ∃tn > 0,∃xn ∈ M,xn → x0 such that tn(xn − x0) → v}.

Definition 2.2 Let M be a nonempty set of Rn. Then a mapping IM : Rn → R defined by

IM (x) =

0 if x ∈ M,

+∞ if x ̸∈ M

is said to be the indicator function of the set M .

Definition 2.3 Let a function h : Rn → R be finite at x0 ∈ Rn. We call the following limits

dh(x0, v) = lim inf
(t,u)→(0+,v)

h(x0 + tu)− h(x0)

t

and

dh(x0, v) = lim sup
(t,u)→(0+,v)

h(x0 + tu)− h(x0)

t

the lower and upper Hadamard directional derivative of h at x0 in the direction v ∈ Rn,

respectively.

Moreover, we call

lim
(t,u)→(0+,v)

h(x0 + tu)− h(x0)

t
the Hadarmard directional derivative of h at x0 in the direction v ∈ Rn, denoted by dh(x0, v),

when this limit exists.

When dh(x0, v) exists for all v ∈ Rn, we say that h is Hadamard directional differentiable

at x0.

Definition 2.4 [3,4] Let h : Rn → R be finite at x0 ∈ Rn. The lower (resp. upper)

Studniarski derivative of order k for h at x0 in the direction v ∈ Rn is defined by

dkh(x0, v) = lim inf
(t,u)→(0+,v)

h(x0 + tu)− h(x0)

tk
,

(resp. d
k
h(x0, v) = lim sup

(t,u)→(0+,v)

h(x0 + tu)− h(x0)

tk
).

If k = 1, d1h(x0, v) and d
1
h(x0, v) are the lower and upper Hadamard derivative, respec-

tively.

Definition 2.5 [9] Let Rp be the extended Euclidean space of Rp which is defined as the

cartesian product of p copies of R. The operations of addition and scalar multiplication in Rp
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are performed componentwise whenever the respective operations in R are defined. There, we

adopt the conventions 0 · (+∞) = (+∞) · 0 = 0 ∈ R.
Studniarski derived characterizations of strict local minima of order k for (1) as follows.

Theorem 2.1 [3, Theorem 2.1] Let f : Rn → R and x0 ∈ S ⊂ Rn.

(i) If k > 1, then the following three conditions are equivalent:

(a) x0 ∈ Strl(k, f, S);

(b) for all v ∈ Rn \ {0}, we have

dk(f + IS)(x
0, v) > 0;

(c) the previous inequality holds for all v ∈ K(x0) \ {0};
(ii) If k = 1, the analogous equivalences are true with condition (c) replaced by the following

one:

(c
′
) the previous inequality holds for all v ∈ T (S, x0) \ {0}.

Here, K(x0) = T (S, x0) ∩ {v ∈ Rn : df(x0, v) ≤ 0}.
Sufficient conditions of superstrict local minima of order k for (4) were deduced by Jiménez

as follows.

Theorem 2.2 [7, Theorem 3.1(b)⇒ (a)] If ∀v ∈ Rn\{0}, ∃i, 1 ≤ i ≤ p, such that dk(fi +

IS)(x
0, v) > 0, then x0 ∈ SStrl(k, f, S).

For strict and superstrict efficiency of order k for (4), the relation between them is as follows.

Theorem 2.3 [6, Corollary 3.10] Let f : Rn → Rp and x0 ∈ S ⊂ Rn. Then

(i) Let k > 1. x0 ∈ SStrl(k, f, S) ⇒ x0 ∈ Strl(k, f, S); the converse is not true.

(ii) Let k = 1. x0 ∈ SStrl(1, f, S) ⇔ x0 ∈ Strl(1, f, S).

Theorem 2.4 [11, Charpter 2, Proposition 1.1] Let function γ : [0,+∞) × Rn → R, ζ(v) :=
lim inf

(t,u)→(0+,v)
γ(t, u) and θ(v) := lim sup

(t,u)→(0+,v)

γ(t, u). Then the functions ζ : Rn → R and θ : Rn → R

are lower and upper semicontinuous, respectively.

§3 Indicator function and directional derivatives

In this section, we introduce a concept of a indicator function with values in Rp extend-

ing the usual indicator function (Definition 2.2), and a type of directional derivatives for a

multiobjective function extending the scalar lower (upper) Studniarski derivatives (Definition

2.4).

Definition 3.1 Let M be a nonempty set of Rn. We call the mapping IM = (I
(1)
M , I

(2)
M , · · · ,

I
(p)
M ) : Rn → Rp with each component I

(i)
M defined as Definition 2.2, i.e., I

(i)
M = IM , i =

1, 2, · · · , p, the indicator function of the set M .

Obviously, this concept reduces to Definition 2.2 when p = 1.

From Definitions 2.2 and 3.1, we can easily deduce that for any ξ ∈ Γ,

ξ ◦ IM = IM . (5)

We next give a notion of directional derivatives for a multiobjective function.

Definition 3.2 Let a function h : Rn → Rp and x0 ∈ Rn. Then the lower and upper
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directional derivatives of order k for h at x0 in the direction v ∈ Rn are defined by

dkl h(x
0, v) = sup

ξ∈Γ
lim inf

(t,u)→(0+,v)

⟨ξ, h(x0 + tu)− h(x0)⟩
tk

, (6)

and

dkuh(x
0, v) = sup

ξ∈Γ
lim sup

(t,u)→(0+,v)

⟨ξ, h(x0 + tu)− h(x0)⟩
tk

, (7)

respectively.

Remark 3.1 (i) Clearly, since ξ ∈ Γ = {1} when p = 1, those derivatives reduce to lower

and upper Studniarski derivatives of order 1 (lower and upper Hadmard directional derivatives)

respectively.

(ii) It immediately holds from Definition 3.2 that

dkl h(x
0, v) = sup

ξ∈Γ
dk(ξ ◦ h)(x0, v) (8)

and

dkuh(x
0, v) = sup

ξ∈Γ
d
k
(ξ ◦ h)(x0, v) (9)

for any v ∈ Rn.

(iii) We have that

dkl h(x
0, v) ̸= min

1≤i≤p
dkhi(x

0, v)

and

dkuh(x
0, v) ̸= max

1≤i≤p
d
k
hi(x

0, v)

for all v ∈ Rn \ {0}.
The reason is that Γ := {ξ ∈ Rp

+ : ∥ ξ ∥= 1} ≠ {ei ∈ Rp : ei = (0, · · · , 0, 1, 0, · · · , 0) with its

ith component 1 and others 0, i = 1, 2, · · · , p}.
(iv) If h is of C2 class and ∇h(x0) = 0, it is easy to derive that

d2l h(x
0, v) = d2uh(x

0, v) = ∇2h(x0)(v, v)

since Γ = {1}.
We also have the following properties of the above new derivatives.

Proposition 3.1 dkl h(x
0, ·) (resp. dkuh(x

0, ·)) is lower (resp. upper) semicontinous and posi-

tively homogeneous of degree k on Rn.

Proof Let ξ ∈ Γ and v ∈ Rn. Take any ϵ > 0, by Theorem 2.4, dk(ξ ◦ h)(x0, ·) is lower

semicontinuous at v, i.e., taking any ϵ
′
(0 < ϵ

′
< ϵ), there exists δ > 0 such that for all

u ∈ B(v, δ)

dk(ξ ◦ h)(x0, u) > dk(ξ ◦ h)(x0, v)− ϵ
′
.

Consequently

sup
ξ∈Γ

dk(ξ ◦ h)(x0, u) ≥ sup
ξ∈Γ

dk(ξ ◦ h)(x0, v)− ϵ
′
.

Hence

sup
ξ∈Γ

dk(ξ ◦ h)(x0, u) > sup
ξ∈Γ

dk(ξ ◦ h)(x0, v)− ϵ.

It follows from (8) that

dkl h(x
0, u) > dkl h(x

0, v)− ϵ.

So dkl h(x
0, ·) is lower semicontinous at v ∈ Rn.
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Let any λ > 0, we can easily to see from Definition 3.2 that dkl h(x
0, λv) = λkdkl h(x

0, v). So

dkl h(x
0, ·) is positively homogeneous of degree k on Rn.

Analogously, dkuh(x
0, ·) is upper semicontinous and positively homogenously of degree k on

Rn.

Observing that ξ ◦ (h + IS) = ξ ◦ h + IS , using (8) and the fact that dk(φ + IS)(x0, v) ≥
dkφ(x0, v) for a scalar function φ : Rn → R, we have the following immediate consequence.

Proposition 3.2 Let function f : Rn → Rp and x0 ∈ S ⊂ Rn. Then it holds that

dkl (f + IS)(x0, v) ≥ dkl f(x
0, v), ∀v ∈ Rn.

We have the following relations between our directional derivatives and Studniarski deriva-

tives.

Proposition 3.3 Suppose f = (f1, f2, · · · , fp) : Rn → Rp, k > 1, and x0 ∈ Rn. Then, for any

given v ∈ Rn \ {0}, we have

(i) ∃i = i(v), 1 ≤ i ≤ p, dkfi(x
0, v) > 0 ⇒ dkl f(x

0, v) > 0.

(ii) ∃i = i(v), 1 ≤ i ≤ p, d
k
fi(x

0, v) > 0 ⇔ dkuf(x
0, v) > 0.

Proof (i) Let v ∈ Rn \ {0}, there exists i = i(v), 1 ≤ i ≤ p, such that

dkfi(x
0, v) > 0.

Put ξ̂ = (0, · · · , 0, 1, 0, · · · , 0) ∈ Γ, with the ith component ξ̂i = 1 and each of the rest equal to

0, then we immediately obtain the conclusion from (8).

(ii) “ ⇒ ” is similar to that in (i).

“ ⇐ ”: If dkuf(x
0, v) > 0, then from the definition (7) there exists ξ̂ ∈ Γ satisfying

lim sup
(t,u)→(0+,v)

⟨ξ̂, f(x0 + tu)− f(x0)⟩
tk

> 0

i.e.,

lim sup
(t,u)→(0+,v)

p∑
j=1

ξ̂j
(
fj(x

0 + tu)− fj(x
0)
)

tk
> 0. (10)

Since

lim sup
(t,u)→(0+,v)

p∑
j=1

ξ̂j
(
fj(x

0 + tu)− fj(x
0)
)

tk
≤

p∑
j=1

(
lim sup

(t,u)→(0+,v)

ξ̂j
(
fj(x

0 + tu)− fj(x
0)
)

tk

)
,

then noticing (10) there exists i = i(v), 1 ≤ i ≤ p, such that

lim sup
(t,u)→(0+,v)

ξ̂i(fi(x
0 + tu)− fi(x

0))

tk
> 0.

Thus, we have

d
k
fi(x

0, v) = lim sup
(t,u)→(0+,v)

fi(x
0 + tu)− fi(x

0)

tk
> 0

due to that ξ̂i ≥ 0.

Notice that the implications in (i) and (ii) in Proposition 3.3 are different (since the converse

in (i) is not true as showed in Remark 4.1 in Sect. 4). Indeed, it is because of the difference

between “liminf” and “limsup”.
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Rahmo and Studniarski [10] gave higher-order directional derivatives dkh(x0, v) and d
k
h(x0,

v) ⊂ Rp (with the help of the symbols of scalar derivatives of order k above for simplicity) for

multiobjective programming to derive higher-order optimality conditions, and stated

dkh(x0, v) = (dkh1(x
0, v), dkh2(x

0, v), · · · , dkhp(x
0, v)) (11)

and

d
k
h(x0, v) = (d

k
h1(x

0, v), d
k
h2(x

0, v), · · · , dkhp(x
0, v)).

We deduce the relation between these derivatives and our directional derivatives as follows.

Proposition 3.4 For any v ∈ Rn, it follows that

(i) dkl h(x
0, v) ≥ sup

ξ∈Γ
[ξ ◦ dkh(x0, v)];

(ii) dkuh(x
0, v) ≤ sup

ξ∈Γ
[ξ ◦ dkh(x0, v)].

P roof (i) For any v ∈ Rn, it holds from (8) that

dkl h(x
0, v)

= sup
ξ∈Γ

dk(ξ ◦ h)(x0, v)

= sup
ξ∈Γ

lim inf
(t,u)→(0+,v)

(
ξ1 · [h1(x

0 + tu)− h1(x
0)]

tk
+ · · ·+ ξp · [hp(x

0 + tu)− hp(x
0)]

tk

)
≥ sup

ξ∈Γ(
lim inf

(t,u)→(0+,v)

ξ1 · [h1(x
0 + tu)− h1(x

0)]

tk
+ · · ·+ lim inf

(t,u)→(0+,v)

ξp · [hp(x
0 + tu)− hp(x

0)]

tk

)
= sup

ξ∈Γ

∑p
i=1 ξi d

khi(x
0, v)

= sup
ξ∈Γ

[ξ ◦ dkh(x0, v)].

(ii) Analogous to that in (i).

§4 Higher-order optimality conditions

In this section, we shall deduce characterizations of strict local minima of order k for function

f in (4), which are the corresponding extensions of Theorem 2.1, and shall deduce necessary

not sufficient and sufficient not necessary conditions for this minima for (4). From now on we

let K(x0) := T (S, x0) ∩ {v ∈ Rn : d1l f(x
0, v) ≤ 0}.

Theorem 4.1 (i) If k > 1, then the following conditions are equivalent:

(a) x0 ∈ Strl(k, f, S);

(b) for all v ∈ Rn \ {0}, we have

dkl (f + IS)(x0, v) > 0;

(c) for all v ∈ K(x0) \ {0}, we have

dkl (f + IS)(x0, v) > 0;

(d) for any v ∈ Rn \ {0}, there exists β = β(v) > 0 such that

dkl (f + IS)(x0, v) ≥ β ∥ v ∥k;
(e) for any v ∈ K(x0) \ {0}, there exists β = β(v) > 0 such that

dkl (f + IS)(x0, v) ≥ β ∥ v ∥k;
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(ii) If k = 1, then those conditions above are equivalent when K(x0) is replaced by T (S, x0) in

(c) and (e).

Proof (i) (a)⇒ (b): Contrary to the conclusion, suppose that (b) is false, then there exists

v ∈ Rn \ {0} satisfying dkl (f + IS)(x0, v) ≤ 0. Hence, for any ξ ∈ Γ we have that for each δ > 0

and each V ⊂ Rn,

inf
t∈(0,δ),u∈V

⟨ξ, (f + IS)(x0 + tu)− (f + IS)(x0)⟩
tk

≤ 0. (12)

In particular, we may choose δ and V such that

V ⊂ {u ∈ X :∥ u− v ∥ <
∥ v ∥
2

= c} (13)

and

x0 + tu ∈ U for all t ∈ (0, δ) and all u ∈ V, (14)

where U is such as in Remark 1.1 (or (3)).

Take any ε > 0. By (12), there exists t
′ ∈ (0, δ) and u

′ ∈ V satisfying

⟨ξ, (f + IS)(x0 + t
′
u

′
)− (f + IS)(x0)⟩

t′
k

≤ ε. (15)

Then

x0 + t
′
u

′
∈ S. (16)

By (13)

∥ u
′
− v ∥< c.

So

∥ u
′
∥> c. (17)

Hence, from (14) and (16) we have

x0 + t
′
u

′
∈ U ∩ S. (18)

From (5), (16), (17) and the assumption of (a), we obtain

ε ≥ ⟨ξ, (f + IS)(x0 + t
′
u

′
)− (f + IS)(x0)⟩

t′
k

> α · ck > 0.

Since ε > 0 is arbitrary, then it follows that

0 ≥ α · ck > 0,

which is a contradiction.

(b)⇒ (c) is trivial.

(c)⇒ (a): If the set W := {u ∈ K(x0) :∥ u ∥ = 1} ̸= ∅, then since W ⊂ Rn is compact

and dkl (f + IS)(x0, ·) is lower semicontinuous by Proposition 3.1, we deduce from (c) that there

exists m = min{dkl (f + IS)(x0, v) : v ∈ W} > 0. Suppose x0 ̸∈ Strl(k, f, S), then we can choose

a sequence {xn} ⊂ S satisfying xn → x0, xn ̸= x0, for any ξ ∈ Γ, such that

⟨ξ, f(xn)− f(x0)⟩ ≤ m

2
∥ xn − x0 ∥k for all n ∈ N+. (19)

For each n ∈ N+, let tn :=∥ xn −x0 ∥ and vn := (xn −x0)/ ∥ xn −x0 ∥. Then tn → 0+, and we
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may assume, without loss of generality, that vn → v with ∥ v ∥= 1. Thus, v ∈ T (S, x0) \ {0}.
Moreover, it follows from the definition of lower limit, k > 1 and (18) that

d1l f(x
0, v) ≤ sup

ξ∈Γ
lim inf
n→+∞

⟨ξ, f(x0 + tnun)− f(x0)⟩
tn

= sup
ξ∈Γ

lim inf
n→+∞

⟨ξ, f(xn)− f(x0)⟩
tn

≤ sup
ξ∈Γ

lim
n→+∞

(
m

2
· tk−1

n )

= 0.

So v ∈ {v ∈ Rn : d1l f(x
0, v) ≤ 0}.

Hence v ∈ W , which implies dkl (f + IS)(x0, v) ≥ m.

Then, there exists from (8) ξ̂ ∈ Γ such that d
k
(ξ̂ ◦ (f + IS))(x0, v) > m

2 . So, there exist δ > 0

and a neighborhood V of v such that

⟨ξ̂, (f + IS)(x0 + tu)− (f + IS)(x0)⟩
tk

>
m

2
(20)

for all t ∈ (0, δ) and all u ∈ V satisfying x0 + tu ∈ S.

For xn ∈ S, tn < δ and vn ∈ S for all n ∈ N+ large enough and (20), we have

⟨ξ̂, f(xn)− f(x0)⟩
tkn

>
m

2
,

which contradicts (19).

Therefore, (a)⇔ (b)⇔ (c).

(c)⇒ (e): For v ∈ K(x0) \ {0}, by (c) there exists η ∈ R such that

sup
ξ∈Γ

lim inf
(t,u)→(0+,v)

⟨ξ, (f + IS)(x0 + tu)− (f + IS)(x0)⟩
tk

= η > 0.

So, for any β satisfying 0 < β < η we have

sup
ξ∈Γ

lim inf
(t,u)→(0+,v)

⟨ξ, (f + IS)(x0 + tu)− (f + IS)(x0)⟩
tk

> β.

Then, there exists ξ̂ ∈ Γ such that

lim inf
(t,u)→(0+,v)

⟨ξ̂, (f + IS)(x0 + tu)− (f + IS)(x0)⟩
tk

≥ β.

It follows from β = β ∥ v ∥k that

lim inf
(t,u)→(0+,v)

⟨ξ̂, (f + IS)(x0 + tu)− (f + IS)(x0)⟩
tk

≥ β ∥ v ∥k .

Consequently

dkl (f + IS)(x0, v) ≥ β ∥ v ∥k

by the definition (6).

(e)⇒ (c) is trivial.

(b)⇒ (d): Similar to that (c)⇒ (e).

(d)⇒ (b) is trivial.

Thus, (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e).



552 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

If W = ∅, the proof is valid for any m > 0.

(ii) Analogous to that in (i).

Remark 4.1 (i) When p = 1 this theorem reduces to the scalar characterizations (Theorem

2.1) since our derivatives reduce to lower (upper) Studniarski derivatives.

(ii) By means of this theorem, we can infer that the converse of Proposition 3.3 (i) is not

true.

Proof For any v ∈ Rn\{0}, if dkl f(x0, v) > 0, then

dkl (f + IS)(x0, v) > 0 (21)

for all v ∈ Rn \ {0} due to Proposion 3.2.

By Theorem 4.1 (a)⇔(b), we have

x0 ∈ Strl(k, f, S) ⇔ the inequality (21) holds.

Suppose on the contrary that the converse of Proposition 3.3 (i) is true, i.e., there exists

i = i(v), 1 ≤ i ≤ p, such that

dk(fi + IS)(x
0, v) > 0.

Then x0 ∈ SStrl(k, f, S) by Theorem 2.2.

Thus, x0 ∈ Strl(k, f, S) ⇒ x0 ∈ SStrl(k, f, S), which contradicts Theorem 2.3 (i).

Obviously, Theorem 4.1 can be employed as a sufficiency of x0 ∈ Strl(k, f, S) for (4). But

it is difficult to check from the view of practical point since it involves the indicator function

IS with values in Rp. This drawback can be eliminated as the following corollary shows due to

Proposition 3.2.

Corollary 4.1 (Sufficient conditions of strict local minima of order k for (4)) (i) If k > 1,

then each of the following conditions is a sufficiency for x0 ∈ Strl(k, f, S):

(a) dkl f(x
0, v) > 0 for all v ∈ Rn \ {0};

(b) dkl f(x
0, v) > 0 for all v ∈ K(x0) \ {0};

(c) for any v ∈ Rn \ {0}, there exists β = β(v) > 0 such that

dkl f(x
0, v) ≥ β ∥ v ∥k;

(d) for any v ∈ K(x0) \ {0}, there exists β = β(v) > 0 such that

dkl f(x
0, v) ≥ β ∥ v ∥k .

(ii) If k = 1, then each of the conditions above is a sufficiency of x0 ∈ Strl(1, f, S) when K(x0)

in (b) and (d) is replaced by T (S, x0) .

We give an example to illustrate Corollary 4.1.

Example 4.1 (i) (The case k > 1) Let f : R → R2 be defined by f(x) = (f1(x), f2(x))

where f1(x) =

−x2 if x ≥ 0,

x2 if x < 0,
f2(x) =

x2 if x ≥ 0,

−x2 if x < 0,
x0 = 0 ∈ R and let S = [−1, 1] ⊂ R.

We have sup
ξ∈Γ

⟨ξ, f(x)− f(x0)⟩ = x2 > 1
2x

2 = 1
2 ∥ x − x0 ∥2 for all x ∈ U ∩ S \ {x0}. By

Remark 1.1, x0 ∈ Strl(2, f, S) [take α = 1
2 and U = R]. On the other hand, for any v ∈ R \ {0}
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we have

d2l f(x
0, v) = sup

ξ∈Γ
lim inf

(t,u)→(0+,v)

ξ1f1(tu) + ξ2f2(tu)

t2

= sup
ξ∈Γ

(−ξ1 + ξ2)v
2 if v > 0,

(ξ1 − ξ2)v
2 if v < 0,

= v2 > 0,

which satisfies the sufficient conditions (a), (b), (c) and (d) in Corollary 4.1 (take β = 1). Hence

the same conclusion as the above is obtained.

(ii) (The case k = 1) Let f : R → R2 be given by

f(x) =

 (0, x(2− sin
1

x
)) if x ̸= 0,

(0, 0) if x = 0,

x0 = 0 and S = R+. We can easily obtain that x0 ∈ Strl(1, f, S) from Remark 1.1 (take α = 1

and U is an arbitrary neighborhood of x0). Let ξ̂ = (0, 1). By computation, we have that

T (S, x0) = R+, and for any v ∈ T (S, x0)\{0} it follows that

d1l f(0, v) = lim inf
(t,u)→(0+,v)

1
t ⟨ξ̂, f(0 + tu)⟩

= lim inf
(t,u)→(0+,v)

u(2− sin 1
tu )

= v > 0.

By Corollary 4.1, we have the same conclusion as the above.

Remark 4.2 Each of the sufficient conditions in this corollary is not necessary as the

following example shows.

Example 4.2 Let f : R2 → R2 be defined by

f(x1, x2) =

(| x1 |k,− | x1 |) if x2 = 0,

(0, 0) if x2 ̸= 0
for all x = (x1, x2) ∈ R2. Let x0 = (0, 0) ∈ R2

and S = R× {0}.
For all x = (x1, 0) ∈ U ∩ S \ {x0} = {(x1, 0) : x1 ∈ R and x1 ̸= 0}, where U is an arbitrary

neighborhood of x0, we can compute that sup
ξ∈Γ

⟨ξ, f(x) − f(x0)⟩ = sup
ξ∈Γ

(ξ1 | x1 |k −ξ2 | x1 |) =|

x1 |k> 1
3 | x1 |k= 1

3 ∥ x− x0 ∥k. So, x0 ∈ Strl(k, f, S) due to Remark 1.1. However, from easy

computation we have that K(x0) = R × {0} and dkl f(x
0, v) = 0 for all v ∈ K(x0) \ {(0, 0)},

which doesn’t satisfy each of the sufficient conditions in Corollary 4.1.

We give the necessary optimality condition for strict local minimizer of order k for (4) as

follows.

Theorem 4.2 (Necessary condition of strict local minima of order k for (4)) If x0 ∈ Strl(k, f, S),

then

dkuf(x
0, v) > 0

for all v ∈ T (S, x0) \ {0}.
Proof Contrary to the conclusion, suppose that there exists v ∈ T (S, x0) \ {0} satisfying

dkuf(x
0, v) ≤ 0. By the definition (7), for all ξ ∈ Γ and any ε > 0, there exist δ = δ(ε) > 0 and
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a neighborhood V of v such that

⟨ξ, f(x0 + tu)− f(x0)⟩
tk

≤ ε (22)

for all t ∈ (0, δ) and all u ∈ V .

We may assume, without loss of generality, that δ and V satisfy conditions (13) and (14).

Since v ∈ T (S, x0) \ {0}, it follows that
(x0 + tV ) ∩ S ̸= ∅.

Thus, there exist t
′ ∈ (0, δ) and u

′ ∈ V satisfying (13), (14) and (22). The remaining part

of the proof is the same as in Theorem 4.1 (a)⇒ (b).

We present an example to illustrate Theorem 4.2.

Example 4.3 (i) (The case k > 1) Let x0 = 0 ∈ R, f : R → R2 be defined by f(x) =(x2/2,
∫ x

0
t2 sin(1/t2)dt if x ̸= 0,

(0, 0) if x = 0,
and let S = [0, 1).

By usual calculus, we can verify that x2

2 ≥
∫ x

0
t2 sin(1/t2)dt for all x ∈ S. So it is easy to

obtain x0 ∈ Strl(2, f, S). Moreover, taking ξ̂ = (1, 0) ∈ Γ ⊂ R2 we have from the definition (7)

that

d2uf(x
0, v) ≥ lim sup

(t,u)→(0+,v)

⟨ξ̂, f(x0 + tu)− f(x0)⟩
t2

= lim
(t,u)→(0+,v)

t2

2 u
2

t2

=
1

2
v2 > 0

for all v ∈ T (S, x0)\{0} = R+ \ {0}. By Theorem 4.2, we obtain the same conclusion as the

above.

(ii) (The case k=1) Let f : R2 → R2 be defined by f(x1, x2) =

(sinx2, x2) if x2 ̸= 0,

(0, 0) if x2 = 0
for

all x = (x1, x2) ∈ R2, x0 = (0, 0) ∈ R2 and S = {0} × [0, π
4 ].

Since sup
ξ∈Γ

⟨ξ, f(x)−f(x0)⟩ = sup
ξ∈Γ

(ξ1 sinx2+ξ2x2) = x2 =| x2 |=∥ x−x0 ∥ for all x = (0, x2) ∈

S ∩ U , where U is a small enough neighborhood of x0. So, x0 ∈ Strl(1, f, S). On the other

hand, we can compute d1uf(x
0, v) = v2 > 0 for all v ∈ T (S, x0) \ {(0, 0)} = {0} × R+\{(0, 0)},

which satisfies the necessary condition in Theorem 4.2.

Remark 4.3 The necessary condition in this theorem is not sufficient as the following

example shows.

Example 4.4 Let x0 = (0, 0) ∈ R2, f : R2 → R2 be defined by

f(x) =

(− | x1 |, | x2 |k) if x1 ̸= 0,

(0, 0) if x1 = 0,

for all x = (x1, x2) ∈ R2, and let S = {0} × R.
It is easy to verify that x0 ̸∈ Strl(k, f, S). But for all v = (0, v2) ∈ T (S, x0) \ {(0, 0)} =

{0} × R \ {(0, 0)} we have dkuf(x
0, v) =| v2 |k> 0, which satisfies the necessary condition in
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Theorem 4.2.

§5 Comparison with some previous results

In this section, we compare our results with some previous necessary and sufficient optimality

conditions for strict local minimizer of order k in scalar and multiobjective optimization.

Studniarski [3] and Jiménez and Novo [4], respectively, established the necessary and suffi-

cient optimality conditions of strict minimizer of order k for the scalar problem (1) as follows

Proposition 5.1 (3, Theorem 2.2) If x0 ∈ Strl(k, f, S), then d
k
f(x0, v) > 0 for all v ∈

T (S, x0) \ {0}.
Proposition 5.2 (3, Corollary 2.1) (i) If k = 1 and df(x0, v) > 0 for all v ∈ T (S, x0)\{0}, then

x0 ∈ Strl(1, f, S); (ii) If k > 1 and dkf(x0, v) > 0 for all v ∈ K(x0)\{0}, then x0 ∈ Strl(k, f, S).

Proposition 5.3 (4, Theorem 2.2) If x0 ∈ Strl(k, f,G ∩Q) then dk(f + IQ)(x
0, v) > 0, ∀v ∈

C0(G, x0) ∩ T (Q, x0)\{0}. Here, C0(G, x0) := {v ∈ X : dg(x0, v) ∈ intcone(−C − g(x0))}.
Proposition 5.4 (4, Theorem 3.1) Let k > 1. If ∀v ∈ C(G, x0) ∩ T (Q, x0) ∩ C(f, x0)\{0} we

have dk(f+IQ)(x
0, v) > 0, then x0 ∈ Strl(k, f,G∩Q). Where, C(f, x0) := {v ∈ X : df(x0, v) ≤

0}.
Proposition 5.5 (4, Theorem 3.2) If ∀v ∈ C(G, x0)∩T (Q, x0)\{0} we have d(f+IQ)(x

0, v) >

0, then x0 ∈ Strl(1, f,G ∩Q). Here, C(G, x0) := {v ∈ X : dg(x0, v) ∈ clcone(−C − g(x0))}.
We can easily see that if X = Rn in [4], there are conclusions as follows:

(i) Theorem 4.2 reduces to Proposition 5.1 (see also [4, Theorem 2.1]);

(ii) When p = 1, Corollary 4.1 (b) in (i) and (ii) is advantageous over Proposition 5.2 (ii)

due to Proposition 3.3 (i) in which the converse is not true;

(iii) When p = 1 and do not consider the constraint g in [4], Theorem 4.1 (a)⇒(c) reduces

to Proposition 5.3, Theorem 4.1 (i) (c)⇒(a) reduces to Proposition 5.4, and Theorem 4.1 (ii)

(c)⇒(a) reduces to Proposition 5.5.

Jiménez established the following necessary conditions for multiobjective problems in terms

of upper Studniarski derivatives.

Proposition 5.6 (6, Theorem 4.1 (ii)) If x0 ∈ Strl(k, f, C), then ∀v ∈ T (C, x0) \ {0} ∃i ∈
{1, 2, · · · , p} such that d

k
fi(x

0, v) > 0. Here, C represents the constraint set of the multiobjec-

tive problem in [6].

Obviously, our result (Theorem 4.2) is equivalent to this proposition by Proposition 3.3 (ii).

Luu established the necessary conditions for multiobjective problems as follows.

Proposition 5.7 (8, Theorem 5.1) Let x0 ∈ Strl(k, f,M). Assume that intS ̸= ∅ and there

exists the derivative dSg(x
0, u) at x0 in all directions u ∈ X. Then, for every v ∈ T (C, x0)∩{u :

dSg(x
0, u) ∈ −intS} \ {0}, there exists i, i ∈ {1, 2, · · · , p}, such that d

k

Sfi(x
0, v) > 0. Here, M

represents the constraint set of the multiobjective problem in [8].

If X = Rn and do not consider the constraint g in [8], then T (C, x0) = T (C, x0) ∩ {u :

dSg(x
0, u) ∈ −intS}. So, Proposition 5.6 is Proposition 5.7.

Rahmo and Studniarski derived the necessary conditions for multiobjective optimization in

terms of upper Studniarski derivatives.
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Proposition 5.8 (10, Theorem 11 (b)) Let x0 ∈ Strl(k, f, S). Then there exists β > 0 such

that d
k
f(x0, v) /∈ B(0, β ∥ v ∥k)− Rp

+ for all v ∈ T (S, x0) ∩ {u ∈ X : dg(x0, u) < 0}.
If X = Rn and do not consider the constraint g in [10], we can prove that Theorem 4.2 ⇔

Proposition 5.8.

Proof Let x0 ∈ Strl(k, f, S). Then by Theorem 4.2, dkuf(x
0, v) > 0 for all v ∈ T (S, x0)\{0}.

Consequently, we have from Proposition 3.3 (ii) that for all v ∈ T (S, x0)\{0}, dkuf(x0, v) > 0 ⇔
∃i = i(v), 1 ≤ i ≤ p, d

k
fi(x

0, v) > 0 ⇔ ∃β > 0, such that d
k
fi(x

0, v) > β ∥ v ∥k⇔ ∃β > 0, such

that d
k
f(x0, v) /∈ B(0, β ∥ v ∥k)− Rp

+. Here, d
k
f(x0, v) = (d

k
f1(x

0, v), d
k
f2(x

0, v), · · · , dkfp
(x0, v)) by (11).

Thus, if X = Rn and do not consider the constraint g in multiobjective problems, we have

Theorem 4.2 ⇔ Proposition 5.6 ⇔ Proposition 5.7 ⇔ Proposition 5.8.

Luu established the following necessary condition for multiobjective problems in terms of

lower Studniarski derivatives.

Proposition 5.9 (8, Theorem 5.2) Let x0 be a feasible point for (P). Assume that there is

the derivative dSg(x
0; v) in all directions v ∈ X, and there exits i0 ∈ {1, 2, · · · , p} such that

dkSfi0
C(x0, v) > 0 ∀v ∈ KC(x

0) ∩ {u : dSg(x
0, u) ∈ −Sg(x0)},

where fi0
C(·) = fi0(·) + IC(·), in which IC(·) is the indicator function of C and Sg(x0) :=

clcone(S + g(x0)). Then x0 ∈ Strl(k, f, S).

IfX = Rn and do not consider the constraint g in problem (P) in [8], we can easily to see that

when k > 1, Proposition 5.9 is a consequence of Theorem 4.1 (c) ⇒ (a). Indeed, by Proposition

3.3 (i) for any given v ∈ Rn \ {0}, the requirement of our derivative dkl (f + I)(x0, v) > 0 is

weaker than that of the derivative dk(fi + I)(x0, v) > 0, where i = i(v), i ∈ {1, 2, · · · , p}; when
k = 1, the condition that d1l f(x

0, v) > 0 is weaker than or equivalent to that dfi(x
0, v) > 0 due

to (8), where i = i(v), i ∈ {1, 2, · · · , p}.
Jiménez and Novo studied problem (4) and obtained one of sufficient optimality conditions

as follows.

Proposition 5.10 [12, Corollary 5.13] If f = (f1, f2, · · · , fp) : Rn → Rp is stable at x0 ∈ S ⊂
X and for any v ∈ T (S, x0) \ {0}, ∃i ∈ {1, 2, · · · , p} such that

dfi(x
0, v) > 0

then x0 ∈ Strl(1, f, S).

Clearly, our result (Corollary 4.1 (ii)) has weaker assumptions than this proposition because

we do not need to require that f be stable at x0, and because the condition that d1l f(x
0, v) > 0

is weaker than or equivalent to that dfi(x
0, v) > 0 by (8), where i = i(v), i ∈ {1, 2, · · · , p}.

§6 Conclusions

Using a new type of directional derivatives, we have obtained some necessary and sufficient

conditions of strict local minima of order k for a multiobjective optimization problem with a

nonempty set constraint, which are generalization of some before scalar results and are equiv-

alent to some before multiobjective ones. Of course, there are other works in future needed to
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do:

(i) to establish characterizations of superstrict local minima of order k for (4);

(ii) to analyze and get the gap between the strict and superstrict local minima of order k

(k > 1) for (4) when results in (i) are obtained.
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