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New criteria on the existence and global exponential

stability of periodic solutions for quaternion-valued

cellular neural networks

LI Ai-ling1 ZHOU Zheng2 ZHANG Zheng-qiu3,∗

Abstract. In this paper, a class of quaternion-valued cellular neural networks (QVCNNS) with

time-varying delays are considered. Combining graph theory with the continuation theorem of

Mawhin’s coincidence degree theory as well as Lyapunov functional method, we establish new

criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing

the assumptions for the boundedness on the activation functions and the assumptions that the

values of the activation functions are zero at origin. Hence, our results are less conservative and

new.

§1 Introduction

Because of the fact that neural networks (NNS) can be applied to signal processing, pat-

ten recognition, optimization and associative memories and image processing, the dynamical

behaviors of NNS have been widely investigated both in theory and application ([1-4], [33],

[34]).

Complex-valued neural networks (CVNNS) as an extension of real-valued neural networks

(RVNNS) also can be applied to signal and information processing in complex-valued states,

up to now, the dynamical behaviors of CVNNS have been widely investigated, for example, see

([5-8]) and their references therein.

On the other hand, quaternions (QVNNS) which were invented in 1843 by Hamilton [9] as an

extension of RVNNS and CVNNS have many practical applications such as the 3D geometrical

affine transformation, especially spatial rotation ([10, 11]), image impression, color night vision

[12] etc. It is well known that the dynamics of Quaternions plays an important part in their

Received: 2020-05-18. Revised: 2024-07-18.
MR Subject Classification: 45M10, 45M15.
Keywords: the existence of periodic solutions, exponential stability, quaternion-valued cellular neural net-

works, combining graph theory with Mawhin’s continuation theorem of coincidence degree theory, Lyapunov
function method, inequality techniques.

Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-025-4149-5.
Supported by the Innovation Platform Open Fund in Hunan Province Colleges and Universities of China

(201485).
*Corresponding author.



524 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

implementation and applications. Hence, the study of the dynamics of Quaternions is essential

necessary. Up to now, the dynamical behaviors, such as the stability and synchronization of

QVNNS have been widely investigated, and as far as the study of the synchronization of QVNNS

is concerned, we can refer to these papers ([13]-[15], [29]-[32]). As for as the study of stability of

equilibrium point of QVNNS is concerned, we can refer to ([16]-[18], [29], [35]-[37]). In [16], the

linear threshold discrete-time quaternion-valued neural network with time-delays was discussed

and sufficient criteria of boundedness and periodicity for the neural network were obtained. In

[17], global µ-stability criteria for a class of quaternion-valued neural networks with unbounded

time-varying delays were established. In [18], without using Lyapunov function, some sufficient

conditions were established to guarantee the global exponential stability for a class of QVNNS

based on Halanay inequality. In [29], the existence-uniqueness and global asymptotic stability

of equilibrium point of a kind of quaternion-valued BAM fuzzy NNS were discussed. By using

Homeomorphism theorem and the properties of unary high degree inequality, a criterion assuring

the existence and uniqueness of equilibrium point of the considered system was obtained. Then

by applying integral inequality method, a criteria on asymptotic stability of equilibrium point

for the system was attained. In [35], the globally exponential stability in Lagrange sense of

BAM quaternion-valued inertial NNS was concerned by non-reduced order and un-decomposed

method. Auxiliary function-based inequalities and reciprocally convex inequality were applied

to the set of quaternion and several criteria for the system were acquired in the form of LMIS.

In [36], the commutative QVNNS were established on time scales, which can bring two different

forms of discrete time and continuous time QVNNS into a single framework. Some criteria

for globally exponential stability of QVNNS were studied mainly by using matrix measure and

some inequalities on time scales. In [37], the article was dedicated to studying the stability

of QVNNS. The direct quaternion method was used to analyze the QVNNS. By establishing

their reciprocally convex inequality and wirtinger-based inequality in quaternion domain, the

existence, uniqueness and global stability criteria in the form of LMIS for QVNNS with several

freedom matrices were derived.

However, so far, the studies on the existence and the stability of periodic solutions for the

QVNNS have been very rare. We only find four articles which investigated the existence and

global stability of periodic solutions ([19], [38]-[40]). In [38], the periodic solutions of the QVC-

NNS were discussed. By using Schauder fixed point theorem and by constructing an appropriate

Lyapunov function, the existence and globally exponential stability of periodic solutions of the

networks were attained. In [39], the anti-periodic solutions of a class of QVCNNS were discussed

(the existence of an ω anti-periodic solution can implies the existence of an 2ω periodic solution-

s). Applying the continuation theorem of coincidence degree theory and inequality techniques,

some criteria on the existence and globally exponential stability of periodic solutions of the

networks were presented. In [40], the existence and global exponential stability of anti-periodic

solutions for QVNNS were concerned. By using a continuation theorem of coincidence degree

theory and the wirtinger inequality, some criteria were obtained on the existence and globally

exponential stability of QVNNS. In [19], by combining the continuation theorem of Mawhin’s

coincidence degree theory with the priori estimate method of periodic solutions, the existence
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of periodic solutions for QVCNNS was obtained under the assumptions that the activation

functions satisfy boundedness conditions and the values of the activation functions at origin are

zero. By constructing a Lyapunov functional, a sufficient condition was derived to guarantee

the global exponential stability of periodic solution for QVNNS. Since the QVCNNs support a

complete representation and has a great capacity for more practical problems and the results

of the existence and globally stability for QVNNS are very rare, this inspires us to study the

existence and globally exponential stability of periodic solutions of QVNNS.

Now, graph theory has been used to research global asymptotic stability of discrete-time

Cohen-Grossberg NNS with finite and infinite delays in [37]. The existence and global stability

of periodic solutions for coupled networks also were studied in [22-25].

Recently, without applying the priori estimate method of periodic solutions, some criteria

to guarantee the existence of periodic solutions for NNS have been established by combining

coincidence degree theory with Lyapunov functional method or linear matrix inequality method

[26-28].

However, so far, the results on the existence and global exponential stability of periodic

solutions for delayed QVNNS have been rare by combining coincidence degree theory with

graph theory as well as Lyapunov functional method. This inspires us to study the periodic

solutions for QVNNS.

In this article, our main purpose is to establish novel sufficient conditions on the existence

and global exponential stability of periodic solutions for system (1) by combining graph theory

with continuation theorem as well as Lyapunov functional method, and removing the assump-

tions for boundedness on the activation functions and the assumptions of the values of the

activation functions at origin being zero in [19]. In the proof of our main theorems, some novel

inequalities are used to obtain the boundness of periodic solutions of operator equations. Hence

the contributions of this paper include the following three aspects:

(a) A novel study method of periodic solutions for QVCNNS is introduced, that is combining

graph theory with continuation theorem of coincidence degree theory as well as Lyapunov

functional method studies periodic solutions for QVCNNS.

(b) Inequalities techniques are used to study the periodic solutions for QVCNNS.

(c) Novel criteria to guarantee the existence and global exponential stability of periodic

solutions for QVCNNS are derived by removing the assumption for the boundedness on the ac-

tivation functions in [19] and removing the assumption that the value of the activation function

is zero at origin.

This paper is organized as follows. Some preliminaries and lemmas are introduced in Section

2. In Section 3, a sufficient condition is derived to guarantee the existence of periodic solutions

of system (1). In Section 4, a sufficient condition is established on the global exponential

stability of periodic solutions for system (1). In Section 5, an illustrative example is given to

prove the effectiveness of the proposed theory. In Section 6, a conclusion is given.
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§2 Preliminaries

In [19], the QVNNS discussed are described by the following differential equations

u′
w(t) = −awuw(t) +

l∑
v=1

bwv(t)gv(uv(t)) +

l∑
v=1

cwv(t)gv(uv(t− σwv(t))) + rw(t), (1)

where w = 1, 2, · · · , l, uw(t) ∈ Q stands for the state of the wth unit at time t, gv(uv(t)) ∈ Q

denotes the output of the vth unit at time t, bwv(t) ∈ Q denotes the strength of the vth unit

on the wth unit at time t, cwv(t) denotes the strength of the vth unit on the vth unit at time

t − σwv(t), rw(t) ∈ Q is the external input on the vth at time t, σwv(t) ≥ 0 denotes to the

transmission delay along the axon of the vth unit on the wth unit at time t, and aw > 0

denotes the rate with which the wth unit will reset its potential to the reserving state when

disconnected from the network and external inputs.

The initial value of system (1) is given by

uw(s) = ϕw(s) ∈ Q, s ∈ [−σ, 0], σ = max
1≤w,v≤l

{ max
0≤t≤ω

|σwv(t)|}. (2)

Let |.| be the Euclidean norm for R and L = {1, 2, · · · , l}. We cite the following notation

f = max
t∈[0,ω]

{|f(t)|},

where f(t) is a continuous ω periodic function with ω > 0.

For u = uR + iuI + juJ + kuK ∈ Q, g : Q → Q, g(u) can be expressed as g(u) =

gR(uR, uI , uJ , uK)+ igI(uR, uI , uJ , uK)+ jgJ (uR, uI , uJ , uK)+ kgK(uR, uI , uJ , uK). For uw =

uR
w + iuI

w + juJ
w + kuK

w ∈ Q, we denote the activation functions gq in (1) as follows

gv(uv) = gRv (u
R, uI , uJ , uK) + igIv(u

R, uI , uJ , uK) + jgJv (u
R, uI , uJ , uK)

+kgKv (uR, uI , uJ , uK), v = 1, 2, · · · , l.

Throughout this paper, we assume that

(h1) σwv ∈ C(R,R+), bwv, cwv and rw ∈ C(R,Q) are ω periodic functions, w, v =

1, 2, · · · , l.
(h2) σwv ∈ C(R,R) and σ′

wv < 1, w, v = 1, 2, · · · , l.
(h3) grv ∈ C(R4, R) and there exists a positive constant δ such that for v = 1, 2, · · · , l; r =

R, I, J,K;uR
v , u

I
v, u

J
v , u

K
v , xR

v , x
I
v, x

J
v , x

K
v ∈ R, and

|grv(uR
v , u

I
v, u

J
v , u

K
v )− grv(x

R
v , x

I
v, x

J
v , x

K
v )| ≤ δ

(
|uR

v − xR
v |+ |uI

v − xI
v||+ |uJ

v − xJ
v |+ |uK

v − xK
v |

)
,

(h4)

4δ(bwv +
4cwv

1− σ′
wv

) <
av
l
.

For w, v = 1, 2, · · · , l, we denote

bwv(t) = bRwv(t) + ibIwv(t) + jbJwv(t) + kbKwv(t),

cwv(t) = cRwv(t) + icIwv(t) + jcJwv(t) + kcKwv(t),

rw(t) = rRw(t) + irIw(t) + jrJw(t) + krKw (t),

σ = max
1≤w,v≤l

{ max
0≤t≤ω

|σwv(t)|},

σ′
wv = max

t∈[0,ω]
{σ′

wv(t)}, bwv = max{bRwv, b
I
wv, b

J
wv, b

K
wv}, cwv = max{cRwv, c

I
wv, c

J
wv, c

K
wv}.
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Obviously, by (h1), b
r
wv(t), c

r
wv(t), and rrw(w, v = 1, 2, · · · , l, r = R, I, J,K) are all continuous

ω-periodic functions on R.

Denote u′
w(t) = u′R

w (t) + u′I
w(t) + u′J

w (t) + u′K
w (t), grv = grv(u

R
v (t), u

I
v(t), u

J
v (t), u

K
v (t)), and

Gr
v = grv(u

R
v (t − σwv(t)), u

I
v(t − σwv(t)), u

J
v (t − σwv(t)), u

K
v (t − σwv(t)))(w, v = 1, 2, · · · , l; r =

R, I, J,K.) Therefore, system (1) can be changed as the following real valued system (see [19])

for w = 1, 2, · · · , l:

u′R
w (t) = −awu

R
w(t) +

l∑
v=1

[
bRwv(t)g

R
v − bIwv(t)g

I
v − bJwv(t)g

J
v − bKwv(t)g

K
v

]
+

l∑
v=1

[
cRwv(t)G

R
v

−cIwv(t)G
I
v − cJwv(t)G

J
v − cKwv(t)G

K
v

]
+ rRw(t)

= VwR(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))), (3)

u′I
w(t) = −awu

I
w(t) +

l∑
v=1

[
bIwv(t)g

R
v + bRwv(t)g

I
v − bKwv(t)g

J
v + bJwv(t)g

K
v

]
+

l∑
v=1

[
cIwv(t)G

R
v

+cRwv(t)G
I
v − cKwv(t)G

J
v + cJwv(t)G

K
v

]
+ rIv(t)

= VwI(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))), (4)

u′J
w (t) = −awu

J
w(t) +

l∑
v=1

[
bJwv(t)g

R
v + bKwv(t)g

I
v + bRwv(t)g

J
v − bIwv(t)g

K
v

]
+

l∑
v=1

[
cJwv(t)G

R
v

+cKwv(t)G
I
v + cRwv(t)G

J
v − cIwv(t)G

K
v

]
+ rJv (t)

= VwJ(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))), (5)

u′K
w (t) = −awu

K
w (t) +

l∑
v=1

[
bKwv(t)g

R
v − bJwv(t)g

I
v + bIwv(t)g

J
v + bRwv(t)g

K
v

]
+

l∑
v=1

[
cKwv(t)G

I
v

−cJwv(t)G
I
v + cIwv(t)G

J
v + cRwv(t)G

K
v

]
+ rKv (t)

= VwK(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))). (6)

By putting ϕw(s) = ϕR
w(s) + iϕI

w(s) + jϕJ
w(s) + kϕK

w (s), ϕr
w ∈ C([−σ, 0], R), from (2), it

follows that the initial values of (3)-(6) are in the following form

ur
w(s) = ϕr

w(s), ϕ
r
w ∈ C([−σ, 0], R), w = 1, 2, · · · , l, r = R, I, J,K.

Lemma 2.1 (Gaines and Mawhin[20]). Suppose that X1 and Z1 are two Banach spaces,

and L1 : DomL1 ⊂ X1 → Z1 is linear, N1 : X1 → Z1 is continuous. Assume that L1 is one-

to-one and K1 = L−1
1 N1 is compact. Furthermore, assume that there exists a bounded and

open subset Ω1 ⊂ X1 with o ∈ Ω such that operation equation L1u = λN1u has no solutions in

∂Ω ∩DomL1 for any λ ∈ (0, 1). Then the problem L1u = N1u has at least one solution in Ω.

Definition 2.1 (Graph theory [21]). A directed graph g = (U,K) contains a set U =

{1, 2, · · · , l} of vertices and a set K of arcs (w, v) leading from initial vertex w to terminal

vertex v. A subgraph Γ of g is said to be spanning if Γ and g have the same vertex set. A

subgraph Γ is unicyclic if it is a disjoint union of rooted trees whose roots from a directed cycle.

For a weighted digraph g with l vertices, we define the weight matrix B = (bwv)l×l whose entry

bwv > 0 is equal to the weight of arc (v, w) if it exists, and 0 otherwise. A digraph g is strongly

connected if for any pair of distinct vertices, there exists a directed path from one to the other.
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The Laplacian matrix of (g,B) is defined as L = (βwv)l×l, where βwv = −bwv for w ̸= v and

βwv =
∑
w ̸=v

bwv for w = v.

Lemma 2.2([21]). Suppose that l ≥ 2 and cw denotes the cofactor of the w-th diagonal ele-

ment of the Laplacian matrix of (g,B). Then
l∑

w,v=1
cwbwvGwv(xw, xv) =

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CQ)

Gwv(xw, xv) and where Gwv(xw, xv) is an arbitrary function, Q is the set of all spanning uni-

cyclic graphs of (g,B),W (Q) is the weight of Q,CQ denotes the directed cycle of Q, and K(CQ)

is the set of arcs in CQ. In particular, if (g,B) is strongly connected, then cw > 0 for 1 ≤ w ≤ l.

Remark 1. It is clear that in order to prove the existence and global exponential stability of

system (1), we only need to prove the existence and global exponential stability of (3)-(6).

§3 The existence of periodic solutions

Lemma 3.1 If V (t) =
l∑

w=1
cwVw(t), cw > 0 is the cofactor of the with diagonal element of

Laplacian matrix of (g,B), λ > 0, N > 0 are two constants and

dVw(t)

dt

≤ λ
l∑

v=1

{
− aw

l
|uR

w(t)|+ (
av
l

− α)|uR
v (t)| −

aw
l
|uI

w(t)|+ (
av
l

− α)uI
v(t)| −

aw
l
|uJ

w|+ (
av
l

−

α)|uJ
v | −

aw
l
|uK

w (t)|+ (
av
l

− α)|uK
v (t)|+ N

l

}
,

then

dV (t)

dt
≤ λ

l∑
w=1

cw

l∑
v=1

[
− α(|uR

w(t)|+ |uI
w(t)|+ |uJ

w(t)|+ |uK
w (t)|) +N

]
.

Proof. Since
dVw(t)

dt

≤ λ
l∑

v=1

{
− aw

l
|uR

w|+ (
av
l

− α)|uR
v | −

aw
l
|uI

w|+ (
av
l
| − α)uI

v| −
aw
l
|uJ

w|+ (
av
l

− α)|uJ
v |

−aw
l

× |uK
w |+ (

av
l

− α)|uK
v |+ N

l

}
≤ λ

l∑
v=1

{
− (

aw
l

− α)|uR
w|+ (

av
l

− α)|uR
v | − (

aw
l

− α)|uI
w|+ (

av
l

− α)|uI
v| − (

aw
l

− α)|uJ
w|

+(
av
l

− α)|uJ
v | − (

aw
l

− α)|uK
w |+ (

av
l

− α)|uK
v |+ N

l
− α(|uR

w|+ |uI
w|+ |uJ

w|+ |uK
w |)

+
N

l
}. (7)

Setting b1wv = 1(w ̸= v), b1wv = 0, w = v,G1wv(|uR
w|, |uR

v |) = (av

l −α)|uR
v |−(aw

l −α)|uR
w|, and

β1w(|uR
w|) = (aw

l − α)|uR
w|; b2wv = 1(w ̸= v), b2wv = 0, w = v,G2wv(|uI

w|, |uI
v|) = (av

l − α)|uI
v| −
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(aw

l − α)|uI
w|, β2w(|uI

w|) = (aw

l − α)|uI
w|; b3wv = 1(w ̸= v), b3wv = 0, w = v,G3wv(|uJ

w|, |uJ
v |)

= (av

J − α)|uJ
v | − (aw

l − α)|uJ
w|, β3w(|uJ

w|) = (aw

l − α)|uJ
w|; b4wv = 1(w ̸= v), b4wv = 0, w = v,

G4wv(|uK
w |, |uK

v |) = (av

l −α)|uK
v | − (aw

l −α)|uK
w |, β4w(|uK

w |) = (aw

l −α)|uK
w |, then we have from

(7) that

dVw(t)

dt

≤ λ
{ l∑

v=1

b1wvG1wv

(
|uR

w|, |uR
v |
)
+

l∑
v=1

b2wvG2wv

(
|uI

w|, |uI
v|
)
+

l∑
v=1

b3wvG3wv

(
|uR

w|, |uR
v |
)
+

l∑
v=1

b4wvG4wv

(
|uR

w|, |uR
v |
)
− α

l∑
v=1

(|uR
w|+ |uI

w|+ |uJ
w|+ |uK

w |) +N
}
, (8)

where

G1wv

(
|uR

w|, |uR
v |
)
= βq(|uR

v |)− βw(|uR
w|), (9)

G2vw

(
|uI

w|, |uI
v|
)
= βq(|uI

v|)− βw(|uI
w|), (10)

G3wv

(
|uJ

w|, |uJ
v |
)
= βv(|uJ

v |)− βw(|uJ
w|), (11)

and

G4wv

(
|uK

w |, |uK
v |

)
= βv(|uK

v | − βw(|uK
w |). (12)

Because V (t) =
l∑

w=1
cwVw(t), where cw > 0 is the cofactor of the with diagonal element of

the Laplacian matrix of (g,B), then we have

dV (t)

dt

=

l∑
w=1

cw
dVw(t)

dt

= λ
l∑

w=1

cw

l∑
v=1

{
b1wvG1wv(|uR

w|, |uR
v |) + b2wvG2wv(|uI

w|, |uI
v|) + b3wvG3wv(|uJ

w|, |uJ
v |) + b4wv

×G4wv(|uK
w |, |uK

v |)− α(|uR
w|+ |uI

w|+ |uJ
w|+ |uK

w |) +N
}
. (13)

From Lemma 2.2, it follows that
l∑

w=1

l∑
v=1

cwb1wvG1wv

(
|uR

w|, |uR
v |
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G1wv

(
|uR

w|, |uR
v |
)
, (14)

l∑
w=1

l∑
v=1

cwb2wvG2wv

(
|uI

w|, |uI
v|
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G2wv

(
|uI

w|, |uR
v |
)
, (15)

l∑
w=1

l∑
v=1

cwb3wvG3wv

(
|uR

w|, |uR
v |
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G3wv

(
|uR

w|, |uR
v |
)
, (16)
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and
l∑

w=1

l∑
v=1

cwb4wvG4wv

(
|uI

w|, |uI
v|
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G4wv

(
|uI

w|, |uR
v |
)
. (17)

By (13)-(17), it follows that from a fact W (Q) > 0,
l∑

w=1

l∑
v=1

cwb1wvG1wv

(
|uR

w|, |uR
v |
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|uR

v |)− βw(|uR
w|)

]
≤ 0, (18)

l∑
w=1

l∑
v=1

cwb2wvG2wv

(
|uI

w|, |uI
v|
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|uI

v|)− βw(|uI
w|)

]
≤ 0, (19)

l∑
w=1

l∑
v=1

cwb3wvG3wv

(
|uR

w|, |uR
v |
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|uJ

v |)− βw(|uJ
w|)

]
≤ 0, (20)

and
l∑

w=1

l∑
v=1

cwb4wvG4wv

(
|uK

w |, |uK
v |

)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|uK

v |)− βw(|uK
w |

)]
≤ 0. (21)

Substituting (18)-(21) into (13) gives

dV (t)

dt
≤ λ

l∑
w=1

cw

l∑
v=1

[
− α(|uR

w(t)|+ |uI
w(t)|+ |uJ

w(t)|+ |uK
w (t)|) +N

]
.

This ends the proof of Lemma 3.1.

Lemma 3.2 We consider the following system for the parameter λ ∈ (0, 1)

u′R
w (t) = λVwR(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))),

u′I
w(t) = λVwI(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))),

u′J
w (t) = λVwJ(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))),

u′K
w (t) = λVwK(t, u(t), u(t− σw1(t)), · · · , u(t− σwl(t))). (22)

Suppose that (h1)− (h4) hold. Then there exists a positive constant M which is independent

of the parameter λ such that every periodic solution u(t) =
(
uR
1 (t), u

I
1(t), u

J
1 (t), u

K
1 (t), uR

2 (t),

uI
2(t), u

J
2 (t), u

K
2 (t), · · · , uR

l (t), u
I
l (t), u

J
l (t), u

K
l (t)

)T

of system (22) satisfies ∥u(t)∥ ≤ M, where

∥u(t)∥ =
l∑

w=1
maxt∈[0,ω]

[
|uR

w(t)|+ |uI
w(t)|+ |uJ

w(t)|+ |uK
w (t)|

]
.

Proof. Since 4δ(bwv+
4cwv

1−σ′
wv

) < av

l , there exists a positive constant α such that the following

inequality holds

(h5)

4δ(bwv +
4cwv

1− σ′
wv

) <
av
l

− α.

We construct a suitable Lyapunov functional as Vw(t) = V1w(t) + V2w(t),

where

V1w(t) = |uR
w(t)|+ |uI

w(t)|+ |uJ
w(t)|+ |uK

w (t)|,
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and

V2w(t) = 4λδ
l∑

v=1

(cRwv + cIwv + cJwv + cKwv)

1− σ′
wv(t)

∫ t

t−σwv(t)

[
|uR

v (s)|+ |uI
v(s)|+ |uJ

v (s)|+ |uK
v (s)|

]
ds.

From system (22), we have

d[V1w(t)]

dt

≤ λ
{
sign[uR

w(t)]
(
− awu

R
w(t) +

l∑
v=1

[
bRwv(t)g

R
v − bIwv(t)g

I
v − bJwv(t)g

J
v − bKwv(t)g

K
v

]
+

l∑
v=1

[
cRwv(t)G

R
v − cIwv(t)G

I
v − cJwv(t)G

J
v − cKwv(t)G

K
v

]
+ rRw(t)

)
+ sign[uI

w(t)]
(
− awu

I
w(t) +

l∑
v=1[

bIwv(t)g
R
v + bRwv(t)g

I
v − bKwv(t)g

J
v + bJwv(t)g

K
v

]
+

l∑
v=1

[
cIwv(t)G

R
v + cRwv(t)G

I
v − cKwv(t)G

J
v +

cJwv(t)G
K
v

]
+ rIw(t)

)
+ sign[uJ

w(t)]
(
− awu

J
w(t) +

l∑
v=1

[
bJwv(t)g

R
v + bKwv(t)g

I
v + bRwv(t)g

J
v −

bIwv(t)g
K
v

]
+

l∑
v=1

[
cJwv(t)G

R
v + cKwv(t)G

I
v + cRwv(t)G

J
v − cIwv(t)G

K
v

]
+ rJw(t)

)
+ sign[uK

w (t)]

×
(
− awu

K
w (t)

l∑
v=1

[
bKwv(t)g

R
v − bJwv(t)g

I
v + bIwv(t)g

J
v + bRwv(t)g

K
v

]
+

l∑
v=1

[
cKwv(t)G

R
v − cJwv(t)

×GI
v + cIwv(t)G

J
v + cRwv(t)G

K
v

]
+ rKw (t)

)}
≤ λ

{
− aw|uR

w|+
l∑

v=1

[
(bRwv + cRwv)|gRv (0, 0, 0, 0)|+ (bIwv + cIwv)|gIv(0, 0, 0, 0)|+ |gJv (0, 0, 0, 0)|

×(bJwv + cJwv) + (bKwv + cKwv)|gKv (0, 0, 0, 0)|+ δ(bRwv + bIwv + bJwv + bKwv)(|uR
v |+ |uI

v|+ |uJ
v |+

|uK
v |)

]
+ δ

l∑
v=1

(cRwv + cIwv + cJwv + cKwv)
[
|uR

v (t− σwv(t))|+ |uI
q(t− σwv(t))|+ |uJ

v (t− σwv(t)

)|+ |uK
v (t− σwv(t))|

]
+ rRw − aw|uI

w|+
l∑

v=1

[
(bIwv + cIwv)|gRv (0, 0, 0, 0)|+ (bRwv + cRwv)

×|gIv(0, 0, 0, 0)|+ |gJv (0, 0, 0, 0)|(bKwv + cKwv) + (bJwv + cJwv)|gKv (0, 0, 0, 0)|
+δ(bRwv + bIwv + bJwv + bKwv)(|uR

v |+ |uI
v|+ |uJ

v |+ |uK
v |)

]
+δ

l∑
v=1

(cRwv + cIwv + cJwv + cKwv)
[
|uR

v (t− σwv(t))|+ |uI
v(t− σwv(t))|

+|uJ
v (t− σwv(t))|+ |uK

v (t− σwv(t))|
]
+ rIw − aw|uJ

w|+
l∑

v=1

[
(bJwv + cJwv)× |gRv (0, 0, 0, 0)|

+(bKwv + cKwv)× |gIv(0, 0, 0, 0)|+ (bRwv + cRwv)|gJq (0, 0, 0, 0)|+ (bIwv + cIwv)× |gKv (0, 0, 0, 0)|
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+δ(bJwv + bKwv + bKwv + bIwv)[|uR
v |+ |uI

v|+ |uJ
v |+ |uK

v |
]
+ δ

l∑
v=1

(cJwv + cKwv + cRwwv + cIwv)

×
[
|uR

v (t− σwv(t))|+ |uI
v(t− σwv(t))|+ |uJ

v (t− σwv(t)|+ |uK
q (t− σwv(t))|

]
+ rJw − aw|uK

w |

+
l∑

v=1

[
(bKwv + cKwv)× |gRv (0, 0, 0, 0)|+ (bJwv + cJwv)|gIv(0, 0, 0, 0, 0)|+ (bIwwv + cIwv)

|gJv (0, 0, 0, 0)|+ (bRwv + cRwv)× |gKv (0, 0, 0, 0)|+ δ(bKwv + bIwwv + bJwv + bRwv)

(|uR
v |+ |uI

v|+ |uJ
v |+ |uK

v |)
]
+ δ

l∑
v=1

(cKwv + cIwv + cJwv + cRwv)
[
|uR

v (t− σwv(t))|

+|uI
v(t− σwv(t))|+ |uJ

v (t− σwv(t))|+ |uK
v (t− σwv(t))|

]
+ rKw

}
. (23)

Since

dV2w(t)

dt
= 4λδ

l∑
v=1

(cRwv + cIwv + cJwv + cKwv)

1− σ′
wv(t)

[
|uR

v (t)|+ |uI
v(t)|+ |uJ

v (t)|+ |uK
v (t)|

]
−4λδ

l∑
v=1

(cRwv + cIwv + cJwv + cKwv)
[
|uR

v (t− σwv(t))|+ |uI
v(t− σwv(t))|

+|uJ
v (t− σwv(t))|+ |uK

v (t− σwv(t))|
]
, (24)

from (23) and (24), we have

dVw(t)

dt

≤ λ
{
− aw|uR

w|+
l∑

v=1

[
(bRwv + cRwv)|gRv (0, 0, 0, 0)|+ (bIwv + cIwv)|gIv(0, 0, 0, 0)|+ |gJv (0, 0, 0, 0)|

×(bJwv + cJwv) + (bKwv + cKwv)|gKv (0, 0, 0, 0)|+ δ(bRwv + bIwv + bJwv + bKwv)(|uR
v |+ |uI

v|+ |uJ
v |

+|uK
v |)

]
+ rRw − aw|uI

w|+
l∑

v=1

[
(bIwv + cIwv)|gRv (0, 0, 0, 0)|+ (bRwv + cRwv)|gIv(0, 0, 0, 0)|+

|gJv (0, 0, 0, 0)|(bKwv + cKwv) + (bJwv + cJwv)|gKv (0, 0, 0, 0)|+ δ(bRwv + bIwv + bJwv + bKwv)(|uR
v |

+|uI
v|+ |uJ

v |+ |uK
v |)

]
+ rIw − aw|uJ

w|+
l∑

v=1

[
(bJwv + cJwv)|gRv (0, 0, 0, 0)|+ (bKwv + cKwv)×

|gIv(0, 0, 0, 0)|+ (bRwv + cRwv)|gJv (0, 0, 0, 0)|+ (bIwv + cIwv)|gKv (0, 0, 0, 0)|+ δ(bJwv + bKwv +

bKwv + bIwv)[|uR
v |+ |uI

v|+ |uJ
v |+ |uK

v |
]
+ rJw − aw|uK

w |+
l∑

v=1

[
(bKwv + cKwv)|gRv (0, 0, 0, 0)|

+(bJwv + cJwwv)|gIv(0, 0, 0, 0, 0)|+ (bIwv + cIwv)|gJv (0, 0, 0, 0)|+ (bRwv + cRwv)|gKv (0, 0, 0, 0)|
+δ(bKwv + bIwv + bJwv + bRwv)(|uR

v |+ |uI
v|+ |uJ

v |+ |uK
v |)

]
+ rKw + 4δ ×

l∑
v=1

(cRwv + cIwv + cJwv + cKwv)

1− σ′
wv(t)

[
|uR

v |+ |uI
v|+ |uJ

v |+ |uK
v |

]
+N

}
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= λ
{
− aw(|uR

w|+ |uI
w|+ |uJ

w|+ |uK
w |) + δ

l∑
v=1

(bRwv + bIwv + bJwv + bKwv)(|uR
v |+ |uI

v|+ |uJ
v |+

|uK
v |) + 4δ

l∑
v=1

(cRwv + cIwv + cJwv + cKwv)

1− σ′
wv(t)

[
|uR

v |+ |uI
v|+ |uJ

v |+ |uK
v |

]
+N

}
≤ λ

{
− aw(|uR

w|+ |uI
w|+ |uJ

w|+ |uK
w |) + 4δ

l∑
v=1

bwv(|uR
v |+ |uI

v|+ |uJ
v |+ |uK

v |) + 16δ ×

l∑
v=1

cwv

1− σ′
wv(t)

[
|uR

v |+ |uI
v|+ |uJ

v |+ |uK
v |

]
+N

}
= λ

{
− aw|uR

w|+ 4δ
l∑

v=1

(bwv +
4cwv

1− σ′
wv

)|uR
v | − aw|uI

w|+ 4δ
l∑

v=1

(bwv +
4cwv

1− σ′
wv

)|uI
v|

−aw|uJ
w|+ 4δ

l∑
v=1

(bwv +
4cwv

1− σ′
wv

)|uJ
v | − aw|uK

w |+ 4δ
l∑

v=1

(bwv +
4cwv

1− σ′
wv

)|uK
v |+N

}
,(25)

where N is a positive constant.

From (25), we have by using (h5)

dVw(t)

dt

≤ λ

l∑
v=1

{
− aw

l
|uR

w|+ 4δ(bwv +
4cwv

1− σ′
wv

)|uR
v | −

aw
l
|uI

w|+ 4δ(bwv +
4cwv

1− σ′
wv

)|uI
v| −

aw
l
|uJ

w|

+4δ(bwv +
4cwv

1− σ′
wv

)|uJ
v | −

aw
l
|uK

w |+ 4δ(bwv +
4cwv

1− σ′
wv

)|uK
v |+ N

l

}
≤ λ

l∑
v=1

{
− aw

l
|uR

w|+ (
av
l

− α)|uR
v | −

aw
l
|uI

w|+ (
av
l
| − α)uI

v| −
aw
l
|uJ

w|+ (
av
l

− α)|uJ
v |

−aw
l

× |uK
w |+ (

av
l

− α)|uK
v |+ N

l

}
.

By Lemma 3.1, we have:

dV (t)

dt
≤ λ

l∑
w=1

cw

l∑
v=1

[
− α(|uR

w(t)|+ |uI
w(t)|+ |uJ

w(t)|+ |uK
w (t)|) +N

]
. (26)

From (26), it follows that there exists a positive constant M such that when ∥u(t)∥ ≥
M, dV (t)

dt < 0. Hence, there exists a positive constant M such that every periodic solution u(t)

of system (7) satisfies ∥u(t)∥ ≤ M(If the periodic solution u(t) satisfies ∥u(t)∥ > M, then we

have dV (t)
dt < 0. Since V (t) is a periodic function, while dV (t)

dt < 0, this leads to a contradiction).

Hence, the proof of Lemma 3.2 is complete.

Lemma 3.3. If cw > 0 is the cofactor of the wth diagonal element of the Laplacian matrix
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of (g,B) and

dV (t)

dt

≤
l∑

w=1

cw

l∑
v=1

eξt
{
− (

aw
l

− ξ)|UR
w (t)|+ (

av
l

− ξ)|UR
v (t)| − (

aw
l

− ξ)|U I
w(t)|

+(
av
l

− ξ)|U I
v (t)| − (

aw
l

− ξ)|UJ
w(t)|+ (

av
l

− ξ)|UJ
v (t)| − (

aw
l

− ξ)|UK
w (t)|

+(
av
l

− ξ)|UK
v (t)| − ξ(|UR

w (t)|+ |U I
w(t)|+ |UJ

w(t)|+ |UK
w (t)|)

}
,

then

dV (t)

dt
≤ eξt

l∑
w=1

cw

l∑
v=1

[
− ξ(|UR

w (t)|+ |U I
w(t)|+ |UJ

w(t)|+ |UK
w (t)|)

]
.

Proof. Since
dV (t)

dt

≤
l∑

w=1

cw

l∑
v=1

eξt
{
− (

aw
l

− ξ)|UR
w |+ (

av
l

− ξ)|UR
v | − (

aw
l

− ξ)|U I
w|+ (

av
l

− ξ)|U I
v |

−(
aw
l

− ξ)|UJ
w |+ (

av
l

− ξ)|UJ
v | − (

aw
l

− ξ)|UK
w |+ (

av
l

− ξ)|UK
v | − (|UR

w |+ |U I
w|

+|UJ
w |+ |UK

w |)
}
, (27)

setting b1wv = 1(w ̸= v), b1wv = 0, w = v,G1wv(|UR
w |, |UR

v |) = (av

l − ξ)|UR
v | − (aw

l − ξ)|UR
w |, and

β1w(|UR
w |) = (aw

l − ξ)|UR
w |; b2wv = 1(w ̸= v), b2wv = 0, w = v,G2wv(|U I

w|, |U I
v |) = (av

l − ξ)|U I
v | −

(aw

l − ξ)|U I
w|, β2w(|U I

w|) = (aw

l − ξ)|U I
w|; b3wv = 1(w ̸= v), b3wv = 0, w = v,G3wv(|UJ

w |, |UJ
v |) =

(av

J − ξ)|UJ
v | − (aw

l − ξ)|UJ
w |, β3w(|UJ

w |) = (aw

l − ξ)|UJ
w |; b4wv = 1(w ̸= v), b4wv = 0, w =

v,G4wv(|UK
w |, |UK

v |) = (av

l − ξ)|UK
v | − (aw

l − ξ)|UK
w |, β4w(|UK

w |) = (aw

l − ξ)|UK
w |, then we have

from (27):
dV (t)

dt

≤ eξt
l∑

w=1

cw

{ l∑
v=1

b1wvG1wv

(
|UR

w |, |UR
v |

)
+

l∑
v=1

b2wvG2wv

(
|U I

w|, |U I
v |
)
+

l∑
v=1

b3wvG3wv ×

(
|UR

w |, |UR
v |

)
+

l∑
v=1

b4wvG4wv

(
|UR

w |, |UR
v |

)
− ξ

l∑
v=1

(|UR
w |+ |U I

w|+ |UJ
w |+ |UK

w |)
}
, (28)

G1wv

(
|UR

w |, |UR
v |

)
= βv(|UR

v |)− βw(|UR
w |), (29)

G2wv

(
|U I

w|, |U I
v |
)
= βv(|U I

v |)− βw(|U I
w|), (30)

G3wv

(
|UJ

w |, |UJ
v |
)
= βv(|UJ

v |)− βw(|UJ
w |), (31)

and

G4wv

(
|UK

w |, |UK
v |

)
= βv(|UK

v | − βw(|UK
w |). (32)
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From Lemma 2.2, it follows that
l∑

w=1

l∑
v=1

cwb1wvG1wv

(
|UR

w |, |UR
v |

)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G1wv

(
|UR

w |, |UR
v |

)
, (33)

l∑
w=1

l∑
v=1

cwb2wvG2wv

(
|U I

w|, |U I
v |
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G2wv

(
|U I

w|, |UR
v |

)
, (34)

l∑
w=1

l∑
v=1

cpb3wvG3wv

(
|UR

w |, |UR
v |

)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G3wv

(
|UR

w |, |UR
v |

)
, (35)

and
l∑

w=1

l∑
v=1

cwb4wvG4wv

(
|U I

w|, |U I
v |
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

G4wv

(
|U I

w|, |UR
v |

)
. (36)

By (29)-(36), it follows that from a fact W (Q) > 0,
l∑

w=1

l∑
v=1

cwb1wvG1wv

(
|UR

w |, |UR
v |

)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|UR

v |)− βw(|UR
w |)

]
≤ 0, (37)

l∑
w=1

l∑
v=1

cwb2wvG2wv

(
|U I

w|, |U I
v |
)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|U I

v |)− βw(|U I
w|)

]
≤ 0, (38)

l∑
w=1

l∑
v=1

cwb3wvG3wv

(
|UR

w |, |UR
v |

)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|UJ

v |)− βw(|UJ
w |)

]
≤ 0, (39)

and
l∑

w=1

l∑
v=1

cwb4wvG4wv

(
|UK

w |, |UK
v |

)
=

∑
Q∈Ω

W (Q)
∑

(w,v)∈K(CΩ)

[
βv(|UK

v |)− βw(|UK
w |

)]
≤ 0. (40)

Substituting (37)-(40) into (28) gives

dV (t)

dt
≤ eξt

l∑
w=1

cw

l∑
v=1

[
− ξ(|UR

w (t)|+ |U I
w(t)|+ |UJ

w(t)|+ |UK
w (t)|)

]
< 0.

This finishes the proof of Lemma 3.3.

Theorem 3.1 Assume that (h1) − (h4) hold. Then system (1), i.e., system (3)-(6) has at

least one T periodic solution.

Proof. Let

X1 = Z1

=
{
u : u = (uR

1 , u
I
1, u

J
1 , u

K
1 , uR

2 , u
I
2, u

J
2 , u

K
2 , · · · , uR

l , u
I
l , u

J
l , u

K
l )T ∈ C(R,R4l),

u(ω + t) = u(t)
}
,

∥u∥ =
l∑

w=1

max
t∈[0,ω]

(|uR
w(t)|+ |uI

w(t)|+ |uJ
w(t)|+ |uK

w (t)|).

Then X1 and Z1 are two Banach spaces when they are endowed with the norm ∥∥.
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Set L1 : DomL1 = {u ∈ C1(R,R4l) : u, u′ ∈ X1} ⊂ X1 → X1 by

(L1u)(t) = u′(t).

Obviously, L1 is a linear operator. Furthermore, it is easy to see that KerL1 = {0} and

ImL1 = X1. Hence, L1 is one-to-one. Define L−1
1 the inverse of L1, we have

L−1
1 : ImL1 → DomL1,

(L−1
1 )u(t) =

∫ t

0

u(s)ds− 0.5

∫ ω

0

u(s)ds, t ∈ R.

Define the operator N1 : X1 → X1 by

(N1u)(t) =
(
(N11u)(t), (N12u)(t), · · · , (N1lu)(t)

)T

,

where for w = 1, 2, · · · , l,
(N1wu)(t) =

(
(NR

1wu)(t), (N
I
1wu)(t), (N

J
1wu)(t), (N

K
1wu)(t)

)
=

(
VwR(t, u(t), u(t− σw1(t), · · · , u(t− σwl(t))),

VwI(t, u(t), u(t− σw1(t), · · · , u(t− σwl(t))),

VwJ(t, u(t), u(t− σw1(t), · · · , u(t− σwl(t))),

VwK(t, u(t), u(t− σw1(t), · · · , u(t− σwl(t)))
)
.

Clearly, N1 is continuous. Setting K1 = L−1
1 N1, by applying the Arzela-Ascoli theorem, we

can prove that K1 is compact.

Corresponding to the operator L1u = λN1u, we have system (1). From Lemma 3.2, there

exists a positive constant M such that every periodic solution of L1u = λN1u satisfies ∥u(t)∥ ≤
M. Letting Ω = {u(t) : u(t) ∈ X1, ∥u(t)∥ ≤ M + H},H is a positive constant such that

M +H >
lN max1≤w≤l{cw}
α∗ min1≤w≤l{cw} . Thus, by Lemma 2.1 we conclude that L1u = N1u has at least one

solution in X1. By Lemma 3.2, system (1) has at least one ω periodic solution.

§4 Exponential stability of periodic solutions

Theorem 4.1 Assume that all conditions in Theorem 3.1 hold. Then the unique ω periodic

solution of system (1) is globally exponentially stable.

Proof. By Theorem 3.1, system (1) has at least an ω periodic solution, say, u∗(t) =
(
uR∗
1 (t),

uI∗
1 (t), uJ∗

1 (t), uK∗
1 (t), uR∗

2 (t), uI∗
2 (t), uJ∗

2 (t), uK∗
2 (t), · · · , uR∗

l (t), uI∗
l (t), uJ∗

l (t), uK∗
l (t)

)T

. Let

u(t) =
(
uR
1 (t), u

I
1(t), u

J
1 (t), u

K
1 (t), uR

2 (t), u
I
2(t), u

J
2 (t), u

K
2 (t), · · · , uR

l (t), u
I
l (t), u

J
l (t), u

K
l (t)

)T

is an arbitrary solution of system (1) with the initial value condition.

Since 4δ(bwv +
4cwv

1−σ′
wv

) < av

l , then there exists a positive constant ξ such that (h6)

4δ(bwv +
4cwve

ξσ

1− σ′
wv

) <
av
l

− ξ.
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We construct a Lyapunov functional as follows

V (t)

=

l∑
w=1

cwe
ξt
[
|UR

w (t)|+ |U I
w(t)|+ |UJ

w(t)|+ |UK
w (t)|

]
+ 4δ

l∑
w=1

l∑
v=1

(cRwv + cIwv + cJwv + cKwv)

1− σ′
wv(t)

×∫ t

t−σwv(t)

eξ(s+σ)
[
|UR

v (s)|+ |U I
v (s)|+ |UJ

v (s)|+ |UK
v (s)|

]
ds, (41)

where

UR
w (t) = uR

w(t)−uR∗
w (t), U I

w(t) = uI
w(t)−uI∗

w (t), UJ
w(t) = uJ

w(t)−uJ∗
w (t), UK

w (t) = uK
w (t)−uK∗

w (t).

Denote

g∆R = gRv − gR∗
v , g∆I = gIv − gI∗v , g∆J = gJv − gJ∗v , g∆K = gKv − gK∗

v ,

G∆R = GR
v −GR∗

v , G∆I = GI
v −GI∗

v , G∆J = GJ
v −GJ∗

v , G∆K = GK
v −GK∗

v ,

where

gr∗v = grv

(
uR∗
v (t), uI∗

v (t), uJ∗
v (t), uK∗

v (t)
)
, r = R, I, J,K,

Gr∗
v = Gr

v

(
uR∗
v (t− σwv(t)), u

I∗
v (t− σwv(t)), u

J∗
v (t− σwv(t)), u

K∗
v (t− σwv(t))

)
.

Then it follows that by calculating the time derivative of V (t) along the trajectories of

system (3)-(6)

dV (t)

dt

=
l∑

w=1

cwξe
ξt
[
|UR

w (t)|+ |U I
w(t)|+ |UJ

w(t)|+ |UK
w (t)|

]
+

l∑
w=1

cwe
ξt
{
sign[UR

w (t)]
(
− awU

R
w (t)

+
l∑

v=1

[
bRwv(t)g

∆R
v − bIwv(t)g

∆I
v − bJwv(t)g

∆J
v − bKwv(t)g

∆K
v

]
+

l∑
v=1

[
cRwv(t)G

∆R
v − cIwv(t)G

∆I
v

−cJwv(t)G
∆J
v − cKwv(t)G

∆K
v

])
+ sign[U I

w(t)]
(
− awU

I
w(t) +

l∑
v=1

[
bIwv(t)g

∆R
v + bRwv(t)g

∆I
v −

bKwv(t)g
∆J
v + bJwv(t)g

∆K
v

]
+

l∑
v=1

[
cIwv(t)G

∆R
v + cRwv(t)G

∆I
v − cKwv(t)G

∆J
v + cJwv(t)G

∆K
v

])
+

sign[UJ
w(t)]

(
− awU

J
w(t) +

l∑
v=1

[
bJwv(t)g

∆R
v + bKwv(t)g

∆I
v + bRwv(t)g

∆J
v − bIwv(t)g

∆K
v

]
+

l∑
v=1

[
cJwv(t)G

∆R
v + cKwv(t)G

∆I
v + cRwv(t)G

∆J
v − cIwv(t)G

∆K
v

])
+ sign[UK

w (t)]
(
− awU

K
w (t) +

l∑
v=1

[
bKwv(t)g

∆R
v − bJwv(t)g

∆I
v + bIwv(t)g

∆J
v + bRwv(t)g

∆K
v

]
+

l∑
v=1

[
cKwv(t)G

∆R
v − cJwv(t)G

∆I
v

+cIwv(t)G
∆J
v + cRwv(t)G

∆K
v

])}
+ 4δ

l∑
w=1

l∑
v=1

4cwve
ξ(t+σ)

1− σ′
wv

[
|UR

v (t)|+ |U I
v (t)|+ |UJ

v (t)|+



538 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

|UK
v (t)|

]
− 4δ

l∑
w=1

l∑
v=1

eξt(cRwv + cIwv + cJwv + cKwv)
[
|UR

q (t− σwv(t))|+ |U I
v (t− σwv(t))|+

|UJ
v (t− σwv(t))|+ |UK

v (t− σwv(t))|
]

≤
l∑

w=1

cw

l∑
v=1

eξt
{
− aw

l
|UR

w |+ 4δ(bwv +
4eξσcwv

1− σ′
wv

)|UR
v | − aw

l
|U I

w|+ 4δ(bwv +
4eξσcwv

1− σ′
wv

)|U I
v |

−aw
l
|UJ

w |+ 4δ(bwv +
4eξσcwv

1− σ′
wv

)|UJ
v | −

aw
l
|UK

w |+ 4δ(bwv +
4eξσcwv

1− σ′
wv

)|UK
v |

}
≤

l∑
w=1

cw

l∑
v=1

eξt
{
− aw

l
|UR

w |+ (
av
l

− ξ)|UR
v | − aw

l
|U I

w|+ (
av
l
| − ξ)U I

v | −
aw
l
|UJ

w |+ (
av
l

−

ξ)|UJ
v | −

aw
l
|UK

w |+ (
av
l

− ξ)|UK
v |

}
≤

l∑
w=1

cw

l∑
v=1

eξt
{
− (

aw
l

− ξ)|UR
w |+ (

av
l

− ξ)|UR
v | − (

aw
l

− ξ)|U I
w|+ (

av
l

− ξ)|U I
v | − (

aw
l

−ξ)|UJ
w |+ (

av
l

− ξ)|UJ
v | − (

aw
l

− ξ)|UK
w |+ (

av
l

− ξ)|UK
v | − ξ(|UR

w |+ |U I
w|+ |UJ

w |

+|UK
w |)

}
.

According to Lemma 3.3, from (42), we have

dV (t)

dt
≤ eξt

l∑
w=1

cw

l∑
v=1

[
− ξ(|UR

w (t)|+ |U I
w(t)|+ |UJ

w(t)|+ |UK
w (t)|)

]
< 0.

The rest proof is the same as that of the corresponding part of Theorem 4.1 in [19] and it

is omitted. This proof of Theorem 4.1 is complete.

Remark 2. In [19], by combining the continuation theorem of Mawhin’s coincidence degree

theory with the priori estimate method of periodic solutions, the existence of periodic solutions

for QVCNNS was obtained. While in our article, the existence of periodic solutions for QVC-

NNS is obtained by combining the continuation theorem of Mawhin’s coincidence degree theory

with Graph theory as well as Lyapunov functional approach for QVCNNS. In the result of the

existence of periodic solutions in [19], the conditions (H1) and (H3) are kept in our paper, the

condition (H2) is replaced with the condition (h4) in our paperand the (H4) is replaced with

(h3) in our paper. Namely the assumptions that the activation functions are bounded and the

values of the activation functions in origin point are zero are replaced with new conditions.

Remark 3. In the result of the globally exponential stability in [19], the condition (P1) is

replaced with (h4) in our paper. Novel sufficient conditions on the existence and global expo-

nential stability of periodic solutions for system (1) are established by removing the assumptions

for boundedness on the activation functions and the assumptions of the values of the activation

functions at origin being zero in [19]. Hence the results of our paper are less conservative than

those obtained in [19] and our results are quite novel.

Remark 4. In our article, the separation method is used to study the periodic solutions for

QVCNNS, namely, by separating the quaternion-valued system (1) into a real-valued system of

four one-order differential equations (3)-(6), and by studying the periodic solutions of (3)-(6),
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the periodic solutions of system (1) is studied. The advantages of this method are that by

transforming the quaternion-valued system into real-valued system, the periodic solutions of

quaternion-valued system are investigated by studying the periodic solutions of the real-valued

system, which enriches the theoretical results in the QVCNNS. The disadvantages of real-valued

method are that without applying the quaternion-valued method, the novel works cannot be

obtained for QVCNNS.

§5 Numerical example

In this section, we give an example for showing our result.

Example 5.1 Consider the following QVCNN

u′
w(t) = −awuw(t) +

2∑
v=1

bwv(t)gv(uv(t)) +
2∑

v=1

cwv(t)gv(uv(t− σwv(t))) + rw(t), w = 1, 2, (42)

where u′
w(t) = u

′R
w (t)+ iu

′I
w (t)+ju

′J
w (t)+ku

′K
w (t) ∈ Q, gv(uv) = 0.01(|uR

v |+ |uI
v|+ |uJ

v |+ |uK
v |)+

0.01i(|uR
v |+|uI

v|+|uJ
v |+|uK

v |)+0.01j(|uR
v |+|uI

v|+|uJ
v |+|uK

v |)+0.005k(|uR
v |+|uI

v|+|uJ
v |+|uK

v |)−
0.01sint+icost+0.1jsint−0.09kcost, v = 1, 2 and σwv(t) = 2−0.5sint, σ′

wv = −0.5cost, bRwv(t) =

bIwv(t) = bJwv(t) = bKwv(t) = 3sint, cRwv(t) = cIwv(t) = cJwv(t) = cKwv(t) = 4cost, v = 1, 2. Then in

Theorem 4.1, δ = 0.01, σ′
wv = 0.5, bwv = 3, cwv = 4, l = 2, av = 4. Since the activation functions

in system (42) are not bounded, while the activation functions in [19] were assumed to be

bounded, hence, the global exponential stability of periodic solutions of system (42) cannot be

verified by the results obtained in [19]. It is easy to prove that the conditions (h1) − (h3) in

Theorem 4.1 are satisfied. On the other hand, we can prove that (h4) also holds:

4δ(bwv +
4cwv

1− σ′
wv

) <
av
l
.

Hence the all conditions in Theorem 4.1 are satisfied. By Theorem 4.1, system (42) has one

2π periodic solution which is globally exponential stable. Curves of state variables in Example

5.1 is shown in Figure 1.
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Figure 1. Curves of u1 and u2 in Example 5.1.
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§6 Conclusion

By combining graph theory with coincidence degree theory as well as Lyapunov functional

method, sufficient conditions to guarantee the existence and exponential stability of periodic

solutions for quaternion-valued cellular neural networks with time-varying delays are obtained.

Our results improve partly those obtained in [19] by removing the assumptions for the bounded-

ness on the activation functions and the assumptions that the values of the activation functions

are zero at origin.
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