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New criteria on the existence and global exponential
stability of periodic solutions for quaternion-valued

cellular neural networks

LI Ai-ling ZHOU Zheng? ZHANG Zheng-qiu®*

Abstract. In this paper, a class of quaternion-valued cellular neural networks (QVCNNS) with
time-varying delays are considered. Combining graph theory with the continuation theorem of
Mawhin’s coincidence degree theory as well as Lyapunov functional method, we establish new
criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing
the assumptions for the boundedness on the activation functions and the assumptions that the
values of the activation functions are zero at origin. Hence, our results are less conservative and

new.

81 Introduction

Because of the fact that neural networks (NNS) can be applied to signal processing, pat-
ten recognition, optimization and associative memories and image processing, the dynamical
behaviors of NNS have been widely investigated both in theory and application ([1-4], [33],
[34)).

Complex-valued neural networks (CVNNS) as an extension of real-valued neural networks
(RVNNS) also can be applied to signal and information processing in complex-valued states,
up to now, the dynamical behaviors of CVNNS have been widely investigated, for example, see
([5-8]) and their references therein.

On the other hand, quaternions (QVNNS) which were invented in 1843 by Hamilton [9] as an
extension of RVNNS and CVNNS have many practical applications such as the 3D geometrical
affine transformation, especially spatial rotation ([10, 11]), image impression, color night vision
[12] etc. It is well known that the dynamics of Quaternions plays an important part in their
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implementation and applications. Hence, the study of the dynamics of Quaternions is essential
necessary. Up to now, the dynamical behaviors, such as the stability and synchronization of
QVNNS have been widely investigated, and as far as the study of the synchronization of QVNNS
is concerned, we can refer to these papers ([13]-[15], [29]-[32]). As for as the study of stability of
equilibrium point of QVNNS is concerned, we can refer to ([16]-[18], [29], [35]-[37]). In [16], the
linear threshold discrete-time quaternion-valued neural network with time-delays was discussed
and sufficient criteria of boundedness and periodicity for the neural network were obtained. In
[17], global p-stability criteria for a class of quaternion-valued neural networks with unbounded
time-varying delays were established. In [18], without using Lyapunov function, some sufficient
conditions were established to guarantee the global exponential stability for a class of QVNNS
based on Halanay inequality. In [29], the existence-uniqueness and global asymptotic stability
of equilibrium point of a kind of quaternion-valued BAM fuzzy NNS were discussed. By using
Homeomorphism theorem and the properties of unary high degree inequality, a criterion assuring
the existence and uniqueness of equilibrium point of the considered system was obtained. Then
by applying integral inequality method, a criteria on asymptotic stability of equilibrium point
for the system was attained. In [35], the globally exponential stability in Lagrange sense of
BAM quaternion-valued inertial NNS was concerned by non-reduced order and un-decomposed
method. Auxiliary function-based inequalities and reciprocally convex inequality were applied
to the set of quaternion and several criteria for the system were acquired in the form of LMIS.
In [36], the commutative QVNNS were established on time scales, which can bring two different
forms of discrete time and continuous time QVNNS into a single framework. Some criteria
for globally exponential stability of QVNNS were studied mainly by using matrix measure and
some inequalities on time scales. In [37], the article was dedicated to studying the stability
of QVNNS. The direct quaternion method was used to analyze the QVNNS. By establishing
their reciprocally convex inequality and wirtinger-based inequality in quaternion domain, the
existence, uniqueness and global stability criteria in the form of LMIS for QVNNS with several
freedom matrices were derived.

However, so far, the studies on the existence and the stability of periodic solutions for the
QVNNS have been very rare. We only find four articles which investigated the existence and
global stability of periodic solutions ([19], [38]-[40]). In [38], the periodic solutions of the QVC-
NNS were discussed. By using Schauder fixed point theorem and by constructing an appropriate
Lyapunov function, the existence and globally exponential stability of periodic solutions of the
networks were attained. In [39], the anti-periodic solutions of a class of QVCNNS were discussed
(the existence of an w anti-periodic solution can implies the existence of an 2w periodic solution-
s). Applying the continuation theorem of coincidence degree theory and inequality techniques,
some criteria on the existence and globally exponential stability of periodic solutions of the
networks were presented. In [40], the existence and global exponential stability of anti-periodic
solutions for QVNNS were concerned. By using a continuation theorem of coincidence degree
theory and the wirtinger inequality, some criteria were obtained on the existence and globally
exponential stability of QVNNS. In [19], by combining the continuation theorem of Mawhin’s
coincidence degree theory with the priori estimate method of periodic solutions, the existence
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of periodic solutions for QVCNNS was obtained under the assumptions that the activation
functions satisfy boundedness conditions and the values of the activation functions at origin are
zero. By constructing a Lyapunov functional, a sufficient condition was derived to guarantee
the global exponential stability of periodic solution for QVNNS. Since the QVCNNSs support a
complete representation and has a great capacity for more practical problems and the results
of the existence and globally stability for QVNNS are very rare, this inspires us to study the
existence and globally exponential stability of periodic solutions of QVNNS.

Now, graph theory has been used to research global asymptotic stability of discrete-time
Cohen-Grossberg NNS with finite and infinite delays in [37]. The existence and global stability
of periodic solutions for coupled networks also were studied in [22-25].

Recently, without applying the priori estimate method of periodic solutions, some criteria
to guarantee the existence of periodic solutions for NNS have been established by combining
coincidence degree theory with Lyapunov functional method or linear matrix inequality method
[26-28].

However, so far, the results on the existence and global exponential stability of periodic
solutions for delayed QVNNS have been rare by combining coincidence degree theory with
graph theory as well as Lyapunov functional method. This inspires us to study the periodic
solutions for QVNNS.

In this article, our main purpose is to establish novel sufficient conditions on the existence
and global exponential stability of periodic solutions for system (1) by combining graph theory
with continuation theorem as well as Lyapunov functional method, and removing the assump-
tions for boundedness on the activation functions and the assumptions of the values of the
activation functions at origin being zero in [19]. In the proof of our main theorems, some novel
inequalities are used to obtain the boundness of periodic solutions of operator equations. Hence
the contributions of this paper include the following three aspects:

(a) A novel study method of periodic solutions for QVCNNS is introduced, that is combining
graph theory with continuation theorem of coincidence degree theory as well as Lyapunov
functional method studies periodic solutions for QVCNNS.

(b) Inequalities techniques are used to study the periodic solutions for QVCNNS.

(c) Novel criteria to guarantee the existence and global exponential stability of periodic
solutions for QVCNNS are derived by removing the assumption for the boundedness on the ac-
tivation functions in [19] and removing the assumption that the value of the activation function
is zero at origin.

This paper is organized as follows. Some preliminaries and lemmas are introduced in Section
2. In Section 3, a sufficient condition is derived to guarantee the existence of periodic solutions
of system (1). In Section 4, a sufficient condition is established on the global exponential
stability of periodic solutions for system (1). In Section 5, an illustrative example is given to
prove the effectiveness of the proposed theory. In Section 6, a conclusion is given.
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§2 Preliminaries

In [19], the QVNNS discussed are described by the following differential equations

l
Uy, (1) = —awu (t) + Z buw (t)go(uu (1)) + Z Cun(t)go (o (t = 0wu (1)) + 7w (t), (1)

where w = 1,2, ,l,uy(t) € Q stands for the state of the wth unit at time ¢, g, (u,(t)) € @
denotes the output of the vth unit at time ¢,b,,(t) € Q denotes the strength of the vth unit
on the wth unit at time ¢, ¢,y (t) denotes the strength of the vth unit on the vth unit at time
t — owe(t), rw(t) € @ is the external input on the vth at time t,04,(t) > 0 denotes to the
transmission delay along the axon of the vth unit on the wth unit at time ¢, and a, > 0
denotes the rate with which the wth unit will reset its potential to the reserving state when
disconnected from the network and external inputs.

The initial value of system (1) is given by
U (8) = Pu(8) € Q,s € [—0,0],0 = max { max |ou,,(t)|}. (2)

1<w,v<l "0<t<w
Let |.| be the Euclidean norm for R and L = {1,2,---,[}. We cite the following notation

f= rrﬁx]{lf( )

where f(t) is a continuous w periodic function with w > 0.

For u = uf 4+ iu! + ju’ + ku® € Q,9 : Q — Q,g(u) can be expressed as g(u) =
gB (B ul ul uf) +igh (uf ul u? uf) + 5g7 (u ul,u?  uf) + kg™ (uf,ul v’ uf). For u,, =
ull +iul + jul + kuX € Q, we denote the activation functions g, in (1) as follows

I R I J 1 )

go(uy) = gl (! u? wf) gy (uff ul wl u) 1 gl (w ul u
kg (uf ul ! uf) 0 =1,2,-- 1

Throughout this paper, we assume that

(h1) 0wy € C(R,RT), byy,Cuy and 7, € C(R,Q) are w periodic functions, w,v =
1,2, ,1.

(h2) owy € C(R,R)and o), < l,w,v=1,2,--- L

(h3) g7 € C(R* R) and there exists a positive constant § such that for v =1,2,--- [;7 =
RIJKu quJquRme ac € R, and

oo (ufl byl ul) = g (ol ol @) o >|<6(|u — )+ fuf = 2|+ |uf - 2|+ |l - oK),
(ha) A
C a
45(byy + ———) < 2.
( +lfafuv) l
For w,v =1,2,--- 1, we denote

bwv( ) bgv (t) + Zbum( ) =+ jbum (t) + kbqlzfv(t)
Cuwo (t) = Cgv( ) + chv( ) + ]va(t) + kcwv (t)
)

ru(t) = ra(t) +irk () + jri () + kr (1),
7= 1<I£10a5<<l{01£1ax lowe (£)]}

Uiuv = tg%(;a}oi]{a (t)} bwv - max{bwvv wv) bi}tﬂb{fw} Cwv = max{cunﬂ ill}’UVC’L{)’U’C[{
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Obviously, by (h1), bl (t), ¢y (t), and vl (w,v = 1,2,--- ,l,r = R, I, J, K) are all continuous
w-periodic functions on R.

Denote  (t) = wli(t) + wl(t) + wll () + wk (8), g5 = gy (uld(t), wl(®),ul (), uk (1)), and
Gy, = g;(uf(t - Uwv(t))7u{)(t Uwv(t))au;)](t - Uwv(t))7u1€((t - Uwv<t)))(w7U =1,2,---lir =
R, 1, J, K.) Therefore, system (1) can be changed as the following real valued system (see [19])
forw=1,2,--- 1

l l
() = —awul )+ bR, (098 ~ L (Dg) — bl (Dg] — V9] + 3 ek, (0GE
v=1 v=1
L (OGE = e, (DG — i (DG + ()
- va<t, u(t), ult = 7w (®), -+ ult = ou(t))), (3)
l l
wlt) = —ayul, Z[ gt + b2, (0] — b, (g + b, (095 | + 3 [l (DGE
v=1
B, (0GE = S, (OG] + b (OGK | + i)
= Var(tult),ult = g (), -+ ult = ou (1), (4)
l
wl(t) = —auu Z[ g8 + bl (098 + b, (Dg) =L, (09| + 3 [l (DGE
elty (DG + e, (DG — b (OGE ] + 7] (1)
= Vas(tu(t) u(t = 0w (0), -+ ult = cu(b))), (5)
l
Wl = —auulf +Z[ 98 = b (D91 + B (g + 08,095 |+ [ek, (061

e (DGh + cby (0G] + B, (VG| +rE (1
= Vur(t,u(t),u(t —owi(t)), -, ult — owl(t))). (6)
By putting du(s) = 65(s) + idL(5) + jél(s) + koK (s), &1, € C(l=0,0], R), from (2), it
follows that the initial values of (3)-(6) are in the following form
Uy (s) = o, (s), ¢y, € C([—0,0], R),w=1,2,--- ,l,r=R,I,J K.

w
Lemma 2.1 (Gaines and Mawhin[20]). Suppose that X1 and Z; are two Banach spaces,
and Ly : DomL, C X1 — Zq is linear, N1 : X1 — Z; is continuous. Assume that L is one-
to-one and K| = Ll_lNl is compact. Furthermore, assume that there exists a bounded and
open subset Q1 C X7 with o € Q such that operation equation Liu = AN1u has no solutions in
9Q N DomLy for any X € (0,1). Then the problem Liu = Nyu has at least one solution in ).
Definition 2.1 (Graph theory [21]). A directed graph g = (U, K) contains a set U =
{1,2,---,1} of vertices and a set K of arcs (w,v) leading from initial vertex w to terminal
vertex v. A subgraph I' of g is said to be spanning if I' and g have the same vertex set. A
subgraph I" is unicyclic if it is a disjoint union of rooted trees whose roots from a directed cycle.
For a weighted digraph g with [ vertices, we define the weight matrix B = (byy)1x; whose entry
by > 0 is equal to the weight of arc (v, w) if it exists, and 0 otherwise. A digraph g is strongly
connected if for any pair of distinct vertices, there exists a directed path from one to the other.
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The Laplacian matrix of (g, B) is defined as L = (B )ixi, Where By, = —by,y for w # v and
Buwv = Y by for w=v.
wH#v
Lemma 2.2([21]). Suppose thatl > 2 and c,, denotes the cofactor of the w-th diagonal ele-
!
ment of the Laplacian matriz of (g, B). Then > CuwbwyGun(XTw, ) = > W(Q) >
w,v=1 QeN (w,w)EK(Cq)

Gouo (T, ) and where Gy (T4, Ty) is an arbitrary function, Q is the set of all spanning uni-
cyclic graphs of (g, B), W(Q) is the weight of Q,Cq denotes the directed cycle of Q, and K(Cg)
is the set of arcs in Cq. In particular, if (g, B) is strongly connected, then c,, > 0 for1 < w <.
Remark 1. It is clear that in order to prove the existence and global exponential stability of
system (1), we only need to prove the existence and global exponential stability of (3)-(6).

83 The existence of periodic solutions

l
Lemma 3.1 If V(t) = > cuVau(t),cw > 0 is the cofactor of the with diagonal element of
w=1

Laplacian matriz of (g, B),A > 0, N > 0 are two constants and
AV, (t)
dt
Qo Ay A Ay
< AZ{ (O] + (5 = a)lul0)] = S 0)] + (52 — @ual(0)] — 2|+ (52 -

then
l l
dV (t
T <33 e [~ aluli @]+ W (o) + (0] + ki @) + N]
w=1 v=1
Proof. Since
dV, (t)
dt
l
")
< AZ{ Jug | + ( a)|uR|——|f|+(l|— Jug| — =+ |J|+( —a)luy|
v=1
_Ow K, (M ki, v
o fulf | 4+ (5 — |+ 7}
l
(27 ) Aoy Ay (o9
< A { - EE—alulll+ (3 - @l - (5 = a)lul |+ (2 — a)luf] - (B - a)us)
v=1
Qyy J Qo K N K
H(E ] = (= a)fulf] + (0 = )l + T = alull + [l + ug| + [ulS])
N
+7}- (7)

Setting blwv = 1(’LU 7é 'U)7b1um = va =, lev(|u5|’ |u11)%|) = (aTv_a)|u§|_(Tw_a)|u5|a and
Brw(Jug]) = (%= = a)|w]; brwe = 1(w # ), bawe = 0,0 = v, Gauw (||, [up]) = (5 — @) |uf| -
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(4 — a)|ug, |, Bow(luy,]) = (4 = a)lug | bzwe = L(w # v), bwe = 0,w = v, Gz (|uy |, [u]])
= (% —a)fud| — (%~ )|, By () = (% — )t e = 1w 7 ) bao = 0,0 = v,
G ([, [uX]) = (2 — )|l — (% — @)k |, B (K ]) = (% — 0)[u], then we have from
(7) that
dV(t)
dt
! !
S )\{ Z blvelwv (|U5‘7 ‘ufﬂ) + Z b2ve2wv <|UQID‘7 ‘uql)‘) Z wavGZSwv <|U | |u |>
!
> baun G (ufi ], Jufl) - @ S ] R+ Rl o) + N}, (8)
v=1 v=1
where
G ([ufll, [uff) = B (|uff]) = Bu(luf), (9)
Gav (Jubl b)) = B(Jut]) = Bu (b)), (10)
G (1) = Buluf]) = Bl ), (11)
and
G (Il [u1) = B (julf | = Bu(|ulS)), (12)
!
Because V(t) = > ¢y Vi(t), where ¢, > 0 is the cofactor of the with diagonal element of
w=1
the Laplacian matrix of (g, B), then we have
dv (t)
dt
_ zl: V()
- w
= dt
! !
- )\ Z Cw Z {blvelwv“ugL |’LL,[}]%|) + b2ve2wv(|u{U|7 |u1I;|) + wavGSwv(|u7{;|7 |’U,1{|) + b4w'u
w=1 v=1
X G (0S| [l 1) = allufl] + [ul| + [u]| + uff]) + N}, (13)

From Lemma 2.2, it follows that

jjicwbmam(um,mf) =S W@ Y Guu(luflluf), (14)

w=1v=1 Qe (w,v)eK(Cq)

l l
> cubsunGaun (Jubl ull) = SSW@) > Gawn (Il [uf), (15)
w=1v=1 QeN (ww)eK (Cq)

iicw%cm(um,w?) =3 w@ > Gauw(lufl ), (16)

w=1v=1 QEN (w,w)eK(Cq)
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and
l l
SN cwbtnGuun(Jubl ) = W@ Y G (Il ufY)- (17)
w=1v=1 QEN (w,w)EK(Cq)

By (13)-(17), it follows that from a fact W(Q) > 0,
!

l -
>3 cubinGran (L uf) = YW@ Y [Bullufl) - Bu(uiiD] <0, (18)
w=1v=1 QEN (w,v)EK(Cq) i
l l -
>3 cubsunGaun (lublull) = W@ Y [Bullull) = Bullul] <0, (19)
w=1v=1 Qe (w,v)eK (Cq) )
l l -
S cubsunGaun (Julll [u) = W@ > [BulwlD) = Bulluih] <0, (20)
w=1v=1 QeQ (ww)EK(Ca)
and
l l
Z chb4ve4wv(|u5|7 |U£(|> = Z W(Q) Z I:/B'U(|UUK|) - Bw(|u5|>] S 0. (21)
w=1v=1 QEN (w,w)EK (Cq)

Substituting (18) (21) into (13) gives

l
SO Z[—am )+ [l ()] + e, (O] + [l (1)) + N

v=1

This ends the proof of Lemma 3.1.

Lemma 3.2 We consider the following system for the parameter A € (0,1)

up (t) = AVar(tu(t),ult —ou(t), - ult = ow(t)),
up(t) = AVar(tu(t), ult — owr (1), ult — ow(t))),
wpl(8) = AV (tu(t), ut — 0w (1), ult — ow(1))),
W) = Mg (tu(t),ult —owi(t), - ut — ou(t))). (22)

Suppose that (hy) — (ha) hold. Then there exists a positive constant M which is independent
of the parameter \ such that every periodic solution u(t) = (u{%(t),u{(t),u{(t),u{((t), ult(t),

ud (), u‘{(t) ulf (), ulR(t),ulI(t)mi’(t),ulK(t))T of system (22) satisfies ||u(t)|| < M, where

lu(ll = ;maxte o (B @]+ L ()] + Ju ()] + [ @]

Proof. Since 46 (byy+ 1= Cw“ ) < %=, there exists a positive constant a such that the following

inequality holds

(hs)
M) < — —«
l-o Two l .

We construct a suitable Lyapunov functional as Vi, (t) = Vi, (t) + Vaw (t),

Ay

46 (bo +

where
Vi (t) = Jug (6)] + [ug, (0)] + [ug, (8)] + Jug; (2],
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and

l
Vault) = 0

Cisw + Cipw T City T Cis)
1- O—;uv (t)

/tt {\uf(8)| + [ul(s)] + |ug (s)] + qu(s)ﬂds_

— 0w (t)

From system (22), we have

<

IN

d[Viw(t)]
dt

M signlufl () = awull(t) + Y b, (098 = bl (9] — b, (Dg) — b, 09l |+ |

v=1 v=1

R (GE = ch, (0G] = ¢, (NG — S, (OGE] + (1)) + signluly ()] — awuly(t) +

MN

[V (D98 + b, (9] — b, (097 + b (D95 ] + 3 [eho(OGT + B (G - el (DG +

v

M- L

L OGE] + L) + signlud (0] = awu(6) + 3 [bh, (098 + b, (B)g] + b, (D)9 -

v=1

l
b (D95 + D [ (VGE + ek, (0G] + el (VG = cb, (VGE] + (1)) + signlulf (1)
l

(= awulf (0 (B0l — bl (O] + bl (D] + 0], (0l | + D [l (0GT — . (®)

v=1 v=1

XGl o+ el (DG + el (0G| + 15 (1) }
l
M = aulull| + 3 [OF, +E,)19(0,0,0,0)] + (B, + €L,)lgk(0,0,0,0)] +1g7(0,0,0,0)|
v=1

% (b + i) + (0I5, + cl5,)1955(0,0,0,0) + 8(DIE, + by, + b, + b, ) (Jugf | + | + [y | +
l
[l )] + 6 D (€, + el + ¢y + ¢l5) [t = Gun ()] + b (t = T ()] + ] (¢ = 7 (1)

v=1

l
)+ [l (= o )] + 78 = awlul + Y [OL, +ch)lgf (0,0,0,0)] + (B, +F,)
v=1

x|g}(0,0,0,0)| + |97 (0,0,0,0)|(bE, + cK,) + (b, + ¢,)|g5(0,0,0,0)|

O (b0, + Bl + by + D) (] + |+ [ + )]

l
+6 Y (cly +cly + el +cly) [\U5(t — Tuwo ()] + [ug(t = ouw(t))]
v=1

l
ol (= )]+ [l (¢ = ()] + 75— awlu |+ 37 [@F, +2,) x 191%(0,0,0,0)
v=1

+(bE, + cK,) x [g5(0,0,0,0)| + (bE, + c,)[g7(0,0,0,0)| + (bL,, + cL,) x |g5(0,0,0,0)]
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l
3B, + DE, + BIS, + DLl + fub| + ]| + [ul || + 6 D, + el + el + )
v=1

x [|uR<t = Gun ()] + U5t = Guu()] + ] (E = 7 ()] + |l (¢ = )] + 7 = aulus|

+Z |(BF, +<E,) x 1917(0,0,0,0)] + (b, +,)19£(0,0,0,0,0)[ + (Bl + k)

19:/(0,0,0,0) + (bE, + cE,) x |gX(0,0,0,0)| + 6(bE, + bL,,, + b, +bE,)

l
(lafi L+ b + |+ [l )] + 8 D0, + el + ety + k) [[uff(t = ()]

v=1
(¢ = Gun ()] + 1l (¢ = G ()] + [0 (0 = o (8] + 75 |- (23)
Since
(B +cl +¢l +c
Woult) mz s o) [Jufe) + [l ()] + 0] + )
—mz (4 Choy + ooy + 085,) [ [l (t = Gun ()] + b (t = (1))
(¢ = Gun ()] + ful (= T ()] (24)
from (23) and (24), we have
dVi, (t)
dt

< {—aw|uw|+2[bR +cf,)1g8(0,0,0,0)| + (b, + ¢L,)94(0,0,0,0)| + |g (0,0,0,0)|

% (bl + Cihy) + (O, + i, )lgv (0,0,0,0)[ + 8(bIF, + L, + by, + b, ) (Jur'| + | + ]|
Huf )]+ - aulul| +Z[ o+ ch)l98(0,0,0,0)] + (B, + )l (0,0,0,0)] +
90,0, 0 BE, + ) + (Bl + )lo"(0,0,0,0) + 86, + B+ + BE) (|
ul] + ful |+ D] + 7L = awlu| oy |62, + c)19f(0,0,0,0)| + (BE, + ¢,

v=1

195(0,0,0,0)| + (b, + ¢%,)1g7 (0,0,0,0)[ + (bL,,, + cL, )¢5 (0,0,0,0)[ + 6(b7, + b, +

l
b, + D[l + ul | + ) + Julf ] + 77 = aululf] + D[R, + E,)lg!(0,0,0,0)
v=1

+(0 + Chun)195(0,0,0,0,0)] + (b, + ek )97 (0,0,0,0)] + (b, + ek, ) 94" (0,0,0,0)]
OB, + Bl + by + DI (0l + Jul] + ]| + [ul )] + 7 + 46 x

l

B ol 4cl +cK
3 et ot Cun) 1) 4ol 4 4 ] + )
v=1 Jwv()
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S S AR AR ARSI )5S + L+ 5 + D)+ o]+ ]+
v=1

w'[)+c£]v+cwv+cw'l)
\uK|+462 o 200 0[5 ul + ]+ ] + V)

wv

IN

)\{—aw(|u |+ L | + | + [uX +4azbw WB| + [ul] + Jul | + [ul]) + 166 x

_ Cwo
llio—wv()

MN

[l + fud |+ ) + [l 1] + N}

S
Il

4cw1, R 4o I
= A{faw|uw\+462 buw + T bl 4453 + ) )
v=1 wv v=1 wv
! 4c 4c
J wv J K wv K
— 155" (b ~ 155" (b N},(25
|y, | + ;( M )l ol = awluy [+ ; +1 wv)l [+ N ¢.(25)
where N is a positive constant.
From (25), we have by using (hs)
A0
dt
l 4c 4c a
< NS A8+ ] — ] 48(bu + ] — S
; l 1-o0, 1—-0l,
4c a 4c N
45 (b 90| — 22|+ 45 (b WOy K }
+48(bu + T2l — Sl + 460 + Tl +
l
o ay Ay o ay
< A= Lol + (2 - @l - Sl + (52— @]~ ) + (%~ )l
v=1

Aoy N
=2 fuff] + (5 = )l |+ 7 )

By Lemma 3.1, we have:

l l
e <3 Z[ RO+ b (O] + ()] + [ul (1)) + V. (26)

From (26), it follows that there exists a positive constant M such that when |u(¢)|| >

M, dv(t) < 0. Hence, there exists a positive constant M such that every periodic solution wu(t)

of systern (7) satisfies ||u(t)|| < M(If the periodic solution wu(t) satisfies ||u(t)|| > M, then we

av (t) av(t)
have Tt Tt

< 0. Since V() is a periodic function, while

< 0, this leads to a contradiction).
Hence, the proof of Lemma 3.2 is complete.
Lemma 3.3. If ¢,, > 0 is the cofactor of the wth diagonal element of the Laplacian matrix
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dt
l
< Yewy e - (R QUi+ (- QU] - (- - QUL

w=1 v=1

T = OO = (F QUL O] + (F = O ()] = (- = Ol (1)

+(7U — OIS ()] = (UL @O+ |UL®)| + UL ()] + \Uf(t)I)},
then

1 l
W < 3 e Y[~ €QUED + L0+ U2 + [TE O],

w=1 v=1

Proof. Since

v (t)
dt
< Z th{ — ORI+ (3 - O - (2= - Ik + (5= - oI
(7“’—e>|UJ|+< —OIU] | — (B2 = OIUK | + (52 = U | = (U + U]
+HUZ + UKD}, (27)
Setting bruy = 1(w # ), biuw = 0,0 = v, Gr (UEL [UF]) = (4 = ©)|UR| = (4 — ©)|UL], and

Bru(Ug]) = (%4 = OIUF [ bawe = L(w # v), bawy = 0,w = v, szv(lUI\ US) = (% = OIUs | -
(% = OIUL], Baw(lUL]) = (% = OIUs s bswe = 1w # v), bsws = 0,w = v, Gauu (U], |UJ]) =

(% = Ol - (* O, Bsw(UZ]) = (% = OS] bawe = 1w # v),bae = 0,0 =
v Gawn ([Hagh [US) = (54 = OV = (4 = OIUG |, Bau(US]) = (% = &)U |, then we have
from (QW
l l l
S e{t Z Cw{ Zblvelwv (|Uf|7 |U§|) + ZwavG2wv(|U1{;|7 |U1{|) + ZwaUGBwv X
w=1 v=1 v=1 v=1

l

l
(IUELITR) + 3 branGaw (JUEL UF) = € S(UE| + (UL + U1+ UKD, (28)
v=1 v=1

Grun (R IUS) = Bu(IUE) = Bu(UE), (29)

G?wv<|UI |UI> |UI Bw |UID (30)

Gaun (UZ11U71) = B(1U71) = Bu(1U), (31)
and

G (UKL UET) = (U] = Bu(UE): (32)
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From Lemma 2.2, it follows that

l l
>3 cubrnGrn (JUELIUF) = W@ Y G (UL U,
w=1v=1 Qe (w,w)eK(Cq)

l l

chwave2wv<|Ui|a|Ufg|> = Z W(Q) Z GQwU(lU'L{)‘v‘Uj{D’
w=1v=1 QEN (w,w)EK(Cq)

l l
> cbsunGaun (IWELIUR) = S W@Q >0 Goun (JUELIULY),
w=1v=1 QEN (w,w)eK(Cq)

and
1ol
>3 cubsunGaan (ULLIUI) = W@ Y Gaua(ULLIU).
w=1v=1 Qe (w,w)eEK(Cq)

By (29)-(36), it follows that from a fact W(Q) > 0,
l

l

SN bt (JUELIUR) = S W@ > [B(UF) = Bu(UED] <0
w=1v=1 QEN (w,w)EK(Cq)

l l

>3 cubounGau (UL L) = S W@ 3 B0 - Bu(ULD] <o,
w=1v=1 QEN (w,w)eK(Cq)

l
ZZCwbsquSvaUR UR) =S w@ > [l - BuuiD] <o,
w=1v=1 QEeEN (w,v)EK(CQ)

and

zl: Zl:cw%vam(wf,(m) =YW@ Y [BUE) - su(UE])] 0.

w=1v=1 QEN (w,w)eEK(Cq)
Substituting (37)- ( 0) into (28) gives

< “Z Z{ SR+ UL + US@] + UK )] <o.

This finishes the proof of Lemma 3.3.
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Theorem 3.1 Assume that (hy) — (hg) hold. Then system (1), i.e., system (3)-(6) has at

least one T periodic solution.
Proof. Let
X1=7

{0 — (R I 2 K R T ] K R al
—{u.u—(ul,ul,ul,ul7u2,u2,u2,u2,--- ulft,ul vl uf)T e C(R, RY),

w(w+1) = u®) },
l

lull = > max (i (8)] + [y, (8)] + ug (8)] + ug; (£)])-

te[0,w]
w=1
Then X; and Z; are two Banach spaces when they are endowed with the norm ||||.



536 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

Set Ly : DomLy = {u € CY(R,R¥) : u,u’ € X;} C X; — X; by
(Liu)(t) = u/(t).

Obviously, L; is a linear operator. Furthermore, it is easy to see that KerL; = {0} and
ImL, = X;. Hence, L is one-to-one. Define Lfl the inverse of L1, we have

Li':ImL; — DomLy,
t w
(L7 Yu(t) = /0 u(s)ds — 0.5/O u(s)ds,t € R.

Define the operator Ny : X7 — X; by

(N1u)(t) = ((Nuu)(f)» (N12u)(t), - - 7(Nllu)(t)>T7

where for w =1,2,--- 1,
(N (1) = ((NVF ) (), (VT ) (0), (NF0) (1), (NS ) 1))

= (Var(t u(®),ult = 7 (0), -+ ult = un(1))),
Vir(t,u(t), u(t = owi (t), - u(t = owi(t))),
Vi (8 u(t), u(t = owi (t), -+ - s ult = owi(t))),

Var (b u(t), ult = o (8), -+ ult = 0w (1)) ).

Clearly, N; is continuous. Setting K1 = Llel, by applying the Arzela-Ascoli theorem, we
can prove that K; is compact.

Corresponding to the operator Lyu = ANju, we have system (1). From Lemma 3.2, there
exists a positive constant M such that every periodic solution of Lju = ANju satisfies |Ju(t)| <
M. Letting @ = {u(t) : u(t) € Xq,|lu(t)|| < M + H},H is a positive constant such that
M+ H > % Thus, by Lemma 2.1 we conclude that Liu = Nyu has at least one
solution in X;. By Lemma 3.2, system (1) has at least one w periodic solution.

84 Exponential stability of periodic solutions

Theorem 4.1 Assume that all conditions in Theorem 3.1 hold. Then the unique w periodic
solution of system (1) is globally exponentially stable.

Proof. By Theorem 3.1, system (1) has at least an w periodic solution, say, u*(t) = (u{%* (1),

g (8), ui™ (8), ui™ (), g™ (), ug™ (8), ug* (), ud ™ (8), -+ w™ (t), wy™(£), ui™ (1), Uf(*(t))T~ Let

u(t) = (uf0),ud 1), 1)l (), (0, ud (0, 0), 5 (0) - uf 1), 1), ] (1) 0 (1)

is an arbitrary solution of system (1) with the initial value condition.
Since 46 (byo + 4C“’“ ) < %, then there exists a positive constant £ such that (he)

o
dcyy et Ay

)<7—§.

45(buy +

o
1-o0ol,
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We construct a Lyapunov functional as follows

v(t)
: t wv + cwv + 01{)1) + cw'u
5= cuc [0 + ULO1 10201+ 10 @ ]+4521; S )
/t I LA O RGO R LACTIES (41)
where h
Us (£) = gy (8) =3, (8), Uy (8) = g (8) " (£), Uy (8) = wyy (8) =" (£), Usy (8) = wgy (8) — i, " (¢)-
Denote

g~ =gl — gl g =gl — gl 9% = g] — g]*. g®F = g — gI~,

GAR _ GR GR* GAI GI GI* GAJ _ GJ _ GJ* GAK _ GK _ GK*
where
gy = gy (ull* (0wl (), ul* (), w5 (1)), =R LLEK,

y Yo \Y)r My V) Yo

G, =G, (uf* (t — ows(t)), ui* (t = owu(t)), u)* (t = owu(t)), uK*(t ~ Two (t))>

v v

Then it follows that by calculating the time derivative of V(t) along the trajectories of
system (3)-(6)

av (t)

i

Zc gt |[UEW] + UL 0]+ UL (1) + (UK 0)]] + Zc e {signUE(0)] (- U ()
l l

+Y (b, (g = b, (02T = b, (g2 = b, (098K | + 37 el (DGR - cL, ()GET

1

[~
I ~ e
= Il

el (NGET = B (OGER]) + signUL®] (= auUL(6) + 3 [h, (g2 + bl ()92

l
b, (0987 + bl (D925 ]+ 3 (L (OGER + el (VGET = ek, ()G + e, (NGEF] ) +
v=1
l
> bl mgt®
v=1

signU (0] - aw () + Bl (D957 + b (D98 — bl (D90 | +

MN

[ (DGER 4+l (NG + e, ()G =, (NGEK]) + sign[UL ()] ( — awU (1) +

e
Il
-

l
(b5, (092 = b, (95T + bl (5192 + be*U(t)ng] + 3 [e 0GR — e, ()G

v=1

MN

S
I
-

e (DGR + B, (GEE])  + 40 Z 2 et [\UR( )+ U1+ U7 (0)] +

w=1v=1 wv
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l
OS] =46 30 3 (el + chy + ety + i) [[UR(E = aun ()] + ULt = 0un ()] +

w=1v=1

U (¢ = Gwal)] + U (t = oun(D)]]

4e6° cwv 4ef° cwv

l l
< Y ew > e = TEUR 4 48(bun + T UL = UL+ 48(bu + 7o) U]
w=1 v=1 wv wv
[ 487 cwv oI 47 cwv K
TlUw|+46(bwv 1_ ) | 1 |Uw|+46(bwv 1_ )|U |}
l l
< Y ewd e = SHUR| + (5 - OIUF - SULI+ (T - UL - SU + (-
w=1 v=1
Qs
U - =2 |+<77>|UK|}
l l
Aoy Ay Qo Aoy
< Yewy e = (B - QUE + (- OIUS - (S = Ol + (5 — U] - (2
w=1 v=1
oy Ay
~OIU |+ (T = QU | = (5 = WU |+ (F = OIUK| = €U + U] + (U]
U -

According to Lemma 3.3, from (42), we have

Wiy tzcwz[ ENULEW)| + UL+ U2 0] + [UX @)D <o.

The rest proof is the same as that of the corresponding part of Theorem 4.1 in [19] and it
is omitted. This proof of Theorem 4.1 is complete.
Remark 2. In [19], by combining the continuation theorem of Mawhin’s coincidence degree
theory with the priori estimate method of periodic solutions, the existence of periodic solutions
for QVCNNS was obtained. While in our article, the existence of periodic solutions for QVC-
NNS is obtained by combining the continuation theorem of Mawhin’s coincidence degree theory
with Graph theory as well as Lyapunov functional approach for QVCNNS. In the result of the
existence of periodic solutions in [19], the conditions (H;) and (H3) are kept in our paper, the
condition (Hs) is replaced with the condition (h4) in our paperand the (Hy) is replaced with
(h3) in our paper. Namely the assumptions that the activation functions are bounded and the
values of the activation functions in origin point are zero are replaced with new conditions.
Remark 3. In the result of the globally exponential stability in [19], the condition (P) is
replaced with (hy) in our paper. Novel sufficient conditions on the existence and global expo-
nential stability of periodic solutions for system (1) are established by removing the assumptions
for boundedness on the activation functions and the assumptions of the values of the activation
functions at origin being zero in [19]. Hence the results of our paper are less conservative than
those obtained in [19] and our results are quite novel.
Remark 4. In our article, the separation method is used to study the periodic solutions for
QVCNNS, namely, by separating the quaternion-valued system (1) into a real-valued system of
four one-order differential equations (3)-(6), and by studying the periodic solutions of (3)-(6),
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the periodic solutions of system (1) is studied. The advantages of this method are that by
transforming the quaternion-valued system into real-valued system, the periodic solutions of
quaternion-valued system are investigated by studying the periodic solutions of the real-valued
system, which enriches the theoretical results in the QVCNNS. The disadvantages of real-valued
method are that without applying the quaternion-valued method, the novel works cannot be
obtained for QVCNNS.

85 Numerical example

In this section, we give an example for showing our result.
Example 5.1 Consider the following QVCNN

!

2 2
Uy, (t) = — QU (t) + Z buw () gu (s (1)) + Z Cuwn (1) o (o (t = wo (1)) + 1w (t),w = 1,2, (42)

where ul (£) = W (t) +iu] (8) + ju) (8) + k() € Qg () = 00L(u|+ fud |+ ud | + [k ) +
0.0Li (gt + g | ) | [ [) 0015 (g [+ [ |+ [ |+ [ ) 40005k (g | + [ |+ ] |+ ) -
0.01sint+icost+0.1jsint—0.09kcost,v = 1,2 and 04, (t) = 2—0.5sint, 0!, = —0.5cost, bt (t) =
bL (1) = bl (t) = bE, (t) = 3sint,cE (t) = ¢l (t) = ¢l (t) = &, (t) = 4cost,v = 1,2. Then in
Theorem 4.1, 6 = 0.01, 07, = 0.5, byy = 3, Cwy = 4,1 = 2, a,, = 4. Since the activation functions
in system (42) are not bounded, while the activation functions in [19] were assumed to be
bounded, hence, the global exponential stability of periodic solutions of system (42) cannot be
verified by the results obtained in [19]. It is easy to prove that the conditions (hi) — (hs) in
Theorem 4.1 are satisfied. On the other hand, we can prove that (h4) also holds:

4c a
45 (byy + ——) < 2.
( " 1- 0{1)11) l
Hence the all conditions in Theorem 4.1 are satisfied. By Theorem 4.1, system (42) has one
27 periodic solution which is globally exponential stable. Curves of state variables in Example

5.1 is shown in Figure 1.

R(u,) R(u,) I(u,) I(u,)
1 02
0
05
0.2
N WWWWWW,
0.4
05 0.6
0 10 20 30 40 0 10 20 30 40
—Ju) J(u,) K(u,) ——K(u,)
06 L 2 1 : z
0.4 05
0.2 0
0 05
0.2 -1
0 10 20 30 40 0 10 20 30 40

t

Figure 1. Curves of u; and us in Example 5.1.
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86 Conclusion

By combining graph theory with coincidence degree theory as well as Lyapunov functional

method, sufficient conditions to guarantee the existence and exponential stability of periodic

solutions for quaternion-valued cellular neural networks with time-varying delays are obtained.

Our results improve partly those obtained in [19] by removing the assumptions for the bounded-

ness on the activation functions and the assumptions that the values of the activation functions

are zero at origin.
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