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All entire solutions of Fermat type difference-differential

equations of one variable

XU Ling1 LUO Run-zi2 CAO Ting-bin2,3,∗

Abstract. The main purpose of this paper is to try to find all entire solutions of the Fermat

type difference-differential equation

[p1(z)f(z + c)]2 +
[
p2(z)f(z) + p3(z)f

′
(z)

]2
= p(z),

or

[p1(z)f(z)]
2 +

[
p2(z)f

′
(z) + p3(z)f(z + c)

]2
= p(z)

or [
p1(z)f

′
(z)

]2
+ [p2(z)f(z + c) + p3(z)f(z)]

2 = p(z),

where c is a nonzero complex number, p1, p2 and p3 are polynomials in C satisfying p1p3 ̸≡ 0,

and p is a nonzero irreducible polynomial in C.

§1 Introduction and main results

It is known that the Fermat equation xm+ ym = 1 (when m ≥ 3) does not admit nontrivial

solutions in rational numbers by Fermat’s last theorem [17] [18], while admit nontrivial rational

solutions when m = 2. For a positive integer m, the functional equation fm + gm = 1 can

be regarded as the Fermat type equations over function fields. The study of Fermat type

functional equation goes back to Cartan [1], Montel [14] and Gross [4]. The entire solutions of

the Fermat type functional equation fm + gm = 1 are characterized as follows: (i)for m = 2,

we have f = cos p and g = sin p, where p is an entire function on C; (ii) for m > 2, there are no

nonconstant entire solutions. For the background, refer to [5].

If replace g by the derivative operator of f, then it is easy to get that the Fermat type

equation f2+(f
′
)2 = 1 has no nonconstant polynomial solutions, since the degree of f

′
is lower
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than the degree of f. In 2004, C C Yang and P Li [22, Theorem 1] firstly studied derivative

operator f
′
into Fermat type functional equations. In 2012, K Liu, the present third author and

H Z Cao [10] firstly considered difference operator f(z+c) into Fermat type function equations.

Later on, many researcher (see [12] [11] [8] for instances) obtained important theorems on the

subject of solutions of Fermat type functional equations. Furthermore, solutions of Fermat type

functional equations in several variables were also investigated in [15] [9] [19] [13] and others.

The main purpose of this paper is to consider entire solutions f(z) of Fermat type difference-

differential equations concerning with both its derivative operator f
′
(z) and its difference op-

erator f(z + c). That is, we will try to find all entire solutions f of the Fermat type functional

equation

X2 + Y 2 = p(z),

satisfying one of the following three cases:

(i) X = p1(z)f(z + c) and Y = p2(z)f(z) + p3(z)f
′
(z);

(ii) X = p1(z)f(z) and Y = p2(z)f
′
(z) + p3(z)f(z + c);

(iii) X = p1(z)f
′
(z) and Y = p2(z)f(z + c) + p3(z)f(z),

where c is a nonzero complex number, p1, p2 and p3 are polynomials in C satisfying p1p3 ̸≡ 0,

and p is a nonzero irreducible polynomial in C.
To state our next theorems, we use the notations

ω(z) = ω(z + c), ω(z) = ω(z − c)

for any meromorphic function ω(z) and a finite nonzero complex number c, which already

appeared in [6].

Firstly, we obtain the following result for the case (i).

Theorem 1.1. Let f be an entire solution of the Fermat type difference-differential equation

[p1(z)f(z + c)]2 + [p2(z)f(z) + p3(z)f
′
(z)]2 = p(z), (1)

where the polynomials p1, p2andp3 in C satisfy p1p3 ̸≡ 0, and p is a nonzero irreducible polyno-

mial in C. Then f has the form of

f(z) =
eig + pe−ig

2p1
,

where g is a constant or a nonconstant linear polynomial g(z) = Az +B such that

e−iAc ≡
kp1

2

(p2 −Ap3) p1 − ip3p1
′ , (k = ±1).

For the special case whenever p1 = p3 = p = 1 and p2 = 0 in Theorem 1.1, it implies the

following corollary which improves [10, Theorem 1.3]. Remark that there is no any assumption

on the growth of entire solutions.

Corollary 1.2. All transcendental entire solutions of

f
′
(z)2 + f(z + c)2 = 1 (2)

must satisfy f(z) = sin(z ± Bi), where B is a constant and c = 2kπ or c = (2k + 1)π, while k

is an integer.
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Secondly, we obtain the following result for the case (ii).

Theorem 1.3. Let f be an entire solution of the Fermat type difference-differential equation

[p1(z)f(z)]
2 + [p2(z)f

′
(z) + p3(z)f(z + c)]2 = p(z), (3)

where the polynomials p1, p2andp3 in C satisfy p1p3 ̸≡ 0, and p is a nonzero irreducible polyno-

mial in C. Then f has the form of

f(z) =
eig(z) + p(z)e−ig(z)

2p1(z)
,

where g is a constant or a nonconstant linear polynomial g(z) = Az +B such that

e−iAc ≡ ip21p3
p1(Ap2p1 + ip2 + kp21)

, (k = ±1).

For the special case whenever p1 = p3 = p = 1 and p2 = 0 in Theorem 1.3, it implies the

following corollary which improves Theorem [10, Theorem 1.1]. Remark that there is also no

any assumption on the growth of entire solutions.

Corollary 1.4. All transcendental entire solutions of

f(z)2 + f(z + c)2 = 1 (4)

must satisfy f(z) = sin(Az +B), where B is a constant and A = (4k+1)π
2c with k an integer.

Finally, we obtain the following result for the case (iii).

Theorem 1.5. Let p1, p2 and p3 be three polynomials in C satisfying p1p3 ̸≡ 0 and p2

p3
= M

where M is a constant, and p be a nonzero irreducible polynomial in C. If f is an entire solution

of the Fermat type difference-differential equation

[p1(z)f
′
(z)]2 + [p2(z)f(z + c) + p3(z)f(z)]

2 = p(z), (5)

then f satisfies

f
′
(z) =

eig(z) + p(z)e−ig(z)

2p1(z)
,

where g satisfies the following two cases:

(i) whenever M = 0 (that is p2 ≡ 0), then g is a constant or a nonconstant linear polynomial

g =
1

k

p3
p1

z + Constant

such that all p, p1 and p3 are constant.

(ii) whenever M ̸= 0, then g is a constant or nonconstant linear polynomial g(z) = Az +B

such that

e−iAc ≡ ip1p2p3
kiAp1p3p1 − ip23p1 − kp

′
3p1p1

.

For M = 0 (namely, p2 = 0) and p1 = p3 = p = 1 in Theorem 1.5, it implies the following

result which is a special case of [22, Theorem 1].

Corollary 1.6. All transcendental entire solutions of

f
′
(z)2 + f(z)2 = 1 (6)
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must satisfy

f(z) =
1

2

(
Pe−iz +

1

P
eiz
)

= sin(z +Ai+
π

2
),

where P is nonzero constant and eA = P.

For M ̸= 0 and p1 = 1, −p2 = p3 = 1 and p = 1 in Theorem 1.5, it implies the following

corollary which improves [10, Theorem 1.5]. Remark that there is also no any assumption on

the growth of entire solutions.

Corollary 1.7. The transcendental entire solutions of

f
′
(z)2 + [f(z + c)− f(z)]2 = 1 (7)

must satisfy f(z) = 1
2 sin(2z +Bi), where c = (k + 1

2 )π, k is an integer and B is a constant.

We would like to arise a question that it may be interesting to consider all entire solutions

of (5) without the assumption of p2

p3
being a constant in Theorem 1.5.

These theorems in this paper can also be regarded as useful judgment methods to nonexis-

tence of entire functions of the Fermat type difference-differential equations. For instances, in

Theorem 1.5, let p1(z) = z, p2 = 0, p3 = 1 and p(z) = z2. Then it is easy to check that there

are no nonconstant entire solutions of the Fermat type equation

(zf
′
(z))2 + f(z)2 = z2.

If let p1(z) = 1, p2 = 0, p3 = 1 and p(z) = z + 1, then it is easy to check that there are no

nonconstant entire solutions of the Fermat type equation

(f
′
(z))2 + f(z)2 = z + 1.

More examples can be easily taken like this way.

The remainder of this paper is organized as follows. In next section, we introduce some

basic results on Nevanlinna theory for meromorphic function on the complex plane C and some

lemmas, which play the key role in this paper. We then prove Theorems 1.1, 1.3 and 1.5,

respectively.

§2 Preliminaries on Nevanlinna theory and lemmas

Throughout this paper, a meromorphic function f means meromorphic in the complex plane

C. If no poles occur, then f reduces to an entire function. For every real number x ≥ 0, we define

log+ x := max{0, log x}. Assume that n(r, f) counts the number of the poles of f in |z| ≤ r

(counting multiplicity), and if ignoring multiplicity, then denote it by n(r, f). The Nevanlinna

characteristic function of f is defined by

T (r, f) := m(r, f) +N(r, f),

where

N(r, f) :=

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r

is called the counting function of poles of f and

m(r, f) :=
1

2π

∫ 2π

0

log+
∣∣f(reiθ)∣∣ dθ
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is called the proximity function of f. The order of f is defined as

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
.

It is known [23, Corollary of Theorem 1.5] that f is a transcendental meromorphic function if

and only if

lim inf
r→∞

T (r, f)

log r
= ∞.

The first main theorem in Nevanlinna theory states that

T (r,
1

f − a
) = T (r, f) + o(T (r, f))

holds for any value a ∈ C. The second main theorem says that for any q distinct small functions

a1, a2, . . . , aq with respect to a meromorphic function f (that is, each aj is a meromorphic

functions such that T (r, aj) = o(T (r, f)) possibly outside a set with finite logarithmic measure),

we have

(q − 2)T (r, f) ≤
q∑

j=1

N

(
r,

1

f − aj

)
+ o(T (r, f))

for all sufficiently large r possibly outside a set with finite logarithmic measure (see Steinmetz

[16]). Second main theorem with reduced form for small functions was affirmed due to K.

Yamanoi [20]. For more basic notations and definitions of the Nevanlinna theory, refer to [23] [7].

The first lemma is proved by Clunie.

Lemma 2.1. [23, Theorem 1.46] Suppose that f(z) is a transcendental meromorphic function

and h(z) is a nonconstant entire function. Then

lim
r→∞

T (r, f(h))

T (r, h)
= ∞.

Lemma 2.2. [3, Theorem 1.6 of Charpter 2] Let f(z) be a meromorphic function, and let

f1 = f(az+b) with a ̸= 0. Then f(z) and f1(z), as well as N(r, f) and N(r, f1) are of the same

growth category. In fact, by [3, Remark and proof of Theorem 1.6 in Charpter 2], we have

T (r, f(z + b) = a) ≥ (1 + o(1))T (r − |b|, f(z) = a)

≥ (1 + o(1))T (r − 2|b|, f(z + b) = a)

and

N(r, f(z + b) = a) ≥ (1 + o(1))N(r − |b|, f(z) = a)

≥ (1 + o(1))N(r − 2|b|, f(z + b) = a).

Lemma 2.3. [21] Suppose f(z) is a meromorphic function in the complex plane and

p(z) = a0f
n + a1f

n−1 + · · ·+ an,

where a0(̸≡ 0), a1, · · · , an are meromorphic functions satisfying T (r, aj) = o(T (r, f)) (j =

0, 1, · · · , n) for all positive r possibly outside a set E of finite linear measure. Then

T (r, p(f)) = nT (r, f) + o(T (r, f)), r ̸∈ E.

The following result will be used throughout the proofs of our main theorems.
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Lemma 2.4. Let Aandc be nonzero complex numbers, and let f(z) be a meromorphic function.

Then we have

T (r, f(z)) = o(T (r, eAf(z+c))).

Proof. Lemma 2.2 shows that T (r, f(z)) and T (r, f(z+ c)) have the same growth category, and

Lemma 2.1 implies that the growth category of T (r, f(z+c)) is lower than that of T (r, eAf(z+c)).

Thus the growth category of T (r, f(z)) is lower than that of T (r, eAf(z+c)).

The following lemma is obtained by H X Yi.

Lemma 2.5. [23, Theorem 1.57] Let fj(j = 1, 2, 3) be meromorphic functions and f1 is not a

constant. If f1(z) + f2(z) + f3(z) ≡ 1 and

3∑
j=1

N(r,
1

fj
) + 2

3∑
j=2

N(r, fj)

 < (λ+ o(1))T (r, f1), (r ∈ I)

where λ < 1 and I is a set of infinite linear measure, then f2(z) ≡ 1 or f3(z) ≡ 1.

At last in this section, we give the following result which will play an important role in the

proofs of our main theorems.

Lemma 2.6. Let c be a nonzero complex number and g be a nonconstant entire function

satisfying the equation

A(z)e−2ig(z) +B(z)ei(g(z−c)−g(z)) + C(z)e−i(g(z−c)+g(z)) ≡ 1, (8)

where A( ̸≡ 0), B and C( ̸≡ Constant) are meromorphic functions small with respect to eg(z) (that

is, max{T (r,A), T (r,B), T (r, C)} = o(T (r, eg(z)))) possibly outside a set with finite logarithmic

measure). Then g(z − c) + g(z) is nonconstant.

Proof. Since g is a nonconstant entire function, both eg(z) and e−2ig(z) are transcendental entire

functions. If the conclusion is not true, then we may suppose that g(z − c) + g(z) ≡ K where

K is a constant. Then it gives by (8) that

A(z)e−2ig(z) +B(z)ei(g(z−c)−g(z)) ≡ 1− C(z)e−iK . (9)

If B(z) ≡ 0, then e−2ig(z) ≡ 1−C(z)e−iK

A(z) . This contradicts to

T

(
r,
1− C(z)e−iK

A(z)

)
= o(T (r, e−2ig(z))) = o(T (r, eg(z))).

Now we get that B(z) ̸≡ 0.

Note that C(z) is not a constant. Set

F := A(z)e−2ig(z) and G := B(z)ei(g(z−c)−g(z)).

Then by (8) and the Nevanlinna’s second main theorem,

T (r, F ) < N(r, F ) +N(r,
1

F
) +N(r,

1

F − (1− C(z)e−iK)
) + o(T (r, F ))

= N(r, F ) +N(r,
1

F
) +N(r,

1

G
) + o(T (r, F ))

≤ N(r,A) +N(r,
1

A
) +N(r,

1

B
) + o(T (r, F ))

= o(T (r, F )).



XU Ling, et al. All entire solutions of Fermat type difference-differential equations... 515

This is a contradiction. Hence, g(z − c) + g(z) must be nonconstant.

§3 Proof of Theorem 1.1

Let f be an entire solution of (1). Then

X2 + Y 2 = (X + iY )(X − iY ) = p(z),

where X = p1(z)f(z+ c) and Y = p2(z)f(z) + p3(z)f
′
(z). Since p is an irreducible polynomial,

there exists an entire function g such that{
X + iY = eig,

X − iY = pe−ig,

or {
X − iY = eig,

X + iY = pe−ig.

We get from solving for X and Y that

p1f(z + c) = X =
eig + pe−ig

2
, (10)

p2f(z) + p3f
′
(z) = Y = k

eig − pe−ig

2i
, (11)

where k = 1 in the first case and k = −1 in the second case. It follows from (10) that

f(z) =
eig + pe−ig

2p1
, (12)

f
′
(z) =

[(
1

2p1

)′

+
ig

′

2p1

]
eig +

[(
1

2p1

)′

p+
p

′ − ipg
′

2p1

]
e−ig, (13)

where p1 ̸≡ 0.

Submitting (12) and (13) into (11), we obtain that

αeig(z) = βe−ig(z) + γeig(z−c) + δe−ig(z−c), (14)

where

α(z) = kp1
2, β(z) = pp1

2,

γ(z) = −p3

[
ip1

′
+ g

′
p1

]
+ p2p1,

and

δ(z) = p3

[
p1

(
ip

′
+ pg

′
)
− ip1

′
p
]
+ ip2p1p.

Since p1, p ̸≡ 0, we have α, β ̸≡ 0. Then we get from (14) that

β

α
e−2ig(z) +

γ

α
ei(g(z−c)−g(z)) +

δ

α
e−i(g(z−c)+g(z)) ≡ 1. (15)

If g is a constant, then the theorem is proved already. We now assume below that g is a

nonconstant entire function. Then both e2ig(z) and e−2ig(z) are transcendental entire functions.

The assumptions p1, p3, p ̸≡ 0 imply that g
′
appears in both γ and δ.

Assume that δ
α is constant. Then we get that g

′
and thus g must be a polynomial. Then g

is nonconstant implies that g(z − c) + g(z) is not constant. Assume that δ
α is not a constant.
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By Lemma 2.1 and Lemma 2.4 we know that

max{T (r, β
α
), T (r,

γ

α
), T (r,

δ

α
)} = o(T (e−2ig(z))).

Then by Lemma 2.6 we also get that g(z − c) + g(z) is not constant. Hence, now we get that

both e−2ig(z) and e−i(g(z−c)+g(z)) are transcendental. We divide four cases as follows.

Case 1. Assume that γ ≡ δ ≡ 0. Then equation (15) reduces to e−2ig(z) ≡ α
β , which

contradicts to the fact T
(
r, α

β

)
= o(T (r, e−2ig(z))).

Case 2. Assume γ ≡ 0 and δ ̸≡ 0. Then (15) reduces to

β

α
e−2ig(z) +

δ

α
e−i(g(z−c)+g(z)) ≡ 1. (16)

By Lemma 2.1 and Lemma 2.4,

max{T (r, α), T (r, β), T (r, δ)} = o
(
T (r, e−2ig(z)

)
.

Set F := β
αe

−2ig(z) and G := δ
αe

−i(g(z−c)+g(z)). Then by (16) and the Nevanlinna’s second main

theorem,

T (r, F ) < N(r, F ) +N(r,
1

F
) +N(r,

1

F − 1
) + o(T (r, F ))

= N(r, F ) +N(r,
1

F
) +N(r,

1

G
) + o(T (r, F ))

≤ N(r,
1

α
) +N(r,

1

β
) +N(r,

1

δ
) + o(T (r, F ))

= o(T (r, F )).

This is a contradiction.

Case 3. Assume γ ̸≡ 0 and δ ≡ 0. Then (15) reduces to

β

α
e−2ig(z) +

γ

α
ei(g(z−c)−g(z)) ≡ 1. (17)

By Lemma 2.1 and Lemma 2.4,

max{T (r, α), T (r, β), T (r, γ)} = o
(
T (r, e−2ig(z)

)
.

Set F := β
αe

−2ig(z) and G = γ
αe

i(g(z−c)−g(z)). Then by (17) and the Nevanlinna’s second main

theorem,

T (r, F ) < N(r, F ) +N(r,
1

F
) +N(r,

1

F − 1
) + o(T (r, F ))

= N(r, F ) +N(r,
1

F
) +N(r,

1

G
) + o(T (r, F ))

≤ N(r,
1

α
) +N(r,

1

β
) +N(r,

1

γ
) + o(T (r, F ))

= o(T (r, F )).

This is a contradiction.

Case 4. Assume δ ̸≡ 0 and γ ̸≡ 0. By Lemma 2.1 and Lemma 2.4,

max

{
N(r, F ), N(r,G), N(r,H), N

(
r,

1

F

)
, N

(
r,

1

G

)
, N

(
r,

1

H

)}
≤ max{T (r, α), T (r, β), T (r, γ), T (r, δ)}

= o (T (r, F )) ,
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where F := β
αe

−2ig(z), G := γ
αe

i(g(z−c)−g(z)) and H := δ
αe

−i(g(z−c)+g(z)). Then applying Lemma

2.5 into (15), we get either

G =
γ

α
ei(g(z−c)−g(z)) ≡ 1

or

H =
δ

α
e−i(g(z−c)+g(z)) ≡ 1.

Submitting either G ≡ 1 or H ≡ 1 into (15) gives either

ei(g(z−c)−g(z)) ≡ α

γ
≡ − δ

β
or

e−i(g(z−c)+g(z)) ≡ α

δ
≡ −γ

β
,

respectively. Thus we have

δγ + αβ ≡ 0,

that is

p23p1
2p(g

′
)2 +

(
Dp3p1 − Cp3p1p

)
g

′
−
(
CD + kp1

4p
)
≡ 0,

where C := p2p1− ip3p1
′
and D = ip3p1p

′ − ip3p1
′
p+ ip2p1p. Assume that g

′
is transcendental,

then it follows from Lemma 2.3 that

2T (r, g
′
) = T

(
r, p23p1

2p(g
′
)2 +

(
Dp3p1 − Cp3p1p

)
g

′
−
(
CD + kp1

4p
))

= T (r, 0) = O(log r),

which implies that

p23p1
2p ≡ Dp3p1 − Cp3p1p ≡ CD + kp1

4p ≡ 0.

This is a contradiction, since p, p1 and p3 ̸≡ 0. Hence, g
′
and thus g is a polynomial.

Now since g is a polynomial, it follows from ei(g(z−c)−g(z)) ≡ α
γ that g must be a linear

polynomial, say a polynomial g = Az +B. Then ei(g(z−c)−g(z)) ≡ α
γ gives

e−iAc ≡
kp1

2

(p2 −Ap3) p1 − ip3p1
′ .

Or, it follows from e−i(g(z−c)+g(z)) ≡ α
δ and g is a polynomial that g(z − c) + g(z), and thus g

must be a constant. Therefore, the theorem is proved.

§4 Proof of Theorem 1.3

Let f be an entire solution of (3). Using similar discussion as in the proof of Theorem 1.1,

we get that since p is an irreducible polynomial, there exists an entire function g such that

p1f(z) =
eig + pe−ig

2
, (18)

p2f
′
(z) + p3f(z + c) = k

eig − pe−ig

2i
, (19)

where k = ±1. By (18), we get that

f
′
(z) =

(
ig

′
(z)

2p1(z)
− 1

2p21(z)

)
eig(z)

+

(
p

′
(z)− ip(z)g

′
(z)

2p1(z)
− p(z)

2p21(z)

)
e−ig(z),
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and

f(z + c) =
eig + pe−ig

2p1
.

Submitting these equations into (19), we have

αeig(z+c) = βe−ig(z+c) + γeig(z) + δe−ig(z), (20)

where

α(z) = −ip21p3, β(z) = ip21p3p,

γ(z) = p1

{
p2

[
−g

′
p1 − i

]
− kp21

}
,

and

δ(z) = p1

{
p3

[(
ip

′
+ pg

′
)
p1 − ip

]
− kpp21

}
.

The assumption p1, p3 and p ̸≡ 0 implies that α, β ̸≡ 0, and that δ depends on g
′
(z− c). We

rewrite (20) to be

β

α
e−2ig(z+c) +

γ

α
ei(g(z)−g(z+c)) +

δ

α
e−i(g(z)+g(z+c)) = 1. (21)

If g is a constant, then the theorem is proved already. We now assume below that g is a

nonconstant entire function. Then both eg(z) and e−2ig(z+c) are transcendental entire functions.

The assumptions p1, p3 and p ̸≡ 0 imply that the g
′
(z) appears in δ.

Using as the same as in the proof of Theorem 1.1, we get that g(z)+g(z+c) is not constant.

Hence, both e−2ig(z+c) and e−i(g(z)+g(z+c)) are transcendental. And also by the same discussion

as in the proof of Theorem 1.1, we get contradictions whenever at least one of δ and γ is identical

equal to zero; while whenever δ ̸≡ 0 and γ ̸≡ 0, we get that either

ei(g(z)−g(z+c)) ≡ α

γ
≡ − δ

β
or

e−i(g(z)+g(z+c)) ≡ α

δ
≡ −γ

β
.

Thus

δγ + αβ ≡ 0,

that is

p21p1
2p2p3p(g

′
)2 + (Cp1p3p1p+Dp1p1p2) g

′
+
(
CD − p41p

2
3p
)
≡ 0,

where C := ip1p2 + kp21p1 and D = ip1p3(p
′
p1 − p)− kpp21p1.

Assume that g
′
is transcendental, then by Lemma 2.3 we get that

2T (r, g
′
) = T

(
r, p21p1

2p2p3p(g
′
)2 + (Cp1p3p1p+Dp1p1p2) g

′
+
(
CD − p41p

2
3p
))

= T (r, 0) = O(log r)

which implies

p21p1
2p2p3p ≡ Cp1p3p1p+Dp1p1p2 ≡ CD − p41p

2
3p ≡ 0.

Then p21p1
2p2p3p ≡ 0 shows that p2 ≡ 0, since p, p1 and p3 ̸≡ 0. Thus, Cp1p3p1p+Dp1p1p2 ≡ 0

reduces to kp31p1
2p3p ≡ 0, which is impossible. Hence, g

′
and thus g, is a polynomial.

Now since g is a polynomial, it follows from ei(g(z−c)−g(z)) ≡ α
γ that g must be a linear
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polynomial, say a polynomial g = Az +B. Then ei(g(z)−g(z+c)) ≡ α
γ gives

e−iAc ≡ ip21p3
p1(Ap2p1 + ip2 + kp21)

.

Or it follows from e−i(g(z)+g(z+c)) ≡ α
δ and g is a polynomial that g(z) + g(z + c), and thus g,

must be a constant. Therefore, the theorem is proved.

§5 Proof of Theorem 1.5

Let f be an entire solution of (5). Using similar discussion as in the proof of Theorem 1.1,

we get that since p is an irreducible polynomial, there exists an entire function g such that

p1(z)f
′
(z) =

eig(z) + p(z)e−ig(z)

2
, (22)

p3(z) (Mf(z + c) + f(z)) = k
eig(z) − p(z)e−ig(z)

2i
, (23)

where k = ±1. By (22), we get that

f
′
(z + c) =

eig(z+c) + p(z + c)e−ig(z+c)

2p1(z + c)
. (24)

Differentiating both sides of (23), and then according to (22) and (24), we have

αeig(z+c) = βe−ig(z+c) + γeig(z) + δe−ig(z), (25)

where

α(z) =
iMp3(z)

p1(z + c)
, β(z) = − iMp3(z)p(z + c)

p1(z + c)
,

γ(z) = kig
′
(z)− ip3(z)

p1(z)
− kp

′

3(z)

p3(z)
,

and

δ(z) = k(ip(z)g
′
(z)− p

′
(z)) +

kp
′

3(z)p(z)

p3(z)
− ip3(z)p(z)

p1(z)
.

Note that p1, p3 and p ̸≡ 0 implies that γ and δ depend on g
′
(z).

(i) It is clear that if M = 0 (that is p2 ≡ 0), then α ≡ β ≡ 0. Then (25) reduces to

γe2ig(z) ≡ −δ.

If g is a constant, the theorem is already proved. Now assume that g is not a constant. Then

it must be

γ ≡ δ ≡ 0

by estimating the Nevanlinna’s characteristic function of both sides of the above equation. So,

kig
′
− i

p3
p1

− k
p

′

3

p3
≡ 0

and

kig
′
− i

p3
p1

+ k
p

′

3

p3
− k

p
′

p
≡ 0.

Since p, p1 and p3 are polynomials, g
′
and thus g must be a polynomial by the above equations.

Combing the two equations gives p
′

p = 2
p
′
3

p3
. Furthermore, since g′ is entire, it follows from the



520 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

first equation that every zero with multiplicity ℓ of p3 must be a simple pole of
p
′
3

p3
, and thus

is a zero of p1 with multiplicity ℓ + 1, and vice versa. Thus if p3 is not a constant, then p3

and p1 must have the same zeros with multiplicities ℓ and ℓ + 1 respectively, and for all these

zeros we have deg(p1) = deg(p3) + n( 1
p3
), where n( 1

p3
) denotes the number of distinct zeros of

p3. Therefore, if p3 is a nonconstant and g′ is a nonzero polynomial, then the degrees on both

sides of the equation kip1p3g
′ ≡ ip23 + kp1p

′

3 are not equal, that is, we have

deg g
′
+ 2deg p3 + n(

1

p3
) = deg(kip1p3g

′
)

> deg(ip23 + kp1p
′

3) = max{2 deg p3, 2 deg p3 + n(
1

p3
)− 1} = 2deg p3 + n(

1

p3
)− 1.

This contradiction implies that if p3 is not a constant, then g
′ ≡ 0, and g is a constant. Hence,

we know that p3 is a constant, so all p and p1 are constants, and g
′
= 1

k
p3

p1
. Therefore, g is a

constant, or a nonconstant linear polynomial g = 1
k
p3

p1
z + Constant.

(ii) We now assume that M ̸= 0. The assumption p1, p3 and p ̸≡ 0 gives α, β ̸≡ 0. Then we

rewrite (25) to be

β

α
e−2ig(z+c) +

γ

α
ei(g(z)−g(z+c)) +

δ

α
e−i(g(z)+g(z+c)) = 1. (26)

If g is a constant, then the theorem is proved already. We now assume below that g is a

nonconstant entire function. Then both eg(z) and e−2ig(z+c) are transcendental entire functions.

The assumptions p1, p3 and p ̸≡ 0 imply that the g
′
(z) appears in γ and δ.

Using as the same as in the proof of Theorem 1.1, we get that g(z)+g(z+c) is not constant.

Hence, both e−2ig(z+c) and e−i(g(z)+g(z+c)) are transcendental. And also by the same discussion

as in the proof of Theorem 1.1, we get contradictions whenever at least one of δ and γ is identical

equal to zero; while whenever δ ̸≡ 0 and γ ̸≡ 0, we get that either

ei(g(z)−g(z+c)) ≡ α

γ
≡ − δ

β
or

e−i(g(z)+g(z+c)) ≡ α

δ
≡ −γ

β
.

Thus

δγ + αβ ≡ 0,

that is

pp1
2(g

′
)2 + kip1

2 (Cp+D) g
′
−
(
CDp1

2 +M2p23p
)
≡ 0,

where C := ip3

p1
+

kp
′
3

p3
and D = kp

′ − kpp
′
3

p3
+ ipp3

p1
.

Assume that g
′
is transcendental, then by Lemma 2.3 we get that

2T (r, g
′
) = T

(
r, pp1

2(g
′
)2 + kip1

2 (Cp+D) g
′
−
(
CDp1

2 +M2p23p
))

= T (r, 0) = O(log r),

which implies

pp1
2 ≡ kip1

2 (Cp+D) ≡ CDp1
2 +M2p23p ≡ 0.

This is obviously a contradiction, since p, p1 and p3 ̸≡ 0. Hence, g
′
and thus g, is a polynomial.

Now since g is a polynomial, it follows from ei(g(z−c)−g(z)) ≡ α
γ that g must be a linear
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polynomial, say a polynomial g = Az +B. Then ei(g(z)−g(z+c)) ≡ α
γ gives

e−iAc ≡ ip1p2p3
kiAp1p3p1 − ip23p1 − kp

′
3p1p1

.

Or it follows from e−i(g(z)+g(z+c)) ≡ α
δ and g is a polynomial that g(z) + g(z + c), and thus g

must be a constant. Therefore, the theorem is proved.
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