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All entire solutions of Fermat type difference-differential

equations of one variable

XU Ling! LUO Run-zi CAO Ting-bin?3*

Abstract. The main purpose of this paper is to try to find all entire solutions of the Fermat

type difference-differential equation

P1(2)f (2 + ) + [p2(2) f(2) + pa(2)f

or
P (FEPE + [p2(2)f () +ps(2) (2 +0)] = l2)

or
12 )]+ ()2 + )+ o2 FEF = p(2),

where c¢ is a nonzero complex number, p1,p2 and ps are polynomials in C satisfying pips #Z 0,

and p is a nonzero irreducible polynomial in C.

81 Introduction and main results

It is known that the Fermat equation 2™ + y™ = 1 (when m > 3) does not admit nontrivial
solutions in rational numbers by Fermat’s last theorem [17] [18], while admit nontrivial rational
solutions when m = 2. For a positive integer m, the functional equation f™ 4 ¢™ = 1 can
be regarded as the Fermat type equations over function fields. The study of Fermat type
functional equation goes back to Cartan [1], Montel [14] and Gross [4]. The entire solutions of
the Fermat type functional equation f™ 4 ¢"™ = 1 are characterized as follows: (i)for m = 2,
we have f = cosp and g = sinp, where p is an entire function on C; (ii) for m > 2, there are no
nonconstant entire solutions. For the background, refer to [5].

If replace g by the derivative operator of f, then it is easy to get that the Fermat type

equation f2+ (f /)2 = 1 has no nonconstant polynomial solutions, since the degree of f is lower
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than the degree of f. In 2004, C C Yang and P Li [22, Theorem 1] firstly studied derivative
operator f " into Fermat type functional equations. In 2012, K Liu, the present third author and
H Z Cao [10] firstly considered difference operator f(z+c¢) into Fermat type function equations.
Later on, many researcher (see [12] [11] [8] for instances) obtained important theorems on the
subject of solutions of Fermat type functional equations. Furthermore, solutions of Fermat type
functional equations in several variables were also investigated in [15] [9] [19] [13] and others.

The main purpose of this paper is to consider entire solutions f(z) of Fermat type difference-
differential equations concerning with both its derivative operator f,(z) and its difference op-
erator f(z+ c). That is, we will try to find all entire solutions f of the Fermat type functional
equation

X2 +Y? =p(z),

satisfying one of the following three cases:

(i) X =p1(2)f(z+¢) and Y = ps(2) f(2) + ps(2) f (2);

(i) X = p1(2)f(2) and Y = pa(2) f (2) + ps(2) f (2 + ©);

(i) X = pr(2)f () and Y = pa(2) f(= + ) + ps(2)f(2),
where ¢ is a nonzero complex number, py,p2 and p3 are polynomials in C satisfying pi1ps Z 0,
and p is a nonzero irreducible polynomial in C.

To state our next theorems, we use the notations

w(z) =w(z+¢), wz) =w(z—c)

for any meromorphic function w(z) and a finite nonzero complex number ¢, which already
appeared in [6].

Firstly, we obtain the following result for the case (i).

Theorem 1.1. Let f be an entire solution of the Fermat type difference-differential equation

p1(2)f (2 + O + [p2(2) £(2) + pa(2) f (2)]* = p(2), (1)
where the polynomials p1, paandps in C satisfy pyps Z 0, and p is a nonzero irreducible polyno-
mial in C. Then f has the form of

€9 + pe™d
fe) =,
1
where g is a constant or a nonconstant linear polynomial g(z) = Az + B such that
. ]Cp12
—iAc

e = , (k= =+£1).

(p2 — Ap3) p1 — ipsp1’
For the special case whenever p; = p3 = p = 1 and p2 = 0 in Theorem 1.1, it implies the
following corollary which improves [10, Theorem 1.3]. Remark that there is no any assumption

on the growth of entire solutions.

Corollary 1.2. All transcendental entire solutions of

FEP+fE+e?=1 (2)
must satisfy f(z) = sin(z + Bi), where B is a constant and ¢ = 2kw or ¢ = (2k + 1)7, while k
15 an integer.
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Secondly, we obtain the following result for the case (ii).

Theorem 1.3. Let f be an entire solution of the Fermat type difference-differential equation

pL(2)f ()] + [p2(2)f (2) + ps(2) f(z + ) = p(2), (3)
where the polynomials p1, peandps in C satisfy p1ps Z 0, and p is a nonzero irreducible polyno-

mial in C. Then f has the form of
e9(2) 1 p(z)e~9(2)

f(Z) = 2p1(z)

where g is a constant or a nonconstant linear polynomial g(z) = Az + B such that

T2
L ps , (k= £1).

" pi(Apapr + ip2 + kp?)

For the special case whenever p; = p3 = p = 1 and p2 = 0 in Theorem 1.3, it implies the

following corollary which improves Theorem [10, Theorem 1.1]. Remark that there is also no

any assumption on the growth of entire solutions.

Corollary 1.4. All transcendental entire solutions of
FE?+f(z+0?=1 (4)
must satisfy f(z) = sin(Az + B), where B is a constant and A = W with k an integer.

Finally, we obtain the following result for the case (iii).

Theorem 1.5. Let py,pa and ps be three polynomials in C satisfying pips Z 0 and Z—g =M
where M is a constant, and p be a nonzero irreducible polynomial in C. If f is an entire solution

of the Fermat type difference-differential equation

1) f @ + [p2(2)f (2 + ) + pa(2) f ()] = p(2), (5)
then f satisfies / o) _|_p(z)e—ig(Z)
@)= 2p1(2) ’

where g satisfies the following two cases:

(i) whenever M = 0 (that is po = 0), then g is a constant or a nonconstant linear polynomial

1
g= -bs, + Constant
k p1

such that all p,p1 and ps are constant.

(i1) whenever M # 0, then g is a constant or nonconstant linear polynomial g(z) = Az + B

such that

o—ide = ip1p2p3
kiAp1pspr — ip3p1 — kpspip1

For M = 0 (namely, po = 0) and p; = p3 = p = 1 in Theorem 1.5, it implies the following

result which is a special case of [22, Theorem 1].

Corollary 1.6. All transcendental entire solutions of

FeP+ 1P =1 (6)



512 Appl. Math. J. Chinese Univ. Vol. 40, No. 3

must satisfy

1 —1iz 1 1z R - z
f(z)—2(Pe —|—Pe )—Sln(z+Az+2),

where P is nonzero constant and e* = P,

For M #0 and py = 1, —ps = p3 = 1 and p = 1 in Theorem 1.5, it implies the following
corollary which improves [10, Theorem 1.5]. Remark that there is also no any assumption on

the growth of entire solutions.

Corollary 1.7. The transcendental entire solutions of
FEP+GE+o— )P =1 (7)
1

must satisfy f(z) = 5 sin(2z + Bi), where ¢ = (k + 3)m, k is an integer and B is a constant.

We would like to arise a question that it may be interesting to consider all entire solutions
of (5) without the assumption of 1% being a constant in Theorem 1.5.

These theorems in this paper can also be regarded as useful judgment methods to nonexis-
tence of entire functions of the Fermat type difference-differential equations. For instances, in
Theorem 1.5, let py(2) = 2, po = 0, p3 = 1 and p(z) = 22. Then it is easy to check that there

are no nonconstant entire solutions of the Fermat type equation

(2 (2)* + f(2)* = *.
If let p1(2) = 1, po = 0, p3 = 1 and p(z) = z + 1, then it is easy to check that there are no
nonconstant entire solutions of the Fermat type equation

(f()+f(2)° =241
More examples can be easily taken like this way.

The remainder of this paper is organized as follows. In next section, we introduce some

basic results on Nevanlinna theory for meromorphic function on the complex plane C and some
lemmas, which play the key role in this paper. We then prove Theorems 1.1, 1.3 and 1.5,

respectively.

82 Preliminaries on Nevanlinna theory and lemmas

Throughout this paper, a meromorphic function f means meromorphic in the complex plane
C. If no poles occur, then f reduces to an entire function. For every real number z > 0, we define
logt 2 := max{0,logz}. Assume that n(r, f) counts the number of the poles of f in |z| < r
(counting multiplicity), and if ignoring multiplicity, then denote it by 7(r, f). The Nevanlinna

characteristic function of f is defined by

T(r, f) :=m(r, f)+ N(r, f),

where Tl f) — (0, /)
N(r, f) := / %dwn(o,f) log

0
is called the counting function of poles of f and

2
m(r, f) = %/0 log™ |f(1"ew)| df
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is called the proximity function of f. The order of f is defined as

log™ T
o(f) = lim sup 28 L(f)
r—oo  logr

It is known [23, Corollary of Theorem 1.5] that f is a transcendental meromorphic function if
and only if
T
lim inf M =00
r—oo  logr
The first main theorem in Nevanlinna theory states that

T(r, =) = (. f) + ofT(r. )

holds for any value a € C. The second main theorem says that for any ¢ distinct small functions
ai,az, ...,aq with respect to a meromorphic function f (that is, each a; is a meromorphic
functions such that T'(r, a;) = o(T'(r, f)) possibly outside a set with finite logarithmic measure),

we have
1 1
( - 2)T(Ta f) S N T, + O(T(Tv f))
I Jz_:l < - aj)

for all sufficiently large r possibly outside a set with finite logarithmic measure (see Steinmetz
[16]). Second main theorem with reduced form for small functions was affirmed due to K.
Yamanoi [20]. For more basic notations and definitions of the Nevanlinna theory, refer to [23] [7].

The first lemma is proved by Clunie.

Lemma 2.1. [23, Theorem 1.46] Suppose that f(z) is a transcendental meromorphic function

and h(z) is a nonconstant entire function. Then

Tl
r—oo  T(r, h)

Lemma 2.2. [3, Theorem 1.6 of Charpter 2] Let f(z) be a meromorphic function, and let
f1 = flaz+b) with a # 0. Then f(z) and fi1(z), as well as N(r, f) and N(r, f1) are of the same
growth category. In fact, by [3, Remark and proof of Theorem 1.6 in Charpter 2], we have

T(r,f(z+b)=a) = (1+401)T(r—[b], f(2) =a)
(14 0(1)T(r — 28|, f(z +b) = a)

V

and

N(r,f(z+b) =a)

\%

(1 + ()N = 1], f() = a)
> (1+0(1)N(r—2)b|, f(z+b) = a).
Lemma 2.3. [21] Suppose f(z) is a meromorphic function in the complex plane and
p(z) = aof" +arf" "+ +an,

where ag(# 0),a1,--- ,a, are meromorphic functions satisfying T(r,a;) = o(T(r,f)) (j =
0,1,---,m) for all positive r possibly outside a set E of finite linear measure. Then

T(r,p(f)) = nT(r, f) +o(T(r,f)), r¢&E.

The following result will be used throughout the proofs of our main theorems.
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Lemma 2.4. Let Aandc be nonzero complex numbers, and let f(z) be a meromorphic function.
Then we have

T(r, f(2)) = o(T(r, e EF))).
Proof. Lemma 2.2 shows that T'(r, f(2)) and T'(r, f(z +¢)) have the same growth category, and
Lemma 2.1 implies that the growth category of T(r, f(z+c)) is lower than that of T(r, eAf(3+¢)),
Thus the growth category of T'(r, f(z)) is lower than that of T(r,eAf(3+¢)), O

The following lemma is obtained by H X Yi.

Lemma 2.5. /28, Theorem 1.57] Let f;(j = 1,2,3) be meromorphic functions and fi is not a

constant. If f1(z) + fa2(2) + f3(z) =1 and
3

3
3 N(r,;j)HZN(r,fj) < (A +o()T( ), (rel)

where A < 1 and I is a set of infinite linear measure, then fo(z) =1 or f3(z) = 1.

j=1

At last in this section, we give the following result which will play an important role in the

proofs of our main theorems.

Lemma 2.6. Let ¢ be a nonzero complex number and g be a nonconstant entire function
satisfying the equation

A(2)e 292 4 B(2)et9=979() L O(z)e i 9(zmH9(2) = 1 (8)
where A(#0), B and C(# Constant) are meromorphic functions small with respect to e9%) (that
is, max{T(r, A), T(r, B), T(r,C)} = o(T(r,e9*)))) possibly outside a set with finite logarithmic
measure). Then g(z — ¢) + g(z) is nonconstant.
Proof. Since g is a nonconstant entire function, both e9(*) and e=2"9(%) are transcendental entire

functions. If the conclusion is not true, then we may suppose that g(z — ¢) + g(z) = K where
K is a constant. Then it gives by (8) that

A(2)e 29 4 B(2)et9(z=9)=9(2) = 1 — C(z)e K. (9)
If B(z) =0, then e=29(2) = %. This contradicts to

P L2 CEETEN i e294)) = o(T(r, e9)
T(, e )_ (T(r, ) = o(T(r, e?))).

Now we get that B(z) # 0.
Note that C(z) is not a constant. Set
F = A(Z)G—Zig(z) and G = B(Z)ei(g(z—c‘)—g(z))'

Then by (8) and the Nevanlinna’s second main theorem,
1

F—(1—-C(2)eK)

= N(r,F)+ N(r, %) + N(r, é) +o(T(r, I))

N(r, 4) + N(r, 5) + N, ) + (T, F)
— o(T(r, F)).

T(r,F) < N(rF)+N(r5)+ NG, ) +o(T(r, F))

IN
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This is a contradiction. Hence, g(z — ¢) + g(z) must be nonconstant. O

83 Proof of Theorem 1.1

Let f be an entire solution of (1). Then
X2 4Y? = (X +iY)(X —iY) = p(2),
where X = p1(2)f(z+¢) and Y = pa(2)f(2) + ps(2)f (2). Since p is an irreducible polynomial,
there exists an entire function g such that
X +iY = €,
X —iY = pe 9,
or
X —iY = €9,
X +iY = pe .
We get from solving for X and Y that

pf+g=x=""0 (10)
, eld — pe*ig
p2f(2) +psf (2) =Y = kii, (11)
where k =1 in the first case and k¥ = —1 in the second case. It follows from (10) that
e'? + pe 2
flz) = T (12)
where p; # 0.
Submitting (12) and (13) into (11), we obtain that
ae'9?) = Bem19(2) 4 nei9(z0) 4 gemig(z—c) (14)
where
a(z) = kpi®, B(z) = pp1®,
V(2) = —ps [iﬂ/ +g'&} + pap1,
and
0(z) = p3 []ﬂ (i}g/ +@/> — iﬂ,g} + ipap1p.
Since p1,p # 0, we have a, 8 Z 0. Then we get from (14) that
B =2ig(z) | 7 jitaz—e)=g(=)) 4 O pmile(z—e)ta(=) — 1. (15)
o' a o

If g is a constant, then the theorem is proved already. We now assume below that g is a
nonconstant entire function. Then both €299(*) and ¢~2%9(?) are transcendental entire functions.

The assumptions p1, ps,p Z 0 imply that g/ appears in both v and 4.

Assume that g is constant. Then we get that g/ and thus g must be a polynomial. Then g
is nonconstant implies that g(z — ¢) + g(z) is not constant. Assume that g is not a constant.
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By Lemma 2.1 and Lemma 2.4 we know that

B i 4 —2i
), T(r, 2),T(r, =)} = o(T(e”293))).
r )10, 1), 1, )Y = o(T(e 20
Then by Lemma 2.6 we also get that g(z — ¢) 4+ g(2) is not constant. Hence, now we get that

max{7T(

both e=29(2) and e~ 9(z=)+9(2)) are transcendental. We divide four cases as follows.

Case 1. Assume that v = § = 0. Then equation (15) reduces to e 2¥9(*) = %, which
contradicts to the fact T (r, %) = o(T(r,e=29(2))),
Case 2. Assume v =0 and § # 0. Then (15) reduces to
B 2ig() gewg(zfcm(z)) _1 (16)

@
By Lemma 2.1 and Lemma 2.4,
max{T(r,a),T(r,8),T(r,0)} =0 (T(r, e_2ig(z)) .

Set F':= §6_2i9(z) and G := ge_i(g(2_0)+9(z)). Then by (16) and the Nevanlinna’s second main

theorem,

T F) < N@ﬂ+Nm%%HWn

= N(r,F)—i—N(r,%)—&-N(r,

< Mn§+Nm%+NM

—)+olT(r, )

) +o(T(r, )

Q==

) +o(T(r, F))

| =

= o(T(r, F)).
This is a contradiction.
Case 3. Assume v # 0 and § = 0. Then (15) reduces to
B o—2ig(2) | 7 italz—e)—g(2)) — 1. (17)
o @
By Lemma 2.1 and Lemma 2.4,
max{T(r,a), T(r,5),T(r,y)} =0 (T(r, e_zig(z)) .

Set F := ge_%g(z) and G = %ei(g(z_c)_g(z)). Then by (17) and the Nevanlinna’s second main

theorem,

T(rF) < N(T,F)+N(r,%)+N(r,

= N(T,F)—I—N(r,%)—&-]\f(r,

1
B

)+ o(T(r, F))

B!

-1

L)+ o(T(r, F))

Q

Ly v

r,—
«

= o(T(r, F)).

< N )+ N(r, =) +o(T(r, F))

= |~

This is a contradiction.
Case 4. Assume ¢ # 0 and v # 0. By Lemma 2.1 and Lemma 2.4,

e[ 5001310015 (1) 0 (1) o (1))
max{T(r,c), T(r,5),T(r,v), T(r )}
o(T(r, F)),

IN
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where F := ge_%g(z), G = Lei9(z=9)=9() and H := 2e79(:=9)+9(2)) Then applying Lemma
2.5 into (15), we get either
G = Jeilaz=0)=g(2)) = 1

a
or
1= O itez—otez) = .
a
Submitting either G =1 or H =1 into (15) gives either
etlg(z=0)=9(2)) = = = _
or

e—ilg(z=c)+g(2))

|
w2 @l

respectively. Thus we have

that is

psp1*p(g )* + (Dpspr = Cpsprip) g = (CD + kpi'p) =0,
where C' := pop; — ipg&' and D = ipgwl — ipg&lg—i—ipgm. Assume that g/ is transcendental,
then it follows from Lemma 2.3 that

27 (r, g’) =T (7“, p%]ﬂzg(g/f + (ngpfl - C’pgw) g, - (CD + k‘p714p)> =T(r,0) = O(logr),
which implies that

p%ﬂQQ = Dpap1 — Cpspip = CD + k&‘lp =0.
This is a contradiction, since p,p; and p3 # 0. Hence, g/ and thus g is a polynomial.

Now since ¢ is a polynomial, it follows from e*(9(x=¢)=9(2)) = % that ¢ must be a linear
polynomial, say a polynomial g = Az + B. Then e*(9(:=¢)=9(2)) = % gives

2
—iAc kpl

(p2 — Ap3) p1 — ipspr’
Or, it follows from e~*(9(=¢)+9(2)) = % and g is a polynomial that g(z — ¢) + g(2), and thus g

must be a constant. Therefore, the theorem is proved.

e

84 Proof of Theorem 1.3

Let f be an entire solution of (3). Using similar discussion as in the proof of Theorem 1.1,
we get that since p is an irreducible polynomial, there exists an entire function g such that
e'9 + pe~9
pf(e) = =2,
’ eig — pefig
paf (2) +p3f(z+¢) = kT’
where k = £1. By (18), we get that

4 . _ Zg/(Z) _ 1 eig(z)
I <2p1<z> 2p%<z>>

(18)

(19)
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and
e + pe=9
Z4+c)= —F—
flate) = 5T

Submitting these equations into (19), we have

etz te) = Be=ig(zte) 4 ~eig(2) 4 5e—i9(2) (20)
where
a(z) = —ipips, B(z) = ipipsp,
V(z) =p1 {p2 [—g'pl - Z} - kpf} ;
and

6(2) = pT{ps [(ip' +pg') p1L— ip} - kpp?} :

The assumption p1, ps and p # 0 implies that «, 8 # 0, and that § depends on g’ (z—c). We
rewrite (20) to be

, , 5 .
ge—mgwc) n geug(z)—g(zw)) n ae—1<g<z>+g<z+c>> 1. (21)

If g is a constant, then the theorem is proved already. We now assume below that g is a
nonconstant entire function. Then both e9(*) and e=2:9(*+¢) are transcendental entire functions.
The assumptions p1, ps and p # 0 imply that the g/(z) appears in 9.

Using as the same as in the proof of Theorem 1.1, we get that g(z)+ g(z+c) is not constant.
Hence, both e=2i9(2+¢) and e~ (9(2)+9(2+¢)) are transcendental. And also by the same discussion
as in the proof of Theorem 1.1, we get contradictions whenever at least one of § and -y is identical
equal to zero; while whenever § # 0 and vy # 0, we get that either

pila()—g(z+e) = @ — 0
Y B
or
e—ilg(@)Hg(4e) = & = _
d B
Thus
oy +aB =0,
that is

piPTp2psp(9 )* + (CPipspip + Dpipips) g + (CD — pip3p) =0,
where C':= ipips + kpipr and D = ipip3(p p1 — p) — kppipr.
Assume that g/ is transcendental, then by Lemma 2.3 we get that

2T(r,g) =T (r, PP papsp(9 )? + (Cipspip + Dpipipe) g + (CD — pi‘pgﬁ))

=T(r,0) = O(logr)
which implies

PIP1 papsp = CPipspip + Dpibips = CD — pipip = 0.

Then p?p12p2psp = 0 shows that ps = 0, since p, p; and p3 # 0. Thus, Cpipsp1p + Dp1pip2 =0
reduces to kp$pr2psp = 0, which is impossible. Hence, g/ and thus g, is a polynomial.

Now since ¢ is a polynomial, it follows from e(9(z=)=9(2)) = % that g must be a linear
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polynomial, say a polynomial g = Az 4+ B. Then e(9(2)—9(2+¢)) = % gives
p—idc — ipips
Pi(Apapr + ip2 + kp?)
Or it follows from e~*(9(x)+9(+¢) = 2 and g is a polynomial that g(z) + g(z + ¢), and thus g,

must be a constant. Therefore, the theorem is proved.

85 Proof of Theorem 1.5

Let f be an entire solution of (5). Using similar discussion as in the proof of Theorem 1.1,
we get that since p is an irreducible polynomial, there exists an entire function g such that
, e9(2) 4 p(z)e=9()

P (2) = e (22
eig(z) 7p z efig(z)
po(2) (M f(z )+ (2) = kS DT (23)
where k = £1. By (22), we get that
, eig(erc) +p(Z + C)efig(zqtc)
= . 24
£ (=40 e (24)
Differentiating both sides of (23), and then according to (22) and (24), we have
et te) = gemia(zte) 4 eio(2) 4 §e—ig(2) (25)
where
i M . M
Oé(Z): ? p3(’z), 5(2):_Z pg(Z)p(Z—f—C),
pi(z+c¢) p1(z+¢)
. ips(2)  kps(2)
z) = kig (z) — — ,
V(2) = kig (2) () pe(2)
and

it oy aEp(E) ips(z)p(e)
() = klip(2)g'(2) =9 () + 2 F PO

Note that p1, ps and p #Z 0 implies that v and 0 depend on g/(z).
(i) Tt is clear that if M = 0 (that is po = 0), then o = 8 = 0. Then (25) reduces to
ye?i9(z) = g,

If g is a constant, the theorem is already proved. Now assume that g is not a constant. Then

it must be
y=0=0
by estimating the Nevanlinna’s characteristic function of both sides of the above equation. So,
kig —i2 kP =9
4! b3
and

kig — 22 4 kE3
, p1
Since p, p1 and ps3 are polynomials, g and thUb g must be a polynomial by the above equations.

Combing the two equations gives p = 2p 3 Furthermore, since ¢’ is entire, it follows from the
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first equation that every zero with multiplicity £ of p3 must be a simple pole of g—é, and thus
is a zero of p; with multiplicity ¢ 4+ 1, and vice versa. Thus if p3 is not a constant, then ps
and p; must have the same zeros with multiplicities £ and ¢ + 1 respectively, and for all these
zeros we have deg(p1) = deg(ps) + ﬁ(p%), where ﬁ(p%_) denotes the number of distinct zeros of
p3. Therefore, if p3 is a nonconstant and ¢’ is a nonzero polynomial, then the degrees on both
sides of the equation k;iplpgg/ =ip3 + k‘plp;) are not equal, that is, we have

’ 1 . /
degg +2degps + ﬁ(;g) = deg(kip1psg )

/ 1 1
> deg(ip} + kp1p;) = max{2 deg ps, 2 deg p3 +7(-) — 1) = 2degps +7( ) — L.
3 3

This contradiction implies that if p3 is not a constant, then g/ = 0, and ¢ is a constant. Hence,
we know that ps is a constant, so all p and p; are constants, and g/ = %g—f Therefore, g is a

constant, or a nonconstant linear polynomial g = %g—?z + Constant.

(ii) We now assume that M # 0. The assumption py,p3 and p Z 0 gives «, 5 £ 0. Then we
rewrite (25) to be

B o—2ig(ate) | 7 gita(m)—g(=4e)) 4 O —ile(z)ra(ate)) _ 1. (26)

e @ e
If g is a constant, then the theorem is proved already. We now assume below that g is a
nonconstant entire function. Then both e9(*) and e=219(>+¢) are transcendental entire functions.

The assumptions p1, ps and p # 0 imply that the g/(z) appears in y and 9.

Using as the same as in the proof of Theorem 1.1, we get that g(z)+ g(z+c¢) is not constant.
Hence, both e~219(>+¢) and e~*(9(2)+9(>+¢)) are transcendental. And also by the same discussion
as in the proof of Theorem 1.1, we get contradictions whenever at least one of § and -y is identical
equal to zero; while whenever § Z 0 and v # 0, we get that either

pila(m)—gle+0) = & — 0
Y B
or
e—ilg(x)+g40) = & = _ 0
6 B
Thus
oy +aBf =0,
that is

ppi°(g)” + kipi® (Cp+ D) g — (CDPi* + M*p3p) =0,
WhereC::%+%andD:kp/—%+%.
Assume that g/ is transcendental, then by Lemma 2.3 we get that
2T(r,g) =T (r,ppT2(g,)2 + kipi2 (Cp+ D) g — (CDp7* + M2p§]3)) =T(r,0) = O(logr),
which implies
ppi> = kip12 (Cp + D) = CDpr> + M?p3p = 0.
This is obviously a contradiction, since p, p; and p3 #Z 0. Hence, g/ and thus g, is a polynomial.

Now since ¢ is a polynomial, it follows from e(9(z=)=9(2)) = % that g must be a linear
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polynomial, say a polynomial g = Az 4+ B. Then e(9(2)—9(2+¢)) = % gives
o—ide — ip1p2p3
kiApipspr — ip3p1 — kpspibi
Or it follows from e~'(9(x)+9(z+¢)) = & and g is a polynomial that g(z) + g(z + ¢), and thus g

must be a constant. Therefore, the theorem is proved.
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