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Almost global existence for d-dimensional fractional

nonlinear Schrödinger equation on flat torus

DING Wan-ran1 LI Si-ming1 XUE Hui-ning2

Abstract. In this paper, we will discuss the almost global existence result for d-dimensional

fractional nonlinear Schrödinger equation on flat torus, which is based on BNF technique, the

tame property and the analysis of the spectrum of (−∆)s.

§1 Introduction

Understanding the qualitative aspects of the long time behavior of solutions to Hamiltonian

partial differential equations (PDEs) on compact manifolds has been a fundamental problem

over the past decades. Pioneering work on Nekhoroshev-like theorems for Hamiltonian PDEs

was carried out by Bourgain and Bambusi, see [14,15,2] and references therein. However,

as Kuksin noted in [35] which is “still the main challenge here is to prove or disprove the

Nekhoroshev theorem”.

The fractional Schrödinger equation is a key development in quantum physics, generalizing

the Schrödinger equation in the context of fractional quantum mechanics. As noted in [34], it is

an emerging area related to nonlocal quantum phenomena, offering new insights into quantum

behavior beyond traditional locality principles. For related work, refer to [36,41,26,12]. In

this paper, we will study the long time stability for the d-dimensional the fractional nonlinear

Schrödinger equation (FNLS)

iut + (−∆)su+ V (x) ∗ u+ |u|2u = 0, x ∈ Td
L := Rd/L (1)

on flat tori, where (−∆)s is the Riesz fractional differentiation with s ∈ (0, 1/2), V ∗ is a

convolution potential and L is a lattice of Rd.

Significant progress towards understanding the long time stability for Hamiltonian PDEs

was made by Bambusi-Grébert in [7]. They proved a Birkhoff normal form (BNF) theorem that

is adapted to a large class of Hamiltonian PDEs, which exhibit the tame property in Sobolev
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space

Hσ
(
Td
)
:=

q = (qj)j∈Zd :
∑
j∈Zd

|qj|2⟨j⟩2s <∞

 , σ > d/2, (2)

where ⟨j⟩ := max{|j|, 1} and |j| :=
√
j21 + · · ·+ j2d with j = (j1, · · · , jd). At the same time, they

discussed dynamical consequences on the polynomial long time behavior of the solutions with

small initial data. In 2013, Faou-Grébert [30] proved a subexponential long stability time

interval for d-dimensional NLS in the analytic space

Aρ(Td) :=

q = (qj)j∈Zd :
∑
j∈Zd

|qj|eρ/2|j| <∞

 , ρ > 0. (3)

After that Cong-Liu-Wang [20] and Chen-Cong-Meng-Wu [19] proved respectively a similar

result for 1-dimensional nonlinear wave equation and 1-dimensional NLS in Gevrey space

Gσ(T) :=

q = (qj)j∈Z :
∑
j∈Z

|qj |2 ψ(j, σ)2 <∞

 , σ > 0

with ψ(j, σ) = exp
{
σ
√
|j|
}
in [20] and ψ(j, σ) = exp

{
σ ln2 [j]

}
in [19], where [j] := max{|j|, e3}

with j ∈ Z.

Finally, let us mention some recent results. Berti-Delort [3] proved the almost global solu-

tion existence for quasi-linear water wave equations with periodic boundaries. Feola-Giuliani-

Pasquali [31] developed a formal BNF for the Degasperis-Procesi equation, addressing reso-

nances using conserved quantities. Bernier-Faou-Grébert [5] introduced a normal form for the

1-dimensional NLS without external parameters. Recently, Bernier-Grébert [8] studied the long

time dynamics of the solutions of the generalized Korteweg-De Vries and Benjamin-Ono equa-

tions without external parameters. See more related work [4,21,22,23,32,33,37,38] for examples.

In 2022, Procesi raised an open question in his ICM report (see Q3 within the document):

“Can one extend the stability results to general manifolds in higher dimension?” Delort-Szeftel

[27] provide a lower bound estimate for the existence time of small smooth solutions to the

Cauchy problem for a nonlinear Klein-Gordon equation (NLKG) on the sphere Sd−1. Sub-

sequently, Bambusi-Delort-Grébert-Szeftel [4] utilized the BNF method and the characteristic

distribution of eigenvalues of the Laplacian operator on Zoll manifolds to prove the existence of

almost global solutions for the d-dimensional NLKG on these manifolds. For more work related

to this question, see [11,25,28]. For other research on general manifolds, refer to [9,10,18,24,39].

Recently, a significant advancement was achieved by Bambusi-Feola-Montalto in [6], proving

a result on the almost global existence for d-dimensional NLS, Beam and QHD on flat tori, with

the phase space being the Sobolev space Hσ(Td). In this work, in order to tackle the resonance

issue related to the eigenvalues of the Laplace operator on flat tori, they introduced a key

technique—a Lemma by Bourgain on the “localization of resonant sites” in Td—to construct

a N -block normal form. Specifically, when two indexes i, j ∈ Zd belong respectively to two

different blocks Ωα,Ωβ ⊂ Zd, their frequencies ωi and ωj are well-separated, i.e.,

|i− j|+ |ωi − ωj| ≥ C(δ)
(
|i|δ + |j|δ

)
, ∃ δ > 0. (4)
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Consequently, it becomes feasible to eliminate the monomials involving two high-frequency

variables qi, qj, where i ∈ Ωα and j ∈ Ωβ with α ̸= β, by applying suitable nonresonance

conditions. For the remaining monomials, which involve two high-frequency variables qi, qj

within the same block, the Duhamel formula is used for estimation.

In analogy with [19], we also expect the almost global existence for d-dimensional NLS on

flat tori in Gevrey space Gσ(Td). However, note that in [6], when considering the Sobolev

space Hσ(Td), the norm ∥ · ∥Hσ(Td) is equivalent to the ℓ2s-norm ∥ · ∥s, where ∥ z ∥ 2
Hσ(Td):=∑

α n(α)
2s ∥zα∥0 with n(α) := minj∈Ωα |j| and Zd =

∪
α Ωα. In contrast, when we consider the

Gevrey space Gσ(Td), this equivalence does not hold.

Therefore, the focus of our paper is to investigate the almost global existence for the FNLS

given by (1) on flat tori, with initial data belonging to the Gevrey space. Furthermore, to

facilitate a more comprehensive comparison with the results in [6], we have also taken into

account the Sobolev space and the modified Sobolev space in our paper. Precisely, in this

paper, we will study the long time stability of solutions for (1) in the following four phase

spaces:

ℓ2σ(C) =

q = (qj)j∈Zd ∈ CZd

:
∑
j∈Zd

|qj|2 ψ(j, σ)2 <∞

 (5)

with

ψ(j, σ) = exp
{
σ
√

|j|
}
, exp

{
σ ln2 [j]

}
, exp {σ ln ⟨j⟩} , exp {σ ln ⌊j⌋} ,

where ⌊j⌋ := max {|j|, 2}. (The first two functions ψ(j, σ) correspond to Gevrey spaces, the

third corresponds to the Sobolev space, and the last one corresponds to the modified Sobolev

space.) And denote

∥q∥2σ :=
∑
j∈Zd

|qj|2 ψ(j, σ)2.

For the Gevrey spaces and Sobolev spaces, we will investigate the almost global existence of

solutions for (1) by using the BNF theorem given in [30]. In order to apply the BNF theorem,

it is essential to handle the issue of small divisors (see Section 3 for more details) and discuss

the tame property

∥q ∗ q′∥σ ≤ C(σ, σ′) (∥q∥σ ∥q
′∥σ′ + ∥q′∥σ ∥q∥σ′) ,

where 0 < σ′ < σ, in various phase spaces (see Lemma 5.3 for more details). As for the modified

Sobolev space, we will explore it through the application of a tame-like inequality given in [38]

(see (70) for more details).

As previously mentioned, applying the BNF theorem depends on properly handling the issue

of small divisors. However, since the frequency ω (see (14)) for the FNLS exhibits only sublinear

growth, it poses significant challenges to prove that ω meets certain appropriate nonresonance

conditions. At the same time, the difficulty caused by the sublinear increasing frequency is

also a problem of the stability of linear models. To be specific, for the linear Schrödinger-type

equation iut = (H + V(t))u, it is widely believed that the spectral gap of the unperturbed

Hamiltonian H is closely related to the long time behavior of solutions. If the spectral gap

increases, there are enormous results to explore the stability of solutions of such equations,
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including polynomial (logarithmic) bounds on the growth of Sobolev norms [16,17,24,40], as

well as globally bounded Sobolev norms [1,29]. However, if the eigenvalues of unperturbed

Hamiltonian H grow only sublinearly, i.e., spectral gap shrinks to zero, the situation has been

changed significantly. It is much harder to obtain stability results for the linear models.

Recall the FNLS given by (1), where L is a lattice of Rd with linearly independent generators

v1, · · · ,vd ∈ Rd, i.e.,

L :=

{
d∑

i=1

mivi : mi ∈ Z

}
and the potential V (x) is smooth, real valued, periodic on the lattice L , namely

V

(
x+

d∑
i=1

mivi

)
= V (x), mi ∈ Z, 1 ≤ i ≤ d.

Then equation (1) is equivalent to the following FNLS on the standard torus

iut + (−∆L )
s
u+ V (x) ∗ u+ |u|2u = 0, x ∈ Td, (6)

where the anisotropic Laplacian

∆L :=
d∑

i,j=1

∂xi

[
WTW

]j
i
∂xj

with

W := V−1, V := (v1| · · · |vd) .

And the eigenvalues of −∆L are µj = |W j|2 for any j ∈ Zd. Since W is invertible, it follows

that µj ∼ |j|2. Let u be a solution of (6), which can be expanded into a Fourier series

u =
∑
j∈Zd

qj · ϕj(x) with ϕj(x) =
1

(2π)d/2
ei⟨j,x⟩.

Moreover, V (x)∗ is the convolution potential defined by

V (x) ∗ u =
∑
j∈Zd

Vj · qj · ϕj(x).

We assume that for m > d/2, V belongs to the space

Wm =

V (x) =
∑
j∈Zd

Vj ϕj

∣∣∣∣ Vj ∈ [− 1

2⟨j⟩m
,

1

2⟨j⟩m

]
for any j ∈ Zd

 , (7)

that we endow with the product probability measure. For any σ > 0, define by ∥u∥σ := ∥q∥σ .
Then we have the following results:

Theorem 1.1. Sobolev space and modified Sobolev space

Let

ψ(j, σ) = exp {σ ln ⟨j⟩} ,
which corresponds to the Sobolev space. Given any large r > 0, there exists σ∗(r) > 0 depending

on r and a subset V ⊂ Wm of full measure. Then for any V ∈ V and any σ > σ∗(r) there is

a small ϵ0 = ϵ0(σ,m, d, s,W, r) > 0 depending only on σ,m, d, s,W and r, such that for any

0 < ϵ < ϵ0, if

∥u(0, x)∥σ ≤ ϵ,
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then the solution u(t, x) of (1) with the initial datum u(0, x) satisfies

∥u(t, x)∥σ ≤ 2ϵ, ∀ |t| ≤ Tϵ,

where

Tϵ ≥ exp

{
4

5
r |ln ϵ|

}
. (8)

Furthermore, let

ψ(j, σ) = exp {σ ln ⌊j⌋} ,
which corresponds to the modified Sobolev space. For any V ∈ Wm, there is a small ϵ0(d) > 0

depending only on d such that for any 0 < ϵ < ϵ0(d), one has

Tϵ ≥ ϵ−1

(
4

3

)σ

. (9)

In particular, if σ ≥ 1/ϵ, the stability time Tϵ ≥ ϵ−1 exp
{
Cϵ−1

}
is exponential about ϵ, where

C = ln 4/3.

Theorem 1.2. Gevrey space

There exists a subset V ⊂ Wm of full measure and a small ϵ0 = ϵ0(σ,m, d, s,W ) > 0 depending

only on σ,m, d, s and W , such that for any 0 < ϵ < ϵ0, if ∥u(0, x)∥σ ≤ ϵ, then the solution

u(t, x) of (1) with the initial datum u(0, x) satisfies

∥u(t, x)∥σ ≤ 2ϵ, ∀ |t| ≤ Tϵ,

where

(1) if ψ(j, σ) = exp
{
σ ln2 [j]

}
, the stability time Tϵ is given by

Tϵ ≥ exp

{
1

2
|ln ϵ|1+β

}
; (10)

(2) if ψ(j, σ) = exp
{
σ
√
|j|
}
, the stability time Tϵ is given by

Tϵ ≥ exp

{
−C∗ |ln ϵ|4/3

ln | ln ϵ|

}
, (11)

where 0 < β < 1/7, 0 < C∗ ≤ 1/200.

Sketch of the proof and comments

The proof of (8) in Theorem 1.1, (10) and (11) in Theorem 1.2 follows from the idea of the

tame property in various phase spaces (see Lemma 5.3) and an abstract BNF theorem which

are developed by [30]. The proof of (9) follows from a tame-like inequality (70), which is given

by [19].

Precisely, in the first step, the equation (6) is rewritten as an infinite dimensional Hamilto-

nian systems, where the Hamiltonian function given by

H(u, ū) =

∫
Td

(
|∇L u|2s + (V (x) ∗ u)ū+

1

2
|u|4
)
dx (12)

with the complex symplectic idu ∧ dū. By Fourier series, the Hamiltonian (12) turns into

H(q, q̄) = H2(q, q̄) + P (q, q̄), (13)
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where

H2 =
∑
j∈Zd

ωjqjq̄j with ωj = |W j|2s + Vj (14)

and

P (q, q̄) =
∑

l,l′∈NZd

Pl,l′q
lq̄l

′
with Pl,l′ =

1

2(2π)d
(15)

satisfying ∑
j∈Zd

(lj − l′j) = 0 and
∑
j∈Zd

j(lj − l′j) = 0, (16)

which are respectively called the mass conservation and the momentum conservation. Oth-

erwise Pl,l′ = 0.

Secondly, we will show that the Hamiltonian P satisfies tame property in various phase

spaces when the weight function ψ(j, σ) is chosen as

exp {σ ln ⟨j⟩} , exp
{
σ ln2 [j]

}
, exp

{
σ
√

|j|
}
,

which are based on a tame inequality (see Lemma 5.3 for the details).

Thirdly, using BNF technique under some suitable nonresonance conditions (see (27)), we

obtain a partial normal form around the origin. Then combining with tame property, one

obtains the long time stability result by optimizing the stability time Tϵ.

§2 The tame norm of Hamiltonian vector field

2.1 Some notations

In this section, we first introduce some notations. Define the scale of the phase space

(q, q̄) ∈ Pσ(C) := ℓ2σ(C)⊕ ℓ2σ(C).

where ℓ2σ(C) is given by (5). We identify a pair z = (q, q̄) ∈ CZd × CZd

with (za)a∈F ∈ CF via

the formula

a = (j, δ) ∈ F ⇒

{
za = qj, if δ = 1,

za = q̄j, if δ = −1 ,
(17)

where F = Zd × {±1} and

∥z∥2σ := ∥q∥2σ + ∥q̄∥2σ .
Denote by BC,σ(R) the open ball centered at the origin and of radius R in Pσ(C). For simplicity,

we often write

Pσ ≡ Pσ(C), Bσ(R) ≡ BC,σ(R).

Let H : Pσ → C be a homogeneous polynomial of degree n given by

H(z) =
∑

l,l′∈NZd

|l+l′|=n

Hl,l′q
lq̄l

′
,

where Hl,l′ is the coefficient of the monomial

qlq̄l
′
:=
∏
j∈Zd

q
lj
j q̄

l′j
j and |l + l′| :=

∑
j∈Zd

|lj + l′j|.
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Then we define its modulus ⌊H⌉ by

⌊H⌉(z) :=
∑

l,l′∈NZd

|l+l′|=n

|Hl,l′ |qlq̄l
′
.

Furthermore, it is naturally associated with a symmetric n-linear form H
(
z(1), . . . , z(n)

)
such

that

H(z, . . . , z) = H(z),

and a symmetric (n− 1)-linear form XH

(
z(1), . . . , z(n−1)

)
such that

XH(z, . . . , z) = XH(z),

where XH : Pσ → Pσ is the Hamiltonian vector field of homogeneous polynomial H and is

defined by

XH(z) := i

(
∂H

∂q̄
,−∂H

∂q

)
.

2.2 The tame norm of Hamiltonian vector field

Definition 1. Let H be a homogeneous polynomial of degree n+1, and assume that H satisfies

the following two conditions:

1. Tame property, i.e.

A = sup
∥⌊XH⌉(ω)∥σ

∥ω∥Tσ
<∞,

where

∥ω∥Tσ =
1

n

n∑
l=1

(∥∥∥z(1)∥∥∥
σ′
· · ·
∥∥∥z(l−1)

∥∥∥
σ′

∥∥∥z(l)∥∥∥
σ

∥∥∥z(l+1)
∥∥∥
σ′
· · ·
∥∥∥z(n)∥∥∥

σ′

)
,

0 < σ′ < σ and the sup is taken over all the multivectors ω =
(
z(1), . . . , z(n)

)
̸= 0;

2. Bounded property, i.e.

B = sup
∥⌊XH⌉(ω)∥σ′

∥ω∥σ′
<∞,

where

∥ω∥σ′ =
∥∥∥z(1)∥∥∥

σ′
· · ·
∥∥∥z(n)∥∥∥

σ′

and the sup is taken over all the multivectors ω =
(
z(1), . . . , z(n)

)
̸= 0.

Then the tame norm of the Hamiltonian vector field XH is defined by

|H|Tσ := max{A,B}.
Furthermore, let H be a nonhomogeneous polynomial. Consider its Taylor expansion

H =
∑
n≥3

Hn,

where Hn is a homogeneous polynomial of degree n. For any R > 0, we define

|H|Tσ,R :=
∑
n≥3

|Hn|TσRn−1. (18)
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2.3 The Poisson bracket of two Hamiltonians

For two Hamiltonians H and F , we define the Poisson bracket by

{H,F} = i
∑
j∈Zd

(
∂H

∂q̄j

∂F

∂qj
− ∂H

∂qj

∂F

∂q̄j

)
. (19)

Lemma 2.1. Let H and F be homogeneous polynomials of degree n+1 andm+1, respectively.

One has

|{H,F}|Tσ ≤ (n+m)|H|Tσ |F |Tσ . (20)

Proof. The proof can be found in Lemma 2.4 in [19].

Definition 2. Define the norm of the Hamiltonian vector field XH by

∥XH∥Rσ := sup
∥z∥σ≤R

∥XH(z)∥σ . (21)

In fact, the tame norm (18) is stronger than the Hamiltonian vector field norm (21).

Lemma 2.2. For a given Hamiltonian H, one has

∥XH∥Rσ ≤ |H|Tσ,R. (22)

Proof. The proof can be found in Lemma 2.7 in [19].

Remark 2.1. Let χ be an analytic Hamiltonian function with Hamiltonian vector field which

is analytic as a map from Bσ(R) to Pσ. For any 0 < d < R, assume that |χ|Tσ,R < d, and

consider the time t flow Φt of Xχ. Then for |t| < 1, we have

sup
∥z∥σ≤R−d

∥∥Φt
χ(z)− z

∥∥
σ
≤ ∥Xχ∥R−d

σ ≤ |χ|Tσ,R. (23)

Furthermore, for a vector z = (zj)j∈Zd and a given large N > 0, we define the projection

Π̃Nz := z̃ = (z̃j)j∈Zd

by z̃j = zj when |j| ≤ N and otherwise z̃j = 0. Let ẑ := z − z̃. Then using the tame property

(80), one has

Lemma 2.3. Assume that H has a zero of order three in the variable ẑ. Then one has

∥XH∥Rσ ≤ C(N)|H|Tσ,2R, (24)

where for 0 < σ′ < σ

C(N) =
4

ψ(j∗, σ − σ′)
with |j∗| = N. (25)

Proof. For the detailed proof process, see the proof of Lemma 3.8 in [38].

§3 Measure estimate

Lemma 3.1. For any sufficiently small γ, let N and r be large enough depending on W and

m, d, s respectively, there exists a set R ⊂ Wm satisfying

mes R = O(γ), (26)
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such that for any V ∈ (Wm \ R), one has

|⟨k, ω⟩| ≥ γ2/s∗+1

Nr3
, (27)

for 0 ̸= k ∈ ZZd

with |k| ≤ r + 2 and |k̂| ≤ 2, where s∗ = min{2s, 1− 2s} with 0 < s∗ ≤ 1/2.

Proof. Define the resonant set Rk and R∗
k by

Rk̃ :=
{
V ∈ Wm :

∣∣∣⟨k̃, ω⟩∣∣∣ < γ

Nr2

}
(28)

and

R∗
k :=

{
V ∈ Wm : |⟨k, ω⟩| < γ2/s∗+1

Nr3

}
.

Let R = R̃
∪

R∗, where

R̃ =
∪

0̸=k̃∈ZZd

|k̃|≤r+2

Rk̃ and R∗ =
∪

0̸=k∈ZZd

|k|≤r+2,0<|k̂|≤2

R∗
k.

Then it is easy to see that for any V ∈ (Wm \ R), the inequality (27) holds.

Now it suffices to prove the estimate (26) holds, which will be given in the following two

steps.

Step 1: We will prove that mes R̃ = O(γ).

Note that 0 ̸= k̃ ∈ ZZd

in Rk̃, then in view of (7) and (28), one has

mes Rk̃ ≤ γ

Nr2−m
,

and then

mes R̃ ≤
∑

0<|k̃|≤r+2

γ

Nr2−m
≤ γ(2N + 1)d(r+2)

Nr2−m
≤ γ,

where using the fact that r is large enough depending on m and d. Thus, one finishes the proof

of Step 1.

Step 2: We will prove that mes R∗ = O(γ).

Write

R∗ =
2∪

i=1

R∗
i with R∗

i =
∪

0̸=k∈ZZd

|k|≤r+2,|k̂|=i

R∗
k.

Case 1. |k̂| = 1. Then one has

⟨k, ω⟩ = ⟨k̃, ω⟩ ± ωl,

where |l| > N . According to the momentum conservation (16), we have |l| ≤ rN . Then,

following the proof of Step 1, we get mes R∗
1 = O(γ).

Case 2. |k̂| = 2. Then one has

⟨k, ω⟩ = ⟨k̃, ω⟩+ kl1ωl1 + kl2ωl2 , (29)

where kl1 , kl2 ∈ {−1, 1} and |l1|, |l2| > N.

Subcase 2.1. kl1kl2 = 1. Without loss of generality, we assume that

kl1 = 1, kl2 = 1 and |l1| ≤ |l2|.
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Note that by (74) ∣∣∣⟨k̃, ω⟩∣∣∣ ≤ |k̃| max
|j|≤N

(
|W j|2s + 1

)
≤ r(CN + 1)2s ≤ r2N, (30)

and

|ωl1 | = |W l|2s + Vl1 ≥
(
C−1|l1|

)2s − 1,

where C = C(W,d) > 1 and 0 < s < 1/2. Then if |l1|2s > r3N, one has by (29)

|⟨k, ω⟩| ≥ 2|ωl1 | −
∣∣∣⟨k̃, ω⟩∣∣∣ ≥ 2r2N − 2− r2N ≥ 1,

which is not small. Hence we always assume that |l|2s ≤ r3N, following the proof of Step 1, we

obtain mes R∗
2 = O(γ).

Subcase 2.2. kl1kl2 = −1. Without loss of generality, we assume that

kl1 = 1, kl2 = −1 and |l1| ≤ |l2|.
Then we have by (29)

|⟨k, ω⟩| ≥
∣∣∣⟨k̃, ω⟩∣∣∣− ∣∣|W l2|2s − |W l1|2s

∣∣− |Vl1 − Vl2 | . (31)

Firstly, for any V ∈
(
Wm \ R̃

)
, according to (28) we have∣∣∣⟨k̃, ω⟩∣∣∣ ≥ γ

Nr2
. (32)

Secondly, by (75) in Lemma 5.2, one has∣∣|W l2|2s − |W l1|2s
∣∣ ≤ 2

∣∣|W l2| − |W l1|
∣∣

|W l1|s∗
, (33)

where s∗ = min{2s, 1− 2s} wit momentum conservation (16), we get

2
∣∣|W l2| − |W l1|

∣∣ ≤ 2|W l2 −W l1| ≤ 2rCN, (34)

where C = C(W,d) > 1. On the other hand, by (74) again and when |l1|s∗ > γ−1N2r2 , we have

|W l1|s∗ ≥
(
C−1|l1|

)s∗ ≥ (Cγ)−1N2r2 . (35)

Therefore, in view of (33)-(35), we obtain∣∣|W l2|2s − |W l1|2s
∣∣ ≤ γ

4Nr2
. (36)

Finally, one has by (7)

|Vl1 − Vl2 | ≤
R

⟨l1⟩m
≤ γ

4Nr2
, (37)

where using m > d/2 and N large enough depending on R. Thus, for any V ∈
(
Wm \ R̃

)
, in

view of (31), (32), (36) and (37), one has

|⟨k, ω⟩| ≥ γ

2Nr2
,

which is not small.

Now we only consider |l1|s∗ ≤ γ−1N2r2 , which implies

|l1| ≤
(
γ−1N2r2

)1/s∗
.

Based on the momentum conservation (16), one has

|l2| ≤
(
γ−1N2r2

)1/s∗
+ rN.

Thus, following the proof of Step 1, we also obtain mes R∗
2 = O(γ).
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To sum up, according to Case 1 and Case 2, one finishes the proof of Step 2. In view of

Step 1 and Step 2, one finishes the proof of (26).

§4 Normal form theorem

4.1 Iterative Lemma

In this subsection, we will construct a partial BNF of high order, which mostly follows

from the BNF iteration given in [30] under the following nonresonant conditions. We say the

frequency ω defined by (14) is nonresonance if ω satisfies for 0 ̸= k ∈ ZZd

with |k| ≤ r + 2 and

|k̂| ≤ 2,

|⟨k, ω⟩| ≥ γs
Nr3

, (38)

where 0 < γs ≪ 1 is given by (27) in Lemma 3.1.

Definition 3. (r,N)-normal form: We say that a polynomial W is in (r,N)-normal form if it

can be written

W (q, q̄) =

r∑
n=3

∑
|l+k|=n, l,k∈NZd

l=k or |l̂+k̂|≥3

Wl,kq
lq̄k.

Namely, W := Z +W, where Z depends only on the action variables I (in the case l = k) and

W has a zero of order three in the variables ẑ (in the case |l̂ + k̂| ≥ 3).

Now we introduce the recursive equation. The solution of recursive equation can generate

a canonical transformation Φ such that in the new variables, the Hamiltonian H2 +P given by

(13) is in normal form modulo a small remainder term. To obtain the recursive equation, we

consider the following problem.

Seek polynomials χ andW in normal form and a smooth HamiltonianR satisfying ∂αR(0) =

0 for all α ∈ NZd

with |α| ≤ r, namely a polynomial of degree at most r + 1, such that

(H2 + P ) ◦ Φ1
χ = H2 +W +R, (39)

where Φ1
χ is the time-1 map of the Hamiltonian vector field Φχ,

χ(q, q̄) =

r∑
n=3

χn(q, q̄), χn(q, q̄) =
∑

|l+l′|=n

l,l′∈NZd

χl,l′q
lq̄l

′
,

W (q, q̄) =
r∑

n=3

Wn(q, q̄), Wn(q, q̄) =
∑

|l+l′|=n

l,l′∈NZd

Wl,l′q
lq̄l

′

and

R(q, q̄) =
∑

n≥r+1

Rn(q, q̄), Rn(q, q̄) =
∑

|l+l′|=n

l,l′∈NZd

Rl,l′q
lq̄l

′
.

For two Hamiltonians χ and K, we have for all k ≥ 0,

dk

dtk
(K ◦ Φt

χ) = {χ, {· · · {χ,K} ·}}︸ ︷︷ ︸
k−fold

(Φt
χ) = (adkχK)(Φt

χ),



DING Wan-ran, et al. Almost global existence for d-dimensional fractional nonlinear... 491

where adχK = {χ,K}.
After a straightforward calculation, we obtain the recursive equations

{χn,H2} −Wn = Qn, n = 3, · · · , r, (40)

where

Qn =− Pn +
n−1∑
k=3

{Pn+2−k, χk}

+
n−3∑
k=1

Bk

k!

∑
ℓ1+···+ℓk+1=n+2k

3≤ℓi≤n−k

adχℓ1
· · · adχℓk

(Wℓk+1
− Pℓk+1

),

(41)

and Bk with 1 ≤ k ≤ n− 3 are the Bernoulli numbers.

Once these recursive equations are solved, we define the remainder term as

R = (H2 + P ) ◦ Φ1
χ −H2 −W.

By construction, R is analytic in a neighborhood of the origin in Pσ. Thus, by the Taylor’s

formula,

R =
∑

n≥r+1

n−2∑
k=2

1

k!

∑
ℓ1+···+ℓk=n+2k−2

3≤ℓi≤r

adχℓ1
· · · adχℓk

H2

+
∑

n≥r+1

n−3∑
k=0

1

k!

∑
ℓ1+···+ℓk+1=n+2k

3≤ℓ1,··· ,ℓk≤r,ℓk+1≥3

adχℓ1
· · · adχℓk

Pℓk+1
.

(42)

Lemma 4.1. The homological equation

Consider the Hamiltonian H2 given by (13). Suppose that the nonresonance conditions (38)

are satisfied, and

Qn(q, q̄) =
∑

|l+l′|=n

l,l′∈NZd

Ql,l′q
lq̄l

′

is a homogeneous polynomial of degree n. Then the homological equation

{χn,H2} −Wn = Qn (43)

admits a polynomial solution (χn,Wn) homogeneous of degree n satisfying the following esti-

mates

|Wn|Tσ ≤ |Qn|Tσ and |χn|Tσ ≤ γ−1
s Nn3

|Qn|Tσ . (44)

Proof. Let

Wn(q, q̄) =
∑

|l+l′|=n

l,l′∈NZd

Wl,l′q
lq̄l

′
and χn(q, q̄) =

∑
|l+l′|=n

l,l′∈NZd

χl,l′q
lq̄l

′
.

Then (43) can be written in terms of polynomial coefficients

i ⟨l′ − l, ω⟩χl,l′ −Wl,l′ = Ql,l′ .

We then define
• |l̂ + l̂′| ≥ 3 or l = l′, Wl,l′ = −Ql,l′ , χl,l′ = 0;

• |l̂ + l̂′| ≤ 2 and l ̸= l′, Wl,l′ = 0, χl,l′ =
Ql,l′

i ⟨l′ − l, ω⟩
.
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Since the frequency ω satisfies the nonresonance conditions (38), then we finish the proof of

(44) in view of |l′ − l| ≤ |l + l′| = n.

Lemma 4.2. The estimate of the solution and the remainder term

Consider the Hamiltonian H = H2+P given by (13). Suppose that the frequency ω satisfies the

nonresonance conditions (27). Then there exists positive constants C = C(γ, s) depending on

γ, s such that for any r and N, and for n = 3, · · · r, there exists two homogeneous polynomials

χn and Wn of degree n, which are solutions of the recursive equation (40) and satisfy

|χn|Tσ + |Wn|Tσ ≤ (CNn)n
4

. (45)

Moreover, the remainder term R given in (42) can be rewritten as

R(z) =
∑

n≥r+1

Rn(z).

Then Rn satisfies

|Rn|Tσ ≤ (CNn)
10nr3

. (46)

Proof. The proofs of (45) and (46) follow from the proofs of Lemma 4.5 and Lemma 4.6 in [38],

respectively.

4.2 The Birkhoff normal form theorem

Based on the Iterative Lemma in subsection 4.1, we will construct the BNF theorem by

choosing suitable N and r in phase spaces Pσ(C).
According to Lemma 5.3 and Remark 5.1, by choosing respectively

σ′ = 4σ/5, for ψ(j, σ) = exp
{
σ ln2 [j]

}
, (47)

σ′ = σ/2, for ψ(j, σ) = exp
{
σ
√
|j|
}

(48)

in Lemma 2.3,we have the following theorem:

Theorem 4.1. Assume that the frequency ω satisfies the nonresonance condition (38) and P

is analytic on a ball Bσ(R0) for some 0 < R0 < 1.

Then there exists a constant ϵ0 = ϵ0(σ,m, d, s,W ) > 0 depending only on σ,m, d, s,W such

that for any 0 < ϵ < ϵ0 one can find polynomials χ,Z,W and a Hamiltonian R analytic on

Bσ(4ϵ) such that

(H2 + P ) ◦ Φ1
χ = H2 + Z +W+R, (49)

where Z depends on the action variable I only, W and R satisfy

(1) for ψ(j, σ) = exp
{
σ ln2 [j]

}
,

∥XW∥2ϵσ + ∥XR∥2ϵσ ≤ ϵ3/2 exp

{
−1

2
|ln ϵ|1+β

}
; (50)

(2) for ψ(j, σ) = exp
{
σ
√

|j|
}
,

∥XW∥2ϵσ + ∥XR∥2ϵσ ≤ ϵ3/2 exp

{
−C∗ |ln ϵ|4/3

ln | ln ϵ|

}
, (51)
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where 0 < β < 1/7, 0 < C∗ ≤ 1/200.

Proof. Without loss of generality, we will focus solely on proving (50). Let

N = exp

{
2√
σ
| ln ϵ|

1+β
2

}
and r = | ln ϵ|β , (52)

where 0 < β < 1/7.

On one hand, by (45), we get for 3 ≤ k ≤ r

|χk|Tσ ≤ exp
{
k4 ln (CkN)

}
≤ exp

{
3kr3 lnN

}
≤ ϵ−k/8,

where the last inequality is based on the fact

3r3 lnN =
6√
σ
| ln ϵ|

1+7β
2 ≤ 1

8
| ln ϵ|, (53)

which follows from (52) and ϵ sufficiently small depending on σ. Then according to (18), we

have for any R ≤ ϵ,

|χ|Tσ,4R ≤
r∑

k=3

|χk|Tσ (4R)k−1 ≤
r∑

k=3

ϵ−k/8(4ϵ)k−1 ≤ ϵ3/2. (54)

Similarly, one also has

|W |Tσ,4R ≤ ϵ3/2 and |W|Tσ,4R ≤ ϵ3/2.

where the last inequality follows from Definition (3).

Thus, according to (24), (47) and (52), we have

∥XW∥2Rσ ≤
4|W|Tσ,4R

e(σ−σ′) ln2[N ]
≤ 4ϵ3/2exp

{
−4

5
| ln ϵ|1+β

}
. (55)

On the other hand, we obtain from (46) and (53) that

|Rk|Tσ ≤ exp
{
10kr3 ln (CkN)

}
≤ exp

{
30kr3 lnN

}
≤ ϵ−k/8.

Then one has for R ≤ ϵ,

|R|Tσ,2R =
∑

k≥r+1

|Rk|Tσ (2R)k−1 ≤
∑

k≥r+1

ϵ−k/8(2ϵ)k−1 ≤ ϵ
4
5 r.

Combining (22) and (52), we have

∥XR∥2Rσ ≤ exp

{
−4

5
| ln ϵ|1+β

}
≤ ϵ2 exp

{
−3

5
| ln ϵ|1+β

}
. (56)

To sum up, in view of (55) and (56), one obtains (50).

Similarly, for ψ(j, σ) = eσ
√

|j|, let

N =

(
C| ln ϵ|4/3

σ ln | ln ϵ|

)2

and r =
C| ln ϵ|1/3

ln | ln ϵ|
, (57)

where C = 2C∗ with 0 < C ≤ 1/100. Then following the proof of (50) and combining (48), we

also obtain (51).

Similarly, according to Lemma 5.3 and Remark 5.1, by choosing

σ′ = σ − r5 for ψ(j, σ) = exp {σ ln ⟨j⟩} (58)

in Lemma 2.3, we have the following result:
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Theorem 4.2. Assume that the frequency ω satisfies the nonresonance condition (38) and P

is analytic on a ball Bσ(R0) for some 0 < R0 < 1. Given any large r > 0, then there exists

a constant ϵ0 = ϵ0(σ,m, d, s,W, r) > 0 depending only on σ,m, d, s,W, r such that for any

0 < ϵ < ϵ0 one can find polynomials χ,Z,W and a Hamiltonian R analytic on Bσ(4ϵ) such

that

(H2 + P ) ◦ Φ1
χ = H2 + Z +W+R,

where Z depends on the action variable I only, W and R satisfy

∥XW∥2ϵσ + ∥XR∥2ϵσ ≤ ϵ3/2 exp

{
−4

5
r |ln ϵ|

}
. (59)

Proof. Let

N = exp
{
r−4| ln ϵ|

}
for any r ≥ 1. (60)

Then following the proof of (55) and (56), combining with (58), we can deduce that

∥XW∥2Rσ ≤ 4ϵ3/2 exp {−r |ln ϵ|} and ∥XR∥2Rσ ≤ ϵ2 exp

{
−4

5
r| ln ϵ|

}
. (61)

Thus, in view of (61), one obtains (59).

By the partial normal form constructed in Theorem 4.1, one can obtain the long time

stability result.

Theorem 4.3. Long time stability result

Consider the partial BNF constructed in Theorem 4.1 (see (49)). If the initial datum q(0)

satisfies ∥q(0)∥σ ≤ ϵ, then one has

∥q(t)∥σ ≤ 2ϵ, ∀ |t| ≤ Tϵ, (62)

where

(1) Tϵ ≥ exp

{
4

5
r |ln ϵ|

}
, for ψ(j, σ) = exp {σ ln ⟨j⟩} ; (63)

(2) Tϵ ≥ exp

{
1

2
|ln ϵ|1+β

}
, for ψ(j, σ) = exp

{
σ ln2 [j]

}
; (64)

(3) Tϵ ≥ exp

{
−C∗ |ln ϵ|4/3

ln | ln ϵ|

}
, for ψ(j, σ) = exp

{
σ
√
|j|
}
; (65)

where 0 < β < 1/7, 0 < C∗ ≤ 1/200.

Proof. In view of (23) and (54), one has the transformation Φ1
χ is close to the identity, i.e.

q = Φ1
χ(q̆) = q̆ +O(∥q̆∥2σ). Thus it suffices to prove that if ∥q̆(0)∥σ ≤ ϵ, then

∥q̆(t)∥σ ≤ 2ϵ, ∀ |t| ≤ Tϵ.

Without loss of generality, we only need to prove (63). Let

Ĭ(t) =
∑
j∈Zd

|q̆j|2e2σ ln ⟨j⟩.

On one hand, one has by (49)∣∣∣∣ ddt Ĭ(t)
∣∣∣∣ = ∣∣∣{Ĭ ,W+R

}∣∣∣ ≤ 2 ∥q̆(t)∥σ (∥XW∥σ + ∥XR∥σ) .
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On the other hand, using Newton-Leibnitz formula

Ĭ(t)− Ĭ(0) =

∫ t

0

dĬ

ds
(s)ds,

we have

|Ĭ(t)| ≤ |Ĭ(0)|+
∫ t

0

2 ∥q̆(s)∥σ (∥XW∥σ + ∥XR∥σ) ds,

where the last inequality is based on (66).

Define

T ∗ = inf {|t| : ∥q̆(t)∥σ = 2ϵ}
and we will prove that

T ∗ ≥ exp

{
4

5
r |ln ϵ|

}
. (66)

If (66) does not hold, then by using (59)

4ϵ2 = |Ĭ(T ∗)| ≤ |Ĭ(0)|σ + 4ϵ

∫ T∗

0

(
∥XW∥2ϵσ + ∥XR∥2ϵσ

)
ds ≤ ϵ2 + 2ϵ2 = 3ϵ2,

which is impossible. This completes the proof of (63).

Similarly, following the proof of (63), we obtain the estimates (64) and (65).

§5 The proof of main result

5.1 Proof of Theorem 1.2

In this subsection, we will prove (10) and (11) in Theorem 1.2 by using Theorem 4.3. To

this end, it suffices to estimate the tame norm of the Hamiltonian P (see (15)). Given any two

vectors q, q′ ∈ ℓ2σ(C), define the convolution q ∗ q′ ∈ CZd

by

(q ∗ q′)j :=
∑
l∈Zd

qj−l · q′l. (67)

Then we will give the proof of Theorem 1.2 as follows.

Proof. Firstly, in view of 12 and 15, one has XP (u) = |u|2u, and then

⌊XP ⌉
(
u(1), u(2), u(3)

)
=

1

6

∑
τ

a(x)uτ(1)uτ(2)uτ(3),

where τ are all the permutations of the first 3 integers.

Secondly, write

u(i) =
∑
j∈Zd

q
(i)
j ϕj, i = 1, 2, 3,

then one has

u(1)u(2)u(3) = q(1) ∗ q(2) ∗ q(3). (68)

Finally, in view of (15), Definition 1, Definition 2 and (80), there exists a positive constant

C(σ) depending on σ only such that

|P |Tσ,R ≤ C(σ)R3. (69)

Then using Theorem 4.3, we finish the proof of (10) and (11) in Theorem 1.2.
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5.2 Proof of Theorem 1.1

Following the proof of Theorem 1.2, we can deduce (8) in Theorem 1.1. Consequently, in

this subsection, we will focus solely on proving (9) in Theorem 1.1. To this end, it suffices to

prove the tame-like property

∥q ∗ q′ ∗ q′′∥σ ≤ C̃(d)

(
3

4

)σ

∥q∥σ ∥q
′∥σ ∥q

′′∥σ (70)

for any σ > d, where constant C̃(d) depending on d only. Then, we will proceed with the proof

of Theorem 1.1 as follows.

Proof. Firstly, we will prove (70) as follows.

Given any j1, j2, j3 ∈ Zd and letting j = j1 − j2 + j3, then one has

⌊j⌋ ≤ 3max{⌊j1⌋, ⌊j2⌋, ⌊j3⌋}. (71)

Without loss of generality, we assume that

max{⌊j1⌋, ⌊j2⌋, ⌊j3⌋} = ⌊j1⌋. (72)

Noting that ⌊j2⌋, ⌊j3⌋ ≥ 2, then using (71) and (72), one has

⌊j⌋2σ ≤ 32σ⌊j1⌋2σ ≤ 9d
(
3

4

)2(σ−d)

⌊j1⌋2σ⌊j2⌋2(σ−d)⌊j3⌋2(σ−d). (73)

Hence we have

∥q ∗ q′ ∗ q′′∥2σ =
∑
j∈Zd


∣∣∣∣∣∣∣
∑

j1,j2,j3∈Zd
j1−j2+j3=j

qj1q
′
j2
q′′j3

∣∣∣∣∣∣∣


2

⌊j⌋2σ

≤ 9d
(
3

4

)2(σ−d) ∑
j∈Zd

 ∑
j1,j2,j3∈Zd
j1−j2+j3=j

(
⌊j1⌋σ|qj1 |

) (
⌊j2⌋σ−d|q′j2 |

)(
⌊j3⌋σ−d|q′′j3 |

)
2

(in view of (73))

≤ 9d
(
3

4

)2(σ−d)
∑

j1∈Zd

⌊j1⌋2σ|qj1 |
2

∑
j2∈Zd

⌊j2⌋σ−d|q′j2 |

2∑
j3∈Zd

⌊j3⌋σ−d|q′′j3 |

2

(using ∥a ∗ b∥ℓ2 ≤ ∥a∥ℓ2 ∥b∥ℓ1 , a ∈ ℓ2, b ∈ ℓ1)

≤ 9d
(
3

4

)2(σ−d)

C2(d) ∥q∥2σ ∥q
′∥2σ ∥q

′′∥2σ ,

where the last inequality uses Cauchy inequality and

C(d) =
∑
l∈Zd

⌊l⌋−2d.

Taking C̃(d) = 4dC(d), we finish the proof of (70).

Finally, in view of (68) and (70), one has

∥XP ∥2ϵσ ≤ C̃(d)

(
3

4

)σ

(2ϵ)3 ≤ 2ϵ2
(
3

4

)σ

where using the fact that 0 < ϵ < ϵ0(d) sufficiently small. And we finish the proof of (9).
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Lemma 5.1. Assuming W = (wij)1≤i,j≤d is a d × d invertible matrix, then there exists a

constant C = C(W,d) > 1 depending only on W and d such that

C−1 |j| ≤ |W j| ≤ C|j|. (74)

Lemma 5.2. Given any two numbers x1, x2 ∈ R with x2 ≥ x1 > 1, then for any 0 < s < 1/2,

one has

x2s2 − x2s1 ≤ 2(x2 − x1)

xs∗1
, (75)

where s∗ = min{2s, 1− 2s} with 0 < s∗ ≤ 1/2.

Proof. Case 1: 0 < s ≤ 1/4.

Then one has

x2s2 − x2s1 =
x4s2 − x4s1
x2s2 + x2s1

≤ x2 − x1
x2s2 + x2s1

, (76)

where by using the fact

x4s2 − x4s1 ≤ x2 − x1.

Case 2: 1/4 < s < 1/2.

Then one has

x2s2 − x2s1 ≤ x2 − x1 + x2s2 x
1−2s
1 − x2s1 x

1−2s
2

x1−2s
2 + x1−2s

1

≤ 2(x2 − x1)

x1−2s
2 + x1−2s

1

, (77)

where the last inequality uses the fact

x2s2 x
1−2s
1 − x2s1 x

1−2s
2 ≤ x2 − x1.

Thus, combining (76) and (77), we finish the proof of (75).

Lemma 5.3. For any σ > ρ ≥ 0 and any j, l ∈ Zd, we assume that

ψ(j, σ) ≤ ψ(j− l, σ) · ψ(l, ρ) when |j− l| ≥ |l| , (78)

ψ(j, σ) ≤ ψ(j− l, ρ) · ψ(l, σ) when |j− l| < |l| . (79)

Then there exists σ′ satisfying σ > σ′ > ρ such that

∥q ∗ q′∥σ ≤ C(σ′, ρ) (∥q∥σ ∥q
′∥σ′ + ∥q∥σ′ ∥q′∥σ) , (80)

where C(σ′, ρ) > 0 is a constant depending on σ′ and ρ only.

Proof. In view of (67), (78) and (79), one has

∥q ∗ q′∥2σ ≤
∑
j∈Zd

∣∣∣∣∣∣
∑
l∈Zd

qj−l · q′l

∣∣∣∣∣∣
2

ψ(j− l, σ)2 · ψ(l, ρ)2

+
∑
j∈Zd

∣∣∣∣∣∣
∑
l∈Zd

qj−l · q′l

∣∣∣∣∣∣
2

ψ(j− l, ρ)2 · ψ(l, σ)2

≤ C(σ′, ρ) (∥q∥σ ∥q
′∥σ′ + ∥q∥σ′ ∥q′∥σ) ,

where the last inequality uses Young’s inequality

∥a ∗ b∥ℓ2 ≤ ∥a∥ℓ2 ∥b∥ℓ1 , a ∈ ℓ2, b ∈ ℓ1, (81)

and Cauchy’s inequality.
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Next, we will demonstrate that there exists ρ ≥ 0 such that the conditions (78) and (79) in

the lemma 5.3 are satisfied.

Remark 5.1. According to the fact that

jσ ≤ 2σ · (j− l)σ · l0 when |j− l| ≥ |l| ,

jσ ≤ 2σ · lσ · (j− l)0 when |j− l| < |l| ,
one gets in Lemma 5.3

ρ = 0 when ψ(j, σ) = exp {σ ln ⟨j⟩} .
Moreover, from Lemma 6.1 in [19] and Lemma 5.1 in [20], one gets in Lemma 5.3

ρ = 3σ/4 when ψ(j, σ) = exp
{
σ ln2 [j]

}
,

ρ = (
√
2− 1)σ when ψ(j, σ) = exp

{
σ
√
|j|
}
.
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