Appl. Math. J. Chinese Univ.
2025, 40(2): 480-500

Almost global existence for d-dimensional fractional

nonlinear Schrodinger equation on flat torus

DING Wan-ran' LI Si-ming? XUE Hui-ning?

Abstract. In this paper, we will discuss the almost global existence result for d-dimensional
fractional nonlinear Schrédinger equation on flat torus, which is based on BNF technique, the

tame property and the analysis of the spectrum of (—A)?.

81 Introduction

Understanding the qualitative aspects of the long time behavior of solutions to Hamiltonian
partial differential equations (PDEs) on compact manifolds has been a fundamental problem
over the past decades. Pioneering work on Nekhoroshev-like theorems for Hamiltonian PDEs
was carried out by Bourgain and Bambusi, see [14,15,2] and references therein. However,
as Kuksin noted in [35] which is “still the main challenge here is to prove or disprove the
Nekhoroshev theorem”.

The fractional Schrodinger equation is a key development in quantum physics, generalizing
the Schrodinger equation in the context of fractional quantum mechanics. As noted in [34], it is
an emerging area related to nonlocal quantum phenomena, offering new insights into quantum
behavior beyond traditional locality principles. For related work, refer to [36,41,26,12]. In
this paper, we will study the long time stability for the d-dimensional the fractional nonlinear
Schrédinger equation (FNLS)

iu + (~A)u+V(z)su+|uPu=0, zecTL.=RY/Z (1)
on flat tori, where (—A)® is the Riesz fractional differentiation with s € (0,1/2), Vx is a
convolution potential and .# is a lattice of R%.

Significant progress towards understanding the long time stability for Hamiltonian PDEs
was made by Bambusi-Grébert in [7]. They proved a Birkhoff normal form (BNF) theorem that
is adapted to a large class of Hamiltonian PDEs, which exhibit the tame property in Sobolev
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space

H (T%) = { g = (g9)jeze : Y lgI*(G)* <00 p, o>d/2, (2)
jezd
where (j) := max{|j|,1} and |j| := \/jf + -+ j3 with j = (j1,--- ,ja). At the same time, they
discussed dynamical consequences on the polynomial long time behavior of the solutions with
small initial data. In 2013, Faou-Grébert [30] proved a subexponential long stability time
interval for d-dimensional NLS in the analytic space

Ap(T) =S q= (95)jeza Z lgile”/*H <00 b, p>0. (3)
jezd
After that Cong-Liu-Wang [20] and Chen-Cong-Meng-Wu [19] proved respectively a similar

result for 1-dimensional nonlinear wave equation and 1-dimensional NLS in Gevrey space

Go(T) =S g =(g))jez: D lg;I* (G, 0)* <o, >0
JEz
with ¢(j,0) = exp {a \j\} in [20] and ¢(j,0) = exp {o In” [j]} in [19], where [5] := max{|;],*}
with j € Z.

Finally, let us mention some recent results. Berti-Delort [3] proved the almost global solu-
tion existence for quasi-linear water wave equations with periodic boundaries. Feola-Giuliani-
Pasquali [31] developed a formal BNF for the Degasperis-Procesi equation, addressing reso-
nances using conserved quantities. Bernier-Faou-Grébert [5] introduced a normal form for the
1-dimensional NLS without external parameters. Recently, Bernier-Grébert [8] studied the long
time dynamics of the solutions of the generalized Korteweg-De Vries and Benjamin-Ono equa-

tions without external parameters. See more related work [4,21,22,23,32,33,37,38] for examples.

In 2022, Procesi raised an open question in his ICM report (see Q3 within the document):
“Can one extend the stability results to general manifolds in higher dimension?” Delort-Szeftel
[27] provide a lower bound estimate for the existence time of small smooth solutions to the
Cauchy problem for a nonlinear Klein-Gordon equation (NLKG) on the sphere S%~!. Sub-
sequently, Bambusi-Delort-Grébert-Szeftel [4] utilized the BNF method and the characteristic
distribution of eigenvalues of the Laplacian operator on Zoll manifolds to prove the existence of
almost global solutions for the d-dimensional NLKG on these manifolds. For more work related
to this question, see [11,25,28]. For other research on general manifolds, refer to [9,10,18,24,39].

Recently, a significant advancement was achieved by Bambusi-Feola-Montalto in [6], proving
a result on the almost global existence for d-dimensional NLS, Beam and QHD on flat tori, with
the phase space being the Sobolev space H?(T%). In this work, in order to tackle the resonance
issue related to the eigenvalues of the Laplace operator on flat tori, they introduced a key
technique—a Lemma by Bourgain on the “localization of resonant sites” in T%—to construct
a N-block normal form. Specifically, when two indexes i,j € Z? belong respectively to two

different blocks Q,, Qs C Z4, their frequencies w; and wj are well-separated, i.e.,

i —j + Jwi — wj| > CO) (Ji]° +j|°), 3>0. (4)
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Consequently, it becomes feasible to eliminate the monomials involving two high-frequency
variables g¢;, qj, where i € Q, and j € Qg with o # 8, by applying suitable nonresonance
conditions. For the remaining monomials, which involve two high-frequency variables g, g;

within the same block, the Duhamel formula is used for estimation.

In analogy with [19], we also expect the almost global existence for d-dimensional NLS on
flat tori in Gevrey space G,(T9¢). However, note that in [6], when considering the Sobolev
space H?(T?), the norm || - ||fo(7ay is equivalent to the ¢Z-norm | - |5, where || 2 HIQ{,(W)::
>, (@) ||z, with n(a) :=minjeq, |j| and Z¢ = |J,, Q. In contrast, when we consider the

Gevrey space G, (T?), this equivalence does not hold.

Therefore, the focus of our paper is to investigate the almost global existence for the FNLS
given by (1) on flat tori, with initial data belonging to the Gevrey space. Furthermore, to
facilitate a more comprehensive comparison with the results in [6], we have also taken into
account the Sobolev space and the modified Sobolev space in our paper. Precisely, in this
paper, we will study the long time stability of solutions for (1) in the following four phase

spaces:

2(C) = qa=(@)ezs € C¥: Y lg* v, 0)* < 00 (5)
jezd
with
0(G,0) = exp {oV/Bil} exp {o? i1}, exp {om (i)}, exp {oln i)},
where |j| := max{[j|,2}. (The first two functions 1(j, o) correspond to Gevrey spaces, the
third corresponds to the Sobolev space, and the last one corresponds to the modified Sobolev
space.) And denote
lallZ =" lasl® v, o).
jezd
For the Gevrey spaces and Sobolev spaces, we will investigate the almost global existence of
solutions for (1) by using the BNF theorem given in [30]. In order to apply the BNF theorem,
it is essential to handle the issue of small divisors (see Section 3 for more details) and discuss
the tame property
lg=d'll, < Clo,a") (gl g'lly + g ll, allsr)

where 0 < ¢/ < o, in various phase spaces (see Lemma 5.3 for more details). As for the modified
Sobolev space, we will explore it through the application of a tame-like inequality given in [38]
(see (70) for more details).

As previously mentioned, applying the BNF theorem depends on properly handling the issue
of small divisors. However, since the frequency w (see (14)) for the FNLS exhibits only sublinear
growth, it poses significant challenges to prove that w meets certain appropriate nonresonance
conditions. At the same time, the difficulty caused by the sublinear increasing frequency is
also a problem of the stability of linear models. To be specific, for the linear Schrodinger-type
equation iu; = (H 4+ V(¢))u, it is widely believed that the spectral gap of the unperturbed
Hamiltonian H is closely related to the long time behavior of solutions. If the spectral gap

increases, there are enormous results to explore the stability of solutions of such equations,
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including polynomial (logarithmic) bounds on the growth of Sobolev norms [16,17,24,40], as
well as globally bounded Sobolev norms [1,29]. However, if the eigenvalues of unperturbed
Hamiltonian H grow only sublinearly, i.e., spectral gap shrinks to zero, the situation has been
changed significantly. It is much harder to obtain stability results for the linear models.

Recall the FNLS given by (1), where . is a lattice of R? with linearly independent generators
vi, -, vqg ER? ie.,

d
L = {Zszz tm; € Z}

i=1
and the potential V' (x) is smooth, real valued, periodic on the lattice ., namely

d
\%4 (m—i—Zmivi) =V(z), mezZ1<i<d.
i=1

Then equation (1) is equivalent to the following FNLS on the standard torus
iug + (—Ag)’ u+V(x)xu+ |uPu=0, z¢cT9 (6)
where the anisotropic Laplacian
d
Ag =Y 0n [W'W]] 0,
i,j=1
with
W=Vt V:i=(vi]--|vq).
And the eigenvalues of —A ¢ are pu; = |[Wj|? for any j € Z<. Since W is invertible, it follows

that p; ~ |j|?. Let u be a solution of (6), which can be expanded into a Fourier series
) elliz)

u=Y g dsle) with ()= —

/2
i (2m)
Moreover, V' (x)* is the convolution potential defined by
V(z)xu= ) Vi qi- o).
jezd
We assume that for m > d/2, V belongs to the space
Vi € [ ! ! } f jecz (7)
j T 57’ oy, | TOr any J )
oL o2)m 20

that we endow with the product probability measure. For any o > 0, define by |[u[|, := ||q||, -

Wi = V(@) =) Vi

jezd

Then we have the following results:

Theorem 1.1. Sobolev space and modified Sobolev space
Let

(i, ) = exp {on (i)},
which corresponds to the Sobolev space. Given any large r > 0, there exists o, (r) > 0 depending
on r and a subset V C W,, of full measure. Then for any V € V and any o > o0.(r) there is
a small e = eo(o,m,d, s, W,r) > 0 depending only on o,m,d, s, W and r, such that for any
0 < €< e, if

lu(0, )], < e,



484 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

then the solution (¢, x) of (1) with the initial datum (0, z) satisfies
[ut, )], <26 V[t <T,

where
4
T. Zexp{5rlne|}. (8)

Furthermore, let
(i, 0) = exp{on |j]}
which corresponds to the modified Sobolev space. For any V € W,,, there is a small ¢y(d) > 0
depending only on d such that for any 0 < € < ¢¢(d), one has

T, > <;1>G )

In particular, if o > 1/e, the stability time 7. > ¢! exp {C’e_l} is exponential about €, where
C =1n4/3.

Theorem 1.2. Gevrey space
There exists a subset V C W,, of full measure and a small ¢g = €g(o, m,d, s, W) > 0 depending
only on o,m,d,s and W, such that for any 0 < € < ¢, if ||u(0,z)|| < €, then the solution

u(t, z) of (1) with the initial datum u(0,x) satisfies

o

||u(t,x)||o <2, V[T,
where
(1) if ¥(j,0) = exp {0'11’12 [j]}, the stability time T, is given by
1
T. > exp {2 |1ne|1+ﬁ} ; (10)
(2) if ¥(j,0) = exp {m/|j|}, the stability time T, is given by
C, Ine*?
T. > _elme U 11
exp{ In|Ine| (11)

where 0 < 8 < 1/7,0 < C, < 1/200.

Sketch of the proof and comments
The proof of (8) in Theorem 1.1, (10) and (11) in Theorem 1.2 follows from the idea of the

tame property in various phase spaces (see Lemma 5.3) and an abstract BNF theorem which
are developed by [30]. The proof of (9) follows from a tame-like inequality (70), which is given
by [19].

Precisely, in the first step, the equation (6) is rewritten as an infinite dimensional Hamilto-

nian systems, where the Hamiltonian function given by

s 1
H(u,u) = / (Vqu + (V(z) *u)a + 2|u|4> dz (12)
’]I‘d
with the complex symplectic idu A da. By Fourier series, the Hamiltonian (12) turns into
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where
Hy=) wigsqy ~ with  wj=[Wj* +V; (14)
jezd
and .
P(q,q) = P ith Py = 15
(@0 = >, Puwdq wi U TomsT (15)
1,I’ enz?
satisfying
S (—15)=0 and > jl;—1) =0, (16)
jezd jezd

which are respectively called the mass conservation and the momentum conservation. Oth-
erwise P ;» = 0.
Secondly, we will show that the Hamiltonian P satisfies tame property in various phase

spaces when the weight function 1 (j, o) is chosen as
exp{on ()}, exp{om’[]}, exo{oVil},
which are based on a tame inequality (see Lemma 5.3 for the details).

Thirdly, using BNF technique under some suitable nonresonance conditions (see (27)), we
obtain a partial normal form around the origin. Then combining with tame property, one
obtains the long time stability result by optimizing the stability time T..

82 The tame norm of Hamiltonian vector field

2.1 Some notations

In this section, we first introduce some notations. Define the scale of the phase space
(4,7) € P+(C) := £5(C) & £5(C).
where (2(C) is given by (5). We identify a pair z = (¢, ) € C%* x C%* with (2a)acg € CS via

the formula

where § = Z% x {£1} and

(17)

2 2 12
205 = llall; + llall, -
Denote by B, (R) the open ball centered at the origin and of radius R in P, (C). For simplicity,
we often write
P, =Ps(C), By(R)= Bc,(R).
Let H : P, — C be a homogeneous polynomial of degree n given by
H(z)= Y Hudd,

1,1/ enz?
[i4+1|=n

where H; s is the coefficient of the monomial

_y 1 1
i3 = H 4’ g} and [+ := Z 5 + 1]
jezd jezd
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Then we define its modulus | H] by
o) = S (Haldd-

1,17 enzd
|14l |=n

Furthermore, it is naturally associated with a symmetric n-linear form H (z(l), ceey z(")) such
that
H(z,...,z) = H(z),
and a symmetric (n — 1)-linear form Xy (2(V,...,2("~Y) such that
Xu(z,...,2) = Xu(z),
where Xy : P, — P, is the Hamiltonian vector field of homogeneous polynomial H and is

defined by
0H OH )

XH(Z) =1 <aq,—8q

2.2 The tame norm of Hamiltonian vector field

Definition 1. Let H be a homogeneous polynomial of degree n+1, and assume that H satisfies

the following two conditions:

1. Tame property, i.e.

X
A L@
, wll,
where
ol = X 3 (Hz(n qu—1> Lol e Hzm) ) ’
n o’ o’ o o’ o’
1=1
0 < ¢’ < o and the sup is taken over all the multivectors w = (z(l), e z(")) £ 0;
2. Bounded property, i.e.
X ,
B oo A1)y _
lwll,
where
wll,., = Z(l)H o m
and the sup is taken over all the multivectors w = (z(l), ey z(”)) #0.

Then the tame norm of the Hamiltonian vector field X g is defined by
|H|? := max{A, B}.

Furthermore, let H be a nonhomogeneous polynomial. Consider its Taylor expansion

H=> H,

n>3
where Hy, is a homogeneous polynomial of degree n. For any R > 0, we define
[Hl3p =) [Hals R (18)

n>3
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2.3 The Poisson bracket of two Hamiltonians

For two Hamiltonians H and F', we define the Poisson bracket by

{H’F}:iZ(E)HaF 8H6F)

—_—— — 19
jez 8@ 8Qj 8qj 3@ ( )

Lemma 2.1. Let H and F' be homogeneous polynomials of degree n+1 and m+1, respectively.
One has

{H,F}, < (n+m)H|J|F|7. (20)
Proof. The proof can be found in Lemma 2.4 in [19]. O
Definition 2. Define the norm of the Hamiltonian vector field Xy by
|Xully = sup [ Xu()],- (21)
lzll, <R

In fact, the tame norm (18) is stronger than the Hamiltonian vector field norm (21).

Lemma 2.2. For a given Hamiltonian H, one has

R
IXully <[H5 (22)
Proof. The proof can be found in Lemma 2.7 in [19]. O

Remark 2.1. Let x be an analytic Hamiltonian function with Hamiltonian vector field which
is analytic as a map from B,(R) to P,. For any 0 < d < R, assume that |X‘Z,R < d, and
consider the time ¢ flow ®* of X,,. Then for |{| < 1, we have

R—d
sup | @ (2) — 2| < X157 < IxXIE g (23)
lIz|l,<R—d

Furthermore, for a vector z = (zj)jeze and a given large N > 0, we define the projection
HNZ = E: (Zi)jEZd
by Z; = z; when |j| < N and otherwise zj = 0. Let 2 := z — Z. Then using the tame property

(80), one has

Lemma 2.3. Assume that H has a zero of order three in the variable Z. Then one has

R
IXully < C(N)HIZ 25, (24)
where for 0 < ¢/ < o
4
C(N)=—75—7— with j*| = N. 25
(V) = m—ss 5 (25)
Proof. For the detailed proof process, see the proof of Lemma 3.8 in [38]. O

83 Measure estimate

Lemma 3.1. For any sufficiently small v, let N and r be large enough depending on W and

m, d, s respectively, there exists a set R C W, satisfying

mes R = O(y), (26)
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such that for any V € (W,, \ R), one has

2/s.+1
NTS Y
for 0 # k € Z2" with |k| < r + 2 and |k| < 2, where s, = min{2s,1 — 2s} with 0 < s, < 1/2.

v

(ks w)| = (27)

Proof. Define the resonant set Ry and R} by

RE::{Velwm:REm»‘<j%%} (28)
and

72/5*—&-1
R} = {V €Wy i [{k,w)| < N }

Let R = R|JR*, where

R= |J Ry and R*= U =ri
0£kezZ? 0£kezl?
[k|<r+2 [k|<r+2,0<|k[<2

Then it is easy to see that for any V € (W,, \ R), the inequality (27) holds.

Now it suffices to prove the estimate (26) holds, which will be given in the following two

steps.
Step 1: We will prove that mes R = O(y).
Note that 0 # k € ZZ* in Rz, then in view of (7) and (28), one has

Y
mes RE < W,
and then
- IN + 1)4(r+2)
mes R = Z Nr;yfm < ’Y( Nt27)m < aa
0<|k|<r+2

where using the fact that r is large enough depending on m and d. Thus, one finishes the proof
of Step 1.

Step 2: We will prove that mes R* = O(%).
Write )
R*=JR; with Ri= |J R
i=1

0#kezZ?
[k|<r+2,|k|=i

Case 1. |k| = 1. Then one has
(k,w) = (k,w) £ wi,

where |1] > N. According to the momentum conservation (16), we have || < rN. Then,
following the proof of Step 1, we get mes R} = O(7).

Case 2. |E| = 2. Then one has

(kyw) = (k,w) + ky, w1, + Ky, (29)

where ki,, ki, € {—1,1} and |1}, |Iz| > N.

Subcase 2.1. ky, k1, = 1. Without loss of generality, we assume that

ki, =1, k,=1 and || <[l
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Note that by (74)
’(E,w>‘ < |&] max ([WJP* +1) < r(ON +1) <N, (30)
and
jon| = W1 + W, > (CHL)™ — 1,
where C' = C(W,d) > 1 and 0 < s < 1/2. Then if [I;|** > 73N, one has by (29)
(k)| > 2, | — ‘(E,@‘ > 22N — 2 — 72N > 1,
which is not small. Hence we always assume that [1|>* < 73N, following the proof of Step 1, we
obtain mes Rj = O(%).
Subcase 2.2. k, ki, = —1. Without loss of generality, we assume that
ki, =1, k,=-1 and || <L
Then we have by (29)
[(k, w)| = <E»W>‘ = [[W?* — WL | = [, - W,|. (31)

|| 2 - (32)
Secondly, by (75) in Lemma 5.2, one has
2[|Wly| — [W||
Wi[** — [W1[**| < , 33
o = ) < A (33)
where s, = min{2s,1 — 2s} wit momentum conservation (16), we get
where C' = C(W,d) > 1. On the other hand, by (74) again and when |1;|** > 7" N2 we have
W™ 2 (CTH )™ = () 7'V (35)
Therefore, in view of (33)-(35), we obtain
1 25 1 2s < v .
W1 P* — L) < 1 (36)
Finally, one has by (7)
R gl
Wi, - W,| < < 37
| L 12| = <11>m = 4N ( )

where using m > d/2 and N large enough depending on R. Thus, for any V' € (Wm \ 7~€), in
view of (31), (32), (36) and (37), one has
gl
k >
)| 2 L
which is not small.
s« < 4~1N?2 which implies
1/s4
|11‘ S (771N2T2) 8 .

Based on the momentum conservation (16), one has

Now we only consider |13

2\ 1/8x«
L] < (fy_lNQT ) +rN.
Thus, following the proof of Step 1, we also obtain mes Rj = O(7).
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To sum up, according to Case 1 and Case 2, one finishes the proof of Step 2. In view of
Step 1 and Step 2, one finishes the proof of (26). O

84 Normal form theorem

4.1 Iterative Lemma

In this subsection, we will construct a partial BNF of high order, which mostly follows
from the BNF iteration given in [30] under the following nonresonant conditions. We say the
frequency w defined by (14) is nonresonance if w satisfies for 0 # k € 72" with |k] <r+2and
k| <2,

(38)
where 0 < 5, < 1 is given by (27) in Lemma 3.1.

Definition 3. (r, N)-normal form: We say that a polynomial W is in (r, N)-normal form if it

W(g,q) =) > Wird'"-

n=3 |14 k|=n, 1,keNL?
=k or |I+k|>3

Namely, W := Z + W, where Z depends only on the action variables I (in the case l = k) and
W has a zero of order three in the variables Z (in the case |T+ E| >3).

can be written

Now we introduce the recursive equation. The solution of recursive equation can generate
a canonical transformation ® such that in the new variables, the Hamiltonian Hy + P given by
(13) is in normal form modulo a small remainder term. To obtain the recursive equation, we
consider the following problem.

Seek polynomials xy and W in normal form and a smooth Hamiltonian R satisfying 9“R.(0) =

0 for all a € N2 with |a| < 7, namely a polynomial of degree at most r + 1, such that
(Hy+ P)o®, =H,+W +R, (39)

where @i is the time-1 map of the Hamiltonian vector field ®,,

T
X@D) =Y xnl0.0),  xnle,0)= > xwdd,

n=3 |1+ |=n
1,1/ enzd
T
Wig.q) =Y W@, Wale,0)= > Wirdd
n=3 141 |=n
1,17 enzd

and
R(¢,0) = Y Ru(0,d). Rau(e.0)= Y. Ruud'qd.

n>r+1 |1+ |=n
1,1 enzd
For two Hamiltonians y and K, we have for all k > 0,
dk
—(Ko®l) = {x,{--- {x, K} }}(®}) = (ady K)(D%),

dtk
k—fold
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where ad, K = {x, K}.
After a straightforward calculation, we obtain the recursive equations

{XnaHQ}fwn:Qn, n:,?), )T, (40)
where
n—1
Qn = - Pn + Z{Pn+27k7Xk}
k=3
— By (41)
Z 7' Z aXml e adXZk (W£k+1 - P2k+1)7
k=1 ' L1+ ALl 1 =n+2k
3<e;<n—k

and By, with 1 < k < n — 3 are the Bernoulli numbers.

Once these recursive equations are solved, we define the remainder term as
R = (Hy+ P)o®, — Hy— W.
By construction, R is analytic in a neighborhood of the origin in P,. Thus, by the Taylor’s
formula,

n—2 1
R= ) ZF > ady, ---ady, Hy

n>r+1 k=2 L1+-+f=nt2k-2

3<; <r
- ) (42)
1
> Z B2 adyady, P,
an-{—l k= L1+ +Llp 1 =n+2k

3Ll L <l >3

Lemma 4.1. The homological equation
Consider the Hamiltonian Hs given by (13). Suppose that the nonresonance conditions (38)

Z Quid'd

|14 |=n

are satisfied, and

L,l/ENZd
is a homogeneous polynomial of degree n. Then the homological equation
admits a polynomial solution (x,, W;,) homogeneous of degree n satisfying the following esti-
mates
3
Wale <1Qnlz and  [xals <95 N™[Quls (44)
Proof. Let
> Wirdd and  xu(g.0)= > xwd'd .
141 |=n |14 |=n
1,1/ enz? 1,17 enzd

Then (43) can be written in terms of polynomial coefficients
(=1, w)yxir — Wiy = Quu.
We then define A
o[l +V[>3orl=1, Wiy =-Qur, xiv =0;

Qur

ell+U|<2andl#1, Wiy =0, xor = ;
(=W



492 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

Since the frequency w satisfies the nonresonance conditions (38), then we finish the proof of
(44) in view of |I' = 1| < |l 4+ 1| = n. 0

Lemma 4.2. The estimate of the solution and the remainder term

Consider the Hamiltonian H = Ha+ P given by (13). Suppose that the frequency w satisfies the
nonresonance conditions (27). Then there exists positive constants C' = C(v, s) depending on
v, s such that for any r and NV, and for n = 3,-- - r, there exists two homogeneous polynomials

Xn and W, of degree n, which are solutions of the recursive equation (40) and satisfy
xnlZ + (WL < (CNn)™. (45)

Moreover, the remainder term R given in (42) can be rewritten as

R(z) = Y Ru(2).
n>r+1
Then R, satisfies

R|7 < (CNm)' ™" (46)

Proof. The proofs of (45) and (46) follow from the proofs of Lemma 4.5 and Lemma 4.6 in [38],
respectively. O

4.2 The Birkhoff normal form theorem

Based on the Iterative Lemma in subsection 4.1, we will construct the BNF theorem by
choosing suitable N and r in phase spaces P, (C).
According to Lemma 5.3 and Remark 5.1, by choosing respectively

o' =40/5, for ¥(j,0) = exp {aln2 i1}, (47)
o' =0/2, for ¥(j,0) = exp {O’\/ﬁ} (48)

in Lemma 2.3,we have the following theorem:

Theorem 4.1. Assume that the frequency w satisfies the nonresonance condition (38) and P
is analytic on a ball B, (Rp) for some 0 < Ry < 1.

Then there exists a constant g = €y(o, m, d, s, W) > 0 depending only on o, m, d, s, W such
that for any 0 < € < ¢y one can find polynomials x, Z, W and a Hamiltonian R analytic on
B, (4¢) such that

(Hy+ P)o®, =Hy+Z+W+R, (49)
where Z depends on the action variable I only, W and R satisfy
(1) for ¥(j, @) = exp {on? [j]},

€ € - ].
I+ X2 < 2exp {5 "7} (50)

(2) for v(j,0) = exp {o/[iT}
In|lne€|

. . - C, Ine|*/3
1 X2 + [ Xl < /2 exp {"
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where 0 < 8 < 1/7,0 < C, <1/200.

Proof. Without loss of generality, we will focus solely on proving (50). Let
2 1
Nexp{\/glneﬁﬂ} and 7 =|In€’, (52)
where 0 < 8 < 1/7.

On one hand, by (45), we get for 3 <k <r
Ixk|% < exp {kj4 In(CkN)} < exp{3kr’InN} < e kI8,

where the last inequality is based on the fact
1+78

, 6
3r3In N = —=|Ine| 2
NG

which follows from (52) and e sufficiently small depending on o. Then according to (18), we

1
< <lmnel, (53)

have for any R < ¢,

XI7ar < D xalg (AR < YT e M3 (et < 2, (54)
k=3 k=3
Similarly, one also has

|W|0T,4R <2 and |W|£4R <&
where the last inequality follows from Definition (3).
Thus, according to (24), (47) and (52), we have

AWz, 4
Q(UT)I;E};V] S 463/2€Xp {—5 In €|1+ﬂ}. (55)

On the other hand, we obtain from (46) and (53) that

IRy|E < exp {10kr®In (CkN)} <exp{30kr’InN} < e /8,
Then one has for R < ¢,

RiZor= Y ReFER) < Y7 @t <.

[ Xwll2F <

k>r+1 E>r+1
Combining (22) and (52), we have
4 3
| Xr|2® < exp {—5| lneH'B} < e exp {—5| lne|1+5} . (56)

To sum up, in view of (55) and (56), one obtains (50).
Similarly, for ¢(j, o) = VIl let
2
C|nel*? C|Ine|l/3
N = A d e bk N
<Uln|1ne| an " In|lne| ’ (57)
where C' = 2C, with 0 < C <1/100. Then following the proof of (50) and combining (48), we
also obtain (51). O

Similarly, according to Lemma 5.3 and Remark 5.1, by choosing
o' =0 —1r° for ¥(j,0) =exp{oln(j)} (58)

in Lemma 2.3, we have the following result:
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Theorem 4.2. Assume that the frequency w satisfies the nonresonance condition (38) and P
is analytic on a ball B,(Rp) for some 0 < Ry < 1. Given any large r > 0, then there exists
a constant €9 = €p(o,m,d, s, W,r) > 0 depending only on o,m,d,s, W,r such that for any
0 < € < € one can find polynomials x, Z, W and a Hamiltonian R analytic on B,(4¢) such
that

(Hy+P)o®, =Hy+Z+ W +R,
where Z depends on the action variable I only, W and R satisfy

€ € 4
I+ X < 2 exp {~Frimmel | (59)
Proof. Let

N =exp {r *|Ine[} for any r>1. (60)

Then following the proof of (55) and (56), combining with (58), we can deduce that

4

| Xw 2% < 463/ exp {—r |In¢€|} and [ Xr |2 < € exp{—5r|lne|} . (61)
Thus, in view of (61), one obtains (59). O

By the partial normal form constructed in Theorem 4.1, one can obtain the long time
stability result.

Theorem 4.3. Long time stability result
Consider the partial BNF constructed in Theorem 4.1 (see (49)). If the initial datum ¢(0)

satisfies ||g(0)||, < e, then one has

o

la@)ll, <2 VIl <T. (©2)
where

(1) T. > exp {:r |lne|} , for¢(j,o) =exp{cIn{j)}; (63)

(2) T, > exp {; |1ne|1+ﬁ} , for ¥(j,o) =exp {aln2 ]} (64)

(3) o> epd Cmd L o) = VilY: 65

€ = p 1H|1H€| ) or ¢(J70)—6XP{U |J|}7 ( )

where 0 < 8 < 1/7,0 < C, < 1/200.

Proof. In view of (23) and (54), one has the transformation ®} is close to the identity, i.e.
q=o.(q) =q+ O(||(j||(27) Thus it suffices to prove that if ||g(0)||, < ¢, then

la@®ll, <26 VIt <T.

o

Without loss of generality, we only need to prove (63). Let
i)=Y G0,
jezd

On one hand, one has by (49)

d . : )
dtl(t)\ = {Lw R} <20a0l, (IXwll, + 1 Xz],).
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On the other hand, using Newton-Leibnitz formula
¢ 4y
o o dr
1(t) — 1(0) = —(s)d
010 = [ G

we have .

[1(t)| < [1(0)] +/0 2[lg(s)ll, U Xwll, + [ Xrll,) ds,
where the last inequality is based on (66).
Define
T* = inf {[t] : [g@)], = 2¢}
and we will prove that
T* > exp {gr [In e|} . (66)
If (66) does not hold, then by using (59)

o
4¢2 = |11 < |1(0)], + 46/ (||Xw||§f + ||XR||ff) ds < €+ 2¢% = 3¢,
0

which is impossible. This completes the proof of (63).
Similarly, following the proof of (63), we obtain the estimates (64) and (65). O

85 The proof of main result

5.1 Proof of Theorem 1.2

In this subsection, we will prove (10) and (11) in Theorem 1.2 by using Theorem 4.3. To
this end, it suffices to estimate the tame norm of the Hamiltonian P (see (15)). Given any two
vectors q,q’ € ¢2(C), define the convolution ¢ * ¢’ € c’ by

(gxd)=>_ ga-a. (67)
lezd
Then we will give the proof of Theorem 1.2 as follows.

Proof. Firstly, in view of 12 and 15, one has Xp(u) = |u|?u, and then
1
| Xp] (u(l),u(z), u(3)) =5 Za(x)uT(l)uT(Q)uT(3)7

where 7 are all the permutations of the first 3 integers.
Secondly, write
ul =3¢y, i=1,2,3,
jezd
then one has
uMW @) = g g2 4¢3, (68)
Finally, in view of (15), Definition 1, Definition 2 and (80), there exists a positive constant
C(o) depending on ¢ only such that
|P|2 g < C(o)R?. (69)

Then using Theorem 4.3, we finish the proof of (10) and (11) in Theorem 1.2. O
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5.2 Proof of Theorem 1.1

Following the proof of Theorem 1.2, we can deduce (8) in Theorem 1.1. Consequently, in
this subsection, we will focus solely on proving (9) in Theorem 1.1. To this end, it suffices to

prove the tame-like property
- 3\°
loxd *d’ll, < C(d) (4) lall, 11, a1, (70)

for any o > d, where constant C (d) depending on d only. Then, we will proceed with the proof
of Theorem 1.1 as follows.

Proof. Firstly, we will prove (70) as follows.
Given any ji,jo,j3 € Z¢ and letting j = j; — j, + j3, then one has

i) < 3max{[j, ], 2], ls]}- (71)
Without loss of generality, we assume that

max{|j; ], [J2J, Ja]} = Li1]- (72)

Noting that |js |, [j3] > 2, then using (71) and (72), one has

2(oc—d)
i <3 <0 (§) 0 LML e, (73)
Hence we have
2
2 s |20
lgxa' *q"l=>_ || > @4 | L
jezd \ |i1.dg.dsezd

J1—Ja2+iz=i
2

3 2(oc—d) . o o
<o (D) S| X Gl (U 1) (L)
JEZA \ j1.ig.zezd
J1—iz2+iz=i
(in view of (73))
2 2
3 2(o—d) . p
<o (3) (| (X ) (X b
jrezd jo€2 js€zd
(using fla bl < [lall [0, a € b € £
3 2(o—d) ) ) )
<o (3) @i,

where the last inequality uses Cauchy inequality and

C(d) =Y [1]7

lezd
Taking C(d) = 4%C(d), we finish the proof of (70).
Finally, in view of (68) and (70), one has
Ixel < Ca) (§) 20 <22 (3)

where using the fact that 0 < € < €o(d) sufficiently small. And we finish the proof of (9). O
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Lemma 5.1. Assuming W = (w;j)1<ij<q is & d X d invertible matrix, then there exists a

constant C'= C(W,d) > 1 depending only on W and d such that
C7Hjl < (Wil < Cljl.

(74)

Lemma 5.2. Given any two numbers x1,x2 € R with 29 > 27 > 1, then for any 0 < s < 1/2,

one has
2(zy — x1)
2 2 2 1
1‘28 — xlg S 5 5
1
where s, = min{2s,1 — 2s} with 0 < s, <1/2.
Proof. Case 1: 0 < s <1/4.
Then one has
225 _ g2 — xy® — T2 — T
2 1 x%s +x%s — CE%S +x%s?

where by using the fact

r3® —x]® < a9 — 1.

Case 2: 1/4 < s < 1/2.
Then one has
1-2 1-2
2s _ 25 o T2 =01t R e T < 2wy — 71)
Ty =21 = 1-25 , . 1-2s S = PR T
Ty T+ T Ty T+ r
where the last inequality uses the fact

w2l g2l < ap — .

Thus, combining (76) and (77), we finish the proof of (75).

Lemma 5.3. For any ¢ > p > 0 and any j,1 € Z%, we assume that
¢(ja(7) Sw(jilﬂj) ’l/)(lap) when |j71| 2 |1|a
¥(,0) <P —1p) (o) when [j—1 <]l

Then there exists o’ satisfying ¢ > ¢’ > p such that

la*d'll, < C’,p)lall, lld'll + llall, d'll,)
where C(o’, p) > 0 is a constant depending on ¢’ and p only.

Proof. In view of (67), (78) and (79), one has
2

lexdly < DI aga-dl| vE-10)% (1, p)
jezd |1ez4
2

+ D giacda| ¢G-10)7¢(0,0)
jezd |1ez4d
< (') lall, lld'llo + llally lld'll,)
where the last inequality uses Young’s inequality
lla*bll, < llallz [0l , a€€?bed,

and Cauchy’s inequality.

(75)

(78)
(79)

(80)
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Next, we will demonstrate that there exists p > 0 such that the conditions (78) and (79) in
the lemma 5.3 are satisfied.

Remark 5.1. According to the fact that

j7<27-G-17-1° when [j—1>]1,
j7<2717-(j-1)° when [j—1 <],

one gets in Lemma 5.3

p=0 when ¢(j,0)=exp{ocln(j)}.

Moreover, from Lemma 6.1 in [19] and Lemma 5.1 in [20], one gets in Lemma 5.3

p=30/4 when ¥(j,0)=exp {oln2 [J]} ,
p=(V2—1)0 when ¥(j,o)=exp {a |J|} :
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