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Distributional scalar curvature and Einstein metrics

ZHANG Huai-yu1 ZHANG Jiang-wei2

Abstract. In this paper, we study scalar curvature rigidity of non-smooth metrics on smooth

manifolds with non-positive Yamabe invariant. We prove that if the scalar curvature is not

less than the Yamabe invariant in the distributional sense, then the manifold must be isometric

to an Einstein manifold. This result extends Theorem 1.4 in Jiang, Sheng and Zhang [27],

from a special case where the manifolds have zero Yamabe invariant to general cases where the

manifolds have non-positive Yamabe invariant.

§1 Introduction

Low-regularity geometry with weak curvature conditions has been appearing as an important

theme in Riemannian geometry. Sectional curvature, Ricci curvature and scalar curvature

are the most fundamental and the most important curvatures in Riemannian geometry. For

sectional curvature lower bounds, Gromov, Perelman, etc., developed the Alexandrov spaces

theory, which has great applications in the resolution of Poincaré conjecture, see [6], [39], etc.

For Ricci curvature lower bounds, there is a profound theory developed by Cheeger, Colding,

Tian, etc., see [8], [9], [10], [14], [15], [52] [24], [12], etc. An another theory for Ricci curvature

lower bounds was developed by Lott, Villani, Sturm, etc., via an optimal transport approach,

see [36], [51].

However, for scalar curvature lower bounds, it has not been well understood. Gromov

proposed to study scalar curvature lower bounds in a weak sense, see [18, Page 1118]. And he

pointed out that one could consider weak scalar curvature in the distributional sense (see [18,

Page 1118, Line 11 from below]). Bamler and Burkhardt-Guim developed a notion of weak

scalar curvature by using Ricci flow (see [1] and [7]). Jiang, Sheng and the author made a

connection between the notion developed by Bamler and Burkhardt-Guim and the notion of

distributional scalar curvature in [27]. In [29], Lee-LeFloch proved a positive mass theorem

for distributional scalar curvature. In [26], Jiang, Sheng and the author improved some of
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the results in [29]. The author partially solved the Yamabe problem for distributional scalar

curvature in [53]. For more work in this topic, see [50], [31], etc.

In particular, Schoen wanted to generalize the following theorem, involving scalar curvature

lower bounds, from smooth metrics to non-smooth metrics:

Theorem 1.1 ([28], [43]). LetMn be a compact smmoth differentiable manifold with σ(M) ≤ 0,

where σ(M) is the Yamabe invariant of M , and g be a smooth metric on M with unit volume

such that Rg ≥ σ(M) pointwisely on M . Then g is Einstein with Rg = σ(M).

The Yamabe invariant here is an invariant defined on smooth differentiable manifolds, it

appears to be the key concept in the resolvation of prescribing scalar curvature problem (see

[28]). See (79) for its formal definition.

The paper [33] mentioned such a question of Schoen: In Theorem 1.1, if g admits a singular

set, and Rg ≥ σ(M) only holds away from the singular set, can we still deduce that g is

Einstein? In particular, he conjectured that if g is uniformly Euclidean near the singular

set, Rg ≥ 0 ≥ σ(M) away from the singular set, and the singular set is a submanifold of

codimension at least 3, then g extends smoothly to the whole manifold to a Ricci flat metric.

Actually, Schoen didn’t propose this conjecture in some papers, but his students recorded that

conjecture in lecture notes, which is unpublished.

This question is still open. [33] confirms Schoen’s conjecture for 3-manifolds in the case of

an isolated singularity. If the metric is W 1,p(p > n) near the singular set and the singular set is

small, [48] proved that the metric is Einstein away from the singular set, which almost solved

Schoen’s conjecture in W 1,p(p > n) case. In [27], Jiang, Sheng and the author improved this

result and gave an optimal condition of the singular set in the case p = +∞. If the metric

is W 1,n or C0 near the singular set and the codim of singular set is strictly greater than 2,

Chu-Lee and Lee-Tam proved the metric is Einstein away from the singular set respectively in

[13] and [30], which solved Schoen’s conjecture in W 1,n or C0 case.

Motivated by Gromov’s suggestion in [18] and Schoen’s question in [33], we study a more

radical case in this paper. In contrast with the work above, in which their metrics are still

smooth away from a small singular set, our metrics, in this paper, could be non-smooth on

the whole manifold. Correspondingly, the scalar curvature lower bounds are assumed in the

distributional sense. Our main theorem is:

Theorem 1.2. Let Mn be a compact manifold with σ(M) ≤ 0, where σ(M) is the Yamabe

invariant of M , and g be a W 1,p(n < p ≤ ∞) metric on M with unit volume such that

Rg ≥ σ(M) in the distributional sense. Then (M, g) is distance isometric to an Einstein

manifold with scalar curvature equal to σ(M).

Remark 1.1. Theorem 1.2 confirms Schoen’s conjecture for W 1,p(n < p ≤ ∞) metrics. In fact,

if g is C2 away from a closed subset Σ, whose Hausdorff measure satisfis Hn− p
p−1 (Σ) < ∞ for

n < p < ∞ or Hn−1(Σ) = 0 for p = ∞, and if Rg ≥ a pointwisely away from Σ, then we can

deduce that Rg ≥ a in the distributional sense, see [26, Lemma 2.7].
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Remark 1.2. Jiang, Sheng and the author have proved the special case σ(M) = 0, see [27,

Theorem 1.4]. However, our work in [27] does not directly solve the general case σ(M) ≤ 0. To

prove the general case σ(M) ≤ 0, in this paper, we must do more work. Particularly, we must

improve the estimate in [27, Theorem 1.1] to a better estimate. This improvement is given in

our Lemma 4.1. Moreover, we need to use a modified flow, rather than the Ricci flow in [27].

Remark 1.3. Since in this paper we extend the result by Jiang, Sheng and the author in [27]

from σ(M) = 0 to σ(M) ≤ 0. One might ask for similar results for σ(M) > 0. In fact, the

corresponding question for σ(M) > 0 is nonsense, since the resolution of the prescribing scalar

curvature problem tells that for any M with σ(M) > 0, any smooth function is the scalar

curvature of some metrics on M , see [28].

Organization:

In section 2, we give some prelimilaries. In section 3, we construct an auxiliary function

and give some estimates, which are of great importance in our proof of Theorem 1.2. In section

4, we study scalar curvature lower bounds along Ricci flow, where the initial metric only has

scalar curvature lower bounds in the distributional sense. In section 5, we prove Theorem 1.2.

§2 Prelimilaries

2.1 Distributional scalar curvature

Due to the lack of the second order derivative, singular metrics do not have the concept

of curvature in classical sense. However, inspired by the distributional theory (or theory of

generalized functions), in which the derivative exists even for very weird functions, it is naturally

to consider derivative and curvature in the distributional sense for singular metrics.

Let Mn be a compact smooth manifold. Fix an arbitrary smooth background metric h on

M , for any tensor field T on M , its Sobolev norm W k,q(M) is defined naturally as:

∥T∥Wk,q(M) :=

k∑
s=0

∫
M

|∇̃kT |hdµh. (1)

Here and below ∇̃, | · |h and dµh will denote the Levi-Civita connection, the norm and the

volume form respectively taken with respect to h. Although the W k,q(M) norm depends on

the background metric h, the norms for different h are all equivalent and the W k,q(M) space

does not depend on it.

Therefore, a W k,q metric g, or a metric g ∈ W k,q(M), means a symmetric and positive

definite (0, 2) tensor field on M with finite W k,q(M) norm.

In this paper, we focus on W 1,p(n < p ≤ +∞) metrics. For any metric g ∈ W 1,p(M), its

distributional scalar curvature Rg is defined as (see [27, 32, 29, 34], etc.):

⟨Rg, φ⟩ :=
∫
M

(
−V · ∇̃

(
φ
dµg

dµh

)
+ Fφ

dµg

dµh

)
dµh, ∀φ ∈ C∞(M), (2)
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where V and F is a vector field and a function respectively, defined by:

Γk
ij :=

1

2
gkl
(
∇̃igjl + ∇̃jgil − ∇̃lgij

)
, (3)

V k := gijΓk
ij − gikΓj

ji = gijgkℓ(∇̃jgiℓ − ∇̃ℓgij), (4)

F := trgRich − ∇̃kg
ijΓk

ij + ∇̃kg
ikΓi

ji + gij
(
Γk
kℓΓ

ℓ
ij − Γk

jℓΓ
ℓ
ik

)
, (5)

where Rich is the Ricci curvature tensor of h.

This definition is independent of the background metric h, see [29]. Moreover, if g is smooth,

this definition of ⟨Rg, φ⟩ is just the integral
∫
M
Rgφdµg. See also [26, 53], etc., for more

properties of the distributional scalar curvature.

2.2 Mollification of the metric and estimate on the scalar curvature

AnyW 1,p metric could be mollified to a smooth metric family, which converges to it inW 1,p

topology. Concretely, we have the following lemma:

Lemma 2.1 (Lemma 4.1 in [20]). Let Mn be a compact smooth manifold with a W 1,p(n < p ≤
∞) metric g on it, then there exists a family of smooth metrics gδ, δ > 0, such that gδ converges

to g in W 1,p topology as δ → 0+.

Remark 2.1. In [20, Lemma 4.1], the lemma is only claimed for W 2,n2 metrics. However, their

proof indeed works for general W k,q case, especially for our W 1,p case.

The following lemma established by Jiang, Sheng and the author shows that the distribu-

tional scalar curvature functional is continuously dependent on the metric in a certain sense:

Lemma 2.2 (Lemma 2.2 in [27]). Let Mn be a compact smooth manifold. Suppose gδ is a

family of metrics which converges to g in W 1,p topology as δ → 0+, then we have that for any

ϵ > 0, there exists δ0 = δ0(g) > 0, such that

|⟨Rgδ , u⟩ − ⟨Rg, u⟩| ≤ ϵ∥u∥
W

1, n
n−1 (M)

,∀u ∈ C∞(M), ∀δ ∈ (0, δ0).

where Rgδ is the scalar curvature of gδ.

2.3 Estimates on Ricci flow

The Ricci flow, introduced by Hamilton in [21], is defined as follows:

Definition 2.3 (Ricci flow). The Ricci flow on M is a family of metrics g(t) such that

∂

∂t
g(t) = −2Ricg(t),

where Ricg(t) is the Ricci curvature tensor of g(t).

Though Hamilton only introduced Ricci flow with smooth initial metrics, it is quite useful

to consider Ricci flow with singular initial metrics. For our use, we mainly need the following

theorem, given by Jiang, Sheng and the author, which considers Ricci flow with W 1,p(n < p ≤
+∞) initial metrics:
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Lemma 2.4 (Theorem 3.2 in [27]). There exists an ϵ(n) > 0 such that, for any compact n-

manifold M and any W 1,p(n < p ≤ +∞) metric ĝ on M , there exists a T0 = T0(n, ĝ) > 0 and

a Ricci flow g(t) ∈ C∞(M × (0, T0]), such that

(1) limt→0 dGH((M, g(t)), (M, ĝ)) = 0.

(2) |Rm(g(t))|(t) ≤ C(n,ĝ,p)

t
n
4p

+3
4
, ∀t ∈ (0, T0].

(3)
∫ T0

0

∫
M

|Rm(g(t))|2dµg(t)dt ≤ C(n, ĝ, p),

where dGH is the Gromov-Hausdorff distance, and C(n, ĝ, p) is a positive constant independent

of t.

We also need to consider the h-flow, which is equivalent to the Ricci flow after a family of

diffeomorphisms. It was firstly introduced by Simon in [49], in order to study the Ricci flow

with C0 initial two metrics.

Before we give the definition of h-flow, we firstly give the definition of (1+δ)-fairness between

metrics.

Definition 2.5. Given a constant δ ≥ 0, a metric h is called to be (1+ δ)-fair to g, if h is C∞,

sup
M

|∇̃jRm(h)| = Lj <∞,

and

(1 + δ)−1h ≤ g ≤ (1 + δ)h on M.

Here and below, ∇̃ means the covariant derivative taken with respect to h.

Definition 2.6. [h-flow] For any background smooth metrics h, the h-flow is a family of metrics

g(t) that satisfy
∂

∂t
gij(t) = −2Rg(t);ij +∇iVj +∇jVi,

where the derivatives are taken with respect to g(t), Rg(t);ij is the Ricci curvature of g(t),

Vj = gjk(t)g
pq(t)(Γk

pq(t)− Γ̃k
pq),

and Γ(t) and Γ̃ are the Christoffel symbols of g(t) and h respectively.

Simon proved such an existence results:

Lemma 2.7 (Theorem 1.1 in [49]). There exists an ϵ(n) > 0 such that, for any compact n-

manifold M with a complete C0 metric ĝ and a C∞ metric h which is (1+ ϵ(n)
2 )-fair to ĝ, there

exists a T0 = T0(n, k0) > 0 and a family of metrics g(t) ∈ C∞(M × (0, T0]), t ∈ (0, T0] which

solves h-flow for t ∈ (0, T0], h is (1 + ϵ(n))-fair to g(t), and

(1)

lim
t→0+

sup
x∈M

|g(x, t)− ĝ(x)| = 0,
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(2)

sup
M

|∇̃ig(t)| ≤ ci(n, h)

ti/2
, ∀t ∈ (0, T0], i ≥ 1,

where the derivatives and the norms are taken with respect to h.

To apply the flow to prove our results, we will let h be (1+ ϵ(n)
2 )-fair to ĝ. The existence of

such h is ensured by the following lemma:

Lemma 2.8 ([49]). Let M be a compact manifold, for any C0 metric g on M , and any 0 <

δ < 1, there exists a C∞ metric h which is (1 + δ)-fair to g.

In the case of W 1,p(n < p ≤ +∞) initial metric, Lemma 2.7 could be improved:

Lemma 2.9 (Theorem 3.11 in [27]). In the condition of Lemma 2.7, if ĝ is W 1,p(n < p ≤ +∞)

on M , then there exists a T0 = T0(n, h, ∥ĝ∥W 1,p(M), p), such that g(t), t ∈ (0, T0] is the h-flow

with initial metric ĝ, and

(1)
∫
M

|∇̃g(t)|pdµh ≤ 10
∫
M

|∇̃ĝ|pdµh, ∀t ∈ (0, T0],

(2) |∇̃g|(t) ≤ C(n,h,∥ĝ∥W1,p(M),p)

t
n
2p

, ∀t ∈ (0, T0],

(3) |∇̃2g|(t) ≤ C(n,h,∥ĝ∥W1,p(M),p)

t
n
4p

+3
4

, ∀t ∈ (0, T0],

where C(n, h, ∥ĝ∥W 1,p(M), p) is a positive constant depends only on n, h, ∥ĝ∥W 1,p(M), p, and does

not depend on t.

The Ricci flow in Lemma 2.4 just comes from the h-flow in Lemma 2.9. In fact, they are

equivalent after a certain family of diffeomorphisms.

§3 An auxiliary function along Ricci flow

In this section, we consider a compact smooth Riemannian manifold (Mn, ĝ) and the Ricci

flow g(t)(t ∈ [0, T0]) with initial metric ĝ. To study a W 1,p metric g, firstly we work with

the smooth metrics gδ given in Lemma 2.2. Thus, in this section, we consider Ricci flow with

smooth initial metrics.

For any positive time T ∈ (0, T0] and any φ̃ ∈ C∞(M), we want to construct an auxiliary

function φ(x, t) defined on M × [0, T ], such that φ(T, ·) = φ̃(·), and the integral∫
M

(
Rg(t) − a0

(
1− 2a0

n
t

)−1
)
φ(·, t)dµg(t) (6)

is monotone increasing with respect to t.

Moreover, we also need some estimate for φ(x, t). In fact, we have the following lemma,

which is the main result of this section:
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Lemma 3.1. Let (Mn, ĝ) be a compact smooth Riemannian manifold and g(t)(t ∈ [0, T0]) be

the Ricci flow with initial metric ĝ. For any non-positive constant a, any T ∈ (0, T0] and any

φ̃ ∈ C∞(M), there exists a function φ(x, t) ∈ C∞(M × [0, T ]), such that

(1) φ(·, T ) = φ̃(·), on M .

(2)
∫
M

(
Rg(t) − a0

(
1− 2a0

n t
)−1
)
φ(·, t)dµg(t) is monotonously increasing with respect to t.

(3) φ(·, t) ≤ C(n, h, p, ∥ĝ∥W 1,p(M), ∥φ̃∥L∞ , a0), ∀t ∈ [0, T ].

∥φ(·, t)∥
W

1, n
n−1 (M)

≤ C(n, h, p, ∥ĝ∥W 1,p(M), ∥φ̃∥L∞ , a0), ∀t ∈ [0, T ].

Remark 3.1. Though Lemma 3.1 only claims results for a non-positive, our proof essentially

gives similar results for a0 positive. The matter is that the term
(
1− 2a0

n t
)−1

in item (2) would

divergence to infinity at t = n
2a0

. This divergence phenomenon is expectable by noting that the

Ricci flow with the round sphere with scalar curvature a0 > 0 as its initial metric collapses to a

single point at time t = n
2a0

, since we use Ricci flow in a short time, so we can restrict T0 <
n

2a0
.

However, the case of a0 non-positive is good enough for our use.

Now we are going to construct the function φ in the lemma above. Since (Mn, ĝ) is a

compact smooth Riemannian manifold, it is known that the heat kernel along its Ricci flow

g(t)(t ∈ [0, T0] exists. The heat kernel is a funciton K(y, s;x, t), y, x ∈M , 0 ≤ t < s ≤ T0, such

that

(∂s −∆g(s);y)K(y, s;x, t) = 0, ∀ fixed x ∈M, t ∈ (0, T0], (7)

and

lim
s→t+

K(y, s;x, t) = δx(y),∀ fixed x ∈M, (8)

where ∆g(s);y denotes the Laplacian taken to the variable y and with respect to the metric g(s),

δx(·) denotes the Dirac Delta functional at x.

Moreover,

(∂t +∆g(t);x −Rg(t)(x))K(y, s;x, t) = 0, ∀ fixed y ∈M, s ∈ (0, T0], (9)

and

lim
t→s−

K(y, s;x, t) = δy(x), ∀ fixed y ∈M, (10)

where Rg(t) is the scalar curvature of g(t).

Now, for any a0 ∈ R, T ∈ (0, T0] and φ̃ ∈ C∞(M), we define a function φ on M × [0, T ] as

follows:

φ(x, t) =

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2 ∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y), (11)

For convenience, we denote:

a(t) := a0

(
1− 2a0

n
t

)−1

. (12)

One of the advantages of φ defined above is that it satisfies an equation which is useful for

our use:

Lemma 3.2. Let (M, g(t)) be a Ricci flow, K(y, s;x, t) be the heat kernel along g(t), then the
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function φ defined in (11) satisfies

∂tφ = −∆g(t)φ+

(
Rg(t) −

4

n
a(t)

)
φ, (13)

where a(t) is the real function defined in (12).

Proof. Since

φ(x, t) =

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2 ∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y), (14)

we have

∂tφ(x, t)

=

(
1− 2a0

n
T

)−2

∂t

(
1− 2a0

n
t

)2 ∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y)

+

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

∂t

∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y)

=−
(
1− 2a0

n
T

)−2
4a0
n

(
1− 2a0

n
t

)∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y)

+

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

∂t

∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y)

=− 4

n
a(t)φ(x, t)

+

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

∂t

∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y). (15)

By (9), we have

∂tK(y, T ;x, t) = (−∆g(t);x +Rg(t)(x))K(y, T ;x, t). (16)

Thus (15) becomes

∂tφ(x, t) = − 4

n
a(t)φ(x, t) +

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2 ∫
M

φ̃(y)(−∆g(t);x +Rg(t)(x))

K(y, T ;x, t)dµg(T )(y). (17)

On the other hand, we have

∆g(t)φ(x, t) =

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2 ∫
M

φ̃(y)∆g(t)K(y, T ;x, t)dµg(T )(y). (18)

Combining (17) and (18), we have

(∂t +∆g(t))φ(x, t) = − 4

n
a(t)φ(x, t) +

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2 ∫
M

φ̃(y)Rg(t)(x)

K(y, T ;x, t)dµg(T )(y)

= − 4

n
a(t)φ(x, t) +Rg(t)(x)

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2 ∫
M

φ̃(y)

K(y, T ;x, t)dµg(T )(y)

= − 4

n
a(t)φ(x, t) +Rg(t)(x)φ(x, t), (19)
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which is just the equation (13), thus the lemma is proved.

Now we can prove Lemma 3.1:

proof of Lemma 3.1. Let K(y, s;x, t) be the heat kernel along g(t), and φ be the function

defined in (11).

For (1), it is known that the convolution
∫
M
φ̃(y)(x)K(y, T ;x, t)dµg(T )(y) is smooth and∫

M

φ̃(y)(x)K(y, T ;x, t)dµg(T )(y)
∣∣∣
t=T

= φ̃(x). (20)

On the other hand, we have(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

|t=T = 1. (21)

Thus by (11) we have

φ(x, T ) = 1φ̃(x) = φ̃(x), (22)

which proves (1).

For (2), we calculate that

∂t

∫
M

(
Rg(t) − a0

(
1− 2a0

n
t

)−1
)
φ(x, t)dµg(t)

=∂t

∫
M

(
Rg(t) − a(t)

)
φ(x, t)dµg(t)

=

∫
M

((
∂tRg(t) − a′(t)

)
φ(x, t) +

(
Rg(t) − a′(t)

)
∂tφ(x, t)

)
dµg(t) +

∫
M

(
Rg(t) − a(t)

)
φ(x, t)∂tdµg(t). (23)

And we have

a′(t) =
2a20
n

(
1− 2a0

n
t

)−2

=
2

n
a2(t). (24)

Recall g(t) is a Ricci flow, we have the standard evolution equation

∂tRg(t) = ∆g(t)Rg(t) + 2|Ricg(t)|2g(t), (25)

and

∂tdµg(t) = −Rg(t)dµg(t), (26)

Combining (23)-(26) and the evolution equation of φ, (13), we have

∂t

∫
M

(
Rg(t) − a0

(
1− 2a0

n
t

)−1
)
φ(x, t)dµg(t)

=

∫
M

(
∆g(t)Rg(t) + 2|Ricg(t)|2g(t) −

2

n
a2(t)

)
φ(x, t)dµg(t)+∫

M

(
Rg(t) − a(t)

)(
−∆g(t)φ+

(
Rg(t) −

4

n
a(t)

)
φ(x, t)

)
dµg(t)

+

∫
M

(
Rg(t) − a(t)

)
φ(x, t)

(
−Rg(t)

)
dµg(t)



ZHANG Huai-yu, ZHANG Jiang-wei. Distributional scalar curvature and Einstein metrics 467

=

∫
M

(
∆g(t)Rg(t)φ(x, t)−Rg(t)∆g(t)φ(x, t)

)
dµg(t)+∫

M

(
2|Ricg(t)|2g(t) −

2

n
a2(t)− 4

n
a(t)Rg(t) +

4

n
a2(t)

)
φ(x, t)dµg(t)

+

∫
M

(
Rg(t) − a(t)

)
φ(x, t)

(
−Rg(t)

)
dµg(t) +

∫
M

(
Rg(t) − a(t)

)
φ(x, t)Rg(t)dµg(t)

+

∫
M

a(t)∆g(t)φ(x, t)Rdµg(t)

=

∫
M

(
∆g(t)Rg(t)φ(x, t)−Rg(t)∆g(t)φ(x, t)

)
dµg(t)+∫

M

(
2|Ricg(t)|2g(t) −

4

n
a(t)Rg(t) +

2

n
a2(t)

)
φ(x, t)dµg(t)

+

∫
M

a(t)∆g(t)φ(x, t)Rdµg(t). (27)

By integration by parts, we have∫
M

(
∆g(t)Rg(t)φ(x, t)−Rg(t)∆g(t)φ(x, t)

)
dµg(t) = 0, (28)

and ∫
M

a(t)∆g(t)φ(x, t)Rdµg(t) = a(t)

∫
M

∆g(t)φ(x, t)Rdµg(t) = 0. (29)

Combining (27)-(29), we have

∂t

∫
M

(
Rg(t) − a0

(
1− 2a0

n
t

)−1
)
φ(x, t)dµg(t)

=

∫
M

((
2|Ricg(t)|2g(t) −

4

n
a(t)Rg(t) +

2

n
a2(t)

)
φ(x, t)

)
dµg(t). (30)

By Cauchy inequality and a direct calculus using a special coordinate, one has

2|Ricg(t)|2g(t) ≥
2

n
R2

g(t). (31)

By the mean value inequality, we have

− 4

n
a(t)Rg(t) ≥ − 2

n
R2

g(t) −
2

n
a2(t) (32)

Combining (30)-(32), we have

∂t

∫
M

(
Rg(t) − a0

(
1− 2a0

n
t

)−1
)
φ(x, t)dµg(t)

≥
∫
M

((
2

n
R2

g(t) −
2

n
R2

g(t) −
2

n
a2(t) +

2

n
a2(t)

)
φ(x, t)

)
dµg(t)

=0. (33)

Thus
∫
M

(
Rg(t) − a0

(
1− 2a0

n t
)−1
)
φ(·, t)dµg(t) is monotonously increasing with respect to

t and (2) is proved.

For (3), by (11) we have

φ(t, x) ≤
(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

∥φ̃∥L∞

∫
M

K(y, T ;x, t)dµg(T )(y). (34)
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We denote I(t, T ) =
∫
M
K(y, T ;x, t)dµg(T )(y), then we have limT→t+ I(t, T ) = 1, and by the

standard evolution equation ∂T dµg(T ) = −Rg(T )dµg(T ), we have

∂T I(t, T ) =

∫
M

(
∆g(T );yK(y, T ;x, t)−Rg(T )K(y, T ;x, t)

)
dµg(T )(y). (35)

By the divergence theorem, we have∫
M

∆yK(y, T ;x, t)dµg(T )(y) = 0. (36)

Combining Lemma 2.4 (2), (35) and (36), we have

∂T I(t, T ) ≤
C(n, h, p, ∥ĝ∥W 1,p(M))

T
n
4p+

3
4

I(t, T ). (37)

Since limT→t+ I(t, T ) = 1 and n
4p + 3

4 ∈ (0, 1), by taking integral we have

I(t, T ) ≤ C(n, h, p, ∥ĝ∥W 1,p(M)), ∀0 ≤ t < T ≤ T0. (38)

By (34) and (38), we have

φ(t, x) ≤ C(n, h, p, ∥ĝ∥W 1,p(M), ∥φ̃∥L∞)

(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

, ∀t ∈ [0, T ]. (39)

Let us estimate
(
1− 2a0

n T
)−2 (

1− 2a0

n t
)2
.

If a0 > 0, then we have assumed t ≤ T ≤ T0 <
n

2a0
without loss of generality. In this case(

1− 2a0

n t
)2

is monotonously increasing with respect to t, thus(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

≤ 1, if a0 > 0 (40)

If a0 < 0, then we have(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

≤ (1)
−2

(
1− 2a0

n
T0

)2

≤ C(a0, T0)

= C(n, h, p, ∥ĝ∥W 1,p(M), a0), if a0 < 0 (41)

If a0 = 0, then we have(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

≡ 1, if a0 = 0 (42)

In all cases, we always have(
1− 2a0

n
T

)−2(
1− 2a0

n
t

)2

≤ C(n, h, p, ∥ĝ∥W 1,p(M), a0). (43)

Combining (39) and (43), we have

φ(x, t) ≤ C(n, h, p, ∥ĝ∥W 1,p(M), ∥φ̃∥L∞ , a0), ∀(x, t) ∈M × [0, T ], (44)

which proves (3).

For (4), we consider a simpler function

ψ(x, t) :=

∫
M

φ̃(y)K(y, T ;x, t)dµg(T )(y) =

(
1− 2a0

n
T

)2(
1− 2a0

n
t

)−2

φ(x, t), (45)

firstly.

Now we want to estimate
∫
M

|∇g(t)ψ(·, t)|2g(t)dµg(t), which we denote as E(t). We calculate
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that

∂tE(t) =∂t

∫
M

ψ(·, t)iψ(·, t)jg(t)ijdµg(t)

=2

∫
M

∂tψ(·, t)iψ(·, t)jg(t)ijdµg(t) +

∫
M

ψ(·, t)iψ(·, t)j∂tg(t)ijdµg(t)+∫
M

|∇g(t)ψ(·, t)|2g(t)∂tdµg(t)

=

∫
M

(
2⟨∇g(t)∂tψ(·, t),∇g(t)ψ(·, t)⟩g(t)

)
dµg(t) +

∫
M

ψ(·, t)iψ(·, t)j∂tg(t)ijdµg(t)+∫
M

(−Rg(t))|∇g(t)ψ(·, t)|2g(t)dµg(t). (46)

From the Ricci flow equation

∂tg(t)ij = −2Ricg(t);ij , (47)

we have

∂tg(t)
ij = 2Ricijg(t). (48)

Thus (46) becomes

∂tE(t)

=

∫
M

(
2⟨∇g(t)∂tψ(·, t),∇g(t)ψ(·, t)⟩g(t) + 2Ricg(t)(∇g(t)ψ(·, t),∇g(t)ψ(·, t))−

Rg(t)|∇g(t)ψ(·, t)|2g(t)
)
dµg(t). (49)

By (11), we have∫
M

⟨∇g(t)∂tψ(·, t),∇g(t)ψ(·, t)⟩g(t)dµg(t)

=

∫
M

−⟨∇g(t)(∆g(t)ψ(·, t)−Rg(t)ψ(·, t)),∇g(t)ψ(·, t)⟩g(t)dµg(t)

=

∫
M

(
−⟨∇g(t)∆g(t)ψ(·, t),∇g(t)ψ(·, t)⟩g(t) + ⟨∇g(t)(Rg(t)ψ(·, t)),∇g(t)ψ(·, t)⟩g(t)

)
dµg(t). (50)

Using the Bochner formula, (50) becomes∫
M

⟨∇g(t)∂tψ(·, t),∇g(t)ψ(·, t)⟩g(t)dµg(t)

=

∫
M

(
− 1

2
∆g(t)|∇g(t)ψ(·, t)|2g(t) + |∇2

g(t)ψ(·, t)|
2
g(t) +Ricg(t)(∇g(t)ψ(·, t),∇g(t)ψ(·, t))

+ ⟨∇g(t)(Rg(t)ψ(·, t)),∇g(t)ψ(·, t)⟩g(t)
)
dµg(t). (51)

By integration by parts, we have∫
M

1

2
∆g(t)|∇g(t)ψ(·, t)|2g(t)dµg(t) = 0. (52)

Combining (51) and (52), we have∫
M

⟨∇g(t)∂tψ(·, t),∇g(t)ψ(·, t)⟩g(t)dµg(t)
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=

∫
M

((
|∇2

g(t)ψ(·, t)|
2
g(t) +Ricg(t)(∇g(t)ψ(·, t),∇g(t)ψ(·, t))

)
−Rg(t)ψ(·, t)∆g(t)ψ(·, t)

)
dµg(t).

(53)

Since |∆g(t)ψ(·, t)|2g(t) ≤ C1(n)|∇2
g(t)ψ(·, t)|

2, using Cauchy inequality, we have∫
M

(
−Rg(t)ψ(·, t)∆g(t)ψ(·, t)

)
dµg(t) ≥ − 1

2C1(n)

∫
M

|∆g(t)ψ(·, t)|2g(t)dµg(t)

− C1(n)

2

∫
M

R2
g(t)ψ(·, t)

2dµg(t)

≥ −1

2

∫
M

|∇2
g(t)ψ(·, t)|

dµg(t) −
C1(n)

2

∫
M

R2
g(t)ψ(·, t)

2dµg(t)

(54)

Combining (53) and (54) we have∫
M

⟨∇g(t)∂tψ(·, t),∇g(t)ψ(·, t)⟩g(t)dµg(t) ≥
∫
M

(
Ricg(t)(∇g(t)ψ(·, t),∇g(t)ψ(·, t))−

C(n)R2
g(t)ψ(·, t)

2
)
dµg(t). (55)

Combining (49) and (55), and by Cauchy inequality, we have

∂tE(t)

≥
∫
M

(
4Ricg(t)(∇g(t)ψ(·, t),∇g(t)ψ(·, t))−Rg(t)|∇g(t)ψ(·, t)|2g(t) − C(n)R2

g(t)ψ(·, t)
2
)
dµg(t)

≥
∫
M

(
4|Ricg(t)|g(t) −Rg(t)

)
|∇g(t)ψ(·, t)|2dµg(t) − C(n)

∫
M

R2
g(t)ψ(·, t)

2dµg(t). (56)

By Cauchy inequality and a direct calculus using a special coordinate, one has

2|Ricg(t)|2g(t) ≥
2

n
R2

g(t). (57)

By (56) and (57), we have

∂tE(t) ≥ −
∫
M

|Ricg(t)||∇g(t)ψ(·, t)|2dµg(t) − C(n)

∫
M

R2
g(t)ψ(·, t)

2dµg(t). (58)

By Lemma 2.4 (2) and Lemma 3.1 (1) proved above, we have

∂tE(t) ≥ −
C(n, h, p, ∥ĝ∥W 1,p(M))

t
n
4p+

3
4

∫
M

|∇g(t)ψ(·, t)|2dµg(t)−

C(n, h, p, ∥ĝ∥W 1,p(M), φ̃, a0)

∫
M

R2
g(t)dµg(t).

In order to avoid the vanishing case, we consider E(t) + 1, and we have

∂t (E(t) + 1)

≥ −
C(n, h, p, ∥ĝ∥W 1,p(M))

t
n
4p+

3
4

(E(t) + 1)− C(n, h, p, ∥ĝ∥W 1,p(M), φ̃, a0)

∫
M

R2
g(t)dµg(t).

Dividing both sides by (E(t) + 1), we have

∂t log (E(t) + 1) ≥ −
C(n, h, p, ∥ĝ∥W 1,p(M))

t
n
4p+

3
4

− C(n, h, p, ∥ĝ∥W 1,p(M), φ̃, a0)

∫
M

R2
g(t)dµg(t).

By Lemma 2.4 (3),
∫
M
R2

g(t)dµg(t) is integrable on (0, T ) and the integral is controlled by
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C(n, h, p, ∥ĝ∥W 1,p(M)). Thus taking integral we have

log (E(T ) + 1)− log (E(t) + 1) ≥ C(n, h, p, ∥ĝ∥W 1,p(M), φ̃, a0), ∀t ∈ [0, T ]. (59)

Recall that ψT = φ̃, since Ricci flow and h-flow are equivalent after a family of diffeomor-

phisms, we have

E(T ) =

∫
M

|∇g(T )φ̃(·)|2g(T )dµg(T ) =

∫
M

|∇ḡ(T )φ̃(·)|2ḡ(T )dµḡ(T ), (60)

where ḡ(T ) is the metric at time T of the h-flow ḡ(t) given in Lemma 2.9. By Lemma 2.9, h is

1 + ϵ(n)-fair to ḡ(t), thus we have

E(T ) ≤ C(n)

∫
M

|∇hφ̃(·)|2hdµh ≤ C(n, h, φ̃) (61)

Combining (59) and (61), we have

E(t) ≤ C(n, h, p, ∥ĝ∥W 1,p(M), φ̃, a0), ∀t ∈ [0, T ]. (62)

By Lemma 3.1, (62) and Hölder inequality, we have

∥φ(·, t)∥
W

1,
p

p−1 (M)
≤ ∥φ(·, t)∥C0(M) + C(n, h)E1/2(t) ≤ C(n, h, p, ∥ĝ∥W 1,p(M), φ̃, a0),∀t ∈ [0, T ].

(63)

which proves (4), thus the lemma is proved.

§4 Ricci flow and scalar curvature lower bounds

In this section, we study the scalar curvature lower bounds along Ricci flow. The main

result in this section is:

Lemma 4.1. Let Mn be a compact smooth manifold with a metric ĝ ∈W 1,p(M) (n < p ≤ ∞).

Suppose Rĝ ≥ a0 in distirbutional sense for some constant a0, and let g(t), t ∈ (0, T0] be the

Ricci flow given in Lemma 2.4. Then for any t ∈ (0, T0], there holds Rg(t) ≥ a0
(
1− 2a0

n t
)−1

pointwisely on M .

Proof. Let ĝδ be the family of smooth metrics constructed in Lemma 2.1, such that ĝδ converges

to ĝ in W 1,p-norm. For each smooth metric ĝδ we consider the Ricci flow gδ(t) given in Lemma

2.4 with initial metric ĝδ. It is known that by letting δ converge to 0+, gδ(t)(0 ∈ (0, T0])

converge to a Ricci flow g(t)(0 ∈ (0, T0]) such that limt→0 dGH((M, g(t)), (M, ĝ)) = 0, where

dGH is the Gromov-Hausdorff distance.

For any T ∈ (0, T0] and any nonnegative φ̃ ∈ C∞(M), we will prove∫
M

(
Rg(T ) − a0

(
1− 2a0

n
t

)−1
)
φ̃dµg(T ) ≥ 0, (64)

which is sufficient to give Rg(t) ≥ a0
(
1− 2a0

n t
)−1

pointwise on M .

To do this, for each δ ∈ (0, δ0] we consider the auxiliary functions φδ given in Lemma 3.1,

such that

(1) φδ(·, T ) = φ̃(·), on M .

(2) For any constant a0,
∫
M

(
Rgδ(t) − a0

(
1− 2a0

n t
)−1
)
φδ(·, t)dµgδ(t) is monotonously in-

creasing with respect to t (if a0 > 0, then we require t ≤ T ≤ T0 <
n

2a0
).
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(3) φδ(·, t) ≤ C(n, h, p, ∥ĝδ∥W 1,p(M), ∥φ̃∥L∞ , a0), ∀t ∈ [0, T ].

(4) ∥φδ(·, t)∥W 1, n
n−1 (M)

≤ C(n, h, p, ∥ĝδ∥W 1,p(M), ∥φ̃∥L∞ , a0), ∀t ∈ [0, T ].

Since ĝδ converges to ĝ in W 1,p norm , we have

∥ĝδ∥W 1,p(M) ≤ 2∥ĝ∥W 1,p(M). (65)

Recall h = ĝδ0 only depends on ĝ. Thus by (65), the estimate above could be uniformized

as

φδ(·, t) ≤ C(n, p, ĝ, φ̃, a0), ∀t ∈ [0, T ], (66)

and

∥φδ(·, t)∥W 1, n
n−1 (M)

≤ C(n, p, ĝ, φ̃, a0),∀t ∈ [0, T ]. (67)

Let us estimate the integral∫
M

(
Rgδ(t) − a0

(
1− 2a0

n
t

)−1
)
φδ(·, t)dµgδ(t), (68)

firstly.

By the monotonicity, we have∫
M

(
Rgδ(t) − a0

(
1− 2a0

n
t

)−1
)
φδ(·, t)dµgδ(t) ≥

∫
M

(Rĝδ − a0)φδ(·, 0)dµĝδ . (69)

To estimate
∫
M

(Rĝδ − a0)φδ(·, 0)dµĝδ , by Lemma 2.2, we have∣∣∣∣∫
M

Rĝδφδ(·, 0)dµĝδ − ⟨Rĝ, φδ(·, 0)⟩
∣∣∣∣ ≤ Ψ(δ|ĝ)∥φδ(·, 0)∥W 1, n

n−1 (M)
,∀φ ∈ C∞(M), (70)

where Ψ(δ|ĝ) is a positive function such that limδ→0+ Ψ(δ|ĝ) = 0 for any fixed ĝ, and Ψ(δ|ĝ)
varies from line to line.

Moreover, by Sobolev embedding we have limδ→0+

∥∥∥dµĝδ

dµĝ
− 1
∥∥∥
C0(M)

= 0, thus by Hölder

inequality, we have∣∣∣∣∫
M

φδ(·, 0)dµĝδ −
∫
M

φδ(·, 0)dµĝ

∣∣∣∣ = ∣∣∣∣∫
M

φδ(·, 0)
(
dµĝδ

dµĝ
− 1

)
dµĝ

∣∣∣∣
≤
∥∥∥∥dµĝδ

dµĝ
− 1

∥∥∥∥
C0(M)

∫
M

|φδ(·, 0)|dµĝ

≤ C(n, ĝ)

∥∥∥∥dµĝδ

dµĝ
− 1

∥∥∥∥
C0(M)

∥φδ(·, 0)∥W 1, n
n−1 (M)

≤ Ψ(δ|ĝ)∥φδ(·, 0)∥W 1, n
n−1 (M)

. (71)

By triangular inequality,∣∣∣∣∫
M

(Rĝδ − a0)φδ(·, 0)dµĝδ − ⟨Rĝ − a0, φδ(·, 0)⟩
∣∣∣∣

≤
∣∣∣∣∫

M

Rĝδφδ(·, 0)dµĝδ − ⟨Rĝ, φδ(·, 0)⟩
∣∣∣∣+ |a0|

∣∣∣∣∫
M

φδ(·, 0)dµĝδ −
∫
M

φδ(·, 0)dµĝ

∣∣∣∣ . (72)
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Combining (70)-(72), we have∣∣∣∣∫
M

(Rĝδ − a0)φδ(·, 0)dµĝδ − ⟨Rĝ − a0, φδ(·, 0)⟩
∣∣∣∣

≤Ψ(δ|ĝ)∥φδ(·, 0)∥W 1, n
n−1 (M)

, ∀φ̃ ∈ C∞(M), φ̃ ≥ 0∀δ ∈ (0, δ0]. (73)

Since we have assumed Rĝ ≥ a in the distributional sense, we have

⟨Rĝ − a0, φδ(·, 0)⟩ ≥ 0, ∀φδ(·, 0) ∈ C∞(M), φδ(·, 0) ≥ 0. (74)

Combining (69), (73) and (74), we have∫
M

(
Rgδ(t) − a0

(
1− 2a0

n
t

)−1
)
φδ(·, t)dµgδ(t) ≥

∫
M

(Rĝδ − a0)φδ(·, 0)dµĝδ

≥ −Ψ(δ|ĝ)∥φδ(·, 0)∥W 1, n
n−1 (M)

. (75)

By (67) and (75), we have∫
M

(
Rgδ(t) − a0

(
1− 2a0

n
t

)−1
)
φδ(·, t)dµgδ(t) ≥ −C(n, p, ĝ, φ̃, a0)Ψ(δ|ĝ)

≥ −Ψ(δ|n, p, ĝ, φ̃, a0), ∀t ∈ [0, T ], δ ∈ (0, δ0].

(76)

In particular, letting t = T in (76), we have∫
M

(
Rgδ(T ) − a0

(
1− 2a0

n
T

)−1
)
φ̃dµgδ(T ) ≥ −Ψ(δ|n, p, ĝ, φ̃, a0), ∀δ ∈ (0, δ0]. (77)

where Ψ(δ|n, p, ĝ, φ̃, a0) denotes a positive function such that limδ→0+ Ψ(δ|n, p, ĝ, φ̃, a0) = 0

for any fixed n, p, ĝ, φ̃ and a0.

By Simon’s estimate, Lemma 2.7, as δ tends to 0, gδ(T ) smoothly converges to g(T ). Thus

taking limit in (77), we have∫
M

(Rg(T ) − a0

(
1− 2a0

n
T

)−1

)φ̃dµg(T ) ≥ 0,∀T ∈ (0, T0], ∀φ̃ ∈ C∞(M), φ̃ ≥ 0. (78)

Recall that g(t) is a smooth metric for t ∈ (0, T0] and Rg(t) is well defined pointwisely on

M , thus by (78) we have Rg(t) ≥ a0
(
1− 2a0

n t
)−1

pointwisely on M for any t ∈ (0, T0], which

completes the proof of the theorem.

§5 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let us restate it as follows:

Theorem 5.1. Let Mn be a compact manifold with σ(M) ≤ 0 and ĝ be a W 1,p(n < p ≤ ∞)

metric on M with unit volume such that Rĝ ≥ σ(M) in the distributional sense. Then (M, ĝ)

is isometric to an Einstein manifold with scalar curvature equal to σ(M).

For any smooth manifold M , its Yamabe invariant σ(M) is defined as:

σ(M) := sup
C

inf
g∈C

∫
M
Rgdµg

(Vol(M, g))(n−2)/2
, (79)
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where C is the set that consists of every conformal class of Riemannian metrics on M , Rg is

the scalar curvature of g, and Vol(M, g) is the volume of (M, g).

Roughly speaking, the basic idea of proving Theorem 5.1 is to flow the initial metric ĝ. The

flow at positive time is smooth, thus we can prove they are Einstein by using Theorem 1.1.

Proof. Step A: we consider a normalized Ricci flow g̊(t) which keeps unit volume

and prove that Rg̊(t) ≥ σ(M).

In order to apply Theorem 1.1 to a flow, the volume needs to be preserved along the flow.

Therefore, we consider such a normalized Ricci flow:

g̊(t) = (Vol(M, g(t)))
−2/n

g(t), t ∈ (0, T0], (80)

where g(t)(t ∈ (0, T0]) is the Ricci flow with initial metric ĝ (see Lemma 2.4).

Then by a standard calculation, we have

Vol(M, g̊(t)) ≡ 1, t ∈ (0, T0], (81)

and

Rg̊(t) = (Vol(M, g(t)))
2/n

Rg(t), t ∈ (0, T0]. (82)

We want to prove Rg̊(t) ≥ σ(M). To do this, recall that we have assumed Rĝ ≥ σ(M) in

the distributional sense, by Lemma 4.1, we have

Rg(t) ≥ σ(M)

(
1− 2σ(M)

n
t

)−1

, (83)

pointwisely on M .

Thus, we need to compare (Vol(M, g(t)))
2/n

with
(
1− 2σ(M)

n t
)
.

By (26), we calculate that

d

dt
Vol(M, g(t)) =

d

dt

∫
M

dµg(t)

=

∫
M

(−Rg(t))dµg(t). (84)

Combining (83) and (84), we have

d

dt
Vol(M, g(t)) ≤ −

∫
M

σ(M)

(
1− 2σ(M)

n
t

)−1

dµg(t)

= −σ(M)

(
1− 2σ(M)

n
t

)−1

Vol(M, g(t)). (85)

Then we have

d

dt
log Vol(M, g(t) ≤ −σ(M)

(
1− 2σ(M)

n
t

)−1

. (86)

Taking integral on (0, t) we have

logVol(M, g(t)− log Vol(M, ĝ) ≤ −σ(M)
n

2σ(M)
log

(
1− 2σ(M)

n
t

)
=
n

2
log

(
1− 2σ(M)

n
t

)
. (87)
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Recall that we have assumed ĝ with unit volume, thus logVol(M, ĝ) = 0, and we have

Vol(M, g(t)) ≤
(
1− 2σ(M)

n
t

)n/2

. (88)

Combining (82), (83) and (88), we have

Rg̊(t) ≥ σ(M), (89)

which completes the step A.

Step B: we prove the normalized Ricci flow g̊(t) is independent of t.

Since g̊(t) is a smooth Riemannian metric on M , and σ(M) is nonpositive, by the classical

theorem, Theorem 1.1, we have that g̊(t) is Einstein with Ricg̊(t) =
σ(M)

n g̊(t).

Thus by (80), we have

Ricg(t) = Ricg̊(t) =
σ(M)

n
g̊(t). (90)

On the other hand, by (80) we have

∂

∂t
g̊(t) = − 2

n
(Vol(M, g(t)))

−2/n−1 d

dt
Vol(M, g(t))g(t) +

∂

∂t
g(t)

= − 2

n
(Vol(M, g(t)))

−2/n−1 d

dt
Vol(M, g(t))g(t)− 2Ricg(t). (91)

By (90) and (91), we have

∂

∂t
g̊(t) = − 2

n
(Vol(M, g(t)))

−2/n−1 d

dt
Vol(M, g(t))g(t)− 2σ(M)

n
g̊(t)

= f(t)g(t), (92)

where f(t) = − 2
n

(
(Vol(M, g(t)))

−2/n−1 d
dtVol(M, g(t)) + σ(M)

)
is a constant on M for any

fixed t ∈ (0, T0].

Thus g̊(t) must be self-similar, that is, we have

g̊(t1) = F (t1, t2)̊g(t2), ∀t1, t2 ∈ (0, T0], (93)

where F is a constant on M depends only on t1, t2.

Thus, their Ricci curvature satisfies

Ricg̊(t1) = Ricg̊(t2) =
σ(M)

n
g̊(t). (94)

By (90) and (94), we have

σ(M)

n
g̊(t1) = Ricg̊(t1) = Ricg̊(t2) =

σ(M)

n
g̊(t2), (95)

which gives

g̊(t1) = g̊(t2), ∀t1, t2 ∈ (0, T0], (96)

which completes the step B.

Step C: we prove the initial metric is isometric to an Einstein manifold with

scalar curvature σ(M).

Thus, by (92) and (96), the function f(t) in (92) is identically zero on M × (0, T0].

Recall f(t) = − 2
n

(
(Vol(M, g(t)))

−2/n−1 d
dtVol(M, g(t)) + σ(M)

)
, thus f ≡ 0 gives an ODE:

(Vol(M, g(t)))
−2/n−1 d

dt
Vol(M, g(t)) + σ(M) = 0, t ∈ (0, T0]. (97)
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Since we have assumed that ĝ has unit volume, by Lemma 2.4 (1), we have

lim
t→0+

Vol(M, g(t)) = Vol(M, ĝ) = 1. (98)

Solving the ODEs (97) and (98), we have

Vol(M, g(t)) =

(
1− 2σ(M)

n
t

)n/2

. (99)

By (80), we have

g̊(t) =

(
1− 2σ(M)

n
t

)−1

g(t). (100)

Since Lemma 2.4 (1) tells that

lim
t→0

dGH((M, g(t)), (M, ĝ)) = 0. (101)

By (100) and (101), we have g̊(t) converges to

lim
t→0

dGH((M, g̊(t)), (M, ĝ)) = 0. (102)

However, by (96), g̊(t) does not depend on t, thus, (102) gives

dGH((M, g̊(t)), (M, ĝ)) = 0, ∀t ∈ (0, T0]. (103)

Thus, by (94) and (103), we have that ĝ is isometric to an Einstein manifold with scalar

curvature σ(M), which completes the proof of the theorem.
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