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Distributional scalar curvature and Einstein metrics

ZHANG Huai-yu! ZHANG Jiang-wei?

Abstract. In this paper, we study scalar curvature rigidity of non-smooth metrics on smooth
manifolds with non-positive Yamabe invariant. We prove that if the scalar curvature is not
less than the Yamabe invariant in the distributional sense, then the manifold must be isometric
to an Einstein manifold. This result extends Theorem 1.4 in Jiang, Sheng and Zhang [27],
from a special case where the manifolds have zero Yamabe invariant to general cases where the

manifolds have non-positive Yamabe invariant.

81 Introduction

Low-regularity geometry with weak curvature conditions has been appearing as an important
theme in Riemannian geometry. Sectional curvature, Ricci curvature and scalar curvature
are the most fundamental and the most important curvatures in Riemannian geometry. For
sectional curvature lower bounds, Gromov, Perelman, etc., developed the Alexandrov spaces
theory, which has great applications in the resolution of Poincaré conjecture, see [6], [39], etc.
For Ricci curvature lower bounds, there is a profound theory developed by Cheeger, Colding,
Tian, etc., see [8], [9], [10], [14], [15], [52] [24], [12], etc. An another theory for Ricci curvature
lower bounds was developed by Lott, Villani, Sturm, etc., via an optimal transport approach,
see [36], [51].

However, for scalar curvature lower bounds, it has not been well understood. Gromov
proposed to study scalar curvature lower bounds in a weak sense, see [18, Page 1118]. And he
pointed out that one could consider weak scalar curvature in the distributional sense (see [18,
Page 1118, Line 11 from below]). Bamler and Burkhardt-Guim developed a notion of weak
scalar curvature by using Ricci flow (see [1] and [7]). Jiang, Sheng and the author made a
connection between the notion developed by Bamler and Burkhardt-Guim and the notion of
distributional scalar curvature in [27]. In [29], Lee-LeFloch proved a positive mass theorem
for distributional scalar curvature. In [26], Jiang, Sheng and the author improved some of
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the results in [29]. The author partially solved the Yamabe problem for distributional scalar
curvature in [53]. For more work in this topic, see [50], [31], etc.
In particular, Schoen wanted to generalize the following theorem, involving scalar curvature

lower bounds, from smooth metrics to non-smooth metrics:

Theorem 1.1 ([28], [43]). Let M™ be a compact smmoth differentiable manifold with (M) < 0,
where o(M) is the Yamabe invariant of M, and g be a smooth metric on M with unit volume
such that Ry > (M) pointwisely on M. Then g is Einstein with Ry = o(M).

The Yamabe invariant here is an invariant defined on smooth differentiable manifolds, it
appears to be the key concept in the resolvation of prescribing scalar curvature problem (see
[28]). See (79) for its formal definition.

The paper [33] mentioned such a question of Schoen: In Theorem 1.1, if g admits a singular
set, and R, > o(M) only holds away from the singular set, can we still deduce that g is
Einstein? In particular, he conjectured that if ¢ is uniformly Euclidean near the singular
set, Ry > 0 > o(M) away from the singular set, and the singular set is a submanifold of
codimension at least 3, then g extends smoothly to the whole manifold to a Ricci flat metric.
Actually, Schoen didn’t propose this conjecture in some papers, but his students recorded that
conjecture in lecture notes, which is unpublished.

This question is still open. [33] confirms Schoen’s conjecture for 3-manifolds in the case of
an isolated singularity. If the metric is W1P(p > n) near the singular set and the singular set is
small, [48] proved that the metric is Einstein away from the singular set, which almost solved
Schoen’s conjecture in WP (p > n) case. In [27], Jiang, Sheng and the author improved this
result and gave an optimal condition of the singular set in the case p = 4o00. If the metric
is Wb or C° near the singular set and the codim of singular set is strictly greater than 2,
Chu-Lee and Lee-Tam proved the metric is Einstein away from the singular set respectively in
[13] and [30], which solved Schoen’s conjecture in W1 or C° case.

Motivated by Gromov’s suggestion in [18] and Schoen’s question in [33], we study a more
radical case in this paper. In contrast with the work above, in which their metrics are still
smooth away from a small singular set, our metrics, in this paper, could be non-smooth on
the whole manifold. Correspondingly, the scalar curvature lower bounds are assumed in the

distributional sense. Our main theorem is:

Theorem 1.2. Let M™ be a compact manifold with o(M) < 0, where o(M) is the Yamabe
invariant of M, and g be a WYP(n < p < o0) metric on M with unit volume such that
Ry > o(M) in the distributional sense. Then (M,g) is distance isometric to an Einstein

manifold with scalar curvature equal to o(M).

Remark 1.1. Theorem 1.2 confirms Schoen’s conjecture for W' (n < p < oo) metrics. In fact,
if g is C? away from a closed subset 3, whose Hausdorff measure satisfis 3—("_1)%1(2) < oo for
n<p<ooor H' HX) =0 for p = oo, and if Ry > a pointwisely away from X, then we can

deduce that R, > a in the distributional sense, see [26, Lemma 2.7].



460 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

Remark 1.2. Jiang, Sheng and the author have proved the special case (M) = 0, see [27,
Theorem 1.4]. However, our work in [27] does not directly solve the general case o(M) < 0. To
prove the general case o(M) < 0, in this paper, we must do more work. Particularly, we must
improve the estimate in [27, Theorem 1.1] to a better estimate. This improvement is given in

our Lemma 4.1. Moreover, we need to use a modified flow, rather than the Ricci flow in [27].

Remark 1.3. Since in this paper we extend the result by Jiang, Sheng and the author in [27]
from (M) = 0 to (M) < 0. One might ask for similar results for o(M) > 0. In fact, the
corresponding question for o(M) > 0 is nonsense, since the resolution of the prescribing scalar
curvature problem tells that for any M with o(M) > 0, any smooth function is the scalar
curvature of some metrics on M, see [28].

Organization:

In section 2, we give some prelimilaries. In section 3, we construct an auxiliary function
and give some estimates, which are of great importance in our proof of Theorem 1.2. In section
4, we study scalar curvature lower bounds along Ricci flow, where the initial metric only has

scalar curvature lower bounds in the distributional sense. In section 5, we prove Theorem 1.2.

82 Prelimilaries

2.1 Distributional scalar curvature

Due to the lack of the second order derivative, singular metrics do not have the concept
of curvature in classical sense. However, inspired by the distributional theory (or theory of
generalized functions), in which the derivative exists even for very weird functions, it is naturally
to consider derivative and curvature in the distributional sense for singular metrics.

Let M™ be a compact smooth manifold. Fix an arbitrary smooth background metric h on
M, for any tensor field T on M, its Sobolev norm W*:4(M) is defined naturally as:

k
ITlwsacan = 3 [ 19T o )
s=0

Here and below V, | - |, and dpuy, will denote the Levi-Civita connection, the norm and the
volume form respectively taken with respect to h. Although the W*94(M) norm depends on
the background metric h, the norms for different h are all equivalent and the W*4(M) space
does not depend on it.

Therefore, a W*9 metric g, or a metric g € W*9(M), means a symmetric and positive
definite (0,2) tensor field on M with finite W#9(M) norm.

In this paper, we focus on WP(n < p < +00) metrics. For any metric g € WHP(M), its
distributional scalar curvature Ry is defined as (see [27, 32, 29, 34], etc.):

-/ d d
(Ryg, ) := / (—V Y (@M9> + F@”g> dpn, Y € C*(M), (2)
M dpin dpin
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where V' and F' is a vector field and a function respectively, defined by:

, 1 = s S
Iy = 59“ (Vigjl +Vjgi — Vlgij) ’ ®)
V= giTy — ", = 999" (Vg — Vigij), )
F = tryRicp — ngiijj + ngikrz‘i + 9" (Fterfj - ngka) ) (5)

where Ricy, is the Ricci curvature tensor of h.
This definition is independent of the background metric h, see [29]. Moreover, if ¢ is smooth,
this definition of (Rg4,¢) is just the integral fM Rypdpg. See also [26, 53], etc., for more

properties of the distributional scalar curvature.

2.2 Mollification of the metric and estimate on the scalar curvature

Any WP metric could be mollified to a smooth metric family, which converges to it in W*1?
topology. Concretely, we have the following lemma:

Lemma 2.1 (Lemma 4.1 in [20]). Let M™ be a compact smooth manifold with a W'P(n < p <
o0) metric g on it, then there exists a family of smooth metrics gs,d > 0, such that gs converges

to g in WYP topology as 6 — OF.

Remark 2.1. In [20, Lemma 4.1], the lemma is only claimed for W22 metrics. However, their

proof indeed works for general W4 case, especially for our W? case.

The following lemma established by Jiang, Sheng and the author shows that the distribu-

tional scalar curvature functional is continuously dependent on the metric in a certain sense:

Lemma 2.2 (Lemma 2.2 in [27]). Let M™ be a compact smooth manifold. Suppose gs is a
family of metrics which converges to g in WP topology as § — 01, then we have that for any
e > 0, there exists 09 = 0o(g) > 0, such that

[(Rysu) = (B, w)| < €fjull ;2

where Ry; is the scalar curvature of gs.

Yu € C°° (M), Y5 € (0,).

T (M)

2.3 Estimates on Ricci flow

The Ricci flow, introduced by Hamilton in [21], is defined as follows:

Definition 2.3 (Ricci flow). The Ricci flow on M is a family of metrics g(¢) such that
9
o’

where Ricy(y) is the Ricci curvature tensor of g(t).

(t) = —QRng(t) ,

Though Hamilton only introduced Ricci flow with smooth initial metrics, it is quite useful
to consider Ricci flow with singular initial metrics. For our use, we mainly need the following
theorem, given by Jiang, Sheng and the author, which considers Ricci flow with WP(n < p <
~+00) initial metrics:
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Lemma 2.4 (Theorem 3.2 in [27]). There exists an €(n) > 0 such that, for any compact n-
manifold M and any WP (n < p < +00) metric § on M, there exists a To = To(n,§) > 0 and
a Ricci flow g(t) € C°(M x (0,Tp]), such that

(1) lim 0 dgu (M, g(t)), (M, ) = 0.

(2) [Rm(g(t))|(t) < C2LP vt € (0, Ty).

tdp 2
(3) fOTD fM ‘Rm(g(t))PdMg(t)dt S C(”?va)}

where dgy is the Gromov-Hausdorff distance, and C(n,g,p) is a positive constant independent

of t.

We also need to consider the h-flow, which is equivalent to the Ricci flow after a family of
diffeomorphisms. It was firstly introduced by Simon in [49], in order to study the Ricci flow
with C? initial two metrics.

Before we give the definition of h-flow, we firstly give the definition of (14-§)-fairness between

metrics.

Definition 2.5. Given a constant ¢ > 0, a metric h is called to be (14 9)-fair to g, if h is C°,
sup |[VIRm(h)| = L; < oo,
M

and
(1+0)'h<g<(1+6h on M.

Here and below, V means the covariant derivative taken with respect to h.

Definition 2.6. [h-flow] For any background smooth metrics h, the h-flow is a family of metrics
g(t) that satisfy

0

7% (t) = =2Rgy5 + ViV + V;Vi,
where the derivatives are taken with respect to g(t), Rg(s);i; is the Ricci curvature of g(t),
and I'(t) and T are the Christoffel symbols of g(t) and h respectively.

Simon proved such an existence results:

Lemma 2.7 (Theorem 1.1 in [49]). There exists an e€(n) > 0 such that, for any compact n-
manifold M with a complete C° metric § and a C> metric h which is (1+ @)-fair to g, there
exists a Ty = To(n, ko) > 0 and a family of metrics g(t) € C(M x (0,Tp]),t € (0,Tp] which
solves h-flow for t € (0,Ty], h is (1 + e(n))-fair to g(t), and

(1)

lim sup |g(z,t) — g(x)] =0,
t—0t s
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2)
ci(n, h)
ti/2

sup [V'g(t)| < Yt € (0,Tp),i > 1,
M

where the deriwatives and the norms are taken with respect to h.

To apply the flow to prove our results, we will let h be (1 + @)—f&ir to g. The existence of

such h is ensured by the following lemma:

Lemma 2.8 ([49]). Let M be a compact manifold, for any C° metric g on M, and any 0 <
0 < 1, there exists a C* metric h which is (1 + 0)-fair to g.

In the case of WP (n < p < +00) initial metric, Lemma 2.7 could be improved:

Lemma 2.9 (Theorem 3.11 in [27]). In the condition of Lemma 2.7, if § is W P(n < p < +00)
on M, then there exists a Ty = To(n, h, ||g|lwr.r(ar), p), such that g(t), t € (0,Tp] is the h-flow

with initial metric g, and
(1) [o IVg@)Pdun <10 [y, [ValPduy, ¥t € (0, To],

(2) |Vg|(t) < Lol lolwiran®) o o ),

+2p

= C(n,h,||g D(MY)>
(3) [V2g|(t) < SRAGrenl) vt e (0,73,

where C(n, h, ||llwr.r(ar), p) is a positive constant depends only on n, h, ||gllw1.»(ar), p, and does
not depend on t.

The Ricci flow in Lemma 2.4 just comes from the A-flow in Lemma 2.9. In fact, they are

equivalent after a certain family of diffeomorphisms.

83 An auxiliary function along Ricci flow

In this section, we consider a compact smooth Riemannian manifold (M™, §) and the Ricci
flow g(t)(t € [0,Tp]) with initial metric §. To study a WP metric g, firstly we work with
the smooth metrics g5 given in Lemma 2.2. Thus, in this section, we consider Ricci flow with
smooth initial metrics.

For any positive time T' € (0,Tp] and any ¢ € C*°(M), we want to construct an auxiliary
function ¢(z,t) defined on M x [0, T], such that o(T,-) = ¢(-), and the integral

/M (Rg(t) —ag (1 - 22075> 1) (- t)dpg (s (6)

is monotone increasing with respect to t.
Moreover, we also need some estimate for ¢(z,t). In fact, we have the following lemma,

which is the main result of this section:
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Lemma 3.1. Let (M™,§) be a compact smooth Riemannian manifold and g(t)(t € [0,Ty]) be
the Ricci flow with initial metric §. For any non-positive constant a, any T € (0,Ty] and any
@ € C®(M), there ezists a function p(z,t) € C(M x [0,T]), such that

(1) ¢(-,T) = &(-), on M.
2) i (Rg(t) —ap(1— ”%t)il) @(+, t)dpg(r) is monotonously increasing with respect to t.
(3) @('vt) < C(na h,pv HgHWLP(M)v ||¢||L°°7a0)} vt € [OvT]

G Dlren agy < €y [lwsrany [Ble a0), Ve € [0,T).

Remark 3.1. Though Lemma 3.1 only claims results for a non-positive, our proof essentially
gives similar results for ag positive. The matter is that the term (1 — Z%t)_l in item (2) would
divergence to infinity at ¢t = ﬁ This divergence phenomenon is expectable by noting that the
Ricci flow with the round sphere with scalar curvature ag > 0 as its initial metric collapses to a

_n_

single point at time t = %, since we use Ricci flow in a short time, so we can restrict Ty < o

However, the case of ay non-positive is good enough for our use.

Now we are going to construct the function ¢ in the lemma above. Since (M",§) is a
compact smooth Riemannian manifold, it is known that the heat kernel along its Ricci flow
g(t)(t € [0, Tp] exists. The heat kernel is a funciton K (y, s;z,t), y,x € M, 0 <t < s < Tp, such
that

(0s = Ag(syy) K (y, s;2,t) = 0,V fixed x € M, t € (0, Ty, (7)
and
lim K(y,s;z,t) = 6,(y),V fixed x € M, (8)
s—tt

where Ay (,y,, denotes the Laplacian taken to the variable y and with respect to the metric g(s),

0. (+) denotes the Dirac Delta functional at .

Moreover,
(Or + Dg(ty;e — Ryy () K (y, 552, t) = 0,V fixed y € M, s € (0, Ty], (9)
and
tlﬁirsni K(y,s;x,t) = 0y(x),V fixed y € M, (10)

where Ry is the scalar curvature of g(t).
Now, for any ag € R,T € (0,Tp] and ¢ € C*°(M), we define a function ¢ on M x [0,7T] as

follows:

n

o= (1-200) " (12290 [ gt e dnen ) )

For convenience, we denote:

a(t) = ao (1 - 22%)_1 . (12)

One of the advantages of ¢ defined above is that it satisfies an equation which is useful for

our use:

Lemma 3.2. Let (M, g(t)) be a Ricci flow, K(y, s;x,t) be the heat kernel along g(t), then the
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function ¢ defined in (11) satisfies

4
e = —Dgmyp+ (Rg(t) - na(t)) e,
where a(t) is the real function defined in (12).

Proof. Since

oot = (1- 207 B (1- 2t> [ K. T 0y ),

n n
we have
at@(xat)
20,0 -2 2(740 :
_ <1 _ nT) o (1 _ nt> /M FW)K (4, T 2, Odptgr (v)
2ag 2 2a9 2 ~
+(1-2207) (1-2%) 0 | K (y, T2, t)dugr (y)
n n M
2ag 4dag 2ag ~
——(1-=2p) =0 (1_-20 K(y,T;
( - ) m ( - t) /M QK (y, Tz, t)dpger (y)
2ag -2 2a 2 -
+(1-=2r) (1-220) o | Gy, T tdpger (y)
n n M
=— éa(t) (z,t)
=— ~a(t)e(z,
2ag 2 2a9 2 ~
+(1-207) (1-2%) 0 | K (y, T2, t)dugr (y).
n n M

atK(y7 T7 z, t) = (_Ag(t);z + Rg(t) (l‘))K(y, T7 z, t)
Thus (15) becomes

Op(,t) = —%a(t)w(%t) + (1 - T) B (1 - t>2 /M P (=Agtye + Ry(r)(v))

On the other hand, we have

2a, -2 2a0 \° .
Byt = (1-2207)  (1=220) [ )0 K0T )ty ()
Combining (17) and (18), we have

2@0

O+ Ayl t) = —%a(t)go(m, £ + (1 _ QZOT) - (1 - t>2 /M Hy) Ry (@)

n

K(y, Tz, t)dpgr (y)

n

= —Za(t)ele 1) + Ry () (1 - 2;‘%) B (1 - 2“%)2 /M ()

K(y,T;2,t)dpgr (v)

= _éa(t)gp(x, t) + Ry (@) (2, 1),

n

465

(13)

(17)

(18)

(19)
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which is just the equation (13), thus the lemma is proved. O
Now we can prove Lemma 3.1:

proof of Lemma 3.1. Let K(y,s;x,t) be the heat kernel along ¢(t), and ¢ be the function
defined in (11).
For (1), it is known that the convolution [, ¢(y)(z)K (y, T;x,t)dpgyr)(y) is smooth and

| @K T 0y )] = oo (20)
On the other hand, we have
2(10 -2 2(10 2
JR— 1—22¢) |ep=1. (21)
n n

Thus by (11) we have

p(a,T) = 1p(z) = ¢(x), (22)
which proves (1).
For (2), we calculate that

2a0 \ !
8t/ <Rg(t) — ap (1 — Ot) > go(x,t)d,ug(t)
M n

=0, /M (Rg(t) — a(t)) Pz, t)dpg )

- /M ((BiRy(s) — a' (1)) @(,) + (Ry(r) — a'()) Dpp(, 1)) dprg(ey + /M (Ry(s) — al(t))

o(z,t)Opdpig(s).- (23)

And we have

2a3 2a9,\ 0 2
) =21 28) = 2P, 24
o) =20 (1-200) =22y (24)
Recall g(t) is a Ricci flow, we have the standard evolution equation
0iRy(t) = Doy Ry(e) + 2Rice(w 5 (25)
and
Ordpg(r) = — R dhg), (26)

Combining (23)-(26) and the evolution equation of ¢, (13), we have
at/ (Rg(t) —ag (1 _ 2“%) _1> o, £)dpagy
M n
= /M (Angg(t) + 2IRicy(n) 5 — iaQ(t)> Pl )y i)+
/JV (For) — al®)) (—Agu)@ + (Rgu) - ia(t)) pla, t)) dhg(r)

+ / (Ryry — a(t) ¢(@,t) (= Ryqsy) ditg(r)
M
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/ (D gy Ry () = Ry(y D gy () dpsg(ry+
2 4 4
[ (2iRicy 2y = 2020 = Sa(t Ry + 500 ooy
+ /M o) —alt )%’(W) (—Ry(r)) dig(e) + /M (Ry(ry — alt)) @(@,t) Ry(rydpg(r)

+ / a(t)A () (@, ) Rdpg(r)
M

/M (Ag(y Ry p(,8) = Rty Dgyp (@, 1)) dpgey+
4 2,
2|R1Cg(t)|g(t) (t)Rg(t) + ~a (t) ) o, t)dpg
+ /M a(t) g0 p (@, ) Relty 1. (27)
By integration by parts, we have
/M (B By 2(2,1) = Ry gy (1)) dpg(y = 0, (28)

and
| a0 et Rdngi = at) | Ayt Ry = (29)
(27)

(
Combining (27)-(29), we have

2a0 \ !
8t/ (Rg(t) —ag (1 — Ot) ) gp(x,t)dug(t)
M n

. 4 2
:/ ((2|Rlcg(t)|_(2](t) — —a(t) Ry + a2(t)> ga(x,t)) diig(t)- (30)
M n n
By Cauchy inequality and a direct calculus using a special coordinate, one has
Z‘Rlcg(t | g(t) > R g(t) (31)
By the mean value inequality, we have
4 2 ., 2,
—alt) Ry 2 = Ry — —a”(t) (32)

Combining (30)-(32), we have

2a -1
8t/ (Rg(t) — ap (1 — Ot) > (p(!E,t)d,U,g(t)
M n

2 2 2, 2,
2/M ((nRgU By — at(t) + —a’(t) ) p(@,t) ) duge
=0. -

Thus fM (Rg(t) —ag (1 — 29 t) 1) @(+,t)dpg(+) is monotonously increasing with respect to
t and (2) is proved.
For (3), by (11) we have

olt,7) < (1_2%) (1—2“%) ol [ KT G
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We denote I(t,T) = [,, K(y,T;x,t)dpgyr)(y), then we have limy_,,+ I(¢,T7) = 1, and by the
standard evolution equation Ordjgry = —Rg(r)dpg(T, we have

orl(t,T) = /M (Ag(r)y K (y, T2, t) — Ry K (y, T, 1)) dpsg(ry (). (35)
By the divergence theorem, we have
| A Tsa, gy ) =0, (36)

Combining Lemma 2.4 (2), (35) and (36), we have
Cn, b, p, [|9llwran))
Tt

arI(t,T) < I(, 7). (37)

Since limp_;+ I(¢,T) = 1 and % + % € (0,1), by taking integral we have

I(t,T) < C(n,h,p, ||g||W1,p(M)),VO <t<T<T,. (38)
By (34) and (38), we have
N - 2&0 -2 2@0 2
olt2) < Ol b [lwaan. 160e~) (1= 2297) (1= 229) weeor) (s

Let us estimate (1 — %T) - (1- %t)Q.
If ag > 0, then we have assumed t < T < T < % without loss of generality. In this case

(1 — 2%15)2 is monotonously increasing with respect to ¢, thus

2a -2 2a0 \ >
(1 - 0T> (1 - Ot> <1, ifag >0 (40)
n n
If ag < 0, then we have

2a -2 2a0 \ 2 2a 2
(1 - OT) (1 - 0t> <172 (1 - 0T0> < C(ao, Tp)
n n n

= C(”v h7p7 HgHWl*P(M)a a0)7 ifag <0 (41)
If ag = 0, then we have
2(10 -2 2a0 2 .
1—-—T 1—-—t| =1,ifap=0 (42)
n n
In all cases, we always have
2&0 -2 2@0 2 R
1- W 1- Tt < C(n7 h,p, ||9HW14’(M)7(10>- (43)

Combining (39) and (43), we have
@(‘Tﬂf) < C(’I’L, h,p, ||g||W1P(M)7 ||¢||L°°7a0)av(z7t) € M x [O7T}7 (44)
which proves (3).

For (4), we consider a simpler function
2 -2
- 2a 2a
v t) = [ SR Tin ) = (1-207) (1-224) g0, (a5)
M

firstly.
Now we want to estimate [, |V g1(, t)|§(t)dug(t), which we denote as E(t). We calculate
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that

/|Vg(t)1/1(wt)\z(t)atdﬂg(t)
M
B /M (2(Vg(0) 00 (1), Vay ¥ (- £))g(r)) diigeey + /Mﬁ’('vt)ﬂ/’(wt)jatg(t)ijdﬂg(tﬁ

/M< Ry IV D)2 ey (46)

From the Ricci flow equation

atg(t)ij = —2Ricy(1).ij, (47)
we have
Dig(t)” = 2Ricy, . (48)
Thus (46) becomes
OLE(t)
=/M (2(Vg() 00 (1), Vo (- )iy + 2Rico(e) (Vo (1), Va1 (1) =
Rg@)wgmwc, D120 ) ditg(o): (49)
By (11), we have

g(t)atib Va0 (1) gt) At

(Vo gy 8), Vot (D) gy + (Vo) (Ryy ¥ (1)), Vay ¥ (- D) g) ditgrsy- - (50)
Usmg the Bochner formula, (50) becomes

/M<Vg(t)3t¢(', 1), Vg (1)) gty dhtg(r)

[+
- /M Vo (B0 0) = R .). Vot -0yt

1 .
= /M (= 5800 Vo (D20 + V200 ) 2 + Ricy (Vo) Vo (1)

+(Vy) (Rgy¥ (-, 1)), Vo ¥ (-, t)>g(t))d,LLg(t)' (51)
By integration by parts, we have
| 58501900 C it =0, (52)

Combining (51) and (52), we have
/M<Vg(t)atw("t)vvg(t)w('at»g(t)dﬂg(t)
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:/M (V202 D2 + Ricg(n (Vo (), Vo (1)) = Ry (-0 2g(0 (1)) diye.

(53)
Since |Agpyip(-,t)[? o < Ciln )\V2(t)w(~ )|2 using Cauchy inequality, we have
/M (=R ¥ (- )8y 0y () dpigiry = 201 / RV OSIMOL O
Ci(n)
T /M RZ(tW(‘vt)Qdﬂg(t)
1
> _5/1\/1 |V3(t)¢('7t)\d/‘g(t) / Rg(t d/‘g(t)
(54)
Combining (53) and (54) we have
(Va)0s0 (-, 1), V gy (- 1)) g0y dpg ey > (Ricg(t)(vg(t)w('vt)vvg(t)w('7t))_
M
C(n >Rg<t $(51)?) digge. (55)
Combining (49) and (55), and by Cauchy inequality, we have
OE()

> /M (4Ricg(t)(vg(t)¢('7 £), Vo (1)) = Rg) [Vgy ()2 1) — C(n)RE(tW("t)Q) dpig(t)

> /M (4Ricy(n) gy = Ry() [V gy ¥, )P dpgry — C(n) /M Rgyw (1) dig ) (56)
By Cauchy inequality and a direct calculus using a special coordinate, one has
2[Ricy(n |21y > %R?](t)' (57)
By (56) and (57) we have
O E / [Ricy(n)[|V gty (- )" dutge) - / o5 1) g e)- (58)

By Lemma 2.4 (2) and Lemma 3.1 (1) proved above, we have

Cn7h7p7 g 1,
oty > -SR] [ g,y
+3p 71

| dug(t

Clo o ilwrnany @) [ B diger
In order to avoid the vanishing case, we consider E(t) + 1, and we have
O (E(t) +1)

c n, h7 ; g ) ~ ~
L l‘i‘LWl o) (E(t) +1) = C(n, h,p, |gllwrr ) %ao)/ R2dpg(ny.-
A Ta M

Dividing both sides by (E(t) + 1), we have

C 7h) ’ q sP
Oy log (E(t) +1) > — (n pn“9||3W1 (M)
tipti

= Ol b gl @) | Rdingo

By Lemma 2.4 (3), [}, Rf]( #Hg(t) is integrable on (0,T) and the integral is controlled by
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C(n, h,p, ||gllwrrary). Thus taking integral we have
Recall that ¢ = @, since Ricci flow and h-flow are equivalent after a family of diffeomor-

phisms, we have

E(T) = /M IV oy 2 5y ditg(ry = /M Vo) @) 2y digery. (60)
where g(7T) is the metric at time T of the h-flow g(¢) given in Lemma 2.9. By Lemma 2.9, h is
1 + e(n)-fair to g(t), thus we have

B(T) < C) [ Vap()idin < Clonsh,9) (61)
M
Combining (59) and (61), we have
E(t) < C(ﬂ, h7p7 HQHWLP(M)a 957 a0)7Vt € [03 T] (62)

By Lemma 3.1, (62) and Holder inequality, we have

leC Ol s2r oy < el Dllcoan + C(n, h)EY2(t) < C(n, by, [|3llwoar)s @5 a0), Vit € [0,T].
(63)
which proves (4), thus the lemma is proved. O

84 Ricci flow and scalar curvature lower bounds

In this section, we study the scalar curvature lower bounds along Ricci flow. The main

result in this section is:

Lemma 4.1. Let M™ be a compact smooth manifold with a metric g € WHP(M) (n < p < o0).
Suppose Ry > ag in distirbutional sense for some constant ay, and let g(t),t € (0,To] be the
Ricci flow given in Lemma 2.4. Then for any t € (0,Ty], there holds Ry > ag (1 - %%t)71

pointwisely on M.

Proof. Let gs be the family of smooth metrics constructed in Lemma 2.1, such that gs converges
to g in WhP-norm. For each smooth metric gs we consider the Ricci flow gs(t) given in Lemma
2.4 with initial metric gs. It is known that by letting § converge to 0%, gs(¢)(0 € (0,Tp])
converge to a Ricci flow ¢(¢)(0 € (0,Tp]) such that lims—,oder (M, g(t)), (M, §)) = 0, where
dgp is the Gromov-Hausdorff distance.

For any T € (0,7p] and any nonnegative ¢ € C*°(M), we will prove

2a, -1 5
/ (Rg(T) — agp (1 - 075) > Gdpgry > 0, (64)
M n

which is sufficient to give Ry = ao (1 — ”%25)71 pointwise on M.

To do this, for each § € (0,00] we consider the auxiliary functions ;s given in Lemma 3.1,
such that

(1) @s(-,T) = ¢(-), on M.

(2) For any constant ag, [, (Rgé(t) —ap (11—

2a9
n

)71> @5 (-, t)dptgs () is monotonously in-
creasing with respect to ¢ (if ag > 0, then we require t <T < Ty < %)
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(3) ws(-,t) < C(n, hyp, [|Gsllwrn(ary, |6l a0), Yt € [0, T].

(4) H(p(s('vt)”WLnﬁl (M) < C’(n,h,p, ”géHWl*T’(M)v H@lew7a0)v Vt € [07T]'

Since s converges to § in WP norm , we have

9sllweary < 2/|Gllwrrar)- (65)

Recall h = g5, only depends on §. Thus by (65), the estimate above could be uniformized

as
905('7t) S C(n,p,g,gﬁ,ao),Vt € [OvT}v (66)
and

||905(7t)HW1ﬁ(M) < C(n7p797¢7a0)7Vt € [07T] (67)

Let us estimate the integral

2a -
/ <R95(t) —ao <1 - Ot) ) 905('7t)duga(t)’ (68)
M n

By the monotonicity, we have
—1
2(10
/ (Rga(t) — ao (1 - t) ) ‘»05('7t)dlugs(t) 2 / (Rg, — ao) @5('70>dlu§5' (69)
M n M

To estimate [, (R, — ao) s (-, 0)dpgs, by Lemma 2.2, we have

/M Rys 5 (-5 0)dngs — (Rg,05( 0))| < W019)lls (5 O 152 )y Voo € CF (M), (70)

where U(4]g) is a positive function such that lims_,o+ ¥(d]|g) = 0 for any fixed g, and ¥(d|g)

firstly.

varies from line to line.

d“@(s
25— ]
dpg

Moreover, by Sobolev embedding we have limgs_,q+ = 0, thus by Holder

o (M)

dpigs >
= s(+,0 — 1) du,
‘/M(p ¢0) (dM§ o

inequality, we have

| st 0dus, = [ st 00

dis
<[] [ st 0ldng
Hg co(M) /M
dpg
<C(n,9) ” 92 ] s (-, 0)]] 1, m;
dyig co(ar) W)
S D T —— @

By triangular inequality,

(Rg; — a0)ps (- 0)dpg, — (Rg — ao, ¢s(+,0))
/. |

/M s 0z, — /M s 0| (72)

< ] [ Rasost.0dns, - <Rga905(~70)>‘ + Jao
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Combining (70)- , we have
| / 22— @0)5(- O)ditg, — (Ry — a0, 93(:,0)
U1 @s (- 0)lly 152y )0 VP € CF(M), & = O¥5 € (0, o] (73)
Since we have assumed Ry > a in the distributional sense, we have
<R§ - aOv(p(S('a 0)> > O,VSD(S(" 0) € COO(M)a @5(70) > 0. (74)

Combining (69), (73) and (74), we have

2a, -1
/ (Rg5(t) <1 - Ot) > 0s(-, t)dpgs ) > / (Rgs — ao)ps (-, 0)dpg,
M M
>

@5 Oy (75)
By (67) and (75), we have

2a0 \ . s .
/ (Rgg(t) — ao <1 - no t> ) 905('at)d:ug5(t) > _C(nvpagvgo,a())qj(é‘g)
M

—\IJ(5|n,p, ga 957 aO)v vt € [07 T]: de (07 50}
(76)
In particular, letting ¢ = T in (76), we have

2a - .
/M <Rg5(T) (1 — OT) ) @Gdpgsry > —¥(0|n,p, g, $, ao), V6 € (0, do]. (77)

where U(d|n, p, §, @, ag) denotes a positive function such that lims_q+ ¥(d|n, p, §, $,a0) =0
for any fixed n,p, g, ¢ and ag.

By Simon’s estimate, Lemma 2.7, as ¢ tends to 0, gs(T) smoothly converges to g(T'). Thus
taking limit in (77), we have

2a -t N o -
/ (Ry(ry — ao <1 - OT> Ypdpgry > 0,YT € (0,To], Yo € C(M), ¢ > 0. (78)
M

Recall that g(t) is a smooth metric for ¢t € (0,7p] and Ry is well defined pointwisely on
M, thus by (78) we have Ry > ag (1 — %#t)_l pointwisely on M for any ¢ € (0, Tp], which
completes the proof of the theorem. O

85 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let us restate it as follows:

Theorem 5.1. Let M™ be a compact manifold with (M) < 0 and § be a W'P(n < p < o0)
metric on M with unit volume such that Ry > o(M) in the distributional sense. Then (M, §)

is isometric to an Einstein manifold with scalar curvature equal to o(M).

For any smooth manifold M, its Yamabe invariant o(M) is defined as:

Jar Rydiig
M) := nf
0'( ) Slép QIGG (VOI(M g))(n72)/27




474 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

where € is the set that consists of every conformal class of Riemannian metrics on M, R, is
the scalar curvature of g, and Vol(M, g) is the volume of (M, g).
Roughly speaking, the basic idea of proving Theorem 5.1 is to flow the initial metric §. The

flow at positive time is smooth, thus we can prove they are Einstein by using Theorem 1.1.

Proof. Step A: we consider a normalized Ricci flow ¢(¢) which keeps unit volume
and prove that Ryy) > o(M).
In order to apply Theorem 1.1 to a flow, the volume needs to be preserved along the flow.
Therefore, we consider such a normalized Ricci flow:
3(t) = (Vol(M, (1)) ™*/" g(#), ¢ € (0, Ty, (80)
where g(t)(t € (0,Tp]) is the Ricci flow with initial metric § (see Lemma 2.4).
Then by a standard calculation, we have
Vol(M, g(t)) = 1,t € (0, To], (81)
and
Ry(e) = (Vol(M, g(1)))*'" Rye),t € (0, To). (82)
We want to prove Ry > o(M). To do this, recall that we have assumed Ry > o(M) in

the distributional sense, by Lemma 4.1, we have

R o0 (1 200 ®

pointwisely on M.
Thus, we need to compare (Vol(M,g(t)))z/n with (1 - %t)
By (26), we calculate that

d d
2 Vol(M, g(t)) = = /M dpg(t)
= / (=Ryt))dpg(r)- (84)
M
Combining (83) and (84), we have
d 20(M) \ "
Gvoi0g(0) < - [ oon) (1-2800) Cayg
dt M n
20(M) \ "
=—o(M)|1- — .t Vol(M, g(t)). (85)
Then we have
-1
%logVol(M, g(t) < —o(M) (1 - QU;M ) t) . (86)
Taking integral on (0,t) we have
log Vol(M, g(#) — log Vol(M, §) < —o(M)—"— log (1 — 22,
0g Vo g 0g Vo yg) > —0 20 (M) og "
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Recall that we have assumed § with unit volume, thus log Vol(M, §) = 0, and we have

n/
Vol(M, g(t)) < (1 - QU(HM%) g (88)
Combining (82), (83) and (88), we have
Ry = o(M), (89)

which completes the step A.

Step B: we prove the normalized Ricci flow g(¢) is independent of t.

Since g(t) is a smooth Riemannian metric on M, and (M) is nonpositive, by the classical
theorem, Theorem 1.1, we have that §(¢) is Einstein with Ricg) = U(rjy)ﬁ(t).

Thus by (80), we have

o(M

400 (90)

Ricg(p) = Ricg(r) =
On the other hand, by (80) we have

(1) = 2 (Vol(M, ()" vel(a1, g(1))g() + 1rg(0)
= _% (Vol(M, g(t))) /" %VOI(M, g(t))g(t) — 2Ricy (). (91)
By (90) and (91), we have
gt = 2 ol g(1) >/ var(ar, g(angt) — 22
= (900, (92)

where f(t) = —2 ((Vol(M,g(t)))_z/n_1 4 Vol(M, g(t)) —|—U(M)> is a constant on M for any
fixed t € (0, Tp].
Thus ¢(t) must be self-similar, that is, we have
g(tl) = F(tl,ﬁg)g(tg), Vti,ts € (O,To], (93)
where F' is a constant on M depends only on t1, t5.

Thus, their Ricci curvature satisfies

. . o(M),
Rng(tl) = Rng(tQ) = 7n g(t). (94)
By (90) and (94), we have
o(M) ., . . o(M),
( )9(t1) = Ricgy(r,) = Ricy,) = %g(tz)y (95)
which gives
g(t1) = g(t2), Vt1,tz € (0,Tp), (96)

which completes the step B.

Step C: we prove the initial metric is isometric to an Einstein manifold with
scalar curvature o(M).

Thus, by (92) and (96), the function f(¢) in (92) is identically zero on M x (0, Tp].

Recall f(t) = —2 ((\/01(M7g(t)))72/"71 LVol(M, g(t)) + U(M)), thus f = 0 gives an ODE:

(Vol(M, g(¢))) =2/~ %VOI(M, g(t)) +o(M) =0, t e (0,Tp). (97)
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Since we have assumed that ¢ has unit volume, by Lemma 2.4 (1), we have
lim Vol(M, g(t)) = Vol(M, §) = 1. (98)
t—0+

Solving the ODEs (97) and (98), we have

2% (M n/2
Vol(M, g(t)) = (1 - Tt) . (99)
By (80), we have
3 20 (M -1
a0 = (1-27800) 00, (100)
Since Lemma 2.4 (1) tells that
By (100) and (101), we have g(t) converges to
tim e (M. (1)), (M.9)) = . (102)
However, by (96), g(t) does not depend on ¢, thus, (102) gives
dau((M,g(t)), (M, §)) =0, Vt € (0,Tp). (103)
Thus, by (94) and (103), we have that § is isometric to an Einstein manifold with scalar
curvature o (M), which completes the proof of the theorem. O
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