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Certain Subclasses of Bi-univalent Functions Associated

with (u,v)-Chebyshev Polynomials
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Abstract. For the new subclass 8 of the bi-univalent functions constructed with the help of
the (u,v)-Chebyshev polynomials of the second type, we get estimates for the first two initial

coefficients and upper bounds of the Fekete-Szeg6 functional.

81 Introduction

Legendre discovered orthogonal polynomials in 1784 [22], and they have been researched ex-
tensively since then. Orthogonal polynomials are frequently used in the mathematical study of
model problems to discover solutions to ordinary differential equations given particular criteria
imposed by the model. Orthogonal polynomials have unquestionable relevance in modern math-
ematics, as well as a wide range of commercial applications and physics. The relevance of these
polynomials in approximation theory issues is well-known. In differential and integral equations
theory, along with mathematical statistics, they can be found. Quantum physics, signal anal-
ysis, automated control, scattering theory and axially symmetric potential theory [13,16] have
all made use of them. Firstly, bi-univalent functions were introduced by Lewin [23]. However,
this subject attracted the attention of many mathematicians after Srivastava et al. [35] studied
coefficient bounds for certain subclasses of analytic and bi-univalent functions (also see [29]
and [31]). Later, by defining many new subclasses of analytic bi-univalent functions with the
help of some special polynomials, some special functions and some special operators, coefficient
bounds for these classes and Fekete-Szeg6 functionals were studied. For example, Srivastava
et al. obtained general coefficient bounds for these classes with the help of Faber polynomials
by introducing the new class of analytic and by using bi-univalent functions and by using the
Tremblay fractional derivative operator in [30] and the g-integral operator in [34]. Additionally,
Srivastava et al. [28] studied a new subclass of bi-univalent functions using Horadam polynomi-
als. In recent years, bi-univalent functions and their various applications are among the most
studied topics in geometric function theory (see [33], [36], [37], [38]).
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§2 Definitions and preliminaries

Welet U = {z: z € C,|z] < 1} be a unit disk, R = (—o00,00), N := Ny \ {0} and let A
denote the class of holomorphic functions of the form

—Z+ZTT (zel) (1)

normalized by the condition u(0) = p/(0) — 1 = 0. Let & C A be the class of holomorphic
and univalent function in U. Lewin [23] presented the class of bi-univalent functions as a
subclass of A and identified certain coefficient bounds for the class. He showed that |75 < 1.15.
Furthermore, the Koebe 1/4 theorem (see [17]) states that the range of every function f € S
contains the disc d, = {w : |w| < 0.25}, hence, for all 4 € S with its inverse u~!, such that

P (u(z) =2 (z€U)
and
ppH W) =w, (W lw] < ro(p)iro(u) 2 0.25)
where p~!(w) is expressed as
G(w) =w —mw? + (272 — 3)w® — (575 — bromg + 1y)wt + -+ . (2)
So, a function p € A is said to be bi-univalent in U if both u(z) and G(z) are univalent in U.
Let % denote the class of holomorphic and bi-univalent functions in U.

We know that some familiar functions f € S such as the Koebe function x(z) = z/(1—2)?, its
rotation function s (2) = 2/(1—e%*2)?, u(z) = 2 —22/2 and pu(z) = z/(1 — 22) are not members
of B. Also some functions p € (SN *B) includes p(z) = z, u(z) = 1/2logl(1 — 2)/(1 — 2)],
z/(1 — z). For more details see [6-8,12,27,29,30, 32, 34, 40].

From [17], let s(z), S(z) € A, then s(z) < S(z), z € U, suppose w holomorphic in U, such
that w(0) = 0, |w(z)| < 1 and s(z) = S(w(z)). If the function S(z) is univalent in U then
s(z) < S(z) = s(0) = S(0) and s(U) C S(U). The (u,v)-Chebyshev polynomials of the second
class have the following recurrence relations:

Vi (t, a,u,v) = (u™ 4+ ™)tV 1 (t, a, u,v) + (u,0)™ aVi,_o(t, a,u,v) (3)
where

Vo(t,a,u,v) = 1

Vilt,a,u,v) = (u+o)t

Va(t,a,u,v) = (W +0?)(u+v)t> +uva) (m>2,0<v<u<l)

t is a variable. We shall discuss the following intriguing points in light of this recurrence relation.

(1) The Jacobsthal polynomials denoted by Jp,+1(y) are obtained when ¢ = 1/2, a = 2y,
u=1v=1.

(2) The Jacobsthal numbers denoted by J,,+1 are obtained when ¢t = 1/2, a = 2, v = 1,
v =1

(3) The Pell polynomials denoted by Py,+1(t) are obtained whena =1, u =1, v = 1.

(4) The Pell numbers denoted by P, 1 are obtained whent=1,a =1, u = 1 v=1.

(5) The Fibonacci polynomials denoted by F,,+1(t) are obtained whent = £, a =1, u =1,

—_

v =
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(6) The Fibonacci numbers denoted by F;,,+1 are obtained when ¢ = %, a=1lu=1v=1.
t

E.
(8) The second kind of Chebyshev polynomials denoted by V,,(t) are obtained when a = —1,

(7) The (u,v)-Fibonacci polynomials denoted by F,,(t, a,u,v) are obtained when ¢t =

u=1v=1.

These recursively defined polynomials over integers have more detailed information about
the phenomenon properties and have been researched a lot. (see [1-5,9-11,14,15,18,19,21,24-
26,39]) and closely related references cited therein. Kizilates et al. [20] recently defined the first
and second kinds of (u, v)-Chebyshev polynomials and these polynomials have precise formulae,
generating functions, and other notable characteristics.

The second-order (u,v)-Chebyshev polynomials have the following generating function:

1
6u v =
() 1 — (uwwaz?sy ., + tvzg, + tuzs,)

= Z Vin(t,a,u,v)2™ (2 €U),
m=0

where V;,,(t, a, u,v) is given by (3). This section begins with the definition of the class 33+ (u, v)
as follows:

Definition 1. For 8 >0, 0 > 1, |y| <1 but v # 1, a function p € 9B is said to be in the class

3?1;/5 (u,v) if the following subordination conditions are fulfilled:

(1 =2)' P (' (2))”
(1(2) — p(vyz))t=~

(1 = Yw) (G ()
(Gw) = Gyw))' =7

< By (2) (4)

and

< Gy p(w). (5)

By choosing special values for 8,y and o, the class J?;YB (u,v) yields some interesting new
classes as remarked below:

Remark 1. For 0 = 1, we have the new class J?if(u,v). The class J;B,f(u,v) consists of the
functions of p € B fulfilled by
(L=y)2)"Pu' ()
< By .(z (6
(W) — pra)? = Buele) )
(1 =7)w)' PG (w)
(G(w) — G(yw))' =7
Remark 2. For = 0, we have the new class

J?,:yo (U, U) = 3?7 (U, U)'

and

< By (w). (7)

For this class p € 9B if

(1 =W(=)”

) EETCE R )
AT o o

Also,
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(1) Choosing o = 1 in the class I3, (u,v) we have a new class
It (u,v) = 35 (u,v).

For this class p € 9B, if

z(1 —)u'(2)

———— < B, (2 10

- 10m) S 1)
e (1= ()
w(l =G (w

2 VT L 6, ,(w). 11

Gw) — Glyw) ~ 2o (1)

(2) Choosing o = 1 and fixing v = —1 in the class 3?7(1‘7 v) we have new class

3‘3,1(%@) = 3% (u,v).

For this class p € 9B, if

22/ (2)

———— < B,.,(2 12

wo) —p(—) ~ Onl) -
and 200G (1)
wG' (w

—_— . 1
G(UJ) _ G(fw) = QSU,U(O‘)) ( 3)
(3) Choosing v = 0 in the class 3% (u,v) we have the class

~B ~B
1st',O (U, U) = ‘f‘a (u, U)‘

For this class p € 9B, if

2(1(2))°

W < By.4(2) (14)
and
AT g, -

(4) Choosing o = 2 in the class J2 (u,v) we have the class
33 (wv) = 3%(
The class consists of the function p € 9B satisfying

1) A (2) B
WL e, (16)
wG' (w)
G(w)

For 8 = 1, we have the new class 3?;} (u,v). The class 3?’71

u,v).

and

G'(w) < By p(w). (17)

(u,v) consists of the functions
of u € B satistying

(1 (2))7 = Buu(2) (18)
and
(G'(w))7 < By p(w). (19)
Also,
Choosing o = 1 in the class 32! (u,v) we have the class
~B,1
377 (u,v).

For this class p € B, if
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1(2) < By u(2) (20)
and
G (w) < Gy (w). (21)

Now, we give our main result.

Theorem 1. Let u(z) € 3327 (u,v). Then
(u+v)ty/(u+v)t

2| < ’ (22)
\l ' [(ﬂ - 1) [Gl] + 0'(20' —+ 1) (u + 1))2t2 — Gy
(u+v)t 1
|T3|§(u+v)t{|[20+(»3 1)(1 4+ v))? | 130 + (6 — )(1+7+72)J (23)

and for any real number x,

(u+v)t
Bo+(B-D 1+ x—1l=4
|3 — x73| <
[1—x|(utv)*¢?
TaF o= Ber (F-D P arorTway X~ 124,
where
1 u? + 0?2 uva
= Q—[20+(B-1)(1+~)? +
30+ (B8 — 1)1+~ +~2)| 20+ (B =1L +7)] ( u+v (u+v)2t2)

2=(5-1)

2
Gr = LA 4 25(1 4 9) + (149 +77)
Ga = 20+ (8 — D)(1+ (2 + 0?)(u +v)E + uva).

[MW+20(1+7)+1+7+72:| +0(20 +1),

Proof. Let p(z) € 327 (u,v). Then, from (4) and (5), we have

1_ 1 /Zcr
o~ e

((1 — W)M)liﬁ(G/(w))a — ®u U(T(LU))

(G(w) = G(w))' =7
for some holomorphic functions ®, T such that ®(0) = Y(0) = 0, |P(2)] < 1, |T(w)|] < 1,

zZ,w € U, we can state

and

|®(2)| = ‘Q12+Q222 +Q32’3—|—-~-| <1l (z€el)
|T(w)|:|u1w+u2w2+u3w3+~~|<1 (weu)

by equivalence

_ LB,/ (2))7
(((1u(z)) ?) (fy,igt)l( >ﬁ) = Volt, a,u,v) + Vi(t,a,u,v)®(2) + Va(t,a,u,v)®*(2) + - - - (24)

and

— "Mw 1-8 (o))
((EG(J))_)G(Wg)(I_)g = Vo(t, a,u,v) + Vi(t, a,u,v) L (w) + Valt, a,u,0)Y2(w) + -+ . (25)
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From (24) and (25), yields
(1 —=2) (W' (=)
(1(2) = p(v2)) =7

= 1+‘/1(taa>uvv)glz

+ Vl(tvaau7v)g2+‘/2(t7aaua U)Q% 22 + (26)

and
(1 =7)w)' PG (w))"

(G(w) — G(yw))t—5 = 1+ Vi(t,a,u,v)mw

+ Vit a,u,v)p 4 Valt, ayu, v)pd | w? 4 - . (27)

When the corresponding coefficients in (26) and (27) are compared, we get

20 + (B —1)(1 +7)]m2 = Vi(t,a,u,v)o1, (28)
o+ (8- 11 +y+ 93+ | CEZD g2 4 a0(o - 14 (8- 1)1 + )| 3
=W (tv a,u, 'U)QQ + VZ(t’ Q, U, U)Q%a (29)
20+ (8~ DL+ )] = Valtoa,w ), (30)
(8- 1)(8~2)

28 -1 +v+7) + A+ +20(c+24+(B-1)(A+7) |72

2

—Bo+(B—-1DA 4+~ 4+ = Vi(t,a,u,v)us + Val(t,a,u,v)ui. (31)
From (28) and (30)

o1 = —pu, (32)
220 + (B - 1)(1 + 7)}27—22 = VlQ(t7 a’uvv)(Q% + /’L%) or
2, 2y 220+ B-DA+YPr o VE(ha,u,0)(ef + pi)
) = ey P T et 5o
Summation of (29) and (31) gives
{2(5 -1) {W +20(1+)+ 1 +~v+ 72)} +20(20 + 1)] T3

= Vvl(t7a7u7v)(92 + /1'2) + ‘/Q(AGQ’U,,U)(Q% + M%) = Vl(ta%Uﬂ))(Qz + /1'2)

2020 + (B -1+ 7)]2722]
Vlz(ta (l, ’LL, ’U) ’

+ Va(t,a,u,v) [ (34)

Applying (33) in (34), yields

{(5 —2)(1+9)°
2

‘/12(t,a7u,’0) 2(ﬁ - 1)

+20(1+7)+(1+7+V2)}

+20(20 +1)| = 2Va(t,a,u,0)[20 + (B = 1)(1+9)]* |75 = VP (t,a,u,0) (02 + p2)  (35)
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which gives

im] < (u+v)ty/(u+v)t

(u+v)%t2 — Go

[(B —1)[G1] +0(20 4+ 1)

Hence, (29) minus (31) gives us

2[30 + (B - 1)(1 +v+ '72>](T3 - 7—22) = Vl(t’a’uvv)(92 - /~‘2) + ‘/2<t7a7u7v)<9% - /L%

Then, by using (32) and (33) in (36), we get

To = 7_2 4 %(taa7u7v)(92 - ,U2)
TR Be+ (B )T+ +2)]
_ ‘/12(t’ a,u,v)(g% + M%) Vl(t7a7ua ’U)(Q2 - ,u/2)

220+ (B-1)A+y)]*  2Bo+(B-DI+y+9)]
Applying (3), we have

(u+wv)t n 1 }
20+ (B-1A+P|  Bo+B-DA+v+92)]
Furthermore, From (35) and (36), we get

|73] < (uw+v)t [

1 )
Bo+(B-D1+v+12)]) %

5 — x73 = Vi(t,a,u,v) [(C(X) +3

1

).

435

+ (<0~ sgrEara ) “21

where
_ V12(t7 a,u, ’l))(]. B X)
h ‘= VE(t, a,u,v)[Gs] = Va(t, a,u,v)[20 + (B — 1)(1 +7)]*
Gs = {(6— 1) (W+U(l+7)+(1+7+72)> —|—0(20—|—1)} .

Thus, according to (3), we have

(u+v)t 1
2 per-namer 0= K0! S D
’7'3 — XT3 ‘ <
2|C(X)|(u +o)t, |<(X>| 2 |2[30+(5—11)(1+7+72)]\
where
C( ) _ Vf(tﬂl,u,?})(l _X)
X = VR 4w, 0)[Ga] — Valt, a,w, v)20 + (B — (1 + 7))
Hence,

(u+v)t
Bt (B D77 x—1l=4

|t3 — x73| <

1yt )
(@I Eer - D (@ aroerwa X~ 12 4.

83 Corollaries

We get the following results by specializing the parameters ~, 8, o, in Theorem 1.
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Corollary 1. Foro =1, let u € J?if(u,v). Then

(u+v)ty/(u+v)t

Il < 7 )
Gy
(u+v)t 1
Iral < (u ) Lm G-+ F T BrE-Da Ty o

and for any real number x,

(utv)t
— 2| < BrB-DA3 20 Ix -1/ = A
|TS XTQ} = [1—x|(utv)?t? | B 1| >4
[(u+v)2t2021 — 2+ (B—1) A1+ V]2 (w2 +02) (utv)t2fuva)|’ X =2 Ay,
where
1 u? + 0?2 uva
A = D -2+ (B-1)(1+ 2< + >
1 |3+(ﬁ—1)(1+v+72)|| BBV o e
-2 1+ 2
2 =(B-1) {W+72+3y+3} + 3,
72 1+ 2
Gy=|(B-1) [W+3(1+’7)+72} 43| (u+v)22

— 24+ (B =11+ ((u* + ) (u + v)t* + wva).
Corollary 2. For 3 =0, let p € 3?,’3 (u,v). Then

(u4v)ty/(u+o)t

I < S
J (= 0)(1 = 20)(u-+ )22 20 — (14 (0 + )+ 0} + uva)
(u+v)t 1
o < ot G+ o) .

and for any real number x,

(utv)t
[Bo—(T+v+2)]° X =1 = 42
|73 - XT22| <

[1—x|(utv)’t®

[(u+v)2t2 022 —[20—(147)]?2 (w2 +v2?) (utv)t2+uva)|’ |X B 1| 2 AQ’

where
1 u? + v? uva
Ay = 2 —[20—(1 2
T Bo—(14+v+)[| 7 (20 = (1 +7)] ( wto T wtore

2o =(y—o0)(1—20).

Corollary 3. Foro=1,8=0, let p € 3%&0(%@). Then
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I < (u4v)ty/(u+v)t

(I =) (u+v)%2 —[1—9)]2(u? + v2)(u + v)t2 + uva)

(u+ )t 1
< t
s G TR T R G
and for any real number x,
(utv)t _1< A
=Gl X =1 = 45
|73 — x73| <
[1—x| (utv)®t?
[(utv)2t2 25 —[1—7]2 ((u2+v2) (u+v)t2+uva)l|’ |X B ll 2 AS’
where
A — 1 -1 ]2 u? +v? n uva
TR Vae Tt
25 =(1—7).

Corollary 4. For =0 and vy =0, let p € J?bo(u,v), Then

I < (u+v)ty/(u+v)t

(20 — 1)(u+v)%t2 — [20 — 1]2((u? + v?) (u + v)t? + uva)

(u+v)t 1
< t
7l < (w o)t o T e =1 |
and for any real number x,
t
\(gjfip Ix — 1= A4
|73 — x73| <
1 x| (utv)®t?
[(utv)2t2 24 —[20—1]2 ((u2+v2) (utv)t2+uva)|’ |X - ]'| z A4’
where
1 u? + v? uva
Ay = ——— |2y — 20 — 1]?
4 130 — 1] 120 = 1] (u—l—v +(u—|—v)2t2>

2y =0(20-1).

Corollary 5. Foro =2, let u € 3?60(11, v). Then

7ol < (u+v)ty/(u+v)t

6(u + v)2t2 — 3((u? + v2)(u + v)t2 4+ uva)

9o '3

|T3|<(u+v)t{(u+v)t 1}7

and for any real number x,

437

(43)

(47)
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(U‘E’U)t’ |X - 1| é A5
T3 — X722 <

[1—x|(utv)?t®
[6(ut0)2e2—9((u2+v2) (utv) 2 Tuva)]’ X —1] 2 4s,

u? 4+ 0? uva
6—9 + .
u+v (u + v)3¢2

Corollary 6. Foro =1, let u € Jféo(u,v), Then

where

1
A5:5

7l < (u+v)ty/(u+v)t

(u+v)2t2 — (u? + v2)(u + v)t2 + uva)

T3] < (u+ o)t {(u—kv)t—k ﬂ ,

and for any real number x,

(ULQU)ta |X_1|§A6

|73*X722| <

[1—x|(utv)?t®
[(at0) 22— ((u2+02) (ut o) tuva)]’ Ix — 1] = Ag,

1_ u? + v? n uva .
u+v (u + v)3¢2

Corollary 7. For B =1, let p € 321 (u,v). Then

where

1
A6:§

] < (u+v)ty/(u+v)t

(20 + 1) (u + v)?t2 — 402((u? + v2)(u + v)t2 + uva)

|T3|§(u+v)t{(“+’0)t 1 }7

402 " [30]
and for any real number x,

+o)t
(u|3:\) ’ Ix — 1] = 47
|7'3 - XT22 <

[1—x|(utv)®t?
[(utv)2t2 27 —402((u24v2) (utv)t2+uva)|’ |X - 1| z A77

2 — 4o” <“2+”2 e )‘

where

Aq

1
" 30 u+v (u + v)3¢?

27 =020+ 1).

Corollary 8. Foro=1,8=1,letp € 3?’1(%@). Then

Vol. 40, No. 2

(51)
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(u4v)ty/(u+v)t

72| < ; (53)
3(u+ v)%t2 — 4((u? + v2)(u + v)t% + uva)
t 1
/73| §(u+v)t{(uzv) +3}, (54)
and for any real number x,
(et 1] = Ag
|73 —x73| <
[1—x|(utv)3t3
[Blut0)2e2—4((u2+v2) (utv) 2 Tuva)]’ X — 1] Z As,
where
1 u? 4+ 0?2 uva
Ag==-|3—-4 .
*73 (u—f—v +(u+v)2t2)‘
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