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Some new results on parameter estimation of the

exponential-Poisson distribution in ranked set sampling

CHEN Meng CHEN Wang-xue* DENG Cui-hong

Abstract. The existence and uniqueness of the maximum likelihood estimator (MLE) of pa-
rameter for the exponential-Poisson distribution is discussed by Kus [2007. A new lifetime
distribution. Computational Statistics and Data Analysis 51(9): 4497-4509] in simple random
sampling (SRS). As an alternative to the MLEs in SRS, Joukar et al. [2021. Parameter estima-
tion for the exponential-poisson distribution based on ranked set samples. Communication in
Statistics-Theory and Methods 50(3): 560-581] discussed the MLE of parameter for this distri-
bution in ranked set sampling (RSS). However, they did not discuss the existence and uniqueness
of the MLE in RSS and did not provide explicit expressions for the Fisher information in RSS.
In this article, we discuss the existence and uniqueness of the MLE of parameter in RSS and give
explicit expressions for the Fisher information in RSS. The MLEs will be compared in terms of
asymptotic efficiencies. Numerical studies and a real data application show that these MLEs in

RSS can be real competitors for those in SRS.

81 Introduction

Lifetime distributions play an important role in many real practical situations. One of the
popular life distributions is the exponential distribution which is the simplest one, as well.
However, the exponential distribution suffers from a constant hazard rate function and may
be inappropriate in many situations. Kug (2007) introduced an extension of the exponential
distribution, called the exponential-Poisson (EP) distribution with distribution function

e exe—ﬂm

F(a; 8,A) = 6,\7_1]@ >0), (1)
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where 8 > 0 and A > 0, and I denotes an indicator function. The probability density function
(pdf) corresponding to the distribution function in (1) is then given by

flx; 8,A) = e*ﬁ%l exp (—Bz + )\e_ﬂx) )
Barreto-Souza and Silva (2015) pointed out that the EP distribution is a good alternative to the
gamma distribution for modelling lifetime, reliability and time intervals of successive natural
disasters. For further details on the importance and applications of the EP distribution one
may refer to Karlis (2009), Macera et al. (2015) and Xu et al. (2016).

The estimation problem for this distribution has not been discussed extensively in the lit-
erature yet. There are a few works regarding the inference problem for the EP distribution.
For example, the existence and uniqueness of the maximum likelihood estimator (MLE) of pa-
rameter is discussed by Kus (2007) in simple random sampling (SRS). As an alternative to the
MLEs in SRS, Joukar et al. (2021) discussed the MLE of parameter in ranked set sampling
(RSS). However, they did not discuss the existence and uniqueness of the MLE in RSS and did
not provide explicit expressions for the Fisher information in RSS.

In this article, we discuss the existence and uniqueness of the MLE of parameter in RSS
and give explicit expressions for the Fisher information in RSS. The remainder of the paper
is organized as follows. In Sect. 2, RSS is introduced. In Sect. 3, we present some lemmas
and notations, which are required for building our theorems. In Sect. 4, the existence and
uniqueness of the MLE of § from the EP distribution in RSS are proved. In Sect. 5, the
existence and uniqueness of the MLE of A\ from the EP distribution in RSS are proved. In
Sect. 6, explicit expressions for the Fisher information in RSS is computed. A comparison and

conclusions will be respectively presented in Sects. 7 and 8.

§2 Ranked set sampling

RSS was introduced by Mclntyre (1952) for estimating the pasture yields. It is appropriate
for situations where quantification of sampling units is either costly or difficult, but ranking the
units in a small set is easy and inexpensive. The procedure of RSS involves randomly drawing
m? units from the population and then randomly partitioning them into m sets of size m. The
units are then ranked within each set. Here ranking could be judgement, visual perception,
covariates, or any other method that does not require actual measurement of the units. For
each set, one unit is selected and measured. The basic version of RSS can be elucidated as
follows. First, the experimenter draws m independent simple random samples, each of size
m from the population. Then units within the i-th(: = 1,2,...,m) sample are subjected to
judgement ordering, with negligible cost, and the unit possessing i-th lowest rank is identified.
Finally, the identified units are measured. For further introduction of RSS, refer to Al-Omari
(2012), Chen et al. (2003), Dmbgen and Zamanzade (2020), Frey and Feeman (2017), He et
al. (2021), Mahdizadeh and Arghami (2012), Mahdizadeh and Strzalkowska-Kominia (2017),
Mahdizadeh and Zamanzade (2021), Samawi and Al-Sagheer (2001), Strzalkowska-Kominiak



CHEN Meng, et al. Some new results on parameter estimation of the exponential-Poisson... 415

and Mahdizadeh (2014), Yang et al. (2020) and Zamanzade and Mahdizadeh (2017).

83 Notations and preliminaries

In this section, we present some lemmas and notations, which are required for building our

theorems.
3.1 Some lemmas
Lemma 1. For 8 >0,z >0and \ € (0,62)7

— <6>\ - 6)‘6_“) + px (6)\ — eAe_M) + Ae*Bre P > 0. (2)
Proof. Denote — (eA - 6)‘87[”> + px (6)‘ - eAefﬁz) + Ae*Bre AT as
g(t)=— (e’\ - e’\t) —Int (e/\ — e)‘t) — A tint,
where t = e A% 0 <t < 1. Then
g ) =—(e*—eM) (/\+)\lnt+1>. (3)
Let 1
h(t) =X+ Alnt + i
then )
W@%=§CU—U-

Then ¢ = § is the minimum point of h(t). Thus
h(t) >A(2—1n)X) > 0. (4)
Note that
et —eM > 0. (5)

Based on (3), (4), and (5), we observe that ¢'(t) < 0, indicating that g(t) is strictly decreasing
within the interval 0 < ¢t < 1. Considering the limit lim;_,;- g(¢) = 0, it follows that g(t) > 0

for all £ in this interval. This concludes the proof of Lemma 1. O
Lemma 2. For §>0,z>0and X € (0,62)7
(eke*ﬁw - 1) — Bx (ehefﬂz — 1) + A\Bze P* > 0. (6)

Proof. Denote (e)‘efﬁm — 1) — Bz (e)‘efﬁm - 1) + A\pzre % as
p(t) = (e’\t —1) +1Int (e’\t —1) — Atlnt,
where t = e A% 0 <t < 1. Then

p(t)=(eM—1) (A—!—Alnt—i—i), (7

Note that
eM—1>0. (8)
From (4), (7) and (8), we can obtain p’ (¢t) > 0, which means p (¢) is monotonically increasing
within 0 < ¢ < 1. Taking into account the t1i%1+p(t) = 0. Thus p(¢) > 0. This completes the
proof of Lemma 2. O
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Lemma 3. For A >0 and m > 0,

5+ 5 <0 9)

Proof. Let ¢ (\) = e2 —e~2 — A, it is clear that ¢ () is monotonically increasing for A > 0 and
lim ¢ (A) = 0. It follows that
A—=0+

e —e2 >\
Then N )
WP ;1> > 22 (10)
From (10), we have
m me?
i 17 <0
This completes the proof of Lemma 3. O
Lemma 4. For >0,z >0and A >0,
(1 —e P e*%e_m) et +ere - (1- eiﬁz) > 0. (11)

Proof. Let u(\) = (1 —e P e*%e*f’m) ez ™ (1 —e A7), then

w () = (1 —e P _ 67%57%) et + 1(37f331”67%‘fme/\ + lefﬁze%eim
2 2 (12)
> (1= ) ed = d0m) 50 o,
Denote v(A) = (1 — e #7) e — e2(1=¢"") | =Bz then
1 —Ba
V() =5 (1 —e) (2 =30 >0
Then v(\) is monotonically increasing for A > 0 and lim v (A) = 0. Thus v(A) > 0. Combining

A—=0t

this with (12), we infer that p' (\) > 0, indicating that p(X) is monotonically increasing in A.
Given that Alij& w(A) = 0, it follows that p(A) > 0 for A > 0. This concludes the proof of
Lemma 4. O
Lemma 5. For >0,z >0 and A > 0,

e P (e% - e_%) — (e2e” = e_%eiﬁw) > 0. (13)
Proof. Let ¢ (\) = e™" (e% - e_%> - (e
o' (\) = %e_ﬁx ((e% + e_%) — (e%eiﬂw + e_%eiﬁz)) (14)

Denote s(\) = e* +e?, it is not difficult to see that s()\) is monotonically increasing for A > 0
and % > %e‘ﬁ"’. Then

N[>

—Bx _A_,—Bz
¢ —e 2° ),then

A A

s 2) > s (2661 . (15)

Based on (14) and (15), it follows that ¢’(A) > 0, indicating that () is monotonically increas-

ing for A > 0. Additionally, considering the limit )\lil%lJr ©(A) =0, we conclude that ¢(\) > 0 for
—

all A > 0. This completes the proof of Lemma 5. O

3.2 Notations
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For the sake of writing formulas conveniently, denote

1 1 tJtZ 3t

G0 = [ B (16)
1 1 t]tQ 3\t

G (\) = /O %dt (17)
1 1 tjt 2t

o= [ B (13)

where A >0, j =1,2.

84 The existence and uniqueness of the MLE of § in RSS

Joukar et al. (2021) discussed the MLE of 8 in RSS. However, they did not discuss the
existence and uniqueness of the MLE in RSS. In this section, the existence and uniqueness of
the MLE of 8 from the EP distribution in which X is known in RSS are proved.

Let {301(1), T2(2), T3(3)5 " " * ,xm(m)} be a ranked set sample of size m from the EP distribution
in which A is known. The pdf of X;(; is

Fi (@3 8,0) = c(i,m) @ffnm (eA et )H (eke,,ﬁ - 1)mfie_6m6%’
m!

where ¢(i,m) = o= © hen the log-likelihood function based on this sample is

InLrss =d+ming —p Z Ty + A Z e AT 4 Z (i—1)In (eA - 6)\67[327“))
i=1 i=1 i=1

- =Bz,
—|—E (m—i)ln(e)‘ei ()—1),
i=1

where d is a value which is free of 3. By computing the first derivative of InLrggs with respect

to 3, we obtain
e‘Bwi(i)+/\676wi(’7)

m m m g m .
J(B) = 3 Z Tigi) — A Z ziye PTG 4 X Z (i — Dy i)
i=1 i=1 i=1 (fi)‘ —ere )

e~ BTi(i) +xe P

- )\; (m — 9)a;() (exe*’”i(i) - 1) :

Then the MLE of 3 is the solution of J(8) = 0, the solution is denoted as ERSS, MLE- Building
on the preceding analysis, we formally establish the following theorem and provide its rigorous
mathematical justification.

Theorem 1. ERSS, MLE exists and is unique for a given \ € (0, e?).

Proof. Since

lim, J(B) = 00 (19)
and .
lim J(8) ==Y (m—i+1)a <0, (20)

1
A—roo i=1

the existence of B rss, MLE is proved by combining (19) with (20). To prove the uniqueness of
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E RrSS, MLE, We consider the second derivative of InLrgs with respect to f3.

L 2
82lnLRsS 8 9 m le( )+)\e Bei(i)
8752: +)\Z.TZ(Z)€ x’()—>\ Z ’L—lﬂ?z(l) ﬁ
B efﬁwri)“eimi(i) 2 e*ﬁm(i)ﬂ{””i(i) 2
— 1 Ti(i )) - @@ | = - 00000
AZ Dzl ( + e T A Z T3 e P ]
—Bx;
=Bzt Ae i(7)
B, €
+AZ m— i)z (1+)\e <>) ( Ry e (21)
. . 0%InL
Denote * is a solution of WRSS = 0, then

. —B%e0 \ 2
e B Ti)TAe () )

m * m _ *z. . * o y _
o2 =ABTY ale e = X8y (i - Da, =)
B i=1 et —eXe

i=1
m —B" @iy +re P Ti0)
* (&

— \3* Z (i — 1)%2(1) (1 + e P m(i)) ( . e
i= et —ene )
i=1

2 efﬁ*Ii(iH’)\e—ﬁ*Ii(i) 2
— A Z T | —=
e -1

m

—B* @iy eI
8%z, e
AT (m = i)k (1 ae? )( ) (22)

ere 91

and
m . eB Ti)
N =\ e BTmi) o o -1
) gzz(z)e <B Li(i) ) )
e=B mip+Ae IO A xe AT N A e P
—AZ Z—ll’z(z) 713*'() 5 |~ e —e +6xz(z) e —e
( — eXe Fi(i )
B*Ii(i)+A675 i) —B*z,
+)\e>\ﬁ*1’i(i —B" zl(f)} _/\Z '1:1( )e . |:<6)\e RON 1)
_B*xz(z) <€)\El3 o - 1) + )\ﬂ*xz(l)e_ﬁ*%(ﬂ} . (23)
* 2 : e 2
Now we prove J(8*) < 0 for A € (0,e®). Since Sz — Y —1 < 0 for A € (0,e*) (see Kus
m . B i)
(2007)), the first term of (23) A e (fmi - GT - ) < 0. We know that
i=1

the second term and the third term of (23) are always negative from Lemma 1 and Lemma

2 for A € (0,€?). Hence J(B*) < 0 for A € (0,€?). This implies that J(3) is negative at its

stationary points for A € (0, 62). Considering the limit J(8) = — > (m — i+ 1) z;;) < 0. Thus
i=1

the uniqueness of 3 rss, MLk is proved. This completes the proof of Theorem 1. O
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85 The existence and uniqueness of the MLE of )\ in RSS

Joukar et al. (2021) discussed the MLE of A in RSS. However, they did not discuss the
existence and uniqueness of the MLE in RSS. In this section, the existence and uniqueness of
the MLE of XA from the EP distribution in which £ is known in RSS are proved.

Let {5U1(1), T2(2), T3(3)5 " " * ,xm(m)} be a ranked set sample of size m from the EP distribution

in which 8 is known, then the log-likelihood function based on this sample is

InLpss = dy + mink — m2in (e’\ — 1) + A Z e Py 4 Z (m —1i)ln (e’\eiﬁzi(i) — 1)
i=1 i=1

+ Z (1 —1)in (e’\ - e’\eimim> )
i=1

where dj is a value which is free of A\. Taking the first derivative for InLrggs with respect to A,

we have
e_BTL(z) +)\eiﬂ$i(i)

OlnL m m2e? i i .
7RSS — X _)\771—"_26_[3“(1‘) +Z(m—l>
i=1 i=1

O\ e (exe*“i(i) _ 1)
m X _ =By +re 2T
e e
+ 1 —1
; ( ) <e>\ — e/\e_ﬂmi(i))
8lnLRSS

Then the MLE of ) is the solution of

Building on the previous analysis, we formally establish the following theorem and present its

= 0, the solution is denoted as :\\RS& MLE-

detailed mathematical proof.

~ m
Theorem 2. Arss, mrE exists and is unique when e Brit) > 5

=1
Proof.
. OlnLggs mm+1)  (m+1) e~ _g,
1 = — B 24
A0 O 4 T ; € (24)
and
. 8lnLRSS m (m + 1) " . — Bz
)\11_{1;0 - 5 +;(m—z+1)e @, (25)
Since —W + L;_U i e P > —m(TZ—H) + mUZ—H) = 0 when i e T > 2
i=1 i=1

m
}\in?(m) alng%> 0. Since 0 < e=Br < 1, _W + Z (m — i+ 1) e BTty <« _w +
5 i=1

o~ m
m(mT"H) =0, )\lirn % < 0. Thus, the existence of Arss, arE is proved when Y e F%i) >
—00 1=1

m
2

To prove the uniqueness of Arss, mrE, the second derivative of InLrgs with respect to A
is computed as

2e? 4 6_253?7‘,(1')-"-%67‘31“"’)

PInLrss m m-e . Ui
— e = (m —1) - (i—1)
ox AT O 2 (cr e’

=Bz,
e)\eAe (4) (1 . e,[gxi(i))2

(26)



420 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

which is equivalent to the equation
82lnLRSS

Y :_FJF 2+Z 2+Zz—1
m ) 6_2ﬂ$i(’7>+)‘e Fie) i

)
i=1 (e/\e*‘“'z‘ﬁ) _ )

After some calculations and simplifications, we have that
8zlnLR55 _(_m + me>‘
ox2 U A (e —1)?

m A A B%i()

> (-1 e { [e%;m““ (1 _ e*ﬁzim) (e>‘ - 1) + (eA - eAJBzi(i))}
i=1 (6)\ _ e)\eiﬁwi(i)) (e)\ _ 1)2
{(1 _ e Bmity _ e,%e*ﬁxi(i)) A ege—ﬁxim B (1 B e*ﬁzi(i))} }

m Y %e’ﬁ"‘i(i)

2 =Bz =Bz,
=D (m—i) ,ﬁj . 3 { [675zi(i)6%8 v (eA - 1) +e (eke “ 1)}
i=1 (e“ o 1) (e* —1)°
m

2
L
Now we prove % < 0. From Lemma 3, we know that the first term of (27) 2 +
me*
(er—1)°
Lemma 5, we know that the third term of (27) is always negative. Thus the uniqueness of

XRSS, mLE is proved. This completes the proof of Theorem 2. O

1)

~Bax; 2
)\e)\e Fi(d) (1 _ efﬂmi(i))

2
—Bri
(e,\ — phe P >)

< 0. From Lemma 4, we know that the second term of (27) is always negative. From

86 Explicit expressions for the Fisher information

Joukar et al. (2021) discussed Fisher information matrix from the EP distribution in RSS.
However, they did not provide explicit expressions for the Fisher information. In this section,

we will give explicit expressions for the Fisher information in RSS.

Let {x1(1)7 T2(2), T3(3)s """ s Tm(m) } be a ranked set sample of size m from the EP distribution,
then the log-likelihood function based on this sample is

InLrss = dy +minp + mink — m2ln -8 Z Tigiy + A Z BT

+ Em: (i —1)in (eA e e )) + Z —)in ( Ae PR 1) 7
i=1

where d; is a value which is free of 8 and A. This functlon implies that

=Bz
OlnLrss e~ Bri)+Ae (9

_m —Bx; .
% — le( ) — )\le( )€ ) )\Z "Ez(l) (6)‘ B e/\e_ﬂmi“))
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- e—Bri+re” PTi)
— /\Z (m — 'L)-Ti(i) ( P 1) (28)
=1 e

and

=Bz,
A _ o= BTi)TAe @

OlnL m m2e? i UL e
GINERSS _eA_1+Ze*ﬂ$i(i)+Z(l_1)

) A (eA _ e,\e‘“iu))
_ (29)
m —Bxiiy+re” PTG
L€
+ ; (m — ’L) (ekeiﬁm"(i) B 1) .

The solutions of (28) and (29) are the MLEs of 8 and A, the solutions are denoted by
(Brss, MLEs ARSS, MLE)-

Explicit expressions for the Fisher information for 8 and A in RSS of size m is given as
follows.
Theorem 3. Under the standard regularity assumptions (see Azzalini, 1996, p.71),, the Fisher
information matrix for # and A in RSS of size m is given by

I I
Tnss (8, )) = < 11, rSs 112, rss ) ’ (30)

T2, rss 1oz, Rss

where
m m 2t m(m —1)\3 m(m — 1)\
I == - + A)+—————=x
ST g T g (A ) ;n!(n+2)3 w1y VT e e W
m =t m (m — 1) \2 m (m — 1) \2
I = - AN —a )+ ————6 (A
PEET B ) Anln+2)? Bl —1)? (EGX ma M)+ o e
and
m m2et . az A - m) b;
122,RSSZF—( 2+Z +Z 7_1)7n’
where
i—1 m—i—2 R . A(m—j—k—1)(y2 . 2 .
i—1 m—i—2 —j+k—=1_xj € A (m—j—k—1)"—2X(m—j—k—1)+2)—-2
wr= 3 ()5 ()] == =
7j=0 k=0
and
1—3 m—1 . A(m—j—k—1)_y2 2
i m—i i—j+k—3 . 2e AN (m—j—k—1)*—2\(m—j—k—1)—2
i :JZ()( 3) 2 ( )( 1) " e/\(]—H)[ (m ]] k—1)3 = ]
Proof.

—Ba(+re TTID

2 —Brig
2 gZ;La};SS = sz( ye P — Z (i — 1) Az (e)‘ — e BTy tre T )) (e

— B\ 2
i=1 e _ ere z(t))

B, 2
m —Ba;y+re D) m e BT yFre” i)
. Bz €
+ E (i — L)z (1 + e’ “”) N T E (m — 1) Az, (i) T
i—1 (eA — ere l“)) im1 er R

4 e—ﬂwi(i)+)\efﬂz““
= (= iy (14270

i=1 (eAE ® _ 1)
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Under the assumed regularity conditions of Theorem 3.,

Ii1, rss = —F <

m m _ ) —Bi \ 2
_m g )‘Z 2 B | 4 | )\22(' — 1)a? %
= 7 Ti)e 1 Ti(4) _ e)\e—[smi(,i)

P*nLrss
052

i—1 i=1 e
_ —Bx,;
m —Bwi(sy+rePTi0)
. 2 —Bz;(; e
+E )\Z (i — 1)131'(1') (1 + e ( )) < A xe BT
= e e
r 2
m Bzi(b)+/\e i(4)
2
+E|X ; — i)l (M
_ — B,
m =Bzt Ae (@)
—FE )\Z (m — i)a:?(z-) (1 + )\efﬁz““) (M
L =1 ene -1
28 Bz 2 —2Bz+2XeP*
_m R m (m — 1) A2 e 2B H2A m(m—1)A g€
7@—m)\E( )+ A1 Elx eA_eAe*ﬁl' + o1 E :IJW
— Bz
_m mAN B [ 5 gy aehe /\3/3 e 2Prtire
a2y . — Bz
m — 1) A3ﬂ oo 26—3[31-0-3)\6
+ —1) / T e da
= [t () [ £t ()
B2 BEer—1) Jo g —1)? Jo  er—eM
- /1 P ()
B2(er — 1)2 eM —1
m oo 9)\+2 m(mfl)ks m( 71)A3
= — IS A + —
62 gn'n+2 ﬂ2(6A71)2 2( ) ﬂ2(€ )2 52( )
8InLgss
I — _p | 2RSS
12, RSS ( 95O

Bai(y+re P

m m =Bz e
=F Z xi(i)efﬁzi(ﬂ Z 17— 1 AZCZ“) ( eiﬁzi(i)+)\e ( )) “ha 3
= P} (e)\ — ele W))

— By +re T

[

@
Il
-

_ e
i— 1)z <1+>\e ﬂ”““) ——
( ) (%) (e>‘ _ 6)\5*5%(1'))

- E
e*Bziu)ﬂe*B”i(i) 2
(m = DAz |~
ere -1

—F
[3
( — By +re T

Bx
E le( ) (1 + )\6 l“)) —Bx:. .
(eke B 1(1) - 1)

NE

Il
—

+ F

i=1
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—1 _ 6)\5*/3"3

B DY B B —ﬁz+/\efﬁ"'
= mE (e B~)+m(€"; ) E(m(e’\—e Bt re=d )Z)‘

er—1

ere " 1

_ 72693#»2)\675‘?
~m(m-1) )\E (me >

. mAj
B (eA —1)

oo —2Bx+2xe B
5 dzr

_Ba _ 2 oo _Ba
xpe 2T e 7 dx + min=2)A P ((Tri 11)2\ ﬁ/ T (e)‘ _ g ButAe 7 ) ¢
e" — 0

eN — eA

_1 )\2ﬂ/ 73Bz+3)\efﬁm

mA

7ﬂ(e/\—1

dx
|

) /o t (Int) (e)\t)dt - Wm /01 (e)‘ _ teM) %dt

L mm =1\ /1 £ (Int) (e**) dt

Bler — 1)

m

N _

Bl —1) 4

=1 (6

S A I CaE

[eS) )\n+1 m (m _ 1) )\2 N m( ))\2
;) nn+27? Bl —1) (Fam-am)+ W& )

Ae’\';BIi(i) (1 — e’B”i(i>)2

— e, 2 - — By 2
i=1 (e*e ) _ 1) i=1 (e)‘ — ere 1'('))

i=1

m . oo _ BN\ i—1 _ Bz m—i—2 —Bx
_m__me 5 + Z (m— i)ice(z,m) B / (e’\ —er’ ) (eke o 1) e 3BT 22T gy
- 0

m m2e - c(i,m)A ['/ A\ T A m=i=2 5 oat
_m_ _pelm)A - -1 2 dt
X (er 1) +;(m 7 (eul)m/o (¢ =e) (=) ¢

—i—2 . )
( m sz -2 >(1)ij+kle)\j /1 (e”)m_]_k_thdt
0 0

m . Ay i i— m—1i m—i o 5 ) 1 tmfjf _1 )
+Z(i_1)c((;’7f)€)m/\ 0( j3> ) < . >(_1)z—]+kz— e,\]/0 (ek) k (102 ar

_m  m’e . C alA B )b
=3z 7(6A71)2+;(m ))\2 +ZZZ 1) —

This completes the proof of Theorem 3. O
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87 Numerical comparison

This section compares the maximum likelihood estimators obtained through RSS and SRS

by assessing their asymptotic efficiencies.

7.1 Numerical studies

In this subsection, we compare the asymptotic efficiencies of the MLEs. Under certain reg-
ularity conditions, the asymptotic efficiency of the MLEs can be derived from the inverse of the

Fisher information matrix (Barabesi and El-Sharaawi, 2001). Hence, the asymptotic efficiency

111, rRss

of BRSS, MLE W.I.t. ESRS, M LE may be defined as AE! = . The asymptotic efficiencies

111, srs
of Arss, mrE W.rt. Asrs, mre and (Brss, MLE, ArsS, MLE) W.I.t. (Bsrs, MLE, ASRS, MLE)

. I3, Rrss det {Irss(B, A\)}
may be respectively defined as AE? = 22222 and AE? = ! .
Y P Y I5. srs det {Isrs(B, A}

I, srs and det {Isrs(8, A)} are from Kus (2007). Since AE'(i = 1,2, 3) are free of 8, without
loss of generality the numerical results is given for § = 1. The numerical results are given in
Table 1.

From Table 1, we conclude the following:

I, srs,

(1) AE! > 1, which means ERSS’ MmLE is more efficient than BSR& MLE-

(2) AE? > 1, which means XRSS’ MmLE is more efficient than XSRS, MLE-

(3) AE? > 1, which means (B\RSS, MLE,XRSS, MmLE) is more efficient than (B\SRS, MLE,
XSRS, MLE)-

(4) In conclusion, the MLEs of § and X in RSS are more efficient than that in SRS.

7.2 A real data application

Now, we focus on the analysis of earth quakes in the last century in North Anatolia fault
zone between 39.00°-42.00° North latitude and 30.00°-40.00° East longitude. In Table 2, the
dates of the successive earthquakes with magnitudes greater than or equal to 6Mw (moment
magnitude), which are recorded with their exact locations, magnitudes and depths between
the years 1900 and 2000. The data set given in Table 3 includes the time intervals (in days)
of the successive earthquakes mentioned above. The data is taken from University of Bospho-
ros, Kandilli Observatory and Earthquake Research Institute-National Earthquake Monitoring
Center (KOERI-NEMC, web address: http://www.koeri.boun.edu.tr).

Kus (2007) pointed out that EP distribution fits the data very well. The MLE of A, 8 and
the p-value of the Kolmogorov-Smirnov test are 2.6377, 3.56x 10~% and 0.9772, respectively.
The result of the analysis are presented in Table 4. It can be seen from the table that there
is the same conclusions as numerical results of the previous sections. This agrees with the

numerical results of the previous sections.
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Table 1. Asymptotic efficiencies of MLEs of g and .

A m AE! AE? AE?
3 2 1.4494 1.4629 1.4779
3 1.9015 1.9250 1.9350
4 2.3528 2.3872 2.4361
5 2.8061 2.8492 2.8620
6 3.2584 3.3127 3.3879
4 2 1.4522 1.4506 1.0723
3 1.9157 1.9011 2.4628
4 2.3790 2.3517 4.4115
) 2.8424 2.8028 6.9113
6 3.3057 3.2533 9.7776
) 2 1.4699 1.4344 1.5818
3 1.9342 1.8683 2.4338
4 2.3985 2.3014 3.3015
5 2.8629 2.7354 4.3380
6 3.3273 3.1704 5.4182
Table 2. Earthquakes in North Anatolia fault zones.
Date Longitude Latitude Magnitude(Mw) Depth(km)
04.12.1905 39 39 6.8 0
09.02.1909 38 40 6.3 60
25.06.1910 34 41 6.2 0
24.01.1916 36.83 40.27 7.1 10
18.05.1929 37.9 40.2 6.1 10
19.04.1938 33.79 39.44 6.6 10
26.12.1939 39.51 39.8 7.9 20
30.07.1940 35.25 39.64 6.2 50
20.12.1940 39.2 39.11 6 0
08.11.1941 39.5 39.74 6 0
11.12.1942 34.83 40.76 6.1 40
20.12.1942 36.8 40.7 7 16
20.06.1943 30.51 40.85 6.5 10
26.11.1943 33.72 41.05 7.2 10
01.02.1944 32.69 41.41 7.2 10
26.10.1945 33.29 41.54 6 50
13.08.1951 32.87 40.88 6.9 10
07.09.1953 33.01 41.09 6.4 40
20.02.1956 30.49 39.89 6.4 40
26.05.1957 31 40.67 7.1 10
22.07.1967 30.69 40.67 7.2 33
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Table 2. Continued.

Date Longitude Latitude Magnitude(Mw) Depth(km)
03.09.1968 32.39 41.81 6.5 5
13.03.1992 39.63 39.72 6.1 23
08.03.1997 35.44 40.78 6 5
12.11.1999 31.21 40.74 7.2 25

Table 3. Time intervals of the successive earthquakes (To be read down the columns).

1163 3258 323 159 756 409
501 616 398 67 896 8592
2039 217 9 633 461 1821
4863 143 182 2117 3709 979

Table 4. Asymptotic efficiencies of MLEs of 5 and A.

(A B) m AE! AE? AE3

(2.6377,3.56 x 1074) 2 1.4252 1.4404 1.3006
3 1.8875 1.8808 2.3231
4 2.2339 2.3212 2.7801

88 Conclusion

In this article, we proved the existence and uniqueness of the MLE of parameter in RSS and
gave explicit expressions for the Fisher information in RSS. The MLEs were compared based on
their asymptotic efficiencies. Numerical studies and a real data application demonstrate that
the MLEs derived from RSS are comparable alternatives to those obtained from SRS. A further

stage would be to extend the use of moving extremes RSS to the EP distribution.
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