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The transmuted epsilon distribution with applications in

reliability engineering
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Abstract. Since its inception, the epsilon distribution has piqued the interest of statisticians. It
has been successfully used to solve a variety of statistical problems. In this article, we propose
to use the quadratic rank transmutation map mechanism to extend this distribution. This
mechanism is not new; it was already used to improve the modeling capabilities of a number
of existing distributions. For the original epsilon distribution, we expect the same benefits.
As a result, we implement the transmuted epsilon distribution as a flexible three-parameter
distribution with a bounded domain. We demonstrate its key features, focusing on the properties
of its distributional mechanism and conducting quantile and moment analyses. Applications of
the model are presented using two data sets. We also perform a regression analysis based on
this distribution.

§1 Introduction

Bounded domain distributions naturally arise when the observed phenomena vary in a finite
interval. The uniform, beta, arcsin, Bates, Kumaraswamy, noncentral beta, power, triangular,
and Von Mises distributions are the most popular bounded domain distributions in the statis-
tical literature. Dombi et al [1] recently proposed the epsilon distribution as an alternative to

them. It is defined by the cumulative distribution function (CDF') as follows:
Fra(z)=1—e_rq(z), z€(0,d),
Fra(z) =0ifz <0and F) 4(z) =1if x > d, where A\,d > 0, and €_j 4(x) denotes the following
power-ratio function:
A2\ A2
d—z ’
Hence, it is a two-parameter bounded domain distribution. It takes its source from the so-called

e_xa(z) = x € (0,d).

first-order epsilon differential equation, and has the feature to satisfy the following limiting
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property: limg oo Fra(z) =1 —e 2%, for z > 0, and limg_, 1 Fya(7) = 0 otherwise, limit
function which corresponds to the CDF of the exponential distribution with parameter A > 0. It
is shown in [1] that, in the context of reliability management, the epsilon probability distribution
may be used to characterize the mortality and useful life cycle under the assumption of a
common bathtub-shaped failure rate.

In view of its interesting modeling properties, recent works have proposed to modify or
extend the epsilon distribution for diverse modelling aims. One can refer to Dombi et al [2], who
proposed the omega probability distribution with the introduction of a new power parameter in
the definition of F\ q(x). A more pliant distribution family is derived and studied in Dombi and
Jonas [3,4] and Vasileva [5]. One can also mention the inverse epsilon distribution established
by Jonas et al [6] corresponding to the distribution of 1/X, where X is a random variable
with the epsilon distribution, offering a new lower truncated distribution for novel modeling
perspectives.

In this article, we explore a new mathematical horizon by applying an existing mechanism,
called quadratic rank transmutation map (QRTM), to extend the functionality of the epsilon
distribution. The QRTM was introduced in probability theory by Shaw and Buckley [7], and
is formally defined by Tp(u) = u(l + 6 — Ou), with v € (0,1) and 6 € [-1,1]. It was rapidly
used to add the new parameter 6 to a baseline continuous distribution in order to improve its
versatility. More precisely, if G(x) denotes a baseline continuous CDF, the QRTM yields the
following CDF:

Hy(z) =Tp(G(z)) = G(x)(1 + 0 — 0G(x)), =z €R,

where 0 € [—1,1], defining an extended version of the baseline distribution. One can notice
that, when 8 = 0, Hy(x) is reduced to G(x), when 6 = —1, it corresponds to the CDF of the
maximum of two independent variables with CDF G(x), and when 6 = 1, it becomes the CDF
of the minimum of two independent variables with CDF G(z). All the intermediary values
of 6 provide an easy switch between these specific distributions. This method was applied in
numerous studies to extend a plethora of existing distributions. We may refer to the articles of
Bourguignon et al [8] and Rahman et al [9], and the references therein.

In the light of this state of art, we introduce the transmuted epsilon (TE) distribution
defined by the following CDF:
F)\,d’g(x) = F)\’d(m)(l + 60— 9F,\’d(3;‘)), r eR.
That is, after minor developments,

FA7d79($) = (1 — E_)\’d((ﬂ)) (1 + HE_A’d(CC)) , ITE (0, d), (1)
with F) g9(z) =0if 2 <0and Fy 49(x) = 1if & > d, where § € [—1,1]. By construction, when
d — 400, we get the CDF of the transmuted exponential distribution as proposed in [10]. Also,
by the intrinsic nature of the QRTM approach, when § = 0, the TE distribution becomes the
power epsilon distribution, when # = —1, it corresponds to the CDF of the maximum of two
independent variables with the epsilon distribution, which is also identified as the exponentiated
epsilon distribution with power parameter 2, and when 8 = 1, it becomes the CDF of the
minimum of two independent variables with the epsilon distribution. Also, it can be noted that
F 4,0(z) is an increasing function with respect to 6, implying the following first-order stochastic
ordering properties involving the epsilon distribution: For 8 € [0, 1], we have F q(z) > F» 4(z)
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and, for 0 € [—1,0], Fx 40(x) < Fy q(x). We thus see that the parameter 6 adds a certain dose
of flexibility in the former epsilon distribution, which we aim to study and analyse from a
statistical point of view. This aspect is detailed on several complementary plans in the article.

Concretely, the article is divided into seven sections. Other functions of interest of the
TE distribution are discussed in Section 2. Quantile and moment analyses are performed in
Sections 3 and 4, respectively. The estimation of the model parameters is investigated in Section
5. Applications in reliability engineering are presented with regression modeling in Section 6.
Conclusion and final remarks are formulated in Section 7.

§2 More functions of the TE distribution

First, based on F) 4¢(z) as given in Eq. (1), the survival function of the TE distribution is

obtained as
Sxa0(z) =1—Fxae(z)
=e_xa(x)(14+0—0e_rq(z)), xe€(0,d), (2)

with Sy g9(z) =1if 2 <0 and Sy ge(z) =0if x > d.

By a simple differentiation of F 4¢(z) for € (0,d), we get the corresponding probability
density function (PDF) as

Inao(x) = Fﬁ,d,e(ﬂﬂ)

d2
m(l —0+20e_»q(x))e_xa(x), x€(0,d),
and fxq0(z) = 0forz & (0,d). It can be noted that fy 4¢(z) is a weighted version of the epsilon
distribution [1] by the weight function w(z) =1 — 6 + 26e_» 4(x). In some sense, this weight
modulates some functionalities of the former epsilon distribution. Obviously, when d — +o0,

=A

we get the PDF of the transmuted exponential distribution.
Also, the following stochastic inequalities involving the PDF of the epsilon distribution hold:

(1=0)fra(x) < frao(r) < (1+0)fra(x).

One can also express fx q4.0(z) as a general mixture of PDFs of the epsilon distribution by
noting that

Irao(@) = (1=0)fra(x) +0for,a(2). (3)
Therefore, selected properties of the epsilon distribution can be directly used to determine some
properties of the TE distribution.

The precise analytical properties of fy 49(x) are difficult to establish from a mathematical
point of view. For this reason, we adopt a graphical approach. An exhaustive panel of curves
for the PDF is presented in Figure 1.

On the other hand, the hazard rate function (HRF) of the TE distribution is obtained as

Irdo(T)
hy.d6(r) = Snao(@)
d2 06,)\41 x
- Ad2 — 22 (1 Tz 0+ Hefk?d(x)> » =€(0.d),
and hy g0(z) = 0 for z ¢ (0,d). The following stochastic ordering inequalities can be estab-
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lished: For 8 € [0,1], we have hy 4(z) < hy g0(z) < (1 +6)h) q(z) and for 6§ € [—1,0], we have
(140)hxa(z) < hago(x) < hyq(z), where hy 4(z) refers to the HRF of the epsilon distribution.

The plots of the PDFs in Figure 1 indicate that the TE distribution is skewed to the right
with unimodal and reversed-J shapes when 6 is negative and positive, respectively, while the
plots of the HRF indicate that the TE distribution has only J-shape regardless of the value
of . From a practical point of view, this property of the HRF means that it can be used to
model the second, quasi-constant, and the third, increasing phase of a bathtub-shaped failure

rate curve (see, e.g, Lienig and Bruemmer [19]).
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Figure 1. Plot of the PDF (left) and HRF (right) for some parameter values of the TE distri-
bution.

§3 Quantile analysis

The quantile function (QF) of the TE distribution, say Qx a,6(u) with u € (0,1), is charac-
terized by the following functional equation: F 49[Qxq4,0(w)] = u. After some developments,
we establish the following sophisticated expression:

—2/(xd)
[9 1+ /0102 49u} — (20)72/0D
d

- if 940,
Onrao(u) = [e S /) 4eu} +(20)-2/ )
1— —2/()\d) _ 1
( u) otherwise.

(1 —u)=2/(0d) 1
The quantile analysis of the TE distribution is fully possible based on the expression of this
QF. In particular, by taking u = 1/2, the median of the TE distribution is

~2/(\d) _
0—1++1+862 — (20)~2/(Ad)
d[ + * ] (26) if 60+#0,

Ma=1{ [0-1+vite] O 4 (20)-2/00
22/(Ad) _ 1

22/(Nd) 1

otherwise.
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The first and third quartiles can be obtained in a similar manner. The inversion method, among
other techniques, can be employed to generate values through the QF. Further general details
on the quantile analysis of a distribution can be found in the book by Gilchrist [11].

The plots in Figure 2 show that the QF of the TE distribution could either be J-shaped or
inverted-L-shaped.
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Figure 2. Plots of the QF for some parameter values of the TE distribution.

§4 Moment analysis

Let Y be a random variable with the TE distribution. The following result presents the rth

moment of Y.

Proposition 1. The rth moment of Y can be expressed as

. . Ad Ad Ad
BE(Y"™) = (1—0)Ad**"B <r+1,2 + 1) o (2 L L o +1;—1)

+200d" "B (r+ 1,Ad+ 1) Fy M+ 1,r +1;7 + Md+1;-1),

where B(a,b) = fol ta=1(1 — t)=1dt, referring to the standard beta function, and oFy(a,b;c; x)
is the Gauss hypergeometric function defined by

J’_
3

(@) (b)r =

F . — =
2 1(@,1),0,1‘) (C)k- k',

>
Il
o

where (e)y = e(e+1)(e+2)...(e+ k —1).

Proof. Let us introduce a random variable X with the epsilon distribution, specified with the
parameter X\. Then, by applying the approach of Section 3.1 in Okorie and Nadarajah [12] with
B =1, for any integer r, the rth moment of X, can be expressed as

E(X7}) = \dt"B (7‘—}—1,)\2d+1) o ()\;—i—l,r—&—l;r—l—/\;z—i—l;—l). (4)
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Then, based on Eq. (3), the rth moment of YV is given as

+oo
E(Yr) = / l‘rf)\7d79($)d$

— 00

+o0 t+oo
=(1-0) / " faa(x)de + 9/_ x" fox,a(x)dz

= (1 - 0)E(X}) + 0E(X3,),
and, by virtue of Eq. (4), we get the desired result. O

In particular, the mean and variance of Y are
E(Y)=(1-60)\d*B (2, % + 1) o Fy <>\2d +1,2;2 4 %; —1)
+207\d®B (2, \d + 1) o F} (A\d +1,2;2 + \d; —1)

and

2 2
+207\d®B (3, \d 4+ 1) o Fy (Ad +1,3;3 + \d; —1),

_ {(1 — 0)\d®B (2, % n 1) oF) (A;l F1,2:24 %; —1)

Y/ Y/ Y
V(Y)=(1-60) B (3, 5+ 1) o Fy ( +1,3;3+ —; 1>

2
+207\d?B (2, A\d + 1) o Fy (Ad + 1,2; 2 4+ \d; —1)} ,

respectively. With similar expressions of FE(Y?), E(Y?) and E(Y*), we can determine the
skewness and kurtosis of Y, as follows:
E(Y3) - 3E(Y)E(Y?) +2[E(Y))?

S(Y) =

[V (Y)Js/2
and
B E(YY) —4E(Y)E(Y?)+6[E(Y)]?E(Y?) —3E(Y?)
o EE VP ’
respectively.

The contour plot for the skewness in Figure 3 shows that, regardless of the value of 6, the TE
distribution is always right skewed and the contour plot for the kurtosis still in Figure 3 shows
that, whatever the value of # is, the TE distribution is either a leptokurtic or a platykurtic
distribution.

The moments are of relative complexity from the mathematical point of view. This com-
plexity reduces considerably when 7 tends to infinity, as developed in the result below.

Proposition 2. The asymptotic rth moment of Y satisfies
7! 0
lim E(Y") = —|1-0+ —|.
A EYD =5 { * 27-]

Proof. Tt follows from the dominated convergence theorem that

lim E(YT) = / z" ( lim f,\)d)a(l‘)> dx
d—o0 d— o0

— 00

00 !
:)\/ xr(1—9+206_’\x)e_’\xd:vzr'[1—9+9].
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Figure 3. Contour plots for the skewness (left) and kurtosis (right) for some parameter values
of the TE distribution.

We get the desired result.

§5 Maximum Likelihood Estimation

5.1 Method

Let X be a random variable with the TE distribution and Q = (d, A\, )’ be the parameter
vector. The log-likelihood function £ = Z(2) based on a random sample of size n with the
corresponding observations x1, 22, - ,x, is given by

ar ar
2 2

L(Qlr) =— log (d* —2?) + ) log (29(01 +a) T (d—z)F -0+ 1)
11:1 . d+ i=1 (5)
z;
- gd)\izzllog ( T $Z> + 2nlog(d) + nlog(A).

Observe that we cannot obtain the estimate of d from Eq. (5) based on the sample data

since d is free from x. However, from the order statistics, suppose x(1),%(2), " ,Z(n) such
that z(;) < xp) < -+ < () denote the ordered sample corresponding to x1,x2, - ,Tn; we
can obtain the maximum likelihood estimate (MLE) for d as d = max (1,22, - ,Z,) + €, i.e.,

d = () + € where € > 0 denotes an arbitrary constant. Throughout the remaining part of the
article, we set € = 0.1 while estimating d. In fact, when we estimate a distribution parameter
using the sample, we assume that all elements in the sample are in the domain of the random
variable. This is because the sample should contain independent observations of the random
variable in question. Since the value of parameter d determines the domain of the random
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variable that has a TE distribution, in the estimation, it is a prerequisite that d is greater than
the maximal element in the sample. This also means that the optimal value of d should be
found under the condition that d is greater than the maximal element in the sample.

The partial derivative of Z(Q|x) given in Eq. (5) with respect to A is

0L () _ z": ldé)(d — ;)% (d 4 2;)” 7 log(d — ;)

oA 20(d + ;)2 (d— ;)% —0+1

dO(d — x;) % (d+ ;)" % log(d + x;)

20(d+x:)~ 2 (d—x;)T —0+1

1 & d—+ x; n
_ = 1 o i
2dz=zl Og( d :I:Z)—’—A,

and the partial derivative of .Z(Q¥|x) with respect to 6 is

i=1

0.2(Qz) z": 2(d — ;)% (d+a)" % —1 )
00 20(d+ ;)" % (d—2)F —0+1

By substituting the MLE of d, which is d into Eq. (6) and Eq. (7), and setting the two
equations to zero and solving them simultaneously, we can obtain the MLEs for A and 6, denoted
by A and 6. However, the simultaneous equations can not be solved symbolically, but we can
conveniently approach them numerically, for example, through the Newton-type algorithm by
minimizing .Z(|z). Several packages in some statistical and mathematical software like the
nim and the optim functions in R [13] can implement such Newton-type algorithm.

5.2 Simulation

Here, we use the MLE method to estimate the parameters of the TE distribution and we
investigate the performance of this method through a Monte-Carlo simulation. The simulation
involves different sample sizes, n = 20, 50, 90, 180, 320, and 700, different parameter combina-
tions, and 1000 replications in R software. Table 1 shows the values of the mean estimates,
standard errors (SEs), biases, and mean square errors (MSEs) for A and §. We consider a wide
range of initial guesses for the parameters and we did not notice any convergence issues, so any
set of initial values will give a similar result in all scenarios. Generally, we note that the SEs,
biases, and MSEs decrease as n increases.

The Monte-Carlo algorithm is detailed as follows.

(i) For specific parameter values of €2, simulate a random sample of size n from the TE
distribution by using the inverse transformation method of random number generation.

(ii) Estimate the parameters of the TE distribution by the MLE method.
(iii) Perform 1000 replications of steps (i)-(ii).

(iv) For each of the three parameters calculate the mean, SE, bias and MSE of the 1000
parameter estimates in (iii). The mean, SE, bias and MSE for the parameters are expressed
as:
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respectively, where wj s represents the MLEs of X\ or 6 for the ith iteration under spec1ﬁc
sample size n, Q corresponds to the mean of the parameter estimates, i.e., )\z s and 91 s
and w denotes the actual values of the parameters.
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§6 Applications in reliability theory

6.1 Basic data analysis

The first data that we consider are on the number of operating hours between successive
failure times of air conditioning systems in Boeing airplanes (see Proschan [14]). The operating
hours data and its descriptive statistics were given in Okorie and Nadarajah [12]. Here, we
have reproduced only the descriptive statistics, which are listed in Table 2 for reference sake
and from there, we can see that such data is right skewed and heavy tailed. Based on a
KS p—value of 0.231 Okorie and Nadarajah [12] showed that the omega distribution, which
is an extension of the epsilon distribution, fits the operating hours data better than many
three-parameter distributions, namely the exponentiated Weibull, generalized power Weibull,
generalized Weibull, modified Weibull, modified Weibull extension, odd Weibull, and reduced
modified Weibull distributions in Dombi et al [2]. Here, we compare the TE distribution with
some other well-known one-parameter and two-parameter distributions to justify the importance
of the extra parameter . These competitors are defined with their CDFs as follows:

(1) Epsilon distribution (see Dombi et al [1]):

dba\ ¥
F(z):l—(djz) L0<a<d d A>0,

(2) Gamma distribution

ro =12

where (-, -) denotes the standard incomplete gamma function,

,x>0,a, >0,

(3) Generalized exponential distribution (GED) (see Gupta and Kundu [15]):
F(z)=[1—e % 2>0, a, A >0,

(4) Rayleigh geometric distribution (RGD) (see Okorie et al [16]):

2

1—e 32
Flz)= ———,2>0,0>0,p€c (0,1),
1 —pe 202

(5) Lindley distribution (see Lindley [17]):

F(x):l—(l—i— AT

A+1

)e)‘x,x>0,)\>0

(6) Exponential distribution:
F(x) = 1—e™, >0, A>0, and
(7) Rayleigh distribution:
22
Flx)=1—¢"22,2>0,0>0.
The above CDFs can be completed as standard for the other values of X. We compare the

fitting performance of all the fitted distributions by their Kolmogorov-Smirnov (KS) p—values
(the KS is one of the most suitable goodness-of-fit measures for measuring the fit of distributions
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with positive support) and AIC with a correction (AICc) due to Hurvich and Tsai [18] goodness-
of-fit statistics. The distribution with the smallest goodness-of-fit statistics and largest KS
p — value is the best. The goodness-of-fit measures considered can be expressed as follows:

(1) KS
KS = L Flaw), Flaw) - =
_17{1,12?){7” n L)) £ X () n
(2) AICc
AICc:AIC-l-M,
n—k—1

where, k, n, and F(w) correspond to the number of parameters, sample size of the data, and
the estimated CDF of the distribution under the ordered data, respectively.

Table 2. Descriptive measures for the operating hours data.

Data Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev. Skewness Kurtosis

Operating hours|1 22 o7 93.14 118 603 106.76 2.11 7.92

14 }=d ol =
IS @ =3 EY
L I L |

Observed probability

o
~
!

14
o
L

r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Expected probability

Figure 4. P-P plots of the fitted distributions for the number of operating hours data.

From Table 3, we can see that the TE distribution gives the smallest AICc and largest KS
p—value. There is just one exceptional case where the exponential distribution though with a
relatively larger log-likelihood value in comparison to the TE distribution, gave the smallest
AICc value in Table 3. This is because the TE distribution has three parameters, whereas the
exponential distribution has just one parameter and consequently the AICc penalizes the model
based to the number of parameters in the model. In general, the TE distribution appears to fit
the number of operating hours data better than the rest of the distributions and this evidence
is conjectured in the probability-probability (P-P) plot in Figure 4.
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Table 3. Parameter estimates, SEs (in bracket), log-likelihood, AICc and KS p—value for the
fitted distributions for the number of operating hours data.

MLEs ¢ Measures
Distribution Parz[grge]ters - Z(Q) AICc KS p—value

TE distribution d : 0.2[38]85246; X : 4.2585507; 0 : 0.6419139 -188.9262 -371.7376  0.4135

. [0.575417] [0.1667636]
Epsilon d : 0.9885246; A :6.070133 -183.2891 -360.4634  0.0344
- [0.4159603]
RGD $:0.9912079; & : 0.6563732 -164.7371 -325.4170  0.0034
[0.004901709] A[0-18372903]
Gamma & :0.9217569; 3 : 6.0367943 -187.7760 -371.4948  0.3768
[0.07807271] . [0.6686258]
GED & : 0.9269039; A : 6.2267767 -187.6644 -371.2717  0.3383
[0.08301857] [0.5767788]
Lindley A :7.334973 -186.8464 -371.6738  0.1750
_[0.4539852]
Exponential A1 6.549221 -187.3007 -372.5825  0.2113
[0.4487452]
Rayleigh & :0.1640222 -22.09514 -42.17132 2.2 x 10716

[0.005618628]

%For computational stability with fitting of the distributions, the data was scaled by 610 as in Okorie and
Nadarajah [12].

6.2 TE Distribution Regression Model

Classical regression modeling requires the response variable to follow the normal distribution.
However, it is well known that this is not usually the case in practice as the response variable
may follow a different distribution. In such situation, we can model the relationship between the
response and predictor(s)/covariate(s) variable(s) by the generalized linear model (GLM). For
instance, in simple case involving a single predictor variable, the GLM can relate the response
variable, say X, with the predictor variable, say Y, in various ways.

Here, we describe the procedure for linking covariates with the TE distribution for regression
analysis. There are many ways of doing this in the literature as we have noted; however, popular
methods for incorporating the covariates into the model include: scale parameter, distribution
mean or median, HRF and CDF. However, in the case of the TE distribution, it does not
have any simple symbolic expression for the mean, so we can proceed by linking the covariates
through any other convenient method. Here, the covariates are incorporated into the model
through the proportional reversed hazard (PRH) model following Mulayath and Sankaran [20].
The PRH model can be expressed as

F(a|Y) = [Fo(a|Y)"BY),
where F(2|Y) is the CDF of the response variable X given the covariates Y, Fy(z|Y") is the
baseline CDF; in this case, the baseline CDF of the TE distribution, and h(3;Y’) denotes a
non-negative function of the n X p covariate matrix Y and the px 1 vector of unknown regression
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Table 4. Parameter estimates, SEs (in bracket), log-likelihood, AICc and KS p—value for the
fitted distributions for the gradient of beach slope (X) data.

MLEs Measures
Distribution Parz[islllee]ters -Z(Q) AICc KS p—value

TE distribution d: 11.4; X : 0.1442778; 6 : 0.6227235 18.78846 48.37691 0.12430

-] [0.05700563] [0.3868613)
Normal [ :3.186189; & : 3.572149 24.22936 54.45872 0.00108
[1.190717] [0.8419066]

parameters 3. Here, we take h(3;Y) = BY hence, the CDF and PDF of our new regression
model are given by

FalY) = {[1_(32)

BTy

and

Ad
A? gy d+az\
faly) = e {[l(d_gj

o\ ¥
“ [19+29( “C)
d—=x

Given a pair of data (y,z) we can obtain the estimates for d, 3’s, A and 6 through Eq. (9)

respectively.

and using a similar estimation procedure in Section 5.

Next, we demonstrate the usefulness of the new regression model in construction engineer-
ing. We apply it to the pair of data on naturally occurring ocean beaches involving median
diameter (mm) of granules of sand (YY) and the gradient of beach slope in degrees (X), the
data is available on https://college.cengage.com/mathematics/brase/understandable_
statistics/7e/students/datasets/slr/frames/frame.html and are listed as follows:

Y : 0.170, 0.190, 0.220, 0.235, 0.235, 0.300, 0.350, 0.420, 0.850
X : 0.630, 0.700, 0.820, 0.880, 1.150, 1.500, 4.400, 7.300, 11.30

First, a quick look at Table 4 shows that the normal distribution with a KS p—value < 0.05
is not a suitable candidate for the response variable, whereas the KS p—value > 0.05 of the TE
distribution indicates that the distribution provides a good fit to the gradient of beach slope
data. Both the negative log-likelihood and AICc values of the TE distribution are smaller than
that of the normal distribution thus, it fits the data better than the normal distribution.

Since the TE distribution appears to provide a decent fit for the gradient of beach slope
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Table 5. Parameter estimates, SEs (in bracket), log-likelihood, AICc and KS p—value for the
fitted distributions for the gradient of beach slope (X) data.

Model 1 Model I1
Parameters - Z(Q) Parameters -Z(Q)
[SEs] [SEs]
d :[1]1.4 23.37715 d ;[1]1.4 18.23661
Bo : —0.016885 By : 1.9815132
_ [1.0521478]  [1.8567401]
51 : —0.095625 A :0.2012359
 [4.1153665] R [0.08622244]
A 0.151875 0 :0.7159927
[0.06093317] [0.2805690]
0 : —0.748125
[0.4969280]
AICc:76.75431 AICc:54.47322
LR test:
A: 0.4966559

p—value: 0.4809732

data, it suggests that we can describe the relationship between the gradient of beach slope in
degrees and the median diameter (mm) of granules of sand via Eq. (9) for p = 1 and either
with intercept Sy (Model I) or without intercept (Model II). The MLEs for the parameters of
the regression model for Model I and Model II are given in Table 5.

We compare Model I and Model II with the likelihood ratio test for testing, Hy : Bp = 0
against Hy : Bp # 0. Now, let j] and .,?H denote the estimated log-likelihoods under Hj
and Hi, respectively. The test statistic for testing Hy is A = _Q[j] I /.j]] and it follows the
chi-square distribution with 1 degree of freedom. For these models, the likelihood ratio test
gave a p—value of > 0.05 hence, suggesting no statistically significant evidence against Hy at
0.05 level of significance. In fact, from the scatter plot in Figure 5 (left) one can see that
the gradient of beach slope in degrees tends to increase with the median diameter (mm) of
granules of sand and this is in agreement with the positive value of Bl in Model II. To verify
whether the fitted regression model is appropriate, we used the randomized quantile residual
by Dunn and Smyth [21] which is defined as #; = &~ (Fla;|y;]) for i = 1,2,--- ,n, where ®(z)
denotes the CDF of the standard normal distribution and F'(z;|y;) is the estimated CDF in Eq.
(8). For valid models, the randomized quantile residuals are normal N (0, 1) distributed. From
Figure 5 (right), we can observe that nearly all the points fall between the 0.95 confidence band.
The Jarque-Bera test for normality by Jarque and Bera [22] for testing Hj indicates that the
regression residuals are normally distributed against H; that the regression residuals are not
normally distributed gave a p—value of 0.4614(>0.05) in favor of the null hypothesis. Hence,
we can conclude that the fitted regression model is good for the data. These results show that
median diameter (mm) of granules of sand is a significant predictor of gradient of beach slope
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Gradient of beach slope i
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Figure 5. Scatter plot of median diameter (mm) of granules of sand versus gradient of beach
slope in degrees (left) and the Q-Q plot of the quantile residuals (right) for the fitted regression
model.

in degrees; furthermore, the gradient of beach slope in degrees increases with the increase in
the median diameter (mm) of granules of sand.

§7 Conclusions

In this article, we introduced and studied the transmuted epsilon (TE) distribution. The
main mathematical properties of the TE distribution have been derived, including linear rep-
resentations, moments, quantile function and reliability functions. Statistical inference on the
parameters of the TE distribution has been dealt with via the method of maximum likelihood
estimation. Results from one of the applications in reliability engineering setting showed that
the TE model can provide better results than the existing epsilon, gamma, generalized exponen-
tial, Rayleigh geometric, Lindley, exponential and Rayleigh models. Furthermore, we discussed
the regression modeling using the TE distribution and found that the regression model based
on the TE distribution offers a good fit to the applied data.
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