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Peaked traveling wave solutions of the modified highly

nonlinear Novikov equation

LI Hui-jun'? WEN Zhen-shu?* LI Shao-yong?

Abstract. In this paper, we focus on peaked traveling wave solutions of the modified highly
nonlinear Novikov equation by dynamical systems approach. We obtain a traveling wave system
which is a singular planar dynamical system with three singular straight lines, and derive all
possible phase portraits under corresponding parameter conditions. Then we show the existence
and dynamics of two types of peaked traveling wave solutions including peakons and periodic
cusp wave solutions. The exact explicit expressions of two peakons are given. Besides, we
also derive smooth solitary wave solutions, periodic wave solutions, compacton solutions, and
kink-like (antikink-like) solutions. Numerical simulations are further performed to verify the
correctness of the results. Most importantly, peakons and periodic cusp wave solutions are

newly found for the equation, which extends the previous results.

81 Introduction

In recent decades, many important nonlinear evolution equations have been proposed to
model different nonlinear phenomena, including shallow water wave motions in fluid dynamics,
ion acoustic waves in plasmas and many other engineering fields. Besides, in recent years, inte-
grable systems also have received considerable attentions, and the inverse scattering approach
and the bilinear approach have been extensively applied to study the solutions of integrable
systems [1-3]. Among these equations or systems, the Camassa-Holm-type equations are of
particular interest. One remarkable feature of the Camassa-Holm equation is the discovery of
the so-called peakons soliton or peakons [4].

As an important Camassa-Holm-type equation, the Novikov equation

2 2
Ut — Uggt + AU Uy = SUUL Uy + U Ugpa, (1)
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was first obtained by Novikov [5] in a symmetry classification of nonlocal partial differential
equations (PDEs) with cubic nonlinearity. There has been great interest in studying the solu-
tions of Eq.(1) and their properties. In 2008, Hong and Wang [6] proved that Eq.(1) admits
N-peakon solutions. In addition, they derived a matrix Lax pair for Eq.(1) and showed that
Eq.(1) possesses infinitely many conserved quantities and bi-Hamiltonian structure. Therefore
Eq.(1) is integrable. Besides, there are many works [7-9] concerning the peaked solutions and
their stability. More recently, by exploiting dynamical systems approach, Li [10] obtained the
parametric representations of the cuspon and compactons under the condition ¢? > ¢ through
the traveling wave transformation u(x,t) = ¢(€),€ = x — ct. Further, Pan and Li [11] studied
the smooth and nonsmooth solitons under the condition ¢? < ¢. Zhang and Tang [12] derived
the peakons and periodic cusp wave solutions of Eq.(1).

In recent years, the modified versions of Novikov equation have attracted much attention
[13,14]. In this paper, we focus on the following modified highly nonlinear Novikov equation

Uy — Ugar + UMy = SUtptpy + Utpay, (2)

which was introduced by Zhao and Zhou [15] in 2010. It is worth mentioning that the nonlin-
earity of Eq.(2) is much higher than that of Eq.(1), which makes it more difficult to study the
solutions of Eq.(2) and their dynamical behaviors. Zhao and Zhou [15] introduced the transfor-
mation u(€) = ¢(€) = /v(€),& = ¥ — ct and exploited symbolic computation to study its exact
solutions. However, the transformation requires that u(£) > 0 and v(£) > 0 and has its limit in
obtaining the solutions. Exploiting the traveling wave transformation u(z,t) = ¢(§),£ =z —ct
and the factorization technique, Eq.(2) can be factorized as

((¢* —2) ¢ + 3p¢) <855 - (:23@2 + 1)) o =0. (3)

Deng [16] obtained some special traveling wave solutions of Eq.(2) by solving the following
second-order ordinary differential equation

2
ap”zgo<3<p2+l>.

In fact, the solutions of Eq.(3) can be derived by solving the following coupled ordinary

differential equation
{ (% —2) LD 4 300 F(p(€)) =0, @
¢" — ¢ (3¢° +1) = F(p()-

From system (4), Wen and Shi [17] showed the existence and dynamics of several types
of bounded traveling wave solutions including smooth solitary wave solutions, periodic wave
solutions, compacton solutions, kink-like and antikink-like solutions by dynamical systems ap-
proach. However, the peakons and periodic cusp wave solutions were not found for Eq.(2). One
may wonder whether Eq.(2) has peakons and periodic cusp wave solutions, since the Novikov
equation (1) and other Camassa-Holm-type equations [18,19] have peakons and periodic cusp
wave solutions. Based on this motivation, in this paper, we further focus on peaked traveling
wave solutions of (2) by exploiting dynamical systems approach [20-28]. For readers’ conve-
nience, here we briefly introduce the main procedure of dynamical systems approach as follows:

Step 1. Convert partial differential equation (PDE) into ordinary differential equation
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(ODE) by traveling wave transformation.

Step 2. Try to tranform the obtained ODE into planar dynamical system by some effective
techniques, such as integration, multiplied by a factor [25,30] and so on, according to the special
structure of ODE.

Step 3. Based on the qualitative theories of differential equations and the bifurcation the-
ories of dynamical systems, we can determine the bifurcation conditions and obtain the phase
portraits of the above planar dynamical system.

Step 4. Study the dynamics of traveling wave solutions through the phase portraits, and
exact solutions by the first integral of planar dynamical system.

The main contributions of this paper are summarized as follows:

(1) Showing the existence of various types of bounded traveling wave solutions including
peakons, periodic cusp wave solutions, smooth solitary wave solutions, periodic wave
solutions, compacton solutions, and kink-like (antikink-like) solutions under explicit pa-
rameter conditions.

(2) Deriving the exact explicit expressions of two peakons for Eq.(2).

(3) Observing peakons and periodic cusp wave solutions of Eq.(2) for the first time, which
extends the previous works [15-17].

82 Bifurcations of Phase Portraits

In this section, we present the bifurcations of phase portraits corresponding to (2).

To begin with, substituting u(z,t) = ¢(§) with £ = 2 — ¢t into (2), where ¢ > 0 is the wave
speed, it follows,
_cspl+c(p///+4(p4<pl:3()0()0/()0//_’_()02()0///, (5)
where the prime stands for the derivative with respect to &.

Multiplying both sides of (5) by ¢ and integrating the equation once, we get

2 26 2
—%‘Fiﬁ'ap(p“—c((p) 3 //_%’ (6)

2 3 g ~ 7Y
where ¢ is the integral constant.
Letting y = ¢, we obtain the planar system

de _

dig =Y, 7

dy _ 4¢°—3cp®—3cy’+g (7)
dé — 6¢(p?—c) ’
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with the following first integral

V2 —c2c0* +3c20p% +29  3p?—c 3e(c —
Hi(py) = == 5 B y'+—5—n p? —cl,
for p? — ¢ > 0, @®)
8
—vVe—¢?2ept +3c20? +29  3\/e—¢? 5 3c(c—2) P
H 9 = ]
2(p,y) 5 5 + " e+ 5 arcsm\/a
for ¢* — ¢ < 0.

Obviously, system (7) has three singular straight lines ¢ = 0, ¢ = /c and ¢ = —y/c. Trans-
formed by d¢ = 6¢(¢? — ¢)dr, system (7) becomes a regular system

{ 9 = 6py(p? — o), (9)

Since the level curves of system (7) is the same as those of the regular system (9), we can

% = 4% — 3cp? — 3cy? + g.

analyze the phase portraits of system (7) from those of system (9). To study the singular points
and their properties of system (9), let

flp) = 4¢° = 3cp® +g. (10)
We can obtain the graphics of the function f(p) in Figure 1 under corresponding parameter
conditions. Note that the zeros of f(¢) correspond to the singular points of system (9).

() f(e)

NSNS TINVINY

(b) g=0 0<g<ecye e) g>cy/e

Figure 1. The graphics of the function f(p) under corresponding parameter conditions, (a)

g<0;(b)g=0;(c) 0< g <eye; (d) g=c/c; (e) g>cy/e

Let A(p,y) be the characteristic value of the linearized system of system (9) at the singular
point (p,y). We have
A (p,0) = 6p(” = ) f'(0)- (11)
From (11), we see that the signs of ¢, ¢? — ¢ and f’(¢) can determine the dynamical
properties (saddle, center and degenerate singular point) of the singular point (¢, 0) according
to the theory of planar dynamical systems.
We summarize the number of singular points of system (9) and their dynamical properties

under corresponding parameter conditions in Lemma 1.

Lemma 1. For system (9), we have

(1) When g < min{3c? —4c3,0}, system (9) has two singular points (£¢1,0). Furthermore,
(£¢1,0) are saddles.

(2) When g = 3¢* — 4c® and ¢ > 3, system (9) has two singular points (+£/c,0). Further-
more, (£+/¢,0) are degenerate smgular points.
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(3) When 3c* —4c® < g < 0 and ¢ > 2, system (9) has siz singular points (+p1,0)

and <:|:\ﬁ,:|:1/403_§;2"w). Furthermore, (£¢1,0) are centers, and (:i:\[ :I:\/463302+g>

are saddles.

(4) When g =0 and 0 < ¢ < 3, system (9) has three singular points (++/3c/4,0) and (0,0).
Furthermore, ( :I:\/S?,O are saddles and (0,0) is a high-order singular point.

(5) When g = 0 and ¢ = 3, system (9) has three singular points (£4/3/4,0) and (0,0).
Furthermore, (:i:\/3/747 0) are degenerate singular points, and (0,0) is a high-order singular
point.

(6) When g = 0 and ¢ > %, system (9) has seven singular points (£+/3¢/4,0), (0,0),

and <:|:\f 44/ 4 30>. Furthermore, (£+/3c/4,0) are centers, (0,0) is a high-order singular

point, and <:|:\f 4,/ 43¢ _3°> are saddles.

(7) When 0 < g < 3c* —4c® and 0 < ¢ < 3, system (9) has siz singular points (+¢2,0),
(£¥3,0) and (O,i\/g), with 0 < o < /e < @3. Furthermore, (£y2,0) and (+ps,0) are
saddles, and (O,:I:\/%) are nodes.

(8) When g = 3¢ —4c® and 0 < ¢ < L, system (9) has siz singular points (£¢3,0), (£4/¢,0)
and (0,++/L), with g3 > \/c. Furthermore, (£s3,0) are saddles, (++/c,0) are degenerate
singular points, and (0, i\/%) are nodes.

(9) When g = 3¢? —4c3 and i <ec< %, system (9) has six singular points (++/c,0), (£p2,0)
and (0,++/Z), with 3 < \/c. Furthermore (++/c,0) are degenerate singular points, (+¢2,0)
are saddles, and (O +./ gc) are nodes.

(10) When 3¢ —4c® < g < cy/cand0 < c < 1 1, system (9) has ten singular points (£p2,0),

(£3,0) (i\f i\/mﬁ) and (Qi,/%), with /¢ < p2 < 3. Furthermore, (£y3,0)
and (:i:\f +4/ Mcﬂ) are saddles, (£p2,0) are centers, and (O,ﬁ:\/%) are nodes.

(11) When max{3c® — 4c®,0} < g < ¢y/c and ¢ > %, system (9) has ten singular points

(£p2,0), (£¢3,0), (j:\ﬁ,:t\/ ‘%’f*‘g) and (O,j: %), with 0 < g < 3 < /c. Further-
more, (+p2,0) and (i\f i\/m> are saddles, (+p3,0) are centers, and (O,i\/%)

are nodes.

(12) When g = c\/c, system (9) has four singular points (+1/c/4,0) and (0,£+/L). Fur-
thermore, (£+/¢/4,0) are degenerate singular points, and (O +4/ gc) are nodes.

(13) When g > c\/c, system (9) has two singular points (0, ++/Z). Furthermore, (0,4/Z)

are nodes.

Note that when g = 0, (0,0) is a high-order singular point of system (9). According to the
qualitative theory of differential equations [29], we present the patterns of orbits near (0,0) in
Lemma 2.

Lemma 2. When g = 0, (0,0) is a high-order singular point of system (9). Furthermore,
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(d)g=0and c=2 () g=0and c>2

Figure 3. The phase portraits of system (7) when g = 0.

there is an infinite number of orbits tending to (0,0) along 6 = 5 and 6 = 37”, and there is a

51 s

unique orbit tending to (0,0) along 0 = Z,0 = 3% 0 = 5 and § = IF.

Additionally, for the subcase (10) in Lemma 1, when H;(ps3,0) = (\f 4C33C2+g),
from which we can obtain a bifurcation value ¢ = g7, there exists one orbit connecting
(¢3,0) and (f 403362‘”'9). Similarly, when Hz(p2,0) = Hs (f M’), from
which we can obtain a bifurcation value g = g%, there exists one orbit connecting (2, 0)
and | /e, M , for the subcase (11) in Lemma 1.

Therefore, based on the above analyses, we obtain all possible bifurcations of phase portraits

of system (7) in Figures 2, 3, 4, 5, and 6.

Remark 1. Note that when ¢ < 0, system (7) has only one singular line ¢ = 0 and f(p)
has at most two zeros, which indicates that the phase portraits of system (7) are quite simple
and system (7) can only have trivial dynamical behaviors. Therefore, we only focus on the case
when ¢ > 0.
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Figure 4. The phase portraits of system (7) when 0 < g < ¢y/c.

(a)g:cﬁand0<c<% (b)g:c\ﬁandc:i (c)g:c\/Eandc>i

Figure 5. The phase portraits of system (7) when g = ¢\/c.

b
AP

(a)g>cﬁ,c<%

Figure 6. The phase portrait of system (7) when g > cy/c.
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§3 Dynamical behaviors of bounded solutions of system (7)

In this section, we exploit the phase portraits in Figures 2, 3, 4, 5 and 6 to discuss the

dynamical behavior of the bounded solutions of system (7), since each orbit (curve) in the

phase portraits corresponds to a solution of system (7).

3.1
(1)

3.2

The case g < 0 (see Figure 2)
For g < min{3c* — 4c®,0} in Figure 2(a).

Corresponding to the four families of orbits, passing through the point (yp,0) with

wo € (—v1, =) U(—=v<,0)J(0, ) U(v/c,¢1), system (7) has four families of com-

pacton solutions.

Corresponding to the stable and unstable manifolds defined by Hi(p,y) = Hi(—¢1,0) to
the right side of the saddle point (—¢1,0) and Hy(p,y) = Hi(¢1,0) to the left side of the
saddle point (¢1,0), system (7) has two pairs of kink-like and antikink-like solutions.

For g = 3c? — 4¢® and ¢ > 2 in Figure 2(b).
Corresponding to the two families of orbits, passing through the point (g, 0) with ¢y €
(—v/¢,0) (0, 1/c), system (7) has two families of compacton solutions.

For 3¢? — 4¢® < g < 0 and ¢ > 2 in Figure 2(c).
Corresponding to the two orbits, passing through the point (—¢7,0) defined by Ha(¢p,y) =

— Ve, 4°33°+9> and passing through the point (¢7,0) defined by Ha(p,y) =

(\f 4633”“”), where ¢ is determined by the equation

Hy(p7,0) = (f M), system (7) has two periodic cusp wave solutions.

Corresponding to the two families of periodic orbits, around the center point (—¢p1,0)

defined by Ha(p,y) = h1,h1 € ( < Ve, M) ,H2(<p1,0)>, and around the

center point (p1,0) defined by Hy(g,y) = hz, hy € (Hmh 0), H (f R 3‘"2+g>),

system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (@, 0) with ¢y €
(=5, 0)UJ(0, ¢3), system (7) has two families of compacton solutions.

The case g = 0 (see Figure 3)
For g =0 and 0 < ¢ < 2 in Figure 3(a).
Corresponding to the four families of orbits, passing through the point (¢, 0) with

wo € ( V3 \f) U(=v¢,0) J(0,/e) U (ﬁ, Y %), and the two families of orbits,
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(4)

which are tangent to the y—axis at the point (0,0), system (7) has six families of com-
pacton solutions.

Corresponding to the stable and unstable manifolds defined by H; (¢, y) = Hy ( \/ 34“’, 0)

to the right side of the saddle point ( /T 3¢ 0) Hy(p,y) = Hy ({‘/ 3¢ 0) to the left side
of the saddle point ({*/ 3¢ ) and Ha(p,y) = Ha(0,0) to the left and right sides of the
high-order singular point (0,0) (the orbits tending to (0,0) along 6 = 7,6 = %,9 = %’T
and 6 = ZF), system (7) has four pairs of kink-like and antikink-like solutions.

For g =0 and ¢ = 3 in Figure 3(b).

Corresponding to the two families of orbits, passing through the point (g, 0) with ¢ €
—/3/4,0)J(0, 1/3/4), and the two families of orbits, which are tangent to the y—axis
at the point (0,0), system (7) has four families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by Ha(p,y) = H2(0,0) to
the left and right sides of the high-order singular point (0,0) (the orbits tending to (0, 0)
along 0 = 7,0 = 3” ,0 = ‘%’ and 0 = 7—”), system (7) has two pairs of kink-like and
antikink—hke solutlons.

For g =0 and 2 < ¢ < 2 in Figure 3(c).

Corresponding to the two orbits, passing through the point (—¢7,, 0) defined by Ha (¢, y) =

< NV = _3C) and passing through the point (¢3,,0) defined by Ha(p,y) =

(f de?— 30), where ¢}, is determined by Ha(p3,,0) = (f dc? _3°>, sys-

tem (7) has two periodic cusp wave solutions, which are illustrated in Figure 7(a).

Corresponding to the two families of periodic orbits, around the center point ( v/ ic, 0)
defined by Ha(p,y) = hi,hy € ( ( NV = 36) , Ho ( Y, “120)), and around the
center point (4 3 ) defined by Ha(p,y) = ha, ha € ( 5(/3,0),H (f dc?— 3C>),

system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (¢g,0) with ¢q €
(—¥%2,0)J(0, ¢15), and the two families of orbits, which are tangent to the y—axis at the
point (0,0), system (7) has four families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by Ha(p,y) = H2(0,0) to

the left and right sides of the high-order singular point (0,0) (the orbits tending to (0, 0)

along 0 = Z,0 = 3% § = 3% and § = ), system (7) has two pairs of kink-like and

antikink—hke Solutlons.

For g = 0 and ¢ = 2 in Figure 3(d).
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solutions of Eq.(2).

0.8|
0.6]
0.4
02|

Figure 8. The profiles of peakons (15) and (16).

The profiles of periodic cusp wave solution, periodic wave solution and solitary wave

Corresponding to the two triangle orbits, passing through the point (0,0) defined by

Hy(p,y) = 0, which has expressions

11 3,2
y::b/(p—’_%’ 0< |g| < V2,
/10

and

(12)

Substituting (12) into the first equation of (7) and integrating along the triangle orbits,

we have 7
2 \/g
———_dp =€, for 0 < o < V2,
/w Vet + 32
and

/W Ldg@——m for —v2<p<0
V3 Vo + 32 ’ T
From (13) and (14), we immediately obtain the peakons

6

u(xr,t) = ,
( ) % eXp|m—2t| —-30 eXp—\z—Qt\
and .
U(-Tyt) = — % exp‘$_2t| 39 exp_lw_%‘ )
where
0= V2
V1543’

the profiles of which are given in Figures 8(a) and 8(b).

(13)

(14)

Corresponding to the two families of periodic orbits, around the center point (—+/3/2,0)
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3.3

defined by Ha(p,y) = hi,h1 € (H2(0,0), Hy(—+/3/2,0)), and around the center point

(4/3/2,0) defined by Ha(p,y) = ha,he € (H2(3/3/2,0), H2(0,0)), system (7) has two
families of periodic wave solutions. We illustrate the profile of one periodic wave solution
in Figure 7(b).

Corresponding to the two families of orbits, which are tangent to the y—axis at the point
(0,0), system (7) has two families of compacton solutions.

For g = 0 and ¢ > 2 in Figure 3(e).

Corresponding to the two homoclinic orbits to the point (0,0), which tend to (0,0) along

0=7,0= %”,0 = % and 0 = %’T, defined by Ha(p,y) = 0, system (7) has two solitary

wave solutions, which are illustrated in Figure 7(c).

Corresponding to the two families of periodic orbits, around the center point (— ﬁ , 0)
defined by Ha(p,y) = hi,hy € (HQ(0,0),HQ (— {1/3;0, 0)), and around the center point
(\/% 0) defined by Hs () = ha, ho € (Hz ({/%,0), H>(0,0)), and the two families

of homoclinic orbits, which are tangent to y—axis at the point (0,0), system (7) has four
families of periodic wave solutions.
Corresponding to the two orbits, passing through the point (0,0) defined by H»(0,0) =

Hy (:l:\/E7 £/ 402336), system (7) has two periodic cusp wave solutions.

Corresponding to the two families of orbits, which are tangent to the y—axis at the point
(0,0), system (7) has two families of compacton solutions.

The case 0 < g < ¢y/c (see Figure 4)
For 0 < g < 3c? —4c® and 0 < ¢ < 2 in Figure 4(a).

Corresponding to the six families of orbits, passing through the point (¢g,0) with ¢q €
(3, Ve U=, —92) U(=92,0) U0, 92) U2, v&) U(V 93), and the tuwo families
of orbits, passing through the points (O7 :I:\/%) defined by Hs(p,y) = ha,

he € (Hz(p2,0), Ha(—p2,0)), system (7) has eight families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by Hi(p,y) = Hi(—¢3,0) to
the right side of the saddle point (—¢3,0), Ha(p,y) = Ha(—p2,0) to the left and right
sides of the saddle point (—y2,0), Ha(v,y) = Ha(p2,0) to the left and right sides of the
saddle point (p2,0), and Hy(p,y) = H1(p3,0) to the left side of the saddle point (¢3,0),
system (7) has six pairs of kink-like and antikink-like solutions.

For g = 3c® — 4c® and 0 < ¢ < 1 in Figure 4(b).

Corresponding to the four families of orbits, passing through the point (¢g,0) with g €

(—p3, =) U[—=v¢,0) U0, v/e ] U(V/¢, v3), and the two families of orbits, passing through
the points (O,i\/%) defined by Ha(p,y) = ha, he € (H2(1/c,0), H2(—+/c,0)), system
(7) has six families of compacton solutions.
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Corresponding to the stable and unstable manifolds defined by Hi(p,y) = Hi(—¢3,0) to
the right side of the saddle point (—3,0) and Hy(p,y) = Hi(ps,0) to the left side of the
saddle point (¢3,0), system (7) has two pairs of kink-like and antikink-like solutions.
For g = 3c? — 4c® and } < ¢ < 2 in Figure 4(c).

Corresponding to the four families of orbits, passing through the point (pg,0) with ¢q €

(—ve, —p2) U(—v2,0) (0, p2) U(p2, V), and the two families of orbits, passing through
the points (0, +./Z) defined by Ha(g,y) = ha, ha € (Ha(p2,0), Ha(—¢p2,0)), system (7)
has six families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by Hy(¢,y) = Ha(—p2,0)

to the left and right sides of the saddle point (—¢2,0) and Hz(p,y) = Ha(p2,0) to the

left and right sides of the saddle point (ps,0), system (7) has four pairs of kink-like and

antikink-like solutions.

For 3c? — 4¢® < g < g} and 0 < ¢ < 1 in Figure 4(d).

Corresponding to the two orbits, passing through the point (—¢3,0) defined by Hi (¢,y) =
( Ve, M) and passing through the point (3,0) defined by Hi(p,y) =

(\f 463352“’), where ¢} is determined by the equation

Hy(¢3,0) = <\f 46330”), system (7) has two periodic cusp wave solutions.

Corresponding to the two families of periodic orbits, around the center point (—¢pq,0)

defined by Hy(p,y) = h1,h1 € (H1(<p2, 0),H ( Ve, C33°2+g)>, and around the

center point (g2, 0) defined by Hy(p,y) = ha,hy € ( (f 4?’”) ,Hl(sow)),

system (7) has two families of periodic wave solutions.

Corresponding to the four families of orbits, passing through the point (pg,0) with ¢g €

(=3, —p3) U=/, 0) U(0, v/¢) U (3, ©3), and the two families of orbits, passing through
the points (0, :i:,/—) defined by Ha(p,y) = ha,

he € < (\f 403302+g> ( Ve, 403302”)), system (7) has six families of
compacton solutions.

Corresponding to the stable and unstable manifolds defined by Hi(p,y) = Hi(—¢3,0) to
the right side of the saddle point (—y3,0) and Hy(p,y) = Hy(ps3,0) to the left side of the
saddle point (¢3,0), system (7) has two pairs of kink-like and antikink-like solutions.
Forg=g7 and 0 <c< % in Figure 4(e).

Corresponding to the two triangle orbits, passing through the point (—¢s,0) defined by
Hi(p,y) = ( Ve, 463302+ql) , and passing through the point (p3,0) defined by
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Hi(p,y) = <\[ M), where 3 is determined by the equation Hj(¢3,0) =

( N 4‘3336”91) system (7) has two peakons.

Corresponding to the two families of periodic orbits, around the center point (—¢s,0)

defined by Hy(p,y) = hy,h1 € (Hl(—gag, 0),H ( Ve, M)), and around the

center point (2, 0) defined by Hy(p,y) = ha, ha € < <\[ 43+9> ,Hl(%())),
system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (@, 0) with ¢ €
(=v/¢,0) J(0, /), and the two families of orbits, passing through the points (O, +
defined by Hs(p,y) = ha,

he € <H2 (f 46362+gl) ( Ve, M)), system (7) has four families

of compacton solutions.

For g < g < cy/cand 0 < ¢ < 1 in Figure 4(f).

Corresponding to the two homoclinic orbits to the saddle points (—3,0) defined by
Hq(p,y) = Hi(—p3,0) and the saddle points (¢3,0) defined by Hi(p,y) = Hi(ps,0),
system (7) has two solitary wave solutions.

Corresponding to the two families of periodic orbits, around the center point (—¢ps,0)
defined by Hi(v,y) = hi,h1 € (Hi(—¢2,0), Hi(—¢3,0)), and around the center point
(p2,0) defined by Hi(p,y) = ha, he € (Hi(ps,0), H1(p2,0)), system (7) has two families
of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (¢g,0) with ¢q €
(=v/¢,0) (0, /c), and the two families of orbits, passing through the points (0,++/%)
defined by Hs(p,y) = ha,

he € <H2 (\f 463302"'9> ( Ve, M)), system (7) has four families of

compacton solutions.

For maxz{3c® — 4¢3,0} < g < g3 and ¢ > 1 in Figure 4(g).
Corresponding to the two family of orbits, passing through the point (—¢3,0) defined by

Hy(p,y) = -/, M) and passing through the point (%,0) defined by

Hy(p,y) = (f 403302“’), where % is determined by the equation Ha(p3%,0) =

( Ve, m )7 system (7) has two periodic cusp wave solutions.

Corresponding to the two families of periodic orbits, around the center point (—¢s3,0)

defined by Ha(p,y) = h1,hy € ( ( Ve, 63362“) ,Hg(—<p3,0)>, and around the
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center point (p3,0) defined by Ha(p,y) = ho, ha € (H2(303, 0), H <\f 403302”)),
system (7) has two families of periodic wave solutions.

Corresponding to the four families of orbits, passing through the point (¢g,0) with g €
(=%, —p2) U(—p2,0) LU0, p2) U (w2, %), and the two families of orbits, passing through
the points (0, +./<L) defined by Ha(p,y) = ha, ha € (Hz(2,0), Ha(—2,0)), system (7)
has six families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by Hs(p,y) = Ha(—p2,0)
to the left and right sides of the saddle point (—¢2,0) and Hs(p,y) = Ha(p2,0) to the
left and right sides of the saddle point (¢, 0), system (7) has four pairs of kink-like and
antikink-like solutions.

For g = g5 and ¢ > % in Figure 4(h).

Corresponding to the two triangle orbits, passing through the point (—ps2,0) defined by

4¢3 — 3c2+g . .

Hy(p,y) = ( Ve, 2) , and passing through the point (p3,0) defined by

Hy(p,y) = (f M), where ¢ is determined by the equation Hy(¢p2,0) =

(\f 4633%) system (7) has two peakon solutions.

Corresponding to the two families of periodic orbits, around the center point (—¢ps3,0)

defined by Ho(p,y) = h1,hy € ( < Ve, MM) ,Hg(—g0370)), and around the

center point (s, 0) defined by Ha(p,y) = ha, hs € (Hg((pg, 0), H. (\f MM)),
system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (¢, 0) with ¢q €
(—p2,0)J(0, ¢2), and the two families of orbits, passing through the points (O, +
defined by Ha(p,y) = he, he € (Ha2(p2,0), Ho(—p2,0)), system (7) has four families of
compacton solutions.

Corresponding to the stable and unstable manifolds defined by Ha(p,y) = Ha(—p2,0) to
the right side of the saddle point (—¢32,0) and Ha(p,y) = Ha(p2,0) to the left side of the
saddle point (¢2,0), system (7) has two pairs of kink-like and antikink-like solutions.

For g5 < g < ¢y/c and ¢ > 1 in Figure 4(i).
Corresponding to the two homoclinic orbits to the saddle points (—2,0) defined by

Hs(p,y) = Ha(—p2,0) and the saddle points (y2,0) defined by Ha(p,y) = Ha2(p2,0),
system (7) has two solitary wave solutions.

Corresponding to the two family of periodic orbits, around the center point (—¢s3,0)
defined by Ha(p,y) = hi,h1 € (Ha(—p2,0), Ha(—p3,0)), and around the center point
(p3,0) defined by Ha(p,y) = ha, he € (H2(ps3,0), Ha(p2,0)), system (7) has two families
of periodic wave solutions.
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3.4

3.5

Corresponding to the four families of orbits, passing through the point (y,0) with

vo € (v, —93) U(=2,0) U(0, 2) U(¢3, V), where @3 is determined by the equa-
tion Ha(p3,0) = Ha(¢2,0), and the two families of orbits, passing through the points

(0,4+/4) defined by Ha(p,y) = ha, ha € (Hz(p2,0), H2(—p2,0)), system (7) has six
families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by Ha(p,y) = Ha(—p2,0) to
the right side of the saddle point (—¢32,0) and Ha(p,y) = Ha(p2,0) to the left side of the
saddle point (¢p2,0), system (7) has two pairs of kink-like and antikink-like solutions.

The case g = ¢\/c (see Figure 5)
For g = ¢y/c and 0 < ¢ < 1 in Figure 5(a).
Corresponding to the two families of orbits, passing through the point (¢g,0) with ¢q €
(—v/¢,0) J(0, y/¢), and the two families of orbits, passing through the points (O, +4/ f)
defined by Ha(p,y) = ha,
ho € (Hg (\/E, W) , Hy (—ﬁ, W)), system (7) has four families of

compacton solutions.

For g = ¢y/c and ¢ = } in Figure 5(b).

Corresponding to the two families of orbits, passing through the point (g, 0) with ¢ €
(f%,O)U(O, %), and the two families of orbits, passing through the points <O,:l:\/%)
defined by Hs(p,y) = ha, hs € (H2 (i,O) ,H, (—i,O)), system (7) has four families of
compacton solutions.

For g = ¢y/c and ¢ > 1 in Figure 5(c).
Corresponding to the four families of orbits, passing through the point (¢g,0) with g €

(=ve, = /S)U=V5,00U0, /5 U5, Ve), and the two families of orbits, passing
through the points <O7 +4/ ‘?) defined by Ha(p,y) = ha,

he € (HQ (ﬁ, W) , Hy <—\ﬁ, W)), system (7) has six families of
compacton solutions.

Corresponding to the stable and unstable manifolds defined by Ha(p,y) = Ha(— {l/g, 0)
to the right side of the saddle point (—{/$,0) and Ha(p,y) = H2({/5,0) to the left
side of the saddle point ({/%,0), system (7) has two pairs of kink-like and antikink-like
solutions.

The case g > ¢\/c (see Figure 6)

Corresponding to the two families of orbits, passing through the point (¢g,0) with ¢o €
(—v/¢,0) (0, /c), and the two families of orbits, passing through the points (0,4/<L) defined
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by Ha(p,y) = ha, hs € <H2 (ﬁ, %) ,Ho (\ﬁ, W)), system (7) has four

families of compacton solutions.

84 Main results

Based on the above results, we summarize the main results about different profiles for
the wave function ¢(€) and their dynamical behaviors under different parameter conditions in
Theorems 1-5.

Theorem 1. Under the condition g < 0, the following conclusions hold.

(1) When g < min{3c® — 4c®,0}, Eq.(2) has four families of compacton solutions and two

pairs of kink-like and antikink-like solutions.
(2) When g =3c® —4c® and ¢ > 2, Eq.(2) has two families of compacton solutions.

(3) When 3c¢* —4c¢® < g < 0 and ¢ > %, Eq.(2) has two periodic cusp wave solutions, two
families of periodic wave solutions, and two families of compacton solutions.

Theorem 2. Under the condition g = 0, the following conclusions hold.

(1) Wheng=0 and0 < c< 2, Eq.(2) has siz families of compacton solutions and four pairs
of kink-like and antikink-like solutions.

(2) When g =0 and c =32, Eq.(2) has four families of compacton solutions and two pairs of
kink-like and antikink-like solutions.

(3) When g =0 and % < ¢ <2, Eq.(2) has two periodic cusp wave solutions, two families of
periodic wave solutions, four families of compacton solutions, and two pairs of kink-like

and antikink-like solutions.

(4) When g = 0 and ¢ = 2, Eq.(2) has the peakons with exact explicit expressions (15) and
(16), two families of periodic wave solutions, and two families of compacton solutions.

(5) When g =0 and ¢ > 2, Eq.(2) has two solitary wave solutions, four families of periodic
wave solutions, two periodic cusp wave solutions, and two families of compacton solutions.

Theorem 3. Under the condition 0 < g < ¢\/c, the following conclusions hold.

(1) When0< g <3c®—4c® and 0 < c < %, Eq.(2) has eight families of compacton solutions
and siz pairs of kink-like and antikink-like solutions.

(2) When g =3c®> —4c® and 0 < ¢ < %, Eq.(2) has siz families of compacton solutions and
two pairs of kink-like and antikink-like solutions.

(3) When g =3c® —4c® and § < ¢ < 2, Eq.(2) has siz families of compacton solutions and

four pairs of kink-like and antikink-like solutions.
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(4) When 3¢®> —4c® < g < gf and 0 < ¢ < %, Eq.(2) has two periodic cusp wave solutions,
two families of periodic wave solutions, six families of compacton solutions, and two pairs
of kink-like and antikink-like solutions.

(5) When g = g5 and 0 < ¢ < %, Eq.(2) has two peakons, two families of periodic wave
solutions, and four families of compacton solutions.

(6) When gf <g<cyecand0<c< i, Eq.(2) has two solitary wave solutions, two families
of periodic wave solutions, and four families of compacton solutions.

(7) When maz{3c*—4c®,0} < g < g3 and ¢ > i, Eq.(2) has two periodic cusp wave solutions,
two families of periodic wave solutions, siz families of compacton solutions, and four pairs

of kink-like and antikink-like solutions.

(8) When g = g5 and ¢ > %, Eq.(2) has two peakon solutions, two families of periodic wave
solutions, four families of compacton solutions, and two pairs of kink-like and antikink-like
solutions.

(9) When g5 < g < ¢y/c and ¢ > %, Eq.(2) has two solitary wave solutions, two families of
periodic wave solutions, six families of compacton solutions, and two pairs of kink-like
and antikink-like solutions.

Theorem 4. Under the condition g = c\/c, the following conclusions hold.
(1) When g=cy/cand0<c< %, Eq.(2) has four families of compacton solutions.
(2) When g = cy/c and c = %, Eq.(2) has four families of compacton solutions.

(3) When g = cy/c and ¢ > §, Eq.(2) has siz families of compacton solutions and two pairs

of kink-like and antikink-like solutions.
Theorem 5. Under the condition g > c\/c, Eq.(2) has four families of compacton solutions.

Remark 2. In the previous works, peakons and periodic cusp waves were not found. In
addition, we confirm the abundant dynamical behaviors of bounded traveling wave solutions
under different parameter conditions. Therefore, the present work extends the results about

Eq.(2) [15-17].

85 Numerical simulations

In this section, we numerically simulate the solutions of the subcase when 0 < g < 3¢? — 4¢?
and 0 < c < %.

Taking ¢ = 0.5 and g = 0.125 € (0,3c? — 4¢3), which indicates that ¢, = 0.259781,/c =
0.707, 3 = 0.758837, we illustrate the profiles of the compacton solutions () in Figures 9(a)
and 9(b) by taking the initial point (¢o,yo) with @9 = —0.75,59 = 0, o = —0.4,y9 = 0,
wo = —0.1,y0 = 0, 9o = 0.1,y9 = 0, oo = 04,59 = 0, o = 0.75,y9 = 0, and ¢y =
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(a) (b)

Figure 9. The compacton solutions of Eq.(2) when 0 < g < 3¢? —4c¢® and 0 < ¢ < %.

(2) (h) (i) @ (k) )

Figure 10. The six pairs of kink-like and antikink-like solutions of Eq.(2) when 0 < g < 3¢ —4¢?
and 0 < c < %.

+0.4,y0 = +0.394388, respectively. Similarly, the profiles of the kink-like and antikink-like
solutions (&) are given in Figures 10(a)-10(1) by taking the initial point (vo,yo) with ¢g =
—0.75, 90 = +0.0312059, 0o = —0.4,y0 = +0.159326, o = —0.1,45 = +0.160895, v, =
0.1, 40 = £0.160895, 0o = 0.4, yo = +0.159326, 0o = —0.75,yo = +0.0312059, respectively.
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