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Peaked traveling wave solutions of the modified highly

nonlinear Novikov equation

LI Hui-jun1,2 WEN Zhen-shu2,∗ LI Shao-yong3

Abstract. In this paper, we focus on peaked traveling wave solutions of the modified highly

nonlinear Novikov equation by dynamical systems approach. We obtain a traveling wave system

which is a singular planar dynamical system with three singular straight lines, and derive all

possible phase portraits under corresponding parameter conditions. Then we show the existence

and dynamics of two types of peaked traveling wave solutions including peakons and periodic

cusp wave solutions. The exact explicit expressions of two peakons are given. Besides, we

also derive smooth solitary wave solutions, periodic wave solutions, compacton solutions, and

kink-like (antikink-like) solutions. Numerical simulations are further performed to verify the

correctness of the results. Most importantly, peakons and periodic cusp wave solutions are

newly found for the equation, which extends the previous results.

§1 Introduction

In recent decades, many important nonlinear evolution equations have been proposed to

model different nonlinear phenomena, including shallow water wave motions in fluid dynamics,

ion acoustic waves in plasmas and many other engineering fields. Besides, in recent years, inte-

grable systems also have received considerable attentions, and the inverse scattering approach

and the bilinear approach have been extensively applied to study the solutions of integrable

systems [1–3]. Among these equations or systems, the Camassa-Holm-type equations are of

particular interest. One remarkable feature of the Camassa-Holm equation is the discovery of

the so-called peakons soliton or peakons [4].

As an important Camassa-Holm-type equation, the Novikov equation

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (1)

Received: 2021-07-20. Revised: 2021-12-16.
MR Subject Classification: 34C23, 34A26, 35Q51.
Keywords: modified highly nonlinear Novikov equation, bifurcation, dynamics, peakons, periodic cusp wave

solutions.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-025-4511-7.
Supported by the National Natural Science Foundation of China(12071162), the Natural Science Foundation

of Fujian Province(2021J01302), the Fundamental Research Funds for the Central Universities(ZQN-802).
∗Corresponding author.



376 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

was first obtained by Novikov [5] in a symmetry classification of nonlocal partial differential

equations (PDEs) with cubic nonlinearity. There has been great interest in studying the solu-

tions of Eq.(1) and their properties. In 2008, Hong and Wang [6] proved that Eq.(1) admits

N-peakon solutions. In addition, they derived a matrix Lax pair for Eq.(1) and showed that

Eq.(1) possesses infinitely many conserved quantities and bi-Hamiltonian structure. Therefore

Eq.(1) is integrable. Besides, there are many works [7–9] concerning the peaked solutions and

their stability. More recently, by exploiting dynamical systems approach, Li [10] obtained the

parametric representations of the cuspon and compactons under the condition φ2 > c through

the traveling wave transformation u(x, t) = φ(ξ), ξ = x − ct. Further, Pan and Li [11] studied

the smooth and nonsmooth solitons under the condition φ2 < c. Zhang and Tang [12] derived

the peakons and periodic cusp wave solutions of Eq.(1).

In recent years, the modified versions of Novikov equation have attracted much attention

[13,14]. In this paper, we focus on the following modified highly nonlinear Novikov equation

ut − uxxt + 4u4ux = 3uuxuxx + u2uxxx, (2)

which was introduced by Zhao and Zhou [15] in 2010. It is worth mentioning that the nonlin-

earity of Eq.(2) is much higher than that of Eq.(1), which makes it more difficult to study the

solutions of Eq.(2) and their dynamical behaviors. Zhao and Zhou [15] introduced the transfor-

mation u(ξ) = φ(ξ) =
√

v(ξ), ξ = x− ct and exploited symbolic computation to study its exact

solutions. However, the transformation requires that u(ξ) ≥ 0 and v(ξ) ≥ 0 and has its limit in

obtaining the solutions. Exploiting the traveling wave transformation u(x, t) = φ(ξ), ξ = x− ct

and the factorization technique, Eq.(2) can be factorized as((
φ2 − 2

)
∂ξ + 3φφ′)(∂ξξ − (2

3
φ2 + 1

))
φ = 0. (3)

Deng [16] obtained some special traveling wave solutions of Eq.(2) by solving the following

second-order ordinary differential equation

φ′′ = φ

(
2

3
φ2 + 1

)
.

In fact, the solutions of Eq.(3) can be derived by solving the following coupled ordinary

differential equation { (
φ2 − 2

) dF (φ(ξ))
dξ + 3φφ′F (φ(ξ)) = 0,

φ′′ − φ
(
2
3φ

2 + 1
)
= F (φ(ξ)).

(4)

From system (4), Wen and Shi [17] showed the existence and dynamics of several types

of bounded traveling wave solutions including smooth solitary wave solutions, periodic wave

solutions, compacton solutions, kink-like and antikink-like solutions by dynamical systems ap-

proach. However, the peakons and periodic cusp wave solutions were not found for Eq.(2). One

may wonder whether Eq.(2) has peakons and periodic cusp wave solutions, since the Novikov

equation (1) and other Camassa-Holm-type equations [18, 19] have peakons and periodic cusp

wave solutions. Based on this motivation, in this paper, we further focus on peaked traveling

wave solutions of (2) by exploiting dynamical systems approach [20–28]. For readers’ conve-

nience, here we briefly introduce the main procedure of dynamical systems approach as follows:

Step 1. Convert partial differential equation (PDE) into ordinary differential equation
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(ODE) by traveling wave transformation.

Step 2. Try to tranform the obtained ODE into planar dynamical system by some effective

techniques, such as integration, multiplied by a factor [25,30] and so on, according to the special

structure of ODE.

Step 3. Based on the qualitative theories of differential equations and the bifurcation the-

ories of dynamical systems, we can determine the bifurcation conditions and obtain the phase

portraits of the above planar dynamical system.

Step 4. Study the dynamics of traveling wave solutions through the phase portraits, and

exact solutions by the first integral of planar dynamical system.

The main contributions of this paper are summarized as follows:

(1) Showing the existence of various types of bounded traveling wave solutions including

peakons, periodic cusp wave solutions, smooth solitary wave solutions, periodic wave

solutions, compacton solutions, and kink-like (antikink-like) solutions under explicit pa-

rameter conditions.

(2) Deriving the exact explicit expressions of two peakons for Eq.(2).

(3) Observing peakons and periodic cusp wave solutions of Eq.(2) for the first time, which

extends the previous works [15–17].

§2 Bifurcations of Phase Portraits

In this section, we present the bifurcations of phase portraits corresponding to (2).

To begin with, substituting u(x, t) = φ(ξ) with ξ = x− ct into (2), where c > 0 is the wave

speed, it follows,

−cφ′ + cφ′′′ + 4φ4φ′ = 3φφ′φ′′ + φ2φ′′′, (5)

where the prime stands for the derivative with respect to ξ.

Multiplying both sides of (5) by φ and integrating the equation once, we get

−cφ2

2
+

2φ6

3
+ cφφ′′ − c(φ′)2

2
= φ3φ′′ − g

6
, (6)

where g is the integral constant.

Letting y = φ′, we obtain the planar system{
dφ
dξ = y,
dy
dξ = 4φ6−3cφ2−3cy2+g

6φ(φ2−c) ,
(7)
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with the following first integral

H1(φ, y) =

√
φ2 − c

φ

2cφ4 + 3c2φ2 + 2g

2c
− 3

√
φ2 − c

φ
y2 +

3c(c− 2)

2
ln
∣∣∣φ+

√
φ2 − c

∣∣∣ ,
for φ2 − c > 0,

H2(φ, y) =
−
√
c− φ2

φ

2cφ4 + 3c2φ2 + 2g

2c
+

3
√

c− φ2

φ
y2 +

3c(c− 2)

2
arcsin

φ√
c
,

for φ2 − c < 0.

(8)

Obviously, system (7) has three singular straight lines φ = 0, φ =
√
c and φ = −

√
c. Trans-

formed by dξ = 6φ(φ2 − c)dτ , system (7) becomes a regular system{
dφ
dτ = 6φy(φ2 − c),
dy
dτ = 4φ6 − 3cφ2 − 3cy2 + g.

(9)

Since the level curves of system (7) is the same as those of the regular system (9), we can

analyze the phase portraits of system (7) from those of system (9). To study the singular points

and their properties of system (9), let

f(φ) = 4φ6 − 3cφ2 + g. (10)

We can obtain the graphics of the function f(φ) in Figure 1 under corresponding parameter

conditions. Note that the zeros of f(φ) correspond to the singular points of system (9).

φ

f(φ)

(a) g < 0

φ

f(φ)

(b) g = 0

φ

f(φ)

(c) 0 < g < c
√
c

φ

f(φ)

(d) g = c
√
c

φ

f(φ)

(e) g > c
√
c

Figure 1. The graphics of the function f(φ) under corresponding parameter conditions, (a)
g < 0; (b) g = 0; (c) 0 < g < c

√
c; (d) g = c

√
c; (e) g > c

√
c.

Let λ(φ, y) be the characteristic value of the linearized system of system (9) at the singular

point (φ, y). We have

λ2(φ, 0) = 6φ(φ2 − c)f ′(φ). (11)

From (11), we see that the signs of φ, φ2 − c and f ′(φ) can determine the dynamical

properties (saddle, center and degenerate singular point) of the singular point (φ, 0) according

to the theory of planar dynamical systems.

We summarize the number of singular points of system (9) and their dynamical properties

under corresponding parameter conditions in Lemma 1.

Lemma 1. For system (9), we have

(1) When g < min{3c2−4c3, 0}, system (9) has two singular points (±φ1, 0). Furthermore,

(±φ1, 0) are saddles.

(2) When g = 3c2 − 4c3 and c > 3
4 , system (9) has two singular points (±

√
c, 0). Further-

more, (±
√
c, 0) are degenerate singular points.



LI Hui-jun, et al. Peaked traveling wave solutions of the modified highly nonlinear... 379

(3) When 3c2 − 4c3 < g < 0 and c > 3
4 , system (9) has six singular points (±φ1, 0)

and

(
±
√
c,±

√
4c3−3c2+g

3c

)
. Furthermore, (±φ1, 0) are centers, and

(
±
√
c,±

√
4c3−3c2+g

3c

)
are saddles.

(4) When g = 0 and 0 < c < 3
4 , system (9) has three singular points (± 4

√
3c/4, 0) and (0, 0).

Furthermore, (± 4
√
3c/4, 0) are saddles, and (0, 0) is a high-order singular point.

(5) When g = 0 and c = 3
4 , system (9) has three singular points (±

√
3/4, 0) and (0, 0).

Furthermore, (±
√

3/4, 0) are degenerate singular points, and (0, 0) is a high-order singular

point.

(6) When g = 0 and c > 3
4 , system (9) has seven singular points (± 4

√
3c/4, 0), (0, 0),

and

(
±
√
c,±

√
4c2−3c

3

)
. Furthermore, (± 4

√
3c/4, 0) are centers, (0, 0) is a high-order singular

point, and

(
±
√
c,±

√
4c2−3c

3

)
are saddles.

(7) When 0 < g < 3c2 − 4c3 and 0 < c < 3
4 , system (9) has six singular points (±φ2, 0),

(±φ3, 0) and
(
0,±

√
g
3c

)
, with 0 < φ2 <

√
c < φ3. Furthermore, (±φ2, 0) and (±φ3, 0) are

saddles, and
(
0,±

√
g
3c

)
are nodes.

(8) When g = 3c2−4c3 and 0 < c < 1
4 , system (9) has six singular points (±φ3, 0), (±

√
c, 0)

and
(
0,±

√
g
3c

)
, with φ3 >

√
c. Furthermore, (±φ3, 0) are saddles, (±

√
c, 0) are degenerate

singular points, and
(
0,±

√
g
3c

)
are nodes.

(9) When g = 3c2−4c3 and 1
4 < c < 3

4 , system (9) has six singular points (±
√
c, 0), (±φ2, 0)

and
(
0,±

√
g
3c

)
, with φ2 <

√
c. Furthermore (±

√
c, 0) are degenerate singular points, (±φ2, 0)

are saddles, and
(
0,±

√
g
3c

)
are nodes.

(10) When 3c2−4c3 < g < c
√
c and 0 < c < 1

4 , system (9) has ten singular points (±φ2, 0),

(±φ3, 0)

(
±
√
c,±

√
4c3−3c2+g

3c

)
and

(
0,±

√
g
3c

)
, with

√
c < φ2 < φ3. Furthermore, (±φ3, 0)

and

(
±
√
c,±

√
4c3−3c2+g

3c

)
are saddles, (±φ2, 0) are centers, and

(
0,±

√
g
3c

)
are nodes.

(11) When max{3c2 − 4c3, 0} < g < c
√
c and c > 1

4 , system (9) has ten singular points

(±φ2, 0), (±φ3, 0),

(
±
√
c,±

√
4c3−3c2+g

3c

)
and

(
0,±

√
g
3c

)
, with 0 < φ2 < φ3 <

√
c. Further-

more, (±φ2, 0) and

(
±
√
c,±

√
4c3−3c2+g

3c

)
are saddles, (±φ3, 0) are centers, and

(
0,±

√
g
3c

)
are nodes.

(12) When g = c
√
c, system (9) has four singular points (± 4

√
c/4, 0) and

(
0,±

√
g
3c

)
. Fur-

thermore, (± 4
√
c/4, 0) are degenerate singular points, and

(
0,±

√
g
3c

)
are nodes.

(13) When g > c
√
c, system (9) has two singular points

(
0,±

√
g
3c

)
. Furthermore,

(
0,±

√
g
3c

)
are nodes.

Note that when g = 0, (0, 0) is a high-order singular point of system (9). According to the

qualitative theory of differential equations [29], we present the patterns of orbits near (0, 0) in

Lemma 2.

Lemma 2. When g = 0, (0, 0) is a high-order singular point of system (9). Furthermore,



380 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

φ1-φ1
φ

y

(a) g < min{3c2 − 4c3, 0}

c- c φ

y

(b) g = 3c2 − 4c3 and c > 3
4

φ1-φ1

φ
1

*-φ
1

*

φ

y

(c) 3c2 − 4c3 < g < 0 and c >
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Figure 2. The phase portraits of system (7) when g < 0.
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Figure 3. The phase portraits of system (7) when g = 0.

there is an infinite number of orbits tending to (0, 0) along θ = π
2 and θ = 3π

2 , and there is a

unique orbit tending to (0, 0) along θ = π
4 , θ = 3π

4 , θ = 5π
4 and θ = 7π

4 .

Additionally, for the subcase (10) in Lemma 1, when H1(φ3, 0) = H1

(
√
c,
√

4c3−3c2+g
3c

)
,

from which we can obtain a bifurcation value g = g∗1 , there exists one orbit connecting

(φ3, 0) and

(
√
c,
√

4c3−3c2+g
3c

)
. Similarly, when H2(φ2, 0) = H2

(
√
c,
√

4c3−3c2+g
3c

)
, from

which we can obtain a bifurcation value g = g∗2 , there exists one orbit connecting (φ2, 0)

and

(
√
c,
√

4c3−3c2+g
3c

)
, for the subcase (11) in Lemma 1.

Therefore, based on the above analyses, we obtain all possible bifurcations of phase portraits

of system (7) in Figures 2, 3, 4, 5, and 6.

Remark 1. Note that when c < 0, system (7) has only one singular line φ = 0 and f(φ)

has at most two zeros, which indicates that the phase portraits of system (7) are quite simple

and system (7) can only have trivial dynamical behaviors. Therefore, we only focus on the case

when c > 0.
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Figure 4. The phase portraits of system (7) when 0 < g < c
√
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§3 Dynamical behaviors of bounded solutions of system (7)

In this section, we exploit the phase portraits in Figures 2, 3, 4, 5 and 6 to discuss the

dynamical behavior of the bounded solutions of system (7), since each orbit (curve) in the

phase portraits corresponds to a solution of system (7).

3.1 The case g < 0 (see Figure 2)

(1) For g < min{3c2 − 4c3, 0} in Figure 2(a).

Corresponding to the four families of orbits, passing through the point (φ0, 0) with

φ0 ∈ (−φ1,−
√
c)
∪
(−

√
c, 0)

∪
(0,

√
c)
∪
(
√
c, φ1), system (7) has four families of com-

pacton solutions.

Corresponding to the stable and unstable manifolds defined by H1(φ, y) = H1(−φ1, 0) to

the right side of the saddle point (−φ1, 0) and H1(φ, y) = H1(φ1, 0) to the left side of the

saddle point (φ1, 0), system (7) has two pairs of kink-like and antikink-like solutions.

(2) For g = 3c2 − 4c3 and c > 3
4 in Figure 2(b).

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−

√
c, 0)

∪
(0,

√
c), system (7) has two families of compacton solutions.

(3) For 3c2 − 4c3 < g < 0 and c > 3
4 in Figure 2(c).

Corresponding to the two orbits, passing through the point (−φ∗
1, 0) defined byH2(φ, y) =

H2

(
−

√
c,
√

4c3−3c2+g
3c

)
and passing through the point (φ∗

1, 0) defined by H2(φ, y) =

H2

(
√
c,
√

4c3−3c2+g
3c

)
, where φ∗

1 is determined by the equation

H2(φ
∗
1, 0) = H2

(
√
c,
√

4c3−3c2+g
3c

)
, system (7) has two periodic cusp wave solutions.

Corresponding to the two families of periodic orbits, around the center point (−φ1, 0)

defined by H2(φ, y) = h1, h1 ∈
(
H2

(
−
√
c,
√

4c3−3c2+g
3c

)
,H2(−φ1, 0)

)
, and around the

center point (φ1, 0) defined by H2(φ, y) = h2, h2 ∈
(
H2(φ1, 0),H2

(
√
c,
√

4c3−3c2+g
3c

))
,

system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−φ∗

1, 0)
∪
(0, φ∗

1), system (7) has two families of compacton solutions.

3.2 The case g = 0 (see Figure 3)

(1) For g = 0 and 0 < c < 3
4 in Figure 3(a).

Corresponding to the four families of orbits, passing through the point (φ0, 0) with

φ0 ∈
(
− 4

√
3c
4 ,−

√
c
)∪

(−
√
c, 0)

∪
(0,

√
c)
∪(√

c, 4

√
3c
4

)
, and the two families of orbits,
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which are tangent to the y−axis at the point (0, 0), system (7) has six families of com-

pacton solutions.

Corresponding to the stable and unstable manifolds defined by H1(φ, y) = H1

(
− 4

√
3c
4 , 0

)
to the right side of the saddle point

(
− 4

√
3c
4 , 0

)
, H1(φ, y) = H1

(
4

√
3c
4 , 0

)
to the left side

of the saddle point
(

4

√
3c
4 , 0

)
, and H2(φ, y) = H2(0, 0) to the left and right sides of the

high-order singular point (0, 0) (the orbits tending to (0, 0) along θ = π
4 , θ = 3π

4 , θ = 5π
4

and θ = 7π
4 ), system (7) has four pairs of kink-like and antikink-like solutions.

(2) For g = 0 and c = 3
4 in Figure 3(b).

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−
√

3/4, 0)
∪
(0,
√
3/4), and the two families of orbits, which are tangent to the y−axis

at the point (0, 0), system (7) has four families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by H2(φ, y) = H2(0, 0) to

the left and right sides of the high-order singular point (0, 0) (the orbits tending to (0, 0)

along θ = π
4 , θ = 3π

4 , θ = 5π
4 and θ = 7π

4 ), system (7) has two pairs of kink-like and

antikink-like solutions.

(3) For g = 0 and 3
4 < c < 2 in Figure 3(c).

Corresponding to the two orbits, passing through the point (−φ∗
12, 0) defined byH2(φ, y) =

H2

(
−

√
c,
√

4c2−3c
3

)
and passing through the point (φ∗

12, 0) defined by H2(φ, y) =

H2

(
√
c,
√

4c2−3c
3

)
, where φ∗

12 is determined by H2(φ
∗
12, 0) = H2

(
√
c,
√

4c2−3c
3

)
, sys-

tem (7) has two periodic cusp wave solutions, which are illustrated in Figure 7(a).

Corresponding to the two families of periodic orbits, around the center point
(
− 4

√
3c
4 , 0

)
defined by H2(φ, y) = h1, h1 ∈

(
H2

(
−
√
c,
√

4c2−3c
3

)
, H2

(
− 4

√
3c
4 , 0

))
, and around the

center point
(

4

√
3c
4 , 0

)
defined byH2(φ, y) = h2, h2 ∈

(
H2(

4

√
3c
4 , 0),H2

(
√
c,
√

4c2−3c
3

))
,

system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−φ∗

12, 0)
∪
(0, φ∗

12), and the two families of orbits, which are tangent to the y−axis at the

point (0, 0), system (7) has four families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by H2(φ, y) = H2(0, 0) to

the left and right sides of the high-order singular point (0, 0) (the orbits tending to (0, 0)

along θ = π
4 , θ = 3π

4 , θ = 5π
4 and θ = 7π

4 ), system (7) has two pairs of kink-like and

antikink-like solutions.

(4) For g = 0 and c = 2 in Figure 3(d).
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(a) (b) (c)

Figure 7. The profiles of periodic cusp wave solution, periodic wave solution and solitary wave
solutions of Eq.(2).
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Figure 8. The profiles of peakons (15) and (16).

Corresponding to the two triangle orbits, passing through the point (0, 0) defined by

H2(φ, y) = 0, which has expressions

y = ±
√

φ4 + 3φ2

3
, 0 ≤ |φ| <

√
2, (12)

and

φ = ±
√
2, |y| ≤

√
10

3
.

Substituting (12) into the first equation of (7) and integrating along the triangle orbits,

we have ∫ √
2

φ

√
3√

φ4 + 3φ2
dφ = |ξ|, for 0 ≤ φ <

√
2, (13)

and ∫ φ

−
√
2

√
3√

φ4 + 3φ2
dφ = −|ξ|, for −

√
2 < φ ≤ 0. (14)

From (13) and (14), we immediately obtain the peakons

u(x, t) =
6

1
θ exp

|x−2t| −3θ exp−|x−2t| , (15)

and

u(x, t) = − 6
1
θ exp

|x−2t| −3θ exp−|x−2t| , (16)

where

θ =

√
2√

15 + 3
,

the profiles of which are given in Figures 8(a) and 8(b).

Corresponding to the two families of periodic orbits, around the center point (− 4
√
3/2, 0)
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defined by H2(φ, y) = h1, h1 ∈ (H2(0, 0),H2(− 4
√

3/2, 0)), and around the center point

( 4
√
3/2, 0) defined by H2(φ, y) = h2, h2 ∈ (H2(

4
√
3/2, 0),H2(0, 0)), system (7) has two

families of periodic wave solutions. We illustrate the profile of one periodic wave solution

in Figure 7(b).

Corresponding to the two families of orbits, which are tangent to the y−axis at the point

(0, 0), system (7) has two families of compacton solutions.

(5) For g = 0 and c > 2 in Figure 3(e).

Corresponding to the two homoclinic orbits to the point (0, 0), which tend to (0, 0) along

θ = π
4 , θ = 3π

4 , θ = 5π
4 and θ = 7π

4 , defined by H2(φ, y) = 0, system (7) has two solitary

wave solutions, which are illustrated in Figure 7(c).

Corresponding to the two families of periodic orbits, around the center point
(
− 4

√
3c
4 , 0

)
defined by H2(φ, y) = h1, h1 ∈

(
H2(0, 0),H2

(
− 4

√
3c
4 , 0

))
, and around the center point(

4

√
3c
4 , 0

)
defined by H2(φ, y) = h2, h2 ∈

(
H2

(
4

√
3c
4 , 0

)
,H2(0, 0)

)
, and the two families

of homoclinic orbits, which are tangent to y−axis at the point (0, 0), system (7) has four

families of periodic wave solutions.

Corresponding to the two orbits, passing through the point (0, 0) defined by H2(0, 0) =

H2

(
±
√
c,
√

4c2−3c
3

)
, system (7) has two periodic cusp wave solutions.

Corresponding to the two families of orbits, which are tangent to the y−axis at the point

(0, 0), system (7) has two families of compacton solutions.

3.3 The case 0 < g < c
√
c (see Figure 4)

(1) For 0 < g < 3c2 − 4c3 and 0 < c < 3
4 in Figure 4(a).

Corresponding to the six families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−φ3,−

√
c)
∪
(−

√
c,−φ2)

∪
(−φ2, 0)

∪
(0, φ2)

∪
(φ2,

√
c)
∪
(
√
c, φ3), and the two families

of orbits, passing through the points
(
0,±

√
g
3c

)
defined by H2(φ, y) = h2,

h2 ∈ (H2(φ2, 0),H2(−φ2, 0)), system (7) has eight families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by H1(φ, y) = H1(−φ3, 0) to

the right side of the saddle point (−φ3, 0), H2(φ, y) = H2(−φ2, 0) to the left and right

sides of the saddle point (−φ2, 0), H2(φ, y) = H2(φ2, 0) to the left and right sides of the

saddle point (φ2, 0), and H1(φ, y) = H1(φ3, 0) to the left side of the saddle point (φ3, 0),

system (7) has six pairs of kink-like and antikink-like solutions.

(2) For g = 3c2 − 4c3 and 0 < c < 1
4 in Figure 4(b).

Corresponding to the four families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−φ3,−

√
c)
∪
[−

√
c, 0)

∪
(0,

√
c ]
∪
(
√
c, φ3), and the two families of orbits, passing through

the points
(
0,±

√
g
3c

)
defined by H2(φ, y) = h2, h2 ∈ (H2(

√
c, 0),H2(−

√
c, 0)), system

(7) has six families of compacton solutions.



386 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

Corresponding to the stable and unstable manifolds defined by H1(φ, y) = H1(−φ3, 0) to

the right side of the saddle point (−φ3, 0) and H1(φ, y) = H1(φ3, 0) to the left side of the

saddle point (φ3, 0), system (7) has two pairs of kink-like and antikink-like solutions.

(3) For g = 3c2 − 4c3 and 1
4 < c < 3

4 in Figure 4(c).

Corresponding to the four families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−

√
c,−φ2)

∪
(−φ2, 0)

∪
(0, φ2)

∪
(φ2,

√
c), and the two families of orbits, passing through

the points
(
0,±

√
g
3c

)
defined by H2(φ, y) = h2, h2 ∈ (H2(φ2, 0),H2(−φ2, 0)), system (7)

has six families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by H2(φ, y) = H2(−φ2, 0)

to the left and right sides of the saddle point (−φ2, 0) and H2(φ, y) = H2(φ2, 0) to the

left and right sides of the saddle point (φ2, 0), system (7) has four pairs of kink-like and

antikink-like solutions.

(4) For 3c2 − 4c3 < g < g∗1 and 0 < c < 1
4 in Figure 4(d).

Corresponding to the two orbits, passing through the point (−φ∗
2, 0) defined byH1(φ, y) =

H1

(
−
√
c,
√

4c3−3c2+g
3c

)
and passing through the point (φ∗

2, 0) defined by H1(φ, y) =

H1

(
√
c,
√

4c3−3c2+g
3c

)
, where φ∗

2 is determined by the equation

H1(φ
∗
2, 0) = H1

(
√
c,
√

4c3−3c2+g
3c

)
, system (7) has two periodic cusp wave solutions.

Corresponding to the two families of periodic orbits, around the center point (−φ2, 0)

defined by H1(φ, y) = h1, h1 ∈
(
H1(−φ2, 0),H1

(
−
√
c,
√

4c3−3c2+g
3c

))
, and around the

center point (φ2, 0) defined by H1(φ, y) = h2, h2 ∈
(
H1

(
√
c,
√

4c3−3c2+g
3c

)
, H1(φ2, 0)

)
,

system (7) has two families of periodic wave solutions.

Corresponding to the four families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−φ3,−φ∗

2)
∪
(−

√
c, 0)

∪
(0,

√
c)
∪
(φ∗

2, φ3), and the two families of orbits, passing through

the points
(
0,±

√
g
3c

)
defined by H2(φ, y) = h2,

h2 ∈
(
H2

(
√
c,
√

4c3−3c2+g
3c

)
,H2

(
−
√
c,
√

4c3−3c2+g
3c

))
, system (7) has six families of

compacton solutions.

Corresponding to the stable and unstable manifolds defined by H1(φ, y) = H1(−φ3, 0) to

the right side of the saddle point (−φ3, 0) and H1(φ, y) = H1(φ3, 0) to the left side of the

saddle point (φ3, 0), system (7) has two pairs of kink-like and antikink-like solutions.

(5) For g = g∗1 and 0 < c < 1
4 in Figure 4(e).

Corresponding to the two triangle orbits, passing through the point (−φ3, 0) defined by

H1(φ, y) = H1

(
−
√
c,

√
4c3−3c2+g∗

1

3c

)
, and passing through the point (φ3, 0) defined by
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H1(φ, y) = H1

(
√
c,

√
4c3−3c2+g∗

1

3c

)
, where φ3 is determined by the equation H1(φ3, 0) =

H1

(
√
c,

√
4c3−3c2+g∗

1

3c

)
system (7) has two peakons.

Corresponding to the two families of periodic orbits, around the center point (−φ2, 0)

defined by H1(φ, y) = h1, h1 ∈
(
H1(−φ2, 0),H1

(
−
√
c,

√
4c3−3c2+g∗

1

3c

))
, and around the

center point (φ2, 0) defined by H1(φ, y) = h2, h2 ∈
(
H1

(
√
c,

√
4c3−3c2+g∗

1

3c

)
, H1(φ2, 0)

)
,

system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈

(−
√
c, 0)

∪
(0,

√
c), and the two families of orbits, passing through the points

(
0,±

√
g∗
1

3c

)
defined by H2(φ, y) = h2,

h2 ∈
(
H2

(
√
c,

√
4c3−3c2+g∗

1

3c

)
,H2

(
−
√
c,

√
4c3−3c2+g∗

1

3c

))
, system (7) has four families

of compacton solutions.

(6) For g∗1 < g < c
√
c and 0 < c < 1

4 in Figure 4(f).

Corresponding to the two homoclinic orbits to the saddle points (−φ3, 0) defined by

H1(φ, y) = H1(−φ3, 0) and the saddle points (φ3, 0) defined by H1(φ, y) = H1(φ3, 0),

system (7) has two solitary wave solutions.

Corresponding to the two families of periodic orbits, around the center point (−φ2, 0)

defined by H1(φ, y) = h1, h1 ∈ (H1(−φ2, 0),H1(−φ3, 0)), and around the center point

(φ2, 0) defined by H1(φ, y) = h2, h2 ∈ (H1(φ3, 0),H1(φ2, 0)), system (7) has two families

of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−

√
c, 0)

∪
(0,

√
c), and the two families of orbits, passing through the points

(
0,±

√
g
3c

)
defined by H2(φ, y) = h2,

h2 ∈
(
H2

(
√
c,
√

4c3−3c2+g
3c

)
,H2

(
−
√
c,
√

4c3−3c2+g
3c

))
, system (7) has four families of

compacton solutions.

(7) For max{3c2 − 4c3, 0} < g < g∗2 and c > 1
4 in Figure 4(g).

Corresponding to the two family of orbits, passing through the point (−φ∗
3, 0) defined by

H2(φ, y) = H2

(
−

√
c,
√

4c3−3c2+g
3c

)
and passing through the point (φ∗

3, 0) defined by

H2(φ, y) = H2

(
√
c,
√

4c3−3c2+g
3c

)
, where φ∗

3 is determined by the equation H2(φ
∗
3, 0) =

H2

(
√
c,
√

4c3−3c2+g
3c

)
, system (7) has two periodic cusp wave solutions.

Corresponding to the two families of periodic orbits, around the center point (−φ3, 0)

defined by H2(φ, y) = h1, h1 ∈
(
H2

(
−
√
c,
√

4c3−3c2+g
3c

)
,H2(−φ3, 0)

)
, and around the
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center point (φ3, 0) defined by H2(φ, y) = h2, h2 ∈
(
H2(φ3, 0),H2

(
√
c,
√

4c3−3c2+g
3c

))
,

system (7) has two families of periodic wave solutions.

Corresponding to the four families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−φ∗

3,−φ2)
∪
(−φ2, 0)

∪
(0, φ2)

∪
(φ2, φ

∗
3), and the two families of orbits, passing through

the points
(
0,±

√
g
3c

)
defined by H2(φ, y) = h2, h2 ∈ (H2(φ2, 0),H2(−φ2, 0)), system (7)

has six families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by H2(φ, y) = H2(−φ2, 0)

to the left and right sides of the saddle point (−φ2, 0) and H2(φ, y) = H2(φ2, 0) to the

left and right sides of the saddle point (φ2, 0), system (7) has four pairs of kink-like and

antikink-like solutions.

(8) For g = g∗2 and c > 1
4 in Figure 4(h).

Corresponding to the two triangle orbits, passing through the point (−φ2, 0) defined by

H2(φ, y) = H2

(
−
√
c,

√
4c3−3c2+g∗

2

3c

)
, and passing through the point (φ2, 0) defined by

H2(φ, y) = H2

(
√
c,

√
4c3−3c2+g∗

2

3c

)
, where φ2 is determined by the equation H2(φ2, 0) =

H2

(
√
c,

√
4c3−3c2+g∗

2

3c

)
system (7) has two peakon solutions.

Corresponding to the two families of periodic orbits, around the center point (−φ3, 0)

defined by H2(φ, y) = h1, h1 ∈
(
H2

(
−
√
c,

√
4c3−3c2+g∗

2

3c

)
,H2(−φ3, 0)

)
, and around the

center point (φ3, 0) defined by H2(φ, y) = h2, h2 ∈
(
H2(φ3, 0),H2

(
√
c,

√
4c3−3c2+g∗

2

3c

))
,

system (7) has two families of periodic wave solutions.

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈

(−φ2, 0)
∪
(0, φ2), and the two families of orbits, passing through the points

(
0,±

√
g∗
2

3c

)
defined by H2(φ, y) = h2, h2 ∈ (H2(φ2, 0),H2(−φ2, 0)), system (7) has four families of

compacton solutions.

Corresponding to the stable and unstable manifolds defined by H2(φ, y) = H2(−φ2, 0) to

the right side of the saddle point (−φ2, 0) and H2(φ, y) = H2(φ2, 0) to the left side of the

saddle point (φ2, 0), system (7) has two pairs of kink-like and antikink-like solutions.

(9) For g∗2 < g < c
√
c and c > 1

4 in Figure 4(i).

Corresponding to the two homoclinic orbits to the saddle points (−φ2, 0) defined by

H2(φ, y) = H2(−φ2, 0) and the saddle points (φ2, 0) defined by H2(φ, y) = H2(φ2, 0),

system (7) has two solitary wave solutions.

Corresponding to the two family of periodic orbits, around the center point (−φ3, 0)

defined by H2(φ, y) = h1, h1 ∈ (H2(−φ2, 0),H2(−φ3, 0)), and around the center point

(φ3, 0) defined by H2(φ, y) = h2, h2 ∈ (H2(φ3, 0),H2(φ2, 0)), system (7) has two families

of periodic wave solutions.
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Corresponding to the four families of orbits, passing through the point (φ0, 0) with

φ0 ∈ (−
√
c,−φ∗

2)
∪
(−φ2, 0)

∪
(0, φ2)

∪
(φ∗

2,
√
c), where φ∗

2 is determined by the equa-

tion H2(φ
∗
2, 0) = H2(φ2, 0), and the two families of orbits, passing through the points(

0,±
√

g
3c

)
defined by H2(φ, y) = h2, h2 ∈ (H2(φ2, 0),H2(−φ2, 0)), system (7) has six

families of compacton solutions.

Corresponding to the stable and unstable manifolds defined by H2(φ, y) = H2(−φ2, 0) to

the right side of the saddle point (−φ2, 0) and H2(φ, y) = H2(φ2, 0) to the left side of the

saddle point (φ2, 0), system (7) has two pairs of kink-like and antikink-like solutions.

3.4 The case g = c
√
c (see Figure 5)

(1) For g = c
√
c and 0 < c < 1

4 in Figure 5(a).

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈

(−
√
c, 0)

∪
(0,

√
c), and the two families of orbits, passing through the points

(
0,±

√√
c
3

)
defined by H2(φ, y) = h2,

h2 ∈
(
H2

(
√
c,

√
4c2−3c+

√
c

3

)
, H2

(
−
√
c,

√
4c2−3c+

√
c

3

))
, system (7) has four families of

compacton solutions.

(2) For g = c
√
c and c = 1

4 in Figure 5(b).

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−1

2 , 0)
∪
(0, 1

2 ), and the two families of orbits, passing through the points
(
0,±

√
1
6

)
defined by H2(φ, y) = h2, h2 ∈

(
H2

(
1
4 , 0
)
,H2

(
− 1

4 , 0
))
, system (7) has four families of

compacton solutions.

(3) For g = c
√
c and c > 1

4 in Figure 5(c).

Corresponding to the four families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−

√
c,− 4

√
c
4 )
∪
(− 4
√

c
4 , 0)

∪
(0, 4
√

c
4 )
∪
( 4
√

c
4 ,
√
c), and the two families of orbits, passing

through the points

(
0,±

√√
c
3

)
defined by H2(φ, y) = h2,

h2 ∈
(
H2

(
√
c,

√
4c2−3c+

√
c

3

)
,H2

(
−
√
c,

√
4c2−3c+

√
c

3

))
, system (7) has six families of

compacton solutions.

Corresponding to the stable and unstable manifolds defined by H2(φ, y) = H2(− 4
√

c
4 , 0)

to the right side of the saddle point (− 4
√

c
4 , 0) and H2(φ, y) = H2( 4

√
c
4 , 0) to the left

side of the saddle point ( 4
√

c
4 , 0), system (7) has two pairs of kink-like and antikink-like

solutions.

3.5 The case g > c
√
c (see Figure 6)

Corresponding to the two families of orbits, passing through the point (φ0, 0) with φ0 ∈
(−

√
c, 0)

∪
(0,

√
c), and the two families of orbits, passing through the points

(
0,±

√
g
3c

)
defined
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byH2(φ, y) = h2, h2 ∈
(
H2

(
√
c,
√

4c3−3c2+g
3c

)
, H2

(
−
√
c,
√

4c3−3c2+g
3c

))
, system (7) has four

families of compacton solutions.

§4 Main results

Based on the above results, we summarize the main results about different profiles for

the wave function φ(ξ) and their dynamical behaviors under different parameter conditions in

Theorems 1–5.

Theorem 1. Under the condition g < 0, the following conclusions hold.

(1) When g < min{3c2 − 4c3, 0}, Eq.(2) has four families of compacton solutions and two

pairs of kink-like and antikink-like solutions.

(2) When g = 3c2 − 4c3 and c > 3
4 , Eq.(2) has two families of compacton solutions.

(3) When 3c2 − 4c3 < g < 0 and c > 3
4 , Eq.(2) has two periodic cusp wave solutions, two

families of periodic wave solutions, and two families of compacton solutions.

Theorem 2. Under the condition g = 0, the following conclusions hold.

(1) When g = 0 and 0 < c < 3
4 , Eq.(2) has six families of compacton solutions and four pairs

of kink-like and antikink-like solutions.

(2) When g = 0 and c = 3
4 , Eq.(2) has four families of compacton solutions and two pairs of

kink-like and antikink-like solutions.

(3) When g = 0 and 3
4 < c < 2, Eq.(2) has two periodic cusp wave solutions, two families of

periodic wave solutions, four families of compacton solutions, and two pairs of kink-like

and antikink-like solutions.

(4) When g = 0 and c = 2, Eq.(2) has the peakons with exact explicit expressions (15) and

(16), two families of periodic wave solutions, and two families of compacton solutions.

(5) When g = 0 and c > 2, Eq.(2) has two solitary wave solutions, four families of periodic

wave solutions, two periodic cusp wave solutions, and two families of compacton solutions.

Theorem 3. Under the condition 0 < g < c
√
c, the following conclusions hold.

(1) When 0 < g < 3c2 − 4c3 and 0 < c < 3
4 , Eq.(2) has eight families of compacton solutions

and six pairs of kink-like and antikink-like solutions.

(2) When g = 3c2 − 4c3 and 0 < c < 1
4 , Eq.(2) has six families of compacton solutions and

two pairs of kink-like and antikink-like solutions.

(3) When g = 3c2 − 4c3 and 1
4 < c < 3

4 , Eq.(2) has six families of compacton solutions and

four pairs of kink-like and antikink-like solutions.
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(4) When 3c2 − 4c3 < g < g∗1 and 0 < c < 1
4 , Eq.(2) has two periodic cusp wave solutions,

two families of periodic wave solutions, six families of compacton solutions, and two pairs

of kink-like and antikink-like solutions.

(5) When g = g∗1 and 0 < c < 1
4 , Eq.(2) has two peakons, two families of periodic wave

solutions, and four families of compacton solutions.

(6) When g∗1 < g < c
√
c and 0 < c < 1

4 , Eq.(2) has two solitary wave solutions, two families

of periodic wave solutions, and four families of compacton solutions.

(7) When max{3c2−4c3, 0} < g < g∗2 and c > 1
4 , Eq.(2) has two periodic cusp wave solutions,

two families of periodic wave solutions, six families of compacton solutions, and four pairs

of kink-like and antikink-like solutions.

(8) When g = g∗2 and c > 1
4 , Eq.(2) has two peakon solutions, two families of periodic wave

solutions, four families of compacton solutions, and two pairs of kink-like and antikink-like

solutions.

(9) When g∗2 < g < c
√
c and c > 1

4 , Eq.(2) has two solitary wave solutions, two families of

periodic wave solutions, six families of compacton solutions, and two pairs of kink-like

and antikink-like solutions.

Theorem 4. Under the condition g = c
√
c, the following conclusions hold.

(1) When g = c
√
c and 0 < c < 1

4 , Eq.(2) has four families of compacton solutions.

(2) When g = c
√
c and c = 1

4 , Eq.(2) has four families of compacton solutions.

(3) When g = c
√
c and c > 1

4 , Eq.(2) has six families of compacton solutions and two pairs

of kink-like and antikink-like solutions.

Theorem 5. Under the condition g > c
√
c, Eq.(2) has four families of compacton solutions.

Remark 2. In the previous works, peakons and periodic cusp waves were not found. In

addition, we confirm the abundant dynamical behaviors of bounded traveling wave solutions

under different parameter conditions. Therefore, the present work extends the results about

Eq.(2) [15–17].

§5 Numerical simulations

In this section, we numerically simulate the solutions of the subcase when 0 < g < 3c2−4c3

and 0 < c < 3
4 .

Taking c = 0.5 and g = 0.125 ∈ (0, 3c2 − 4c3), which indicates that φ2 = 0.259781,
√
c =

0.707, φ3 = 0.758837, we illustrate the profiles of the compacton solutions φ(ξ) in Figures 9(a)

and 9(b) by taking the initial point (φ0, y0) with φ0 = −0.75, y0 = 0, φ0 = −0.4, y0 = 0,

φ0 = −0.1, y0 = 0, φ0 = 0.1, y0 = 0, φ0 = 0.4, y0 = 0, φ0 = 0.75, y0 = 0, and φ0 =
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(a) (b)

Figure 9. The compacton solutions of Eq.(2) when 0 < g < 3c2 − 4c3 and 0 < c < 3
4 .

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. The six pairs of kink-like and antikink-like solutions of Eq.(2) when 0 < g < 3c2−4c3

and 0 < c < 3
4 .

±0.4, y0 = ±0.394388, respectively. Similarly, the profiles of the kink-like and antikink-like

solutions φ(ξ) are given in Figures 10(a)–10(l) by taking the initial point (φ0, y0) with φ0 =

−0.75, y0 = ±0.0312059, φ0 = −0.4, y0 = ±0.159326, φ0 = −0.1, y0 = ±0.160895, φ0 =

0.1, y0 = ±0.160895, φ0 = 0.4, y0 = ±0.159326, φ0 = −0.75, y0 = ±0.0312059, respectively.
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