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Existence for neutral fractional differential equations in

composite relaxation process

HE Jia-wei1,2,∗ YU Zi-cheng1

Abstract. This paper is devoted to the existence results for a class of neutral abstract frac-

tional differential equations involving the composite relaxation process. Based on the Laplace

transform, the semigroup theory and the Wright functions, we first introduce a definition of mild

solutions to the considered problem. By means of the noncompactness of measure and the fixed

point technique, we establish existence criteria of solutions. Finally, an example is presented to

illustrate our main result.

§1 Introduction

In this paper, we are concerned with the following neutral abstract fractional differential

equations in composite relaxation process{
(u(t)− h(t, ut))

′ = ACD1−α
0+ u(t)− u(t) + f(t, ut), t ∈ (0, a],

u(t) = φ(t), t ∈ [−r, 0],
(1.1)

in a Banach space X, where CD1−α
0+ is the Caputo fractional derivative of order 1 − α for

α ∈ (0, 1). The operator A : D(A) ⊂ X → X is the infinitesimal generator of an analytic

semigroup of uniformly bounded linear operators {T (t)}t≥0. We set ut by ut(θ) := u(t+ θ) for

θ ∈ [−r, 0], and let C = C([−r, 0];X) denote the Banach space of continuous functions from

[−r, 0] into X with the norm ∥u∥C = supθ∈[−r,0] ∥u(θ)∥. The functions h, f : (0, a]×C → X are

given that will be specified later and φ ∈ C.
We observe that, if α = 1/2, A = a > 0 and h = 0 in the scalar case, the problem (1.1) is

the so-called Basset problem, i.e., the equation

u′(t) + aCD
1/2
0+ u(t) + u(t) = f(t),

arises in fluid dynamics, modelling the unsteady motion of a particle accelerates in viscous

fluid under the action of gravity. Ashyralyev [3] studied the well-posedness of this problem
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in spaces of smooth functions associated with a strongly positive operator A, Gorenflo and

Mainardi [16] found a fundamental solution by using the Laplace transform method. In [13,14],

Lizama et al. considered the existence and qualitative properties of solutions by means of (a, k)-

regularized resolvent. Mophou et al. [17] studied the existence and uniqueness of solutions for

an initial/boundary value problem by using the eigenfunction expansions approach. Fan et

al. [8] investigated the approximate controllability in Hilbert space with the compactness of

C0-semigroup T (t) generated by operator A. Wu and He [21] considered the maximal regularity

for the initial value problem and the regularization of a backward problem based on a spectral

problem. As we have already noted, the theory of fractional calculus has attracted widespread

attention in recent years, with extensive contributions in various directions. For instance, the

existence and controllability of solutions for fractional systems have been established in [6, 11,

12, 18-20, 24, 25]; the existence of solutions for fractional partial differential equations have

been studied in [7, 9, 22, 26]; and the blow-up and decay estimates of solutions can be found

in [1, 23], etc..

Neutral fractional differential equations have significant applications in the field of physic-

s, particularly in describing complex physical phenomena such as anomalous relaxation and

diffusion processes. These processes often involve memory effects and composite relaxation be-

haviours, which can be effectively captured by the fractional derivatives in neutral differential

equations. Moreover these equations extend the classical integer order differential equations

and pure fractional differential equations, introducing more flexibility and complexity in the

description of dynamic systems. This motivates us to study neutral fractional differential e-

quations with composite relaxation processes. As indicated in the provided references, despite

extensive research on fractional evolution equations, there is a lack of work focusing on neu-

tral fractional composite relaxation equations. In this paper, we will establish the existence

of solution for this problem. We noted that, some classical analytical tools appearing in frac-

tional evolution equations will be applied to derive the representation of solutions, like Laplace

transform, the semigroup theory and the Wright function, by means of the operator theory

and noncompactness of measure, the existence results of solutions for the current problem are

obtained.

This paper is organized as follows. In section 2, we introduce some useful notations and

preliminary results, and then we further introduce a suitable definition of the mild solutions

by applying the Laplace transform. In section 3, the existence results of mild solutions are

presented by means of noncompactness of measure. Finally, an example is presented to illustrate

the main results.

§2 Preliminaries

Let J = [0, a], J ′ = (0, a] and let X be a Banach space with norm ∥ · ∥. We set A : D(A)

⊂ X → X by the infinitesimal generator of an analytic semigroup {T (t)}t≥0 of uniformly

bounded linear operators on X. Let 0 ∈ ρ(A), where ρ(A) denotes the resolvent set of A. For

any 0 < η ≤ 1, we denote the fractional power operator Aη as a closed linear operator on its
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domain D(Aη). We shall use the space C(J,X) representing the Banach space of all continuous

functions on J equipped with the norm

∥u∥C(J,X) = sup
t∈J

e−Lt∥u(t)∥,

where L is a positive constant.

Let us recall the following well-known definitions related to fractional integral and fractional

derivative.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a function x :

[0, a] → X is defined as

Iα0+x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, t ∈ (0, a],

provided that the right-hand side is pointwise defined on [0, a], where Γ(·) is the gamma function.

Definition 2.2. The Caputo fractional derivative of order α > 0 for a function x : [0, a] → X

is defined as
CDα

0+x(t) =
d

dt
I1−α
0+

(
x(t)− x(0)

)
, 0 < α < 1.

In particular, if x is a smooth function, then CDα
0+x(t) = I1−α

0+ x′(t).

Note that the Laplace transform for the Caputo fractional derivative of order α ∈ (0, 1) is

given by

L(CDα
0+x)(λ) = λαL(f)(λ)− λα−1f(λ),

where the Laplace transform is defined by

L(x)(λ) = x̂(λ) =

∫ ∞

0

e−λtx(t)dt, Re(λ) > 0.

Next, we introduce the notations of measures of noncompactness and their properties. De-

note by P(X) the collection of nonempty bounded subsets of X. For every Ω ∈ P(X), there are

two important examples of measure of noncompactness (MNC), the first one is the Hausdorff

MNC defined by

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net},
and the second one is the Kuratowski MNC defined by

τ(Ω) = inf{d > 0 : Ω ⊂
n∪

j=1

Mj and diam(Mj) ≤ d},

where the diameter of Mj is given by diam(Mj) = sup{∥x − y∥ : x, y ∈ Mj}, j = 1, . . . , n.

The Hausdorff and Kuratowski MNCs are connected by the relations:

χ(Ω) ≤ τ(Ω) ≤ 2χ(Ω).

A MNC χ (or τ) is recalled: monotone if Ω1, Ω2 ∈ P(X) with Ω1 ⊆ Ω2 then χ(Ω1) ≤ χ(Ω2);

nonsingular if χ({c}∪Ω) = χ(Ω) for every c ∈ X, Ω ∈ P(X); regular if χ(Ω) = 0 , Ω is relatively

compact.

We now introduce the MNC ν as follows: for a bounded set D ⊂ C(J,X), the modulus of

noncompactness of D is given by

γL(D) = sup
t∈J

e−Ltχ(D(t)),
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where the modulus of equicontinuity of the set of functions D has the following form

modC(D) = lim
δ→0

sup
x∈D

max
|t2−t1|<δ

∥x(t2)− x(t1)∥.

Let us fix a positive constant L and denote

ν(D) = max
D∈Θ(D)

(γL(D), modC(D)) ,

where Θ(D) is the collection of all denumerable subsets of D, the range for the MNC is a cone

in R2 and the maximum is taken in the sense of the ordering induced by this cone. As remarked

in [10], the MNC ν is known to be monotone, nonsingular, and regular. For more details of the

definitions, properties and applications of the MNC, we refer to [4, 5, 24].

Lemma 2.1. [5] Let X be a Banach space. If W ⊂ X is bounded, then for each ε > 0, there

is a sequence {un}∞n=1 ⊂W , such that

χ(W ) ≤ 2χ({un}∞n=1) + ε.

Lemma 2.2. [15] Let χC be the Hausdorff MNC on C(J,X), and let W (t) = {x(t) : x ∈ W}.
If W ⊂ C(J,X) is bounded, then for every t ∈ J ,

χ(W (t)) ≤ χC(W ).

Furthermore, if W is equicontinuous, then the map t 7→ χ(W (t)) is continuous on J and

χC(W ) = sup
t∈J

χ(W (t)).

Lemma 2.3. [15]. Let {xn}∞n=1 be a sequence of Bochner integrable functions from J into X.

If there exists a function ρ(·) ∈ L1(J,R+) satisfying ∥xn(t)∥ ≤ ρ(t) for almost all t ∈ J and for

every n ≥ 1, then the function ψ(t) = χ({xn(t)}∞n=1) ∈ L1(J,R+) satisfying

χ

({∫ t

0

xn(s)ds : n ≥ 1

})
≤ 2

∫ t

0

ψ(s)ds.

Definition 2.3. Let D be a subset of Banach space X. A continuous function G : D → X is

said to be ν-condensing with respect to MNC ν if ν(G(Ω)) < ν(Ω) for every bounded and not

relatively compact set Ω ⊆ D.

Theorem 2.1. Let D be a bounded convex closed subset of X and let G : D → D be a ν-

condensing map. Then there exists at least one fixed point.

Definition 2.4. A sequence {fn}∞n=1 is said to be semicompact if it satisfies the following

conditions:

(i) it is integrable bounded, i.e., there exists q ∈ L1(J,R+) such that ∥fn(t)∥ ≤ q(t) for all n

and for a.e. t ∈ J ;

(ii) the set {fn(t)}∞n=1 is relatively compact in X for a.e. t ∈ J .

Let us consider the following neutral fractional differential equations{
(u(t)− h(t, ut))

′ = ACD1−α
0+ u(t)− u(t) + f(t), t ∈ (0, a],

u(t) = φ(t), t ∈ [−r, 0].
(2.1)
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Now, let Re(λ) > 0, λα ∈ ρ(A) and let us take Laplace transform to both sides of (2.1), we

have

λû(λ)− λχ(λ)− u(0) + h(0, u0) = Aλ1−αû(λ)−Aλ−αu(0)− û(λ) + f̂(λ),

where

χ(λ) =

∫ ∞

0

e−λth(t, ut)dt.

Therefore, we have

û(λ) =λ−1u(0)− λα−1(λαI −A)−1h(0, u0)− λα−1(λαI −A)−1û(λ)

+ λα(λαI −A)−1χ(λ) + λα−1(λαI −A)−1f̂(λ),
(2.2)

where I is the identity operator. From the technique of [24], we have

λα−1(λαI −A)−1v =

∫ ∞

0

e−λtQα(t)vdt, (λαI −A)−1v =

∫ ∞

0

e−λttα−1Rα(t)vdt,

for any v ∈ X and

Qα(t) =

∫ ∞

0

Mα(θ)T (t
αθ)dθ, Rα(t) =

∫ ∞

0

αθMα(θ)T (t
αθ)dθ,

where Mα(·) is the Mainardi Wright-type function defined by

Mα(z) =
∞∑

n=0

(−z)n

n!Γ(1− α(n+ 1))
, α ∈ (0, 1), z ∈ C.

Noting that λα(λαI −A)−1 = I +A(λαI −A)−1, hence, one has

û(λ) =L (1(t)u(0))− L (Qα(t)h(0, u0))− L (Qα(t)) û(λ)

+ χ(λ) + L
(
tα−1ARα(t)

)
χ(λ) + L (Qα(t)) f̂(λ).

By the uniqueness of inverse Laplace transform, we obtain

u(t) =φ(0)−Qα(t)h(0, u0)−
∫ t

0

Qα(t− s)u(s)ds+ h(t, ut)

+

∫ t

0

(t− s)α−1ARα(t− s)h(s, us)ds+

∫ t

0

Qα(t− s)f(s)ds.

Lemma 2.4. [24] For any t > 0, the Mainardi Wright-type function has the properties

Mα(t) ≥ 0,

∫ ∞

0

θδMα(θ)dθ =
Γ(1 + δ)

Γ(1 + αδ)
, for − 1 < δ <∞. (2.3)

Throughout this paper, we suppose that A is the infinitesimal generator of an analytic

semigroup {T (t)}t≥0 on X. This means that there exists M ≥ 1 such that

M = sup
t∈[0,∞)

∥T (t)∥B(X) <∞,

where B(X) is the space of all bounded linear operators from X to X with the norm ∥T∥B(X) =

sup{∥T (x)∥ : ∥x∥ = 1}. The following lemmas can be found in [24].

Lemma 2.5. For any fixed t ≥ 0, Qα(t), Rα(t) are linear and bounded operators, i.e., for any

x ∈ X

∥Qα(t)x∥ ≤M∥x∥, ∥Rα(t)x∥ ≤ M

Γ(α)
∥x∥.

Lemma 2.6. {Rα(t)}t≥0, {Qα(t)}t≥0 are strongly continuous, which means that, for any x ∈ X

and t′′ > t′ ≥ 0, we have

∥Qα(t
′′)x−Qα(t

′)x∥ → 0, ∥Rα(t
′′)x−Rα(t

′)x∥ → 0 as t′′ → t′.
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Lemma 2.7. If T (t) is compact for every t > 0, then Qα(t) and Rα(t) are compact for every

t > 0.

Let us introduce a fractional power space, see e.g. [19]. For 0 < ν < 1, we also introduce

fractional power A−ν ∈ B(X) of A as

A−ν :=
1

Γ(ν)

∫ ∞

0

sν−1T (s)ds.

We set Aν as the inverse of A−ν and D(Aν) as a Banach space with the graph norm ∥u∥ν =

∥x∥+ ∥Aνu∥ for any u ∈ D(Aν).

Lemma 2.8. For any u ∈ D(Aν), ν ∈ (0, 1) and η ∈ (0, 1], we have

ARα(t)u = A1−νRα(t)A
νu, t ∈ J,

and there exists a constant Cη > 0 such that

∥AηRα(t)∥B(X) ≤
Cη

tαη
, t ∈ J ′.

In view of (2.2), we introduce the following definition of mild solutions to problem (1.1).

Definition 2.5. A function u ∈ C([−r, a], X) is called a mild solution to composite fractional

relaxation equation (1.1) if it satisfies

u(t) =



φ(0)−Qα(t)h(0, u0) + h(t, ut)−
∫ t

0

Qα(t− s)u(s)ds

+

∫ t

0

(t− s)α−1ARα(t− s)h(s, us)ds+

∫ t

0

Qα(t− s)f(s, us)ds, t ∈ [0, a],

φ(t), t ∈ [−r, 0].

§3 The existence results

In order to derive the main results, in this section, we first assume that the following

conditions are satisfied:

(Ht) The semigroup T (t) is equicontinuous for t > 0, i.e., T (t) is continuous in the uniform

operator topology for t > 0;

(Hf) The function f satisfies

(i) for almost all t ∈ J , the function f(t, ·) : C → X is continuous and for each u ∈ C,
the function f(·, u) : J → X is strongly measurable;

(ii) there exists a function σ ∈ L1(J,R+) such that ∥f(t, u)∥ ≤ σ(t)∥u∥C for all u ∈ C
and almost all t ∈ J ;

(iii) for every bounded set D ⊂ Cφ, there exists a function ρ ∈ L1(J,R+) such that

χ(f(t,D)) ≤ ρ(t)χ(D);
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(Hh) The function h : J × C → X is continuous and there exists a constant η ∈ (0, 1) and two

constants Lh1, Lh2 with 2Lhi∥A−η∥B(X) < 1 (i = 1, 2) such that h ∈ D(Aη) and for any

u ∈ Cφ, t ∈ J , the function Aηh(·, u) is strongly measurable and Aηh(t, ·) satisfies the

Lipschitz condition

∥Aηh(t, x)−Aηh(t, z)∥ ≤ Lh1∥x− z∥C
and ∥Aηh(t, u)∥ ≤ Lh2∥u∥C . Moreover, for every bounded set D′ ⊂ Cφ such that

χ(Aηh(t,D′)) ≤ Lh2χ(D
′).

Let

Cφ := {u ∈ C(J,X) : u(0) = φ(0)},
and for u ∈ Cφ, we set

u[φ](t) =

{
u(t), for t ∈ [0, a];

φ(t), for t ∈ [−r, 0].
Denote by S the operator acting on Cφ such that

S(u)(t) =φ(0)−Qα(t)h(0, u[φ]0) + h(t, u[φ]t)−
∫ t

0

Qα(t− s)u(s)ds

+

∫ t

0

(t− s)α−1ARα(t− s)h(s, u[φ]s)ds+

∫ t

0

Qα(t− s)f(s, u[φ]s)ds.

Define a mapping Qα : L1(J,X) → C(J,X) by

Qα(g)(t) =

∫ t

0

Qα(t− s)g(s)ds.

Additionally, we also consider an operator Φh as follows

Φh(u)(t) = φ(0)−Qα(t)h(0, u[φ]0) + h(t, u[φ]t) +

∫ t

0

(t− s)α−1ARα(t− s)h(s, u[φ]s)ds,

putting

Nf (u)(t) = f(t, u[φ]t),

and

Ψf (u)(t) = Qα(Nf (u)− u).

Hence, we have

S(u) = Ψf (u) + Φh(u).

It is evident that u ∈ Cφ is a fixed point of S if and only if u[φ] is a mild solution of (1.1).

We shall consider an abstract operator S : L1(J,X) → C(J,X) satisfying

(S1) there exists ϖ ≥ 0 such that

∥Sf − Sg∥C(J,X) ≤ ϖ∥f − g∥L1(J,X), for every f, g ∈ L1(J,X);

(S2) for any compact K ⊂ X and sequence {fn(t)}∞n=1 ⊂ L1(J,X) such that {fn}∞n=1 ⊂ K for

a.e. t ∈ J , the weak convergence fn ⇀ f0 implies the strong convergence Sfn → Sf0.

Lemma 3.1. The operator Qα satisfies the properties (S1) and (S2).
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Proof. Since T (t) is an uniformly bounded analytic semigroup, in view of Lemma 2.5, we have

∥Qαf −Qαg∥C(J,X) =sup
t∈J

e−Lt∥Qα(f − g)(t)∥

≤ sup
t∈J

e−Lt

∫ t

0

∥Qα(t− s)(f(s)− g(s))∥ds

≤M sup
t∈J

e−Lt

∫ t

0

∥f(s)− g(s)∥ds =M∥f − g∥L1(J,X).

The property (S1) follows. In order to check (S2), we first note that for every compact set

K ⊂ X, in view of Lemma 2.6, the functions s 7→ Qα(t−s)x, s ∈ [0, t], x ∈ K are equicontinuous

in s with respect to x on [0, t], which means that the set

D =
∪

s∈[0,t]

Qα(t− s)K

is relatively compact.

Moreover, for every sequence {fn(t)}∞n=1 ⊂ L1(J,X) such that {fn(s)}∞n=1 ⊂ K for a.e.

s ∈ J , it yields

{Qαfn(t)}∞n=1 ⊂ tD,

which implies that the sequence {Qαfn(t)}∞n=1 ⊂ X is relatively compact for every t ∈ J . Next,

by means of Ascoli-Arzela theorem, it remains to check the sequence {Qαfn}∞n=1 ⊂ C(J,X) is

equicontinuous.

Due to fn(t) ∈ K for n ≥ 1 and a.e. t ∈ J , there is a constant N > 0 such that ∥fn(t)∥ ≤ N .

For any t′′, t′ ∈ J , 0 < t′′ − t′ < a, take ε > 0 enough small, we have

∥Qαfn(t
′′)−Qαfn(t

′)∥ ≤
∫ t′′

t′
∥Qα(t

′′ − s)fn(s)∥ds+
∫ t′

0

∥(Qα(t
′′ − s)−Qα(t

′ − s))fn(s)∥ds

≤
∫ t′′

t′
∥Qα(t

′′ − s)fn(s)∥ds

+

∫ t′−ε

0

∥(Qα(t
′′ − s)−Qα(t

′ − s))fn(s)∥ds

+

∫ t′

t′−ε

∥(Qα(t
′′ − s)−Qα(t

′ − s))fn(s)∥ds.

In view of Lemma 2.5, Lemma 2.6, the functions s 7→ Qα(t− s)x, s ∈ [0, t], x ∈ K are

equicontinuous in s with respect to x on [0, t], we have

∥Qαfn(t
′′)−Qαfn(t

′)∥ ≤MN(t′′ − t′) +N(t′ − ε) sup
s∈[0,t′−ε]

∥Qα(t
′′ − s)−Qα(t

′ − s)∥B(X)

+ 2MNε→ 0, as t′′ → t′, ε→ 0.

Therefore, the sequence {Qαfn}∞n=1 is relatively compact in C(J,X). Finally, we know that

(S1) implies that Qα is a bounded linear operator from C(J,X) into L1(J,X). Hence, operator

Qα is continuous if these spaces are endowed with the topology of weak sequential convergence

and fn ⇀ f implies Qαfn ⇀ Qαf , from the relative compactness of {Qαfn}∞n=1, we have

Qαfn → Qαf in C(J,X). The proof is completed.

It is readily seen from [10, Corollary 4.2.3] that the following lemma is true.
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Lemma 3.2. If the sequence {fn}∞n=1 ⊂ L1(J,X) is semicompact, then there exists a compact

set Kδ ⊂ X for every δ > 0 and a δ-net of the sequence {fn}∞n=1 formed by the functions with

values in Kδ.

Lemma 3.3. For every semicompact sequence {fn}∞n=1 ⊂ L1(J,X), the sequence {Qαfn}∞n=1

is relatively compact in C(J,X).

Proof. From Lemma 3.2, there exists a compact set Kδ ⊂ X for every δ > 0 and an δ-net Oδ of

the sequence {fn}∞n=1 formed by the functions with values in Kδ. In view of (S2), we get that

QαOδ is a relatively compact set in C(J,X). From (S1), we obtain that QαOδ is a δM -net of

the sequence {Qαfn}∞n=1 in C(J,X). This ends the proof.

Lemma 3.4. Let (Hf) holds. Then S({un}∞n=1) is relatively compact for every bounded sequence

{un}∞n=1 ⊂ Cφ satisfying γL({un}∞n=1) = 0.

Proof. Now let {un}∞n=1 ⊂ Cφ be a bounded sequence such that γL({un}∞n=1) = 0. Then it

follows from (Hf) that, fn(t) = f(t, un[φ]t) satisfies the estimate

∥fn(t)∥ ≤σ(t)∥un[φ]t∥ ≤ σ(t)( sup
s∈[0,t]

∥un(s)∥+ ∥φ∥C)

≤σ(t)M + σ(t)∥φ∥C =: q(t),

where M is an upper bound for {un}∞n=1 in C(J,X). In view of γL({un}∞n=1) = 0, one has

χ({un(t)}∞n=1) = 0 for all t ∈ J , i.e., {un(t)}∞n=1 is relatively compact for each t ∈ J . Hence,

{un[φ]t} is a relatively compact set in C([−r, 0], X). Since f(t, ·) is continuous, we get that

{f(t, un[φ]t)}∞n=1 is relatively compact for t ∈ J . Thus {fn}∞n=1 is a semicompact sequence,

and from Lemma 3.3 we obtain that

Ψf ({un}∞n=1) = Qα({fn}∞n=1)−Qα({un}∞n=1)

is relatively compact in C(J,X). A similar argument in the previous proof shows that the set

{h(t, un[φ]t)}∞n=1 is relatively compact for t ∈ J . Hence {h(·, un)}∞n=1 is also a semicompact

sequence. Therefore, we get that {Φh(un)}∞n=1 is relatively compact in C(J,X), which means

that {S(un)}∞n=1 is relatively compact in C(J,X).

Now we choose L > 0 in the definition of MNC γL such that

l :=2M

∫ t

0

σ(s)e−L(t−s)ds+ 2M(1− e−Lt)/L

+ Lh2∥A−η∥B(X) + 2Lh2Cη

∫ t

0

(t− s)−α(1−η)e−L(t−s)ds < 1.

(3.1)

Lemma 3.5. Let (Ht), (Hf) and (Hh) hold. Then S is ν-condensing.

Proof. Let B ⊆ Cφ be a bounded set such that

ν(B) ≤ ν(S(B)). (3.2)

We show below that B is a relatively compact set, that is, ν(B) = 0. By the definition of ν,

there exists a sequence {un}∞n=1 ⊆ B such that

ν(S({un}∞n=1)) = max
(
γL(S({un}∞n=1)), modC(S({un}∞n=1))

)
≥ γL({un}∞n=1).
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Claim I. γL({S(un)}∞n=1) = 0.

For any t ∈ J , we have

γL({Ψf (un)}∞n=1) = sup
t∈J

e−Ltχ({Ψf (un(t))}∞n=1)

= sup
t∈J

e−Ltχ({Qα(Nf (un(t))− un(t))}∞n=1)

≤ sup
t∈J

e−Ltχ({Qα(Nf (un(t)))}∞n=1) + sup
t∈J

e−Ltχ({Qα(un(t))}∞n=1).

On the other hand, from Lemma 2.3 and Lemma 2.5 we get

χ({Qα(Nf (un(t)))}∞n=1) ≤2

∫ t

0

χ (Qα(t− s){f(s, un[φ](s))}∞n=1) ds

≤2M

∫ t

0

σ(s)χ ({un(s)}∞n=1) ds

≤2MγL ({un}∞n=1)

∫ t

0

σ(s)eLsds.

Similarly, we have

χ({Qα(un(t))}∞n=1) ≤ 2MγL ({un}∞n=1) (e
Lt − 1)/L.

Therefore, it follows that

γL({Ψf (un)}∞n=1) ≤ sup
t∈J

[
2M

∫ t

0

σ(s)e−L(t−s)ds+ 2M(1− e−Lt)/L

]
γL ({un}∞n=1) ,

which implies that γL({un}∞n=1) = 0 from l < 1. We thus obtain that γL({Ψf (un)}∞n=1) = 0.

Moreover, since the measure χ is monotone, from (Hh), for t ∈ J we get

γL({h(t, un[φ]t)}∞n=1) = sup
t∈J

e−Ltχ({A−ηAηh(t, un[φ]t)}∞n=1)

≤Lh2 ∥A−η∥B(X) sup
t∈J

e−Lt χ({un[φ]t}∞n=1)

≤Lh2 ∥A−η∥B(X) sup
t∈J

e−Lt

(
sup

s∈[0,t]

χ {un(s)}∞n=1

)
≤Lh2 ∥A−η∥B(X)γL({un}∞n=1).

On the other hand, from Lemma 2.8 we have

χ({ARα(t− s)h(s, un[φ]s)}∞n=1) =χ({A1−ηRα(t− s)Aηh(s, un[φ]s)}∞n=1)

≤∥A1−ηRα(t− s)∥B(X) χ({Aηh(s, un[φ]s)}∞n=1)

≤Cη Lh2(t− s)−α(1−η) χ({un[φ]s}∞n=1)

≤Cη Lh2(t− s)−α(1−η)eLs γL({un}∞n=1).

By Lemma 2.4, one obtains∫ t

0

(t− s)α−1χ({ARα(t− s)h(s, un[φ]s)}∞n=1)ds

≤Cη Lh2 γL({un}∞n=1)

∫ t

0

(t− s)−α(1−η)eLsds.

This turns out that γL({un}∞n=1) ≤ l γL ({un}∞n=1). By the choice of l ∈ (0, 1), it is easy to

see that γL({un}∞n=1) = 0 and then γL({Φh(un)}∞n=1) = 0. Together the above arguments, we
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obtain the desired claim.

Claim II. modC(S({un}∞n=1)) = 0, that is, the set B is equicontinuous. Firstly, by using the

assumption (Hf) and the same arguments in Lemma 3.4, one can get that {f(t, un[φ](t))}∞n=1 is a

semicompact sequence. Then Definition 2.4 (ii) ensures that the set {Ψf (un)(t)}∞n=1 is relatively

compact in C(J,X). Hence, modC({Ψf (un)}∞n=1) = 0. In fact, we just prove {Qα(fn)(t)}∞n=1

is equicontinuous in C(J,X), and the case of {Qα(un)(t)}∞n=1 follows.

For 0 ≤ t1 < t2 ≤ a, by (Hf) we have

∥Qα(fn)(t2)−Qα(fn)(t1)∥ ≤
∫ t2

t1

∥Qα(t2 − s)f(s, u[φ]s)∥ds

+

∫ t1

0

∥(Qα(t2 − s)−Qα(t1 − s))f(s, u[φ]s)∥ds

≤M
∫ t2

t1

σ(s)∥u[φ]s∥Cds

+

∫ t1

0

∥(Qα(t2 − s)−Qα(t1 − s))∥B(X)σ(s)∥u[φ]s∥Cds.

Since

∥u[φ]t∥C ≤ sup
s∈[0,t]

∥u(s)∥+ ∥φ∥C ,

and σ ∈ L1(J,R+), it follows that∫ t2

t1

σ(s)∥u[φ]s∥Cds→ 0, as t2 → t1.

On the other hand, by (Ht), for any ε > 0∫ t1

0

∥(Qα(t2 − s)−Qα(t1 − s))∥B(X)σ(s)∥u[φ]s∥Cds

≤2M

∫ t1−ε

0

σ(s)∥u[φ]s∥Cds

+

∫ t1

t1−ε

σ(s)∥u[φ]s∥Cds sup
s∈[t1−ε,t1]

∥Qα(t2 − s)−Qα(t1 − s)∥B(X)

→0, as t2 → t1, ε→ 0.

Therefore, it follows that

∥Qα(fn)(t2)−Qα(fn)(t1)∥ → 0, as t2 → t1,

which shows that {Qα(fn)(t)}∞n=1 is equicontinuous.

Next we show that {Φh(un)(t)}∞n=1 is equicontinuous. For 0 ≤ t1 < t2 ≤ a, one has

∥Φh(un)(t2)− Φh(un)(t1)∥ ≤∥(Qα(t2)−Qα(t1))h(0, u[φ]0)∥

+ ∥h(t2, un[φ]t2)− h(t1, un[φ]t1)∥

+ ∥Rα(un)(t2)−Rα(un)(t1)∥,
in which

Rα(un)(t) :=

∫ t

0

(t− s)α−1ARα(t− s)h(s, un[φ]s)ds.
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In view of Lemma 2.6 and (Hh), we get

∥(Qα(t2)−Qα(t1))h(0, u[φ]0)∥+ ∥h(t2, un[φ]t2)− h(t1, un[φ]t1)∥ → 0, as t2 → t1.

For any {un}∞n=1 ⊂ B, it follows from the previous proof that we obtain that {Rα(un)}∞n=1

is equicontinuous in C(J,X). It turns out that modC({Rα(un)}∞n=1) = 0. Thus, we obtain

modC({Φh(un)}∞n=1) = 0. The desired result is obtained.

Lemma 3.6. Let (Hf) and (Hh) hold. Then S is continuous.

Proof. Let B be a bounded subset of Cφ and let {un}∞n=1 be a sequence of B such that un → u

in B as n→ ∞. Due to the continuity of f and h, we have

f(s, un[φ]s) → f(s, u[φ]s), and h(s, un[φ]s) → h(s, u[φ]s), as n→ ∞.

Since from (Hh) and Lemma 2.6

∥(t− s)α−1ARα(t− s)(h(s, un[φ]s)− h(s, u[φ]s))∥ ≤ 2Lh1Cη(t− s)αη−1 sup
v∈B

∥v(s)∥,

and ∥un[φ]s − u[φ]s∥C ≤ 2(supv∈B ∥v(s)∥+ ∥φ∥C),
∥f(s, un[φ]s)− f(s, u[φ]s)∥ ≤ 2σ(s)∥u[φ]s∥C , for s ∈ [0, t].

In addition, function s 7→ σ(s) is L1-integral for a.e. s ∈ [0, t], it follows from the Lebesgue

dominated convergence theorem that

∥S(un)(t)− S(u)(t)∥ ≤∥Ψf (un)(t)−Ψf (u)(t)∥+ ∥Φh(un)(t)− Φh(u)(t)∥

≤∥h(s, un[φ]s)− h(s, u[φ]s∥

+

∥∥∥∥∫ t

0

(t− s)α−1ARα(t− s)(h(s, un[φ]s)− h(s, u[φ]s))ds

∥∥∥∥
+

∥∥∥∥∫ t

0

Qα(t− s)(f(s, un[φ]s)− f(s, u[φ]s))ds

∥∥∥∥
+

∥∥∥∥∫ t

0

Qα(t− s)(un[φ]s − u[φ]s)ds

∥∥∥∥
→0, as n→ ∞.

Thus, ∥S(un)− S(u)∥ → 0 as n→ ∞. This means that S is continuous.

Based on the previous results, we get the existence of mild solutions.

Theorem 3.1. Assume that (Ht), (Hf) and (Hh) are satisfied. Then the solution set of problem

(1.1) is nonempty.

Proof. By Lemma 3.5, the operator S is ν-condensing as well as it is continuous due to Lemma

3.6, hence it remains to check that S maps a bounded convex closed set into itself. To achieve

this aim, let ξ ∈ C(J,X) be the solution of the integral equation given by

ξ(t) =lφ + ζ(t), (3.3)

where

lφ :=
∥φ∥C

1− Lh2∥A−η∥B(X)
(∥φ(0)∥+ 2MLh2∥A−η∥B(X) + CηLh2a

αη/(αη) +M∥σ∥L1(J,R+)),
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ζ(t) :=
1

1− Lh2∥A−η∥B(X)

∫ t

0

(t− s)αη−1(CηLh2 +M(σ(s) + 1)(t− s)1−αη)e−L(t−s)ξ(s)ds.

In fact, we can find a solution of ξ satisfying (3.3) and belonging to C(J,X), let

g(t, ξ(t)) :=
CηLh2

1− Lh2∥A−η∥B(X)
eLtξ(t), k(t, ξ(t)) :=

M

1− Lh2∥A−η∥B(X)
(σ(t) + 1)eLtξ(t).

Obviously, g, k ∈ L1(J,R+) for any ξ ∈ C(J,X), we set an operator

Rξ(t) = lφ + ζ(t),

for any ξ ∈ C(J,X), and then we rewrite the integral equation into the following equation

Rξ(t) = lφ + e−LtIαη0+g(t, ξ(t)) + e−LtI10+k(t, ξ(t)).

Observe that Rξ ∈ C(J,X) for any ξ ∈ C(J,X) from the continuity of the integral, and for

any ξ1, ξ2 ∈ C(J,X), by (3.1) we have

e−Lt∥Rξ1(t)−Rξ2(t)∥ ≤e−2LtIαη0+∥g(t, ξ1(t))− g(t, ξ2(t))∥+ e−2LtI10+∥k(t, ξ1(t))− k(t, ξ2(t))∥

≤ CηLh2

1− Lh2∥A−η∥B(X)

∫ t

0

(t− s)αη−1e−2L(t−s)ds∥ξ1 − ξ2∥C(J,X)

+
M

1− Lh2∥A−η∥B(X)

∫ t

0

(σ(s) + 1)e−2L(t−s)ds∥ξ1 − ξ2∥C(J,X)

≤
l − Lh2∥A−η∥B(X)

1− Lh2∥A−η∥B(X)
∥ξ1 − ξ2∥C(J,X)

<∥ξ1 − ξ2∥C(J,X).

Thus, by using the Banach fixed point theorem, it is easy to see that the operator equation

Rξ = ξ is satisfied and it belongs to C(J,X). Set

D =
{
u ∈ Cφ : sup

s∈[0,t]

e−Ls∥u(s)∥ ≤ ξ(t), t ∈ J
}
.

It is clear that D is bounded, closed and convex set of Cφ. In addition, for u ∈ D, in view of

(Hf), (Hh) and Lemma 2.8, we have

∥S(u)(t)∥ ≤∥Ψf (u)(t)∥+ ∥Φh(u)(t)∥

≤∥φ(0)∥+ ∥Qα(t)h(0, u[φ]0)∥

+ ∥h(t, u[φ]t)∥+
∫ t

0

(t− s)α−1∥ARα(t− s)h(s, u[φ]s)∥ds+ ∥Qα(Nf (u)− u)∥

≤∥φ(0)∥+MLh2∥A−η∥B(X)∥u[φ]0∥C + Lh2∥A−η∥B(X)∥u[φ]t∥C

+ CηLh2

∫ t

0

(t− s)αη−1∥u[φ]s∥Cds+M

∫ t

0

σ(s)∥u[φ]s∥Cds+M

∫ t

0

∥u(s)∥ds.

Therefore, one can see that

∥S(u)(t)∥ ≤∥φ(0)∥+ 2MLh2∥A−η∥B(X)∥φ∥C + Lh2∥A−η∥B(X)e
Ltξ(t)

+ CηLh2

∫ t

0

(t− s)αη−1eLsξ(s)ds+ CηLh2∥φ∥Ctαη/(αη)

+M

∫ t

0

(σ(s) + 1)eLsξ(s)ds+M∥σ∥L1(J,R+)∥φ∥C ,

which implies that e−Lt∥S(u)(t)∥ ≤ ξ(t). Therefore, we get S(D) ⊆ D. The application of
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Theorem 2.1 yields the conclusion of existence result. The proof is completed.

Note that if T (t) is compact for every t > 0, then Qα(t) is compact for every t > 0 in view

of Lemma 2.7, hence it is continuous in the operator topology for t > 0, the condition (Ht)

holds immediately.

Theorem 3.2. Assume that T (t) is compact for every t > 0, (Hf) and (Hh) are satisfied. Then

the solution set of problem (1.1) is nonempty.

Example 3.1. Let X = L2([0, π],R) and let us consider the following delay fractional diffusion

equations
∂t(u(t, x)− h(t, x, ut)) = ∂1−α

t ∂xxu(t, x)− u(t, x) + g(t, x, ut), x ∈ [0, π], t ∈ [0, 1];

u(t, 0) = u(t, π) = 0, t ∈ [0, 1];

u(t, x) = φ(t, x), x ∈ [0, π], t ∈ [−1, 0].

where ∂αt is the Caputo fractional partial derivative of order 0 < α < 1, g is a given function,

h : [0, 1]× C([−1, 0], X) → X is defined by

h(t, x, ut) = c

∫ π

0

U(x, y)ut(θ, y)dy,

where c > 0 is a suitable constant, function U and ∂xU are measurable and U(0, y) = U(π, y) =

0, ∫ π

0

∫ π

0

U2(x, y)dydx+

∫ π

0

∫ π

0

(∂xU(x, y))2dydx <∞.

Let A be the operator defined by Av = v′′ with the domain

D(A) = {v ∈ X : v, v′ absolutely continuous, v′′ ∈ X, v(0) = v(π) = 0}.
Then A generates an uniformly bounded compact analytic semigroup {T (t)}t≥0. The problem

can be reformulated as the following delay problem{
(w(t)− h(t, wt)

′ =CD1−α
0+ Aw(t)− w(t) + f(t, wt(t)), t ∈ [0, 1];

w(t) = φ(t), t ∈ [−1, 0].

where w(t) = u(t, ·), that is w(t)(x) = u(t, x), t ∈ [0, a], x ∈ [0, π]. The function f : J×X → X

is given by

f(t, wt)(x) = g(t, x, ut(t, x)) = ke−t sin(u(t+ θ))(x), θ ∈ [−1, 0], k > 0.

Then the assumptions (Hf), (Hh) are satisfied for some suitable c, k > 0. According to Theorem

3.1, the problem has a mild solution in Cφ.

§4 Conclusion

In this paper, we are concerned with the existence of solutions for a class of neutral fractional

differential equations of order 0 < α < 1. By using the techniques of fractional calculus, measure

of noncompactness and the fixed point argument, some sufficient conditions are formulated to

guarantee the existence of the solutions for such equations in composite relaxation process. Due

to the abstract fractional differential equations in composite relaxation process can be used to
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simulate the Basset problem, it is interesting to consider the existence and controllability results

in the future works.
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