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Existence for neutral fractional differential equations in

composite relaxation process

HE Jia-weil?* YU Zi-cheng?

Abstract. This paper is devoted to the existence results for a class of neutral abstract frac-
tional differential equations involving the composite relaxation process. Based on the Laplace
transform, the semigroup theory and the Wright functions, we first introduce a definition of mild
solutions to the considered problem. By means of the noncompactness of measure and the fixed
point technique, we establish existence criteria of solutions. Finally, an example is presented to

illustrate our main result.

81 Introduction

In this paper, we are concerned with the following neutral abstract fractional differential

equations in composite relaxation process
(u(t) — h(t,u)) = A°Dy;%u(t) — u(t) + f(t,u:), te (0,al,
{ u(t) = (1), te[-r0,
in a Banach space X, where CDé;a is the Caputo fractional derivative of order 1 — « for

a € (0,1). The operator A : D(A) C X — X is the infinitesimal generator of an analytic
semigroup of uniformly bounded linear operators {T'(t)};>0. We set u; by u.(6) := u(t + ) for

(1.1)

0 € [-r,0], and let C = C([-r,0]; X) denote the Banach space of continuous functions from
[=7,0] into X with the norm |[ullc = supge(_.op [[u(0)]|. The functions h, f : (0,a] x C — X are
given that will be specified later and ¢ € C.

We observe that, if @« =1/2, A =a > 0 and h = 0 in the scalar case, the problem (1.1) is

the so-called Basset problem, i.e., the equation

' (1) + a Dy Pult) + u(t) = (1),
arises in fluid dynamics, modelling the unsteady motion of a particle accelerates in viscous
fluid under the action of gravity. Ashyralyev [3] studied the well-posedness of this problem
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in spaces of smooth functions associated with a strongly positive operator A, Gorenflo and
Mainardi [16] found a fundamental solution by using the Laplace transform method. In [13,14],
Lizama et al. considered the existence and qualitative properties of solutions by means of (a, k)-
regularized resolvent. Mophou et al. [17] studied the existence and uniqueness of solutions for
an initial/boundary value problem by using the eigenfunction expansions approach. Fan et
al. [8] investigated the approximate controllability in Hilbert space with the compactness of
Co-semigroup T'(t) generated by operator A. Wu and He [21] considered the maximal regularity
for the initial value problem and the regularization of a backward problem based on a spectral
problem. As we have already noted, the theory of fractional calculus has attracted widespread
attention in recent years, with extensive contributions in various directions. For instance, the
existence and controllability of solutions for fractional systems have been established in [6, 11,
12, 18-20, 24, 25]; the existence of solutions for fractional partial differential equations have
been studied in [7, 9, 22, 26]; and the blow-up and decay estimates of solutions can be found
in [1, 23], etc..

Neutral fractional differential equations have significant applications in the field of physic-
s, particularly in describing complex physical phenomena such as anomalous relaxation and
diffusion processes. These processes often involve memory effects and composite relaxation be-
haviours, which can be effectively captured by the fractional derivatives in neutral differential
equations. Moreover these equations extend the classical integer order differential equations
and pure fractional differential equations, introducing more flexibility and complexity in the
description of dynamic systems. This motivates us to study neutral fractional differential e-
quations with composite relaxation processes. As indicated in the provided references, despite
extensive research on fractional evolution equations, there is a lack of work focusing on neu-
tral fractional composite relaxation equations. In this paper, we will establish the existence
of solution for this problem. We noted that, some classical analytical tools appearing in frac-
tional evolution equations will be applied to derive the representation of solutions, like Laplace
transform, the semigroup theory and the Wright function, by means of the operator theory
and noncompactness of measure, the existence results of solutions for the current problem are
obtained.

This paper is organized as follows. In section 2, we introduce some useful notations and
preliminary results, and then we further introduce a suitable definition of the mild solutions
by applying the Laplace transform. In section 3, the existence results of mild solutions are
presented by means of noncompactness of measure. Finally, an example is presented to illustrate
the main results.

82 Preliminaries

Let J =10,qa], J' = (0,a] and let X be a Banach space with norm || - ||. We set A : D(A)
C X — X by the infinitesimal generator of an analytic semigroup {7T'(t)};>¢ of uniformly
bounded linear operators on X. Let 0 € p(A), where p(A) denotes the resolvent set of A. For
any 0 < 1 < 1, we denote the fractional power operator A" as a closed linear operator on its
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domain D(A™). We shall use the space C(J, X) representing the Banach space of all continuous
functions on J equipped with the norm

lullos,x) = supe” M [lu(t)],
teJ

where L is a positive constant.
Let us recall the following well-known definitions related to fractional integral and fractional
derivative.

Definition 2.1. The Riemann-Liouville fractional integral of order o > 0 for a function z :
[0,a] — X is defined as

Ig;x(t):ﬁ/o (t— )2 la(s)ds,  te(0,al,

provided that the right-hand side is pointwise defined on [0, a], where I'(+) is the gamma function.

Definition 2.2. The Caputo fractional derivative of order a > 0 for a function z : [0,a] = X
is defined as

DY, a(t) = %Igga(x(t) - x(O)), O<a<l.
In particular, if « is a smooth function, then “D§, z(t) = I} “2'(t).

Note that the Laplace transform for the Caputo fractional derivative of order o € (0,1) is
given by
L(°Dgx)(A) = A“L(S)(A) = A7),

where the Laplace transform is defined by
L)) = 0\ = / e Mat)dt, Re(A) > 0.
0

Next, we introduce the notations of measures of noncompactness and their properties. De-
note by P(X) the collection of nonempty bounded subsets of X. For every Q) € P(X), there are
two important examples of measure of noncompactness (MNC), the first one is the Hausdorff
MNC defined by

x(Q) =inf{e > 0: Q has a finite e-net},
and the second one is the Kuratowski MNC defined by

n
7(Q) =inf{d>0: Q C | JM; and diam(M;) < d},
j=1
where the diameter of M; is given by diam(M;) = sup{|jz —y| : =,y € M,;}, j =1,...,n.
The Hausdorff and Kuratowski MNCs are connected by the relations:
X(2) < 7(2) < 2x(Q).
A MNC x (or 7) is recalled: monotone if 21, Qy € P(X) with 3 C Qs then x (1) < x(Q2);
nonsingular if xy({c}UQ) = x () for every c € X, Q € P(X); regular if x(2) = 0, Q is relatively
compact.
We now introduce the MNC v as follows: for a bounded set D C C(J, X), the modulus of
noncompactness of D is given by

YL(D) = sup e M'x(D(t)),
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where the modulus of equicontinuity of the set of functions D has the following form

mode(D) = lim sup max |z(ta) — z(t1)].
§—0 zeD |ta—t1]|<d

Let us fix a positive constant L and denote

v(D) = o (v2(D), modc (D)),

where ©(D) is the collection of all denumerable subsets of D, the range for the MNC is a cone
in R? and the maximum is taken in the sense of the ordering induced by this cone. As remarked
in [10], the MNC v is known to be monotone, nonsingular, and regular. For more details of the
definitions, properties and applications of the MNC, we refer to [4, 5, 24].

Lemma 2.1. [5] Let X be a Banach space. If W C X is bounded, then for each ¢ > 0, there
is a sequence {un 5>, C W, such that

x(W) < 2x({un}nZi) +e
Lemma 2.2. [15] Let x¢ be the Hausdorff MNC on C(J,X), and let W (t) = {z(t) : x € W}.
If W c C(J,X) is bounded, then for everyt € J,
X(W (1) < xe(W).
Furthermore, if W is equicontinuous, then the map t — x(W(t)) is continuous on J and

xc(W) = Sup x(W(t)).

Lemma 2.3. [15]. Let {z,}52, be a sequence of Bochner integrable functions from J into X.
If there exists a function p(-) € L*(J,Ry) satisfying ||z, (t)| < p(t) for almost allt € J and for
every n > 1, then the function ¥(t) = x({zn(t)}52,) € L (J,Ry) satisfying

([ 2 ) 2 o

Definition 2.3. Let D be a subset of Banach space X. A continuous function G : D — X is
said to be v-condensing with respect to MNC v if v(G(2)) < v(£2) for every bounded and not
relatively compact set 2 C D.

Theorem 2.1. Let D be a bounded convex closed subset of X and let G : D — D be a v-

condensing map. Then there exists at least one fixed point.

Definition 2.4. A sequence {f,}52 is said to be semicompact if it satisfies the following

conditions:

(i) it is integrable bounded, i.e., there exists ¢ € L(J,R") such that || f,.(t)| < q(¢) for all n
and for a.e. t € J,;

(ii) the set {f,(¢)}>2, is relatively compact in X for a.e. ¢ € J.

Let us consider the following neutral fractional differential equations
(u(t) = h(t, ) = ADoLu(t) —ult) + f(t), t € (0,dl,
U’(t) = Qp(t)v te [—’/‘, 0]
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Now, let Re(A) > 0, A* € p(A) and let us take Laplace transform to both sides of (2.1), we
have

AG(A) — Ax(A) — u(0) + h(0,up) = ANTa(N) — AN"%u(0) — a(N\) + F(N),
where o
x(A) = / e Mh(t, uy)dt.

0
Therefore, we have

a(N) =X u(0) = XTH AT — A) TR0, u0) — AT — A) " a(N)

. 2.2
F AT = A) T (A + AT AT = A) TN, 22)
where T is the identity operator. From the technique of [24], we have
AT — ATy = / e MO, (tdt, (NI —A)~ty = / e M IR (t)vdt,
0 0
for any v € X and
Q. (t) = / M, (0)T(t“0)dl, R.(t) = / afM,(0)T(t*0)do,
0 0
where M, () is the Mainardi Wright-type function defined by
N (=2)"
M, (2) _;n!F(l 1)) a€(0,1), zeC.
Noting that A*(A“] — A)~t =T + A(A\*I — A)~1, hence, one has
a(A) =L (1()u(0)) = L(Qa(t)1(0,u0)) — £(Qa(t)) @(A)
+x(V) + L (T ARG (1) X(A) + L£(Qa(t)) F(N).
By the uniqueness of inverse Laplace transform, we obtain
t
u(t) =¢(0) = Qu(th(0,10) ~ | Qult ~ s)u(s)ds + h(t, )
0
t t
+ / (t — ) PAR G (t — s)h(s,us)ds + / Qa(t —s)f(s)ds.
0 0
Lemma 2.4. [24] For any t > 0, the Mainardi Wright-type function has the properties
o0 (1 +06)
> J = — - . .
M, (t) >0, /0 0° M, (0)do T+ a0)’ for —1<d< o0 (2.3)

Throughout this paper, we suppose that A is the infinitesimal generator of an analytic
semigroup {7 (t)};>0 on X. This means that there exists M > 1 such that
M= sup |T(t)]sx) < oo,
t€[0,00)
where B(X) is the space of all bounded linear operators from X to X with the norm ||T'[|5x) =
sup{||T(x)|| : ||z|| = 1}. The following lemmas can be found in [24].

Lemma 2.5. For any fixed t > 0, Q,(t), Ra(t) are linear and bounded operators, i.e., for any
zeX

M
1Qa ()2l < Mllzl|, [[Ra(t)z||l < @lel-

Lemma 2.6. {R,(t)}t>0,{Qa(t)}i>0 are strongly continuous, which means that, for any x € X
and t’" > t' > 0, we have

1Qa(t")z = Qu(t)e] =0, [Ra(t")z = Ra(t)z]l = 0 as " =1,
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Lemma 2.7. If T(t) is compact for every t > 0, then Q,(t) and R, (t) are compact for every
t> 0.

Let us introduce a fractional power space, see e.g. [19]. For 0 < v < 1, we also introduce
fractional power A= € B(X) of A as
1 o0
A7V = / sV (s)ds.
L'(v) Jo
We set AY as the inverse of A™" and D(AY) as a Banach space with the graph norm |ju|, =
llz|| + [|AYu|| for any v € D(AY).

Lemma 2.8. For any u € D(AY), v € (0,1) and n € (0,1], we have
ARG (Hu = A "R (1) A%, t € J,

and there exists a constant C, > 0 such that

C
[A"Ra(t)]5x) < #TZ, teJ.

In view of (2.2), we introduce the following definition of mild solutions to problem (1.1).

Definition 2.5. A function u € C([—r,a], X) is called a mild solution to composite fractional

relaxation equation (1.1) if it satisfies
¢
£(0) — Ou()h(0, o) + h(t, us) — / Ou(t — s)u(s)ds
0

u(t) = +/O (t—s)a’lARa(t—s)h(s,us)der/O Oult — 8)f(s,us)ds, te0,al,

o(t), tel-r0.

83 The existence results

In order to derive the main results, in this section, we first assume that the following
conditions are satisfied:

(Ht) The semigroup T'(t) is equicontinuous for ¢ > 0, i.e., T'(t) is continuous in the uniform
operator topology for ¢ > 0;

(Hf) The function f satisfies
(i) for almost all ¢ € J, the function f(¢,-) : C — X is continuous and for each u € C,

the function f(-,u) : J — X is strongly measurable;

(ii) there exists a function o € L*(J,R*) such that ||f(¢,u)|| < o(t)|ullc for all u € C
and almost all £ € J;

(iii) for every bounded set D C C,, there exists a function p € L*(J,RT) such that
x(f(t, D)) < p(t)x(D);
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(Hh) The function h : J x C — X is continuous and there exists a constant n € (0,1) and two
constants Lp1, Lpo with 2Ly ||A7"||3(x) < 1 (i = 1,2) such that h € D(A") and for any
u € Cyp, t € J, the function A"h(-,u) is strongly measurable and A"h(t,-) satisfies the
Lipschitz condition
[Ah(t, z) — ATh(t, 2)|| < L[z — 2l
and [|A"h(t,u)|| < Lpz|ullc. Moreover, for every bounded set D' C C,, such that
N(ATh(E, D')) < Lipx(D').

Let
Coi={ue C(J, X): u(0) =¢(0)},
and for u € Cy,, we set
u(t), for te€l0,al;
ulg](t) =
e(t), for te[—r0l.
Denote by S the operator acting on C, such that

S(u)(t) =¢(0) = Qa(t)h(0, u[plo) + h(t, ule / Qa(t — s)u(s)ds

+/ (t—8)* LARL(t — s)h(s,u[p]s)ds + / Qalt — 8)f(s,ulp]s)ds.
0
Define a mapping Q,, : L'(J, X) — C(J, X) by

/Qat—s s)ds

Additionally, we also consider an operator ®; as follows

P (u)(t) = (0) = Qa(t)h(0, ulplo) + h(t, ulg]:) + /O (t = 5)* " AR (t — 8)h(s, ul¢]s)ds,
putting
Ny (u)(t) = f(t, ulelr),

and
Us(u)(t) = Qa(Ny(u) —u).
Hence, we have
S(u) = \Iff(u) + Oy (u).
It is evident that u € C,, is a fixed point of S if and only if u[¢] is a mild solution of (1.1).

We shall consider an abstract operator S : L1(J, X) — C(J, X) satisfying

(S1) there exists w > 0 such that
IS —Sgllcx) < @lf —gllix), for every f,g € L'(J, X);

(S2) for any compact K C X and sequence {f,(¢)}22, C L'(J, X) such that {f,}>2, C K for
a.e. t € J, the weak convergence f, — fo implies the strong convergence Sf,, — S fo.

Lemma 3.1. The operator Q. satisfies the properties (S1) and (S2).
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Proof. Since T(t) is an uniformly bounded analytic semigroup, in view of Lemma 2.5, we have

1Qaf — Qugllcwx) =sup e MQalf = 9) )|

<supe™ / 1Qat — 5)(f(s) — g(s))ds

teJ

t
<Msupe ™ / 17(5) — 9(s)llds = MIIf — gll sx).
S 0

The property (S1) follows. In order to check (S2), we first note that for every compact set
K C X, in view of Lemma 2.6, the functions s — Q,(t—s)z, s € [0,t], x € K are equicontinuous
in s with respect to = on [0, ¢], which means that the set
D= |J Qut-9K
s€0,t]
is relatively compact.
Moreover, for every sequence {f,(t)}52; C L*(J,X) such that {f.(s)}>>,; C K for a.e.
s € J, it yields
{Qafu(t)}n, CtD,
which implies that the sequence {Qq fr ()}, C X is relatively compact for every ¢t € J. Next,
by means of Ascoli-Arzela theorem, it remains to check the sequence {Q, fn}52, C C(J, X) is
equicontinuous.
Due to f,(t) € K forn > 1 and a.e. t € J, there is a constant N > 0 such that || f,,(¢)|| < N.
For any ¢/,t' € J, 0 < t” —t < a, take € > 0 enough small, we have

1Qufut) — Qufut)] < / 1Qa(t” — 5)fa(s)llds + / 1(Qut” — ) — Qult! — ) fu(s)lds

< / 1Qu(t” — ) fa(s)lds

’

+ / 1(Qa(t” — 5) — Qu(t' — ) ful(s) |ds

+ / 1(Qu(t” — 5) — Qult’ — 5))fu(s)llds.

'—e
In view of Lemma 2.5, Lemma 2.6, the functions s — Q. (t — s)z, s € [0,t], z € K are
equicontinuous in s with respect to x on [0, t], we have

1Qafu(t") = Qufu()| <MN(" —t') + N(t' =) sup ] 1Qa(t" = 5) = Qalt' = 9)ll5(x)

s€[0,t/—e
+2MNe =0, ast’' —t, ¢—=0.
Therefore, the sequence {Qa frn}o2, is relatively compact in C(J, X). Finally, we know that
(S1) implies that Q, is a bounded linear operator from C(J, X) into L*(J, X). Hence, operator
Q.. is continuous if these spaces are endowed with the topology of weak sequential convergence
and f, — f implies Qufn — Qof, from the relative compactness of {Qqfn}2,, we have
Qufrn — Quof in C(J, X). The proof is completed. O

It is readily seen from [10, Corollary 4.2.3] that the following lemma is true.
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Lemma 3.2. If the sequence {f,}3>, C L*(J,X) is semicompact, then there exists a compact
set K5 C X for every 6 > 0 and a d-net of the sequence {f,}52, formed by the functions with
values in Ky.

Lemma 3.3. For every semicompact sequence {f,}5°, C L*(J, X), the sequence {Qau fn}5%,
is relatively compact in C(J, X).

Proof. From Lemma 3.2, there exists a compact set K5 C X for every § > 0 and an §-net Os of
the sequence {f,}52; formed by the functions with values in K. In view of (S2), we get that
Q.05 is a relatively compact set in C'(J, X). From (S1), we obtain that Q,Os is a d M-net of
the sequence {Qq fn}22, in C(J, X). This ends the proof. O

Lemma 3.4. Let (Hf) holds. Then S({un}52 ;) is relatively compact for every bounded sequence
{un}nzy C Cy satisfying vr({un}tnZ,) = 0.

Proof. Now let {u,};2; C C, be a bounded sequence such that vz, ({u,}p2,) = 0. Then it
follows from (Hf) that, f,,(¢t) = f(t, un[p]:) satisfies the estimate

@I <o@®llunlelell < o@)( sup [lun(s)ll + [Iellc)

s€[0,t
<o(t)M +o(t)[elle =: q(t),
where M is an upper bound for {u,}°; in C(J,X). In view of v ({u,}32;) = 0, one has
X{un(t)}22,) =0 for all t € J, ie., {u,(t)}22, is relatively compact for each ¢ € J. Hence,
{un[p)t} is a relatively compact set in C'([—r,0], X). Since f(t,-) is continuous, we get that
{f(t, unlplt)}52, is relatively compact for ¢t € J. Thus {f,}32 is a semicompact sequence,
and from Lemma 3.3 we obtain that

Uy({untnz1) = Qa{futnz1) — Qa({untniy)
is relatively compact in C(J, X). A similar argument in the previous proof shows that the set
{h(t, unlplt) 152, is relatively compact for ¢ € J. Hence {h(-,u,)}52, is also a semicompact
sequence. Therefore, we get that {®p(uy,)}o2, is relatively compact in C(J, X), which means
that {S(u,)}52, is relatively compact in C'(J, X). O

Now we choose L > 0 in the definition of MNC ~, such that

¢
l ::2M/ o(s)e P9 ds + 2M (1 — e ) /L
0

t
+ Lna2l| A7 p(x) + 2Lh20n/ (t —s)~oU=me=Llt=5)gs < 1.
0

Lemma 3.5. Let (Ht), (Hf) and (Hh) hold. Then S is v-condensing.

Proof. Let B C C, be a bounded set such that

v(B) < v(S(B)). (3.2)
We show below that B is a relatively compact set, that is, ¥(B) = 0. By the definition of v,
there exists a sequence {u,}52; C B such that

V(S({un i) = max (1 (S({un}iy), mode(S({un}ity))) = vo{un}iy).
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Claim I. vy ({S(un)}52) = 0.
For any ¢ € J, we have

(¥ (un)}nZs) =sup e ({ Py (un (1)) }720)

=sup e_LtX({Qa(Nf(un(t)) —un(t))}nz1)

tedJ
<sup e PX{Qa (N (un(0))}520) + Sup e "X({Qa(un ()} 0)-

On the other hand, from Lemma 2.3 and Lemma 2.5 we get

X Qu (N (un (1))} 221) <2 / N (Qalt — ) (5 unl)()))30) ds
<oM /  ({un(s)122, ) ds
<2My, ({un}22) / o(s)e"ds.

0
Similarly, we have

X{Qa(un(t))}721) < 2Myp ({un}pZy) (e —1)/L.
Therefore, it follows that
YL (un)}nty) < sup [2M/ Je Hmds + 2M (1 ~ 6_”)/L] L untnzi)

which implies that 'yL({un}nzl) = 0 from ! < 1. We thus obtain that v7,({¥s(un)}32,) = 0.
Moreover, since the measure y is monotone, from (Hh), for ¢t € J we get

YL {h(t, unle]e) }o2s) =sup e MX({ATTAMR(E, un]) }oy)

<Ln2 [[A™"|5(x) zug e x{unleli}nis)
S

<Lz [|A7"|p(x) supe” ™ ( sup X{un(s)}i’f_1>
teJ s€[0,t]

<Lp2 [[A™"|sxyve ({un}nzs)-
On the other hand, from Lemma 2.8 we have
X{ARG(t = s)h(s, un[pls)}oZ1) =X({A ™" Ra(t — ) A"h(s, unl¢]s) }oL1)
< ARt 8) sy X({AA(s, un[0]) }ol1)
<Cy Lna(t = 5)~ " x({unle]s}n2y)
<Cy Lia(t — 8) ™07l ({un}2y).-

By Lemma 2.4, one obtains

/0 (t = 92 X (AR (t — $)h(5, 1un[i]:) )2 )ds

t
<Cy Lz ul{ua}iz) [ (6= 90 ebods,
0

This turns out that v ({un}2;) <17 ({un}52,). By the choice of I € (0,1), it is easy to
see that v ({u,}22,) = 0 and then v, ({®p(un)}52;) = 0. Together the above arguments, we



HE Jia-wei, YU Zi-cheng. Existence for neutral fractional differential equations... 353

obtain the desired claim.

Claim IT. modc(S({un}52,)) = 0, that is, the set B is equicontinuous. Firstly, by using the
assumption (Hf) and the same arguments in Lemma 3.4, one can get that { f (¢, u,[¢](¢))}52, isa
semicompact sequence. Then Definition 2.4 (ii) ensures that the set {W ¢ (u,, ) ()}, is relatively
compact in C(J,X). Hence, modc({¥s(u,)}52,) = 0. In fact, we just prove {Qq(fn)(¢)}0%,
is equicontinuous in C(J, X), and the case of {Qq (un)(t)}52, follows.

For 0 <t; < t2 < a, by (Hf) we have

1Qa(fn)(t2) — Qa(fn)(t1) ]l S/ 2 1Qa(t2 — ) f (s, ulp]s)l|ds

t1

4 [ 1(Qulta = 5) = Qults — s))f(s.ulel. s
0

to

<M [ a(s)|ulg]slleds

t1

t1
+/0 [(Qaltz = s) — Qalts — 8))llsx)o(s)l[ulg]slcds.
Since
[ulelillc < sup |lu(s)]| + [l¢lles

s€[0,t

and o € L'(J,R"), it follows that

to
/ o () [ule]sleds — 0, as ts = t1.

t1

On the other hand, by (Ht), for any € > 0

/0 (Qultz — 8) = Qalts — )10y () lulglalcds
<o / o()llulels leds

+/ o(s)llulelslleds  sup  [[Qalta —s) — Qalts — 5)lsx)
t1—e

se[tlfs,tl]
—0, asty —t;, € = 0.
Therefore, it follows that

”Qa(fn)(tQ) - Qa(.fn)(tl)” — 0, asty —t,
which shows that {Q4(f,)(t)}52; is equicontinuous.

Next we show that {®p,(u,)(t)}52, is equicontinuous. For 0 < t; < t2 < a, one has
[P (un)(t2) = @n(un) (1) <[(Qalt2) = Qalt1))R(0, ulplo)]]
+ [[h(t2, unlel,) — h(ty, unlele, )l
+ [[Ra(un)(t2) = Ra(un) (1),
in which .
Ro(un)(t) := /0 (t—8)* TAR(t — 8)h(s, un[p]s)ds.
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In view of Lemma 2.6 and (Hh), we get
1(Qa(t2) = Qa(t1))R(0, ufelo) | + [[h(t2, un[@lr,) — Aty unple, )| = 0, as t — ty.
For any {u,}52,; C B, it follows from the previous proof that we obtain that {R, (uy)}5°

n=1
is equicontinuous in C(J, X). It turns out that mode({Ra(un)}S2;) = 0. Thus, we obtain
mode ({®n(un)}52,) = 0. The desired result is obtained. O

Lemma 3.6. Let (Hf) and (Hh) hold. Then S is continuous.

Proof. Let B be a bounded subset of C, and let {u,}>2; be a sequence of B such that u, — u
in B as n — o0o. Due to the continuity of f and h, we have
f(s,unlels) = f(s,ulels), and h(s,unlels) = h(s,ulgls), as n — oco.
Since from (Hh) and Lemma 2.6
It = 5)* " AR (t — 8)(h(s, unliels) — hls, ulgl )| < 2L Gyt — )™ sup Jo(s)]]

vEB
and ||lun[e]s — ul@lslle < 2(supyep [[o(s)] + llelle),

1f(s; unlels) = (s, ulpls)ll < 20(s)[[ufglslle,  for s € [0,4].

In addition, function s — o(s) is L-integral for a.e. s € [0,¢], it follows from the Lebesgue
dominated convergence theorem that

1S (un)(t) = S(w) (@) <¥ 5 (un)(t) = s (W)@ + |n(un)(t) = Pn(w)(@)]
<[Ih(s; unlpls) = h(s, ulels]]

+ / (t = $)° VARG (t — 5) (h(s, unli]s) — h(s, ulp]s))ds

0
+ Qa(t_s)(f(sﬂun[(p]s) —f(s,u[gp]s))ds

0
+ /()Qa(t—s)(un[w]s—uw]s)ds

—0, asn — oo.

Thus, ||S(u,) — S(u)|| = 0 as n — oo. This means that S is continuous. O

Based on the previous results, we get the existence of mild solutions.

Theorem 3.1. Assume that (Ht), (Hf) and (Hh) are satisfied. Then the solution set of problem
(1.1) is nonempty.

Proof. By Lemma 3.5, the operator S is v-condensing as well as it is continuous due to Lemma
3.6, hence it remains to check that S maps a bounded convex closed set into itself. To achieve
this aim, let & € C'(J, X) be the solution of the integral equation given by

£(t) =l +¢(2), (3.3)

where

lelle _
l,:= 2M Lpo||A™" Lp2a®" M 1
e 1 Lol A5 ([l (O] + n2l lBx) + CpLn2a™ /(an) + Mol 1 srt)),
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L 1 ! an— l—a —L(t—s)
¢(t) =1 Lh2||A_77||B(X) [) (t—s)*" I(C’nLh2 + M(o(s) + 1)(t — s) 7 2M)e  HE=9)¢(s5)ds

In fact, we can find a solution of ¢ satisfying (3.3) and belonging to C(J, X), let

L C Lhz t L M t
0:60) = T M), M€ = T (o) + DeFe()

Obviously, g,k € L'(J,RT) for any ¢ € C(J, X), we set an operator
RE() =1y +C(1),
for any £ € C(J, X), and then we rewrite the integral equation into the following equation
RE(t) = lp + e Mg g(t, £(1) + e~ Ig k(¢ £(1)).
Observe that RE € C(J, X) for any £ € C(J,X) from the continuity of the integral, and for
any &1,& € C(J,X), by (3.1) we have

e PR (t) — RE ()| <e M IgT|g(t, &1(t) — g(t, &a(0) || + e > I, [|k(t, & (8) — K (t, &(1)) |
t
S1C thﬁfl}f"lls(x) / (t = 8) e 20 s — Ealloqx)
. M
L — Lpa|| A= 5(x)
I — Lpa2|| A" 5(x)
T 1= Lpg|| A7 5(x)

t
l/w@+nfﬂmﬂmmf@mum

161 — Ealle,x)

<|[&1 = &lle,x)-
Thus, by using the Banach fixed point theorem, it is easy to see that the operator equation
RE = £ is satisfied and it belongs to C(J, X). Set
D= {u €C,: sup e Lfu(s)|| < £(t), te J}.

s€0,t]
It is clear that D is bounded, closed and convex set of C,. In addition, for u € D, in view of
(Hf), (Hh) and Lemma 2.8, we have

IS(u)@OF <[ (@)@ + [ @n(u) (D]
<[P0 + 1 Qa (B2 (0, ulgelo)|

+ ([t ulels) +/0 (t = 5)" " ARa(t — s)h(s, ulgls)llds + | Qa(Ny (u) — u)|
<lp(O)F + M Ln2 [ A" [ sx) ulelolle + Luall A" sex) lulglille

#Cytaa [ =9 ulelleds + 31 [ o(@)uteloleds + 01 [ fus)las
Therefore, one can see that
IS@ON <le0)] +2M Ll A sy llelle + Lual A scoe (o)

t
+C Lhz/ (t = 5)*" 7 et ¢(s)ds + Cy Lzl pllct™ / (am)

+M/ s) 4+ 1)e"*¢(s)ds + Mol sr+)l@lle,

which implies that e=Lt||S(u)(¢)| < &(t). Therefore, we get S(D) € D. The application of
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Theorem 2.1 yields the conclusion of existence result. The proof is completed. O

Note that if T'(t) is compact for every t > 0, then Q,(t) is compact for every t > 0 in view
of Lemma 2.7, hence it is continuous in the operator topology for ¢ > 0, the condition (Ht)
holds immediately.

Theorem 3.2. Assume that T(t) is compact for everyt > 0, (Hf) and (Hh) are satisfied. Then
the solution set of problem (1.1) is nonempty.

Example 3.1. Let X = L?([0,7],R) and let us consider the following delay fractional diffusion
equations
Or(ult,x) — hit,x,up)) = 0f " Oppult,z) — u(t,z) + g(t,x,us), x € [0,7], t €[0,1];
u(t,0) =u(t,m) =0, t €0,1];
u(t,z) = o(t,x), z € 0,7, t €[-1,0].
where 0F is the Caputo fractional partial derivative of order 0 < a < 1, g is a given function,

h:[0,1] x C([-1,0], X) — X is defined by

Wt ) = ¢ / U, y)us(0, y)dy,
0

where ¢ > 0 is a suitable constant, function U and 0, U are measurable and U(0,y) = U(w,y) =

0,
/ / UQ(x,y)dydx—i—/ / (0.U (2, y))*dydr < cc.
o Jo o Jo

Let A be the operator defined by Av = v" with the domain
D(A) ={ve X : v,v absolutely continuous, v"" € X, v(0) = v(r) = 0}.
Then A generates an uniformly bounded compact analytic semigroup {T(t)}¢>0. The problem
can be reformulated as the following delay problem

(w(t) — h(t,w) =Dy *Aw(t) — w(t) + f(t,we(t)), te€[0,1];
{ w(t) = ¢(t), te[-1,0].
where w(t) = u(t,-), that is w(t)(z) = u(t,z), t € [0,a], x € [0,7]. The function f: IxX — X
is given by
Flt,we)(x) = g(t, 2, ue(t, ) = ke sin(u(t + 0))(z), 6 € [-1,0], k> 0.
Then the assumptions (Hf ), (Hh) are satisfied for some suitable ¢,k > 0. According to Theorem
3.1, the problem has a mild solution in C,.

84 Conclusion

In this paper, we are concerned with the existence of solutions for a class of neutral fractional
differential equations of order 0 < o < 1. By using the techniques of fractional calculus, measure
of noncompactness and the fixed point argument, some sufficient conditions are formulated to
guarantee the existence of the solutions for such equations in composite relaxation process. Due
to the abstract fractional differential equations in composite relaxation process can be used to
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simulate the Basset problem, it is interesting to consider the existence and controllability results

in the future works.
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