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A neural network based on novel equivalent model for

linear complementarity problems

KE Yi-fen1 XIE Ya-jun2 ZHANG Huai3 MA Chang-feng4,∗

Abstract. A family of neural networks is proposed to solve linear complementarity problems

(LCP). The neural networks are constructed from the novel equivalent model of LCP, which is

reformulated by utilizing the modulus and smoothing technologies. Some important properties

of the proposed novel equivalent model are summarized. In addition, the stability properties of

the proposed steepest descent-based neural networks for LCP are analyzed. In order to illustrate

the theoretical results, we provide some numerical simulations and compare the proposed neural

networks with existing neural networks based on the NCP-functions. Numerical results indicate

that the performance of the proposed neural networks is effective and robust.

§1 Introduction

Many problems in scientific computing and engineering applications need to find the solution

of complementary problems, such as the convex quadratic programming, the bimatrix game,

the contact problems, the network equilibrium problems, the free boundary problems of fluid

dynamics, and other (see [8, 10] and the references therein).

The linear complementarity problem, abbreviated as LCP, is to find a pair of real vectors

z, w ∈ Rn such that

z ≥ 0, w := Az + q ≥ 0 and zTw = 0, (1)

where A ∈ Rn×n and q ∈ Rn are the given matrix and vector, respectively. Here, zT denotes

the transpose of the vector z. We denote the LCP (1) by the LCP(A, q).

The nonlinear complementarity problem, abbreviated as NCP, is to find a real vector z ∈ Rn

such that

z ≥ 0, F (z) ≥ 0, zTF (z) = 0, (2)

where F : Rn → Rn is a nonlinear mapping.
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When F (z) = Az + q, the NCP (2) reduces to the LCP (1). Recall that a function ϕ :

R× R → R is called an NCP-function if it is satisfies

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. (3)

Due to the wide range of applications in many areas, a lot of research efforts have been

devoted to the study of complementarity problems, including the solvability conditions and

numerical algorithms. There are many numerical algorithms for solving the complementarity

problems. These algorithms may be categorized into two classes based on the so-called NCP-

function or not. For example, the merit function approach [11, 14, 22], the nonsmooth Newton

method [9, 30], the smoothing method [5, 25] and the regularization approach [13, 27] exploit

NCP-functions. However, the well-known interior-point method [23, 24] and proximal point

algorithm [26] do not utilize NCP-functions.

Recently, utilizing the modulus technology, Bai in [2] established a class of modulus-based

matrix splitting for solving the linear complementarity problem (1). This class of iteration

methods is essentially based on an equivalent transformation of the LCP into a system of fixed-

point equations involving only the absolute value of certain vector. Since the modulus-based

iteration methods take advantage of the linear part of LCP(A, q), they solve the LCP fast and

economically. Therefore, the modulus-based iteration methods have attracted a lot of attention;

see [3, 16,17,20,31,32].

The numerical algorithms mentioned above can efficiently solve the LCP, but it is often

desirable to obtain a real-time solution in scientific and engineering applications. The neural

network method is an ideal method for solving real-time optimization problems, which were

first introduced in optimization by Hopfield and Tank in the 1980s [12, 28]. Neural networks

based on the well-known Fischer-Burmeister (FB) function [19] and the generalized Fischer-

Burmeister function [4] have already been studied for solving the nonlinear complementarity

problems.

The neural network methods based on NCP-functions for solving NCP (2) are as follows.

Let ϕ be an NCP-function. Definite Φ : Rn → Rn by

Φ(z) :=


ϕ(z1, F1(z))

...

ϕ(zn, Fn(z))


and definite f : Rn → R+ by

f(z) :=
1

2
∥Φ(z)∥2 =

1

2

n∑
i=1

ϕ(zi, Fi(z))
2.

Then, solving the NCP is translated to solving the minimization problem.

min
z∈Rn

f(z).

Moreover, consider the steepest descent-based neural network

dz(t)

dt
= −ρ∇f(z), z(t0) ∈ Rn (4)

to solve the above minimization problem.

Motivated by the preceding discussion, we construct a new family of neural networks

based on the modulus and smoothing technologies for solving LCP (1), which reformulates
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the LCP(A, q) as a novel equivalent model. We show that the proposed neural networks offer

stability and effective simulation results.

The outline of the paper is as follows. In Section 2, we revisit equivalent reformulations

of the LCP(A, q) based on the modulus and smoothing technologies. We also review some

mathematical preliminaries related to the stability analysis of first-order differential equations.

In Section 3, we summarize some important properties of our proposed novel equivalent model

that we will use in constructing the neural networks. In Section 4, we look at the stability

and convergence analysis of the novel neural networks, which include the characterization of

stationary points of the induced merit functions. In Section 5, we present the results of our

numerical simulations. Finally, in Section 6, we end this paper with some concluding remarks.

Notions. Rn denotes the space of n-dimensional real column vectors, Rm×n denotes the

space of m × n real matrices, and AT denotes the transpose of the matrix A ∈ Rm×n. For

any differentiable function f : Rn → R, ∇f(x) means the gradient of f at x. We use |x| =
(|x1|, |x2|, . . . , |xn|)T to denote the absolute value of the vector x ∈ Rn. Here, we use (x, y) to

replace the column vector (xT , yT )T .

§2 Preliminaries

2.1 NCP-function

In this subsection, we present some well-known NCP-functions, which will be used in the

following numerical simulation.

• The well-known Fischer-Burmeister (FB) function (see [19]):

ϕFB(a, b) =
√
a2 + b2 − (a+ b). (5)

• The generalized Fischer-Burmeister (GFB) function (see [4]):

ϕp
GFB(a, b) = ∥(a, b)∥p − (a+ b), where p ∈ (1,+∞). (6)

• The generalized natural-residual function (see [1]):

ϕp
GNR(a, b) = ap − (a− b)p+, where p > 1 is an odd integer. (7)

• The first natural symmetrization of ϕp
GNR (see [1]):

ϕp
S1-GNR(a, b) =


ap − (a− b)p, if a > b,

ap, if a = b,

bp − (b− a)p, if a < b.

(8)

• The second natural symmetrization of ϕp
GNR (see [1]):

ϕp
S2-GNR(a, b) =


apbp − (a− b)pbp, if a > b,

apbp, if a = b,

apbp − (b− a)pap, if a < b.

(9)
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2.2 Reformulations for LCP

In [2], Bai provided the following equivalent expression of the LCP(A, q), which is essential

and useful for establishing the neural network for the LCP(A, q).

Theorem 2.1. ( [2]) Let A = M −N be a splitting of the matrix A ∈ Rn×n with M being

nonsingular, Σ1 and Σ2 be n× n nonnegative diagonal matrices, and Σ and Γ be n× n positive

diagonal matrices such that Σ = Σ1 + Σ2. For the LCP(A, q), the following statements hold

true:

(1) if (w, z) is a solution of the LCP(A, q), then x =
1

2
(Γ−1z − Σ−1w) satisfies the implicit

fixed-point equation

(MΓ + Σ1)x = (NΓ− Σ2)x+ (Σ−AΓ)|x| − q. (10)

(2) if x satisfies the implicit fixed-point equation (10), then

z = Γ(|x|+ x) and w = Σ(|x| − x) (11)

is a solution of the LCP(A, q).

From (10), we can obtain that the LCP(A, q) is equivalent to solving the following nonlinear

equation

(AΓ + Σ)x− (Σ−AΓ)|x|+ q = 0. (12)

Let y = |x|, then the equation (12) is equivalent to{
(AΓ + Σ)x− (Σ−AΓ)y + q = 0,

|x| = y.
(13)

We investigate the following class of functions:

θµ(a, b) =
√
(1− µ)a2 + µb2 − b, (14)

where µ is a fixed parameter such that µ ∈ (0, 1). It is obvious that the expression inside the

square root in (14) is always nonnegative, i.e.,

(1− µ)a2 + µb2 ≥ 0, ∀a, b ∈ R.
Hence, θµ is at least well-defined. Moreover, it is easy to get that

θµ(a, b) = 0 ⇔ b = |a|. (15)

Now, we define the operator Φµ : R2n → R2n by

Φµ(x, y) :=


(AΓ + Σ)x− (Σ−AΓ)y + q

θµ(x1, y1)
...

θµ(xn, yn)

 , (16)

then it follows immediately from Theorem 2.1 and the relational expression (15) that x∗ solves

the equation (12) if and only if (x∗, y∗) solves the equation Φµ(x, y) = 0.

For the given parameter µ with µ ∈ (0, 1) and the given positive diagonal matrices Σ and

Γ, define the function fµ : R2n → R+ by

fµ(x, y) :=
1

2
∥Φµ(x, y)∥2
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=
1

2
∥(AΓ + Σ)x− (Σ−AΓ)y + q∥2 + 1

2

n∑
i=1

(θµ(xi, yi))
2. (17)

Then, the LCP(A, q) can be reformulated as a minimization problem

min
(x,y)∈R2n

fµ(x, y).

Hence, fµ is a merit function for the LCP(A, q) and its global minimizer coincides with the

solution of the LCP(A, q).

2.3 The first-order differential equations

In this subsection, we recall some materials about the first-order differential equations

(ODE):

v̇(t) = H(v(t)), v(t0) = v0 ∈ Rn, (18)

where H : Rn → Rn is a mapping. The following materials can be found in ODE textbooks;

see [21,29].

Definition 2.1. A point v∗ = v(t∗) is called an equilibrium point or a steady state of

the dynamic system (18) if H(v∗) = 0. If there is a neighborhood ∆∗ ⊆ Rn of v∗ such that

H(v∗) = 0 and H(v) ̸= 0 for any v ∈ ∆∗\{v∗}, then v∗ is called an isolated equilibrium point.

Lemma 2.1. Assume that H is a continuous mapping from Rn to Rn. Then for arbitrary

t0 ≥ 0 and v0 ∈ Rn, there exists a local solution v(t) for (18) with t ∈ [t0, τ) for some τ > t0. In

addition, if H is locally Lipschitz continuous at v0, then the solution is unique; if H is Lipschitz

continuous in Rn, then τ can be extended to ∞.

If a local solution defined on [t0, τ) cannot be extended to a local solution on a larger interval

[t0, τ1) with τ1 > τ , then it is called a maximal solution, and the interval [t0, τ) is the maximal

interval of existence. Clearly, any local solution has an extension to a maximal one. We denote

[t0, τ(v0)) by the maximal interval of existence associated with v0.

Lemma 2.2. Assume that H : Rn → Rn is continuous. If v(t) with t ∈ [t0, τ(v0)) is a

maximal solution and τ(v0) < ∞, then lim
t→τ(v0)

∥v(t)∥ = ∞.

Definition 2.2. (Stability in the sense of Lyapunov) Let v(t) be a solution of (18). An

isolated equilibrium point v∗ is Lyapunov stable if for any v0 = v(t0) and any scalar ε > 0,

there exists a real number δ > 0 such that ∥v(t)− v∗∥ < ε for all t ≥ t0 and ∥v(t0)− v∗∥ < δ.

Definition 2.3. (Asymptotic stability) An isolated equilibrium point v∗ is said to be

asymptotically stable if in addition to being Lyapunov stable, it has the property that v(t) → v∗

as t → +∞ for all ∥v(t0)− v∗∥ < δ.

Definition 2.4. (Lyapunov function) Let ∆ ⊆ Rn be an open neighborhood of v. A

continuously differentiable function W : Rn → Rn is said to be a Lyapunov function at the

state v over the set ∆ for (18) if
W (v) = 0, W (v) > 0, ∀v ∈ ∆\{v},

dW (v(t))

dt
= ∇W (v(t))TH(v(t)) ≤ 0, ∀v ∈ ∆.

Lemma 2.3. (1) An isolated equilibrium point v∗ is Lyapunov stable if there exists a

Lyapunov function over some neighborhood ∆∗ of v∗.
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(2) An isolated equilibrium point v∗ is asymptotically stable if there exists a Lyapunov function

over some neighborhood ∆∗ of v∗ such that
dW (v(t))

dt
< 0 for all v ∈ ∆∗\{v∗}.

§3 Properties of the merit function fµ

In this section, we investigate some properties of the merit function fµ defined in (17).

Lemma 3.1. Let ϑµ : R2 → R be defined by

ϑµ(a, b) =
√

(1− µ)a2 + µb2.

Then there is a constant cµ := µ2 − µ+ 1 ∈ (
3

4
, 1) such that

∥∇ϑµ(a, b)∥2 ≤ cµ

for all the vectors (a, b) ̸= (0, 0).

Proof. Let (a, b) ∈ R2 be any nonzeros vector, then we can get that ϑµ is continuously

differentiable at (a, b). By computation, we obtain

∥∇ϑµ(a, b)∥2 = (
∂ϑµ(a, b)

∂a
)2 + (

∂ϑµ(a, b)

∂b
)2

=
( (1− µ)a√

(1− µ)a2 + µb2

)2
+
( µb√

(1− µ)a2 + µb2

)2
=

(1− µ)2a2 + µ2b2

(1− µ)a2 + µb2

= 1− µ(1− µ)
a2 + b2

(1− µ)a2 + µb2
.

Note that µ ∈ (0, 1), then a2 + b2 ≥ (1− µ)a2 + µb2, then it can get that

0 ≤ ∥∇ϑµ(a, b)∥2 ≤ 1− µ(1− µ) := cµ.

This completes the proof. �
Based on Lemma 3.1, we present the Clarke’s generalized Jacobian (see [6]) of Φµ (16) at

any arbitrary point (x, y) ∈ R2n.

Lemma 3.2. For the given parameter µ with µ ∈ (0, 1) and the given positive diagonal

matrices Σ and Γ, we can get the generalized Jacobian of Φµ at any arbitrary point (x, y) ∈ R2n

is

J(x, y) =

(
AΓ + Σ AΓ− Σ

Dx Dy − In

)
, (19)

where

Dx = diag(d1x, d
2
x, . . . , d

n
x) and Dy = diag(d1y, d

2
y, . . . , d

n
y )

are diagonal matrices with the i-th diagonal element being given by

dix =


(1− µ)xi√

(1− µ)x2
i + µy2i

, if x2
i + y2i > 0,

ξ, if x2
i + y2i = 0

(20)

and

diy =


µyi√

(1− µ)x2
i + µy2i

, if x2
i + y2i > 0,

η, if x2
i + y2i = 0.

(21)
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Here, the real numbers ξ and η satisfy that ξ2 + η2 ≤ cµ for any ξ, η ∈ R while x2
i + y2i = 0,

where cµ = µ2 − µ+ 1 ∈ (
3

4
, 1).

We recall that an n × n matrix A is called a P -matrix if every principal minor of A is

positive. Equivalently, for every nonzero vector x ∈ Rn, there is an index i0 with xi0 ̸= 0 such

that xi0(Ax)i0 > 0. For a number of equivalent formulations, we refer the interested reader to

the excellent book [7] by Cottle, Pang and Stone.

A square matrix A ∈ Rn×n is called a Z-matrix if its off-diagonal entries are nonpositive.

A nonsingular matrix A ∈ Rn×n is called an M -matrix if it is a Z-matrix and A−1 > 0; and an

H-matrix if its comparison matrix ⟨A⟩ = (⟨a⟩ij) ∈ Rn×n is an M -matrix, where

⟨a⟩ij =

{
|aij | for i = j,

−|aij | for i ̸= j,
i, j = 1, 2, . . . , n.

In particular, an H-matrix having positive diagonal entries is called an H+-matrix.

According to the definition of P -matrix, if a matrix A is a P -matrix, then AT is also a

P -matrix. And it follows that the matrix A is a P -matrix if and only if the LCP(A, q) has a

unique solution for all q ∈ Rn. A sufficient condition for the matrix A to be a P -matrix is that

A is a positive-definite matrix or an H+-matrix.

Lemma 3.3. ( [15]) A matrix of the form

Da +DbM

is nonsingular for all positive (negative) semidefinite diagonal matrices Da, Db ∈ Rn such that

Da +Db is positive (negative) definite if and only if M ∈ Rn×n is a P -matrix.

Lemma 3.4. For the given parameter µ with µ ∈ (0, 1) and the given positive diagonal

matrices Σ and Γ, if the matrix A is a P -matrix, then the generalized Jacobian matrix J(x, y)

defined in (19) is nonsingular for any vector (x, y) ∈ R2n.

Proof. Let r = (r1, r2) ∈ R2n such that(
AΓ + Σ AΓ− Σ

Dx Dy − In

)(
r1
r2

)
=

(
0

0

)
.

According to (20) and (21), we can obtain that −1 < dix < 1 and −1 < diy < 1 for i = 1, 2, . . . , n.

Hence, the diagonal matrix Dy − In is nonsingular. Denote

S = −(Dy − In)
−1Dx and G = (AΓ + Σ) + (AΓ− Σ)S.

Thus, r2 = Sr1 and r1 satisfies that Gr1 = 0.

Denote

α(x, y) = {i : xi ̸= 0, yi = 0},
β(x, y) = {i : xi = 0, yi ̸= 0},
γ(x, y) = {i : xi ̸= 0, yi ̸= 0},
δ(x, y) = {i : xi = 0, yi = 0}.

Let si be the i-th diagonal element of the diagonal matrix S. Now, we consider four cases.

Case 1: when i ∈ α(x, y), then −1 < dix < 1 and diy = 0. It follows that

si = −(diy − 1)−1dix = dix.

Then, −1 < si < 1.
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Case 2: when i ∈ β(x, y), then dix = 0 and −1 < diy < 1. It follows that

si = −(diy − 1)−1dix = 0.

Case 3: when i ∈ γ(x, y), it follows that

si = −(diy − 1)−1dix

= −
( µyi√

(1− µ)x2
i + µy2i

− 1
)−1 (1− µ)xi√

(1− µ)x2
i + µy2i

=
(1− µ)xi√

(1− µ)x2
i + µy2i − µyi

.

Since [
(1− µ)xi

]2 − [√(1− µ)x2
i + µy2i − µyi

]2
= (1− µ)2x2

i − ((1− µ)x2
i + µy2i )

2 − µ2y2i + 2µyi

√
(1− µ)x2

i + µy2i

= −µ
[
(1− µ)x2

i + (1 + µ)y2i − 2yi

√
(1− µ)x2

i + µy2i

]
= −µ

[
(1− µ)x2

i + µy2i − 2yi

√
(1− µ)x2

i + µy2i + y2i

]
= −µ

[√
(1− µ)x2

i + µy2i − yi

]2
≤ 0,

then −1 ≤ si ≤ 1.

Case 4: when i ∈ δ(x, y), it follows that

si = −(diy − 1)−1dix = −(ηi − 1)−1ξi =
ξi

1− ηi
,

where ξi and ηi satisfy ξ2i + η2i ≤ cµ with cµ ∈ (
3

4
, 1). Since ξ2i + η2i ≤ cµ, we can get that

(
√
cµ − 1

2
)2 ≤ (ηi −

1

2
)2 ≤ (

√
cµ +

1

2
)2

and

ξ2i − (1− ηi)
2 = ξ2i − η2i + 2ηi − 1 ≤ cµ − 2η2i + 2ηi − 1

= cµ − 2(ηi −
1

2
)2 − 1

2
≤ cµ − 2(

√
cµ − 1

2
)2 − 1

2

= −(
√
cµ − 1)2 ≤ 0.

Thus, −1 ≤ si ≤ 1. Therefore, we can obtain that −I ≤ S ≤ I.

According to the above analysis, the matrices
(
I−S

)
Σ and

(
I+S

)
Γ are positive semidefinite

diagonal matrices. Note that[(
I − S

)
Σ+

(
I + S

)
Γ
]
ii
=
(
1− si

)
Σii +

(
1 + si

)
Γii,

(1) when −1 < si < 1, it has (
1− si

)
Σii +

(
1 + si

)
Γii > 0;

(2) when si = −1, it has (
1− si

)
Σii +

(
1 + si

)
Γii = 2Σii > 0;
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(3) when si = 1, it has (
1− si

)
Σii +

(
1 + si

)
Γii = 2Γii > 0.

Then,
(
I − S

)
Σ+

(
I + S

)
Γ is a positive definite diagonal matrix.

Moreover, A is a P -matrix, then AT is also a P -matrix. According to Lemma 3.3, the matrix

GT = (I − S)Σ + (I + S)ΓAT

is nonsingular. Therefore, r1 = 0 and r2 = 0. This completes the proof. �
Define θ̃µ : R2 → R+ by

θ̃µ(a, b) :=
1

2
(θµ(a, b))

2 =
1

2
(
√
(1− µ)a2 + µb2 − b)2.

In order to establish some important results for the merit function fµ, we will take a closer look

at the properties of θ̃µ and give the following result.

Lemma 3.5. The function θ̃µ is continuously differentiable with ∇θ̃µ(0, 0) = (0, 0)T .

Proof. The continuous differentiability of θ̃µ can be verified by direct calculation. Since

the origin is a global minimizer of the function θ̃µ, from the first-order optimality conditions in

unconstrained minimization, we can get that ∇θ̃µ(0, 0) = (0, 0)T . �
According to Lemmas 3.2 and 3.5, we obtain the continuously differentiable for the function

fµ.

Lemma 3.6. The function fµ is continuously differentiable with the gradient

∇fµ(x, y) = J(x, y)TΦµ(x, y),

for any J(x, y) ∈ ∂Φµ(x, y).

§4 Stability and convergence analysis

In this section, we consider the steepest descent-based neural network for solving the

LCP(A, q) with its dynamical equation being given by

dv(t)

dt
= −ρ∇fµ(v(t)), (22)

where v(t) = (x(t), y(t)) and ∇fµ(x, y) = J(x, y)TΦµ(x, y) for any J(x, y) ∈ ∂Φµ(x, y).

Now, we look at the stability and convergence analysis of the neural network (22).

It is easy to obtain the following results, which can be seen in [19].

Proposition 4.1. For the given n× n positive diagonal matrices Σ and Γ, let fµ : R2n →
R+ be defined as in (17). Then the following results hold.

(1) For any v = (x, y) ∈ R2n, it holds fµ(v) ≥ 0.

(2) If the solution set of LCP(A, q) is nonempty, the point v = (x, y) is a global minimizer of

fµ(v) if and only if z = Γ(y + x) and w = Σ(y − x) solves of the LCP(A, q).

(3) fµ(v(t)) is nonincreasing function of t, where v(t) is a solution of the neural network (22).

Proposition 4.2. (1) If the solution set of the LCP(A, q) is nonempty, then every solution

of the LCP(A, q) corresponds to an equilibrium point of the neural network (22).

(2) If A is a P -matrix, then the unique equilibrium point of (22) corresponds to the unique

solution of the LCP(A, q).

Proof. (1) If (z∗, w∗) is a solution of the LCP(A, q), we have Φµ(v
∗) = 0 at the point

v∗ = (x∗, |x∗|) with x∗ =
1

2
(Γ−1z∗−Σ−1w∗). From Lemma 3.6, we can obtain that∇fµ(v

∗) = 0.
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Hence,
dv(t)

dt
= 0.

(2) Let v∗ = (x∗, y∗) is an equilibrium point of (22), then ∇fµ(v
∗) = 0. Since A is a P -matrix,

by Lemma 3.4, the generalized Jacobian matrix J(x∗, y∗) defined in (19) is nonsingular. With

∇fµ(v
∗) = J(x∗, y∗)TΦµ(x

∗, y∗) = 0, it yields Φµ(x
∗, y∗) = 0. From Proposition 4.1 (2), we

can get that z∗ = Γ(y∗ + x∗) and w∗ = Σ(y∗ − x∗) solve of the LCP(A, q). This completes the

proof. �
Now, we establish the following proposition about the existence of the solution trajectory

of the neural network (22), which is similar to [19].

Proposition 4.3. (1) For any initial state v0 = v(t0), there exists exactly one maximal

solution v(t) with t ∈ [t0, τ(v0)) for the neural network (22).

(2) If the level sets L(v0) = {v = (x, y) ∈ R2n : fµ(v) ≤ fµ(v0)} are bounded, then τ(v0) = ∞.

Theorem 4.1. If the level set L(v0) = {v = (x, y) ∈ R2n : fµ(v) ≤ fµ(v0)} is bounded,

then the trajectory v(t) of (22) for any v0 ∈ R2n converges to an equilibrium point.

With Proposition 4.2 and Theorem 4.1, we can obtain the following result.

Theorem 4.2. If A is a P -matrix and the level sets L(v0) = {v = (x, y) ∈ R2n : fµ(v) ≤
fµ(v0)} are bounded, then the unique accumulation point of the trajectory v(t) solves the

LCP(A, q).

From Proposition 4.2 (1), every solution v∗ to the LCP is an equilibrium point of the neural

network (22). If, in addition, v∗ is an isolated equilibrium point of (22), then we can show that

v∗ is not only Lyapunov stable but also asymptotically stable.

Theorem 4.3. If v∗ is an isolated equilibrium point of the neural network (22), then v∗ is

Lyapunov stable for (22), and furthermore, it is asymptotically stable.

Proof. Since v∗ = (x∗, y∗) is a solution to the LCP, fµ(x
∗, y∗) = 0 and Φµ(x

∗, y∗) = 0. In

addition, since v∗ is an isolated equilibrium point of (22), there exists a neighborhood ∆∗ ⊆ R2n

of v∗ such that

∇fµ(x
∗, y∗) = 0 and ∇fµ(x, y) ̸= 0, ∀(x, y) ∈ ∆∗\{v∗}.

Next, we argue that fµ(x, y) is indeed a Lyapunov function at (x, y) over the set ∆∗ for (22)

by showing that the conditions in Definition 2.4 are satisfied. Firstly, notice that fµ(x, y) ≥ 0.

Suppose that there is a point v = (x, y) ∈ ∆∗\{v∗} such that fµ(x, y) = 0. Thus, Φµ(x, y) = 0.

By Lemma 3.6, we have ∇fµ(x, y) = 0, i.e., v = (x, y) is also an equilibrium point of (22), which

clearly contradicts the assumption that v∗ is an isolated equilibrium point in ∆∗. Therefore,

we have that fµ(x, y) > 0 for any (x, y) ∈ ∆∗\{v∗}. Again that

dfµ(v(t))

dt
= ∇fµ(v(t))

T dv(t)

dt
= −ρ∇fµ(v(t))

T∇fµ(v(t)) = −ρ∥∇fµ(v(t))∥2 ≤ 0. (23)

Hence, the conditions of Definition 2.4 are satisfied. It follows that fµ is a Lyapunov function

at the point v∗ over the set ∆∗. From Lemma 2.3 (1), fµ is Lyapunov stable.

Now, we show that v∗ is asymptotically stable. Since v∗ is isolated, from (23) we have

dfµ(v(t))

dt
= −ρ∥∇fµ(v(t))∥2 < 0, ∀v(t) ∈ ∆∗\{v∗}.

This, by Lemma 2.3 (2), implies that v∗ is asymptotically stable. �
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§5 Simulation results

We consider the neural network based on different NCP-functions for solving LCP(A, q); see

Table 1 for abbreviations of the corresponding methods.

Table 1. Abbreviations of testing methods.

Method Description
FB the neural network (4) based on ϕFB (5)
GFB the neural network (4) based on ϕp

GFB (6)
GNR the neural network (4) based on ϕp

GNR (7)
S1-GNR the neural network (4) based on ϕp

S1-GNR (8)
S2-GNR the neural network (4) based on ϕp

S2-GNR (9)
MNN the neural network (22) based on Φµ (16)

In our simulations, we use MATLAB ordinary differential equation solvers ode15s, ode23t,

ode23t and ode23tb. The stopping criterion in simulating is default, i.e., the scalar relative error

tolerance less 1e-3. For MNN, we choose Γ = Σ = In.

Example 1. Consider the LCP(A, q) with

A =


4 −1 1 0 0

−1 4 −1 1 0

1 −1 4 −1 1

0 1 −1 4 −1

0 0 1 −1 4

 , q =


−7

5

−18

9

−23

 .

For Example 1, since the system matrix A is symmetric positive definite, we know that the

LCP(A, q) has a unique solution that

z∗ = (1, 0, 3, 0, 5)T and w∗ = (0, 1, 0, 1, 0)T .

We simulate the neural network (22) with different values of µ, ρ and different initial points

v0 = (x0, y0) to see the influence on the convergence of trajectories to the LCP solution. Here,

we use the solver ode23t.

Figure 1 shows the trajectories of the neural network (22) for different values of ρ to solve

Example 1 when the initial point x0 = (1, 0.5,−1.5,−0.5, 1)T , y0 = (−1, 2,−1, 2,−1)T and

µ = 0.1. Figure 2 depicts the comparison of the different values of µ when the initial point

x0 = (1, 0.5,−1.5,−0.5)T , y0 = (1,−1, 2,−1, 2,−1)T and ρ = 100. Among these five values µ =

0.1, 0.3, 0.5, 0.7, 0.9, the neural network (22) with µ = 0.1 has the best numerical performance.

In other words, a small value of µ yields a faster convergence.

In Figure 3, we simulate the neural network (22) with µ = 0.1 and ρ = 100 using the

following four initial points:

v10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

v20 = (0, 0, 0, 0, 0, 1000, 1000, 1000, 1000, 1000)T ,

v30 = (1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000)T ,

v40 = (−1000,−1000,−1000,−1000,−1000, 1000, 1000, 1000, 1000, 1000)T .
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Figure 1. Convergence behavior of the error ∥z(t)− z∗∥ in Example 1 using the neural network
(22) for different values of ρ.
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Figure 2. Convergence behavior of the error ∥z(t)− z∗∥ in Example 1 using the neural network
(22) for different values of µ.

Note that these initial points show the similar performances and all converge to the unique

solution very fast. Transient behavior of z(t) in Example 1 of the neural network (22) are

presented in Figure 4. It shows that the neural network (22) is efficient in solving the LCP.
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Figure 3. Convergence behavior of the error ∥z(t)− z∗∥ in Example 1 using the neural network
(22) with µ = 0.1 and ρ = 100 for different initial points.

Example 2. Let m be a prescribed positive integer and n = m2. Consider the LCP (1),

where A = Â+ νI ∈ Rn×n with

Â = Tridiag(−1.5Im, S,−0.5Im) ∈ Rn×n

being a block-tridiagonal matrix,

S = tridiag(−1.5, 4,−0.5) ∈ Rm×m

being a tridiagonal matrix and

z∗ = (1, 0, 1, 0, . . . , 1, 0)T ∈ Rn

being the unique solution of the LCP(A, q).
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Figure 4. Transient behavior of z(t) in Example 1 of the neural network (22) with x0 =
(1, 0.5,−1.5,−0.5, 1)T , y0 = (−1, 2,−1, 2,−1)T , µ = 0.1 and ρ = 100.

Figure 5. Convergence behavior of the error ∥z(t) − z∗∥ in Example 2 with m = 6, ν = 1 and
ρ = 106 for different solvers.

For Example 2, let z0 = ones(n, 1) be the initial point for FB, GFB, GNR, S1-GNR and

S2-GNR and v0 = ones(2n, 1) be the initial point for MNN. Figure 5 depicts the comparison

of different solvers and test methods with ρ = 106, m = 6, ν = 1. It can be seen that GNR

and S2-GNR don’t converge to the solution of Example 2. When the solver ‘ode23t’ is used to

solve the ordinary differential equation, the GFB with p = 4 method is the best. However, it

can be observed in Figure 5, in which the numerical stability of MNN is the best for different

solvers used to solve the ordinary differential equation.

§6 Concluding remarks

We have presented a new equivalent reformulation of the LCP(A, q) and constructed a fam-

ily of neural networks. The characterization of stationary points of the corresponding merit

functions has been established. Moreover, we proved the stability properties of the proposed

steepest descent-based neural networks. Finally, numerical simulations indicate that the pro-

posed neural networks have significantly faster convergence rates and better stability than those

neural networks based on NCP-functions as their merit functions. Further discussions on the

matrix A or the smoothing technology such that the level sets being bounded will be interesting
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topics in our future study.
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