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A neural network based on novel equivalent model for

linear complementarity problems

KE Yi-fen! XIE Ya-jun? ZHANG Huai® MA Chang-feng**

Abstract. A family of neural networks is proposed to solve linear complementarity problems
(LCP). The neural networks are constructed from the novel equivalent model of LCP, which is
reformulated by utilizing the modulus and smoothing technologies. Some important properties
of the proposed novel equivalent model are summarized. In addition, the stability properties of
the proposed steepest descent-based neural networks for LCP are analyzed. In order to illustrate
the theoretical results, we provide some numerical simulations and compare the proposed neural
networks with existing neural networks based on the NCP-functions. Numerical results indicate

that the performance of the proposed neural networks is effective and robust.

81 Introduction

Many problems in scientific computing and engineering applications need to find the solution
of complementary problems, such as the convex quadratic programming, the bimatrix game,
the contact problems, the network equilibrium problems, the free boundary problems of fluid
dynamics, and other (see [8,10] and the references therein).

The linear complementarity problem, abbreviated as LCP, is to find a pair of real vectors
z,w € R™ such that

2>0, w=Az4+¢>0 and zTw=0, (1)
where A € R™™ and ¢ € R" are the given matrix and vector, respectively. Here, z7 denotes
the transpose of the vector z. We denote the LCP (1) by the LCP(A4, ¢q).

The nonlinear complementarity problem, abbreviated as NCP, is to find a real vector z € R™
such that

2>0, F(2)>0, 2TF(z)=0, (2)
where F': R™ — R"” is a nonlinear mapping.
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When F(z) = Az + ¢, the NCP (2) reduces to the LCP (1). Recall that a function ¢ :

R xR — R is called an NCP-function if it is satisfies
¢(a,b)=0<a>0, b>0, ab=0. (3)

Due to the wide range of applications in many areas, a lot of research efforts have been
devoted to the study of complementarity problems, including the solvability conditions and
numerical algorithms. There are many numerical algorithms for solving the complementarity
problems. These algorithms may be categorized into two classes based on the so-called NCP-
function or not. For example, the merit function approach [11,14,22], the nonsmooth Newton
method [9, 30], the smoothing method [5,25] and the regularization approach [13,27] exploit
NCP-functions. However, the well-known interior-point method [23,24] and proximal point
algorithm [26] do not utilize NCP-functions.

Recently, utilizing the modulus technology, Bai in [2] established a class of modulus-based
matrix splitting for solving the linear complementarity problem (1). This class of iteration
methods is essentially based on an equivalent transformation of the LCP into a system of fixed-
point equations involving only the absolute value of certain vector. Since the modulus-based
iteration methods take advantage of the linear part of LCP(A4, ¢), they solve the LCP fast and
economically. Therefore, the modulus-based iteration methods have attracted a lot of attention;
see [3,16,17,20, 31, 32].

The numerical algorithms mentioned above can efficiently solve the LCP, but it is often
desirable to obtain a real-time solution in scientific and engineering applications. The neural
network method is an ideal method for solving real-time optimization problems, which were
first introduced in optimization by Hopfield and Tank in the 1980s [12,28]. Neural networks
based on the well-known Fischer-Burmeister (FB) function [19] and the generalized Fischer-
Burmeister function [4] have already been studied for solving the nonlinear complementarity
problems.

The neural network methods based on NCP-functions for solving NCP (2) are as follows.
Let ¢ be an NCP-function. Definite ® : R — R™ by

¢(z1, F1(2))
D(z) :=
¢ (2n, Fn(2))
and definite f : R™ — R by

1) 1= 51 = 5 3 (e, B

Then, solving the NCP is translated to solving the minimization problem.

min f(z).
Moreover, consider the steepest descent-based neural network
dz(t
W _ s, o) e (@

to solve the above minimization problem.
Motivated by the preceding discussion, we construct a new family of neural networks
based on the modulus and smoothing technologies for solving LCP (1), which reformulates
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the LCP(4, q) as a novel equivalent model. We show that the proposed neural networks offer
stability and effective simulation results.

The outline of the paper is as follows. In Section 2, we revisit equivalent reformulations
of the LCP(A4, ¢) based on the modulus and smoothing technologies. We also review some
mathematical preliminaries related to the stability analysis of first-order differential equations.
In Section 3, we summarize some important properties of our proposed novel equivalent model
that we will use in constructing the neural networks. In Section 4, we look at the stability
and convergence analysis of the novel neural networks, which include the characterization of
stationary points of the induced merit functions. In Section 5, we present the results of our
numerical simulations. Finally, in Section 6, we end this paper with some concluding remarks.

Notions. R™ denotes the space of n-dimensional real column vectors, R™*" denotes the
space of m x n real matrices, and AT denotes the transpose of the matrix 4 € R™*". For
any differentiable function f : R — R, Vf(z) means the gradient of f at . We use |z| =
(larl, 2], . l2al)T
replace the column vector (27, yT)T.

to denote the absolute value of the vector x € R™. Here, we use (z,y) to

82 Preliminaries

2.1 NCP-function

In this subsection, we present some well-known NCP-functions, which will be used in the
following numerical simulation.

e The well-known Fischer-Burmeister (FB) function (see [19]):

ngB(a, b) =V a? + b2 — ((1 + b) (5)

The generalized Fischer-Burmeister (GFB) function (see [4]):
cre(a,0) = [[(a,0)[l, = (a+b), where p € (1,+00). (6)

The generalized natural-residual function (see [1]):

Penr(a,b) = a? — (a—b),  where p > 1 is an odd integer. (7)

The first natural symmetrization of ¢, g (see [1]):
a? —(a—0b)P, if a>b,
P81.anr(a:0) = ¢ a?, if a=0o, (8)
b —(b—a)P, if a<hb.

The second natural symmetrization of ¢f\g (see [1]):
aPb? — (a — b)POP, if a >,
$r.anr(a;0) = a?b?, if a=b, 9)
aPb? — (b—a)PaP, if a<b.
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2.2 Reformulations for LCP

In [2], Bai provided the following equivalent expression of the LCP(A, q), which is essential
and useful for establishing the neural network for the LCP(A4, q).

Theorem 2.1. ( [2]) Let A= M — N be a splitting of the matrix A € R"*™ with M being
nonsingular, ¥; and X5 be n X n nonnegative diagonal matrices, and ¥ and I' be n x n positive
diagonal matrices such that ¥ = X; + 35. For the LCP(A4, ¢), the following statements hold
true:

(1) if (w,2) is a solution of the LCP(A4,¢q), then z = %(Fflz — X~ lw) satisfies the implicit

fixed-point equation

(MT +%1)x = (NI = X9)x + (X — AD)|z| — q. (10)
(2) if = satisfies the implicit fixed-point equation (10), then
z=T(z|+z) and w=X(z|— ) (11)

is a solution of the LCP(A4, q).
From (10), we can obtain that the LCP(A4, ¢) is equivalent to solving the following nonlinear
equation
(AT + X))z — (X — AD)|z| +¢=0. (12)
Let y = |z|, then the equation (12) is equivalent to
{ (AT + X)z — (£ — A)y + ¢ = 0, a3)
|z =y.
We investigate the following class of functions:
0,.(a,b) = /(1 — p)a® + pb? — b, (14)
where p is a fixed parameter such that u € (0,1). It is obvious that the expression inside the
square root in (14) is always nonnegative, i.e.,
(1 — p)a®+ ub*> >0, Va,beR.
Hence, 0,, is at least well-defined. Moreover, it is easy to get that
0,.(a,b) =0« b=lal. (15)
Now, we define the operator ®, : R?" — R?" by
(AT 4+ X))z — (X — ATy + ¢
O, (z,y) = eu(x,hyl) , (16)

au (33»,“ yn)
then it follows immediately from Theorem 2.1 and the relational expression (15) that z* solves
the equation (12) if and only if (z*,y*) solves the equation ®,(x,y) = 0.

For the given parameter p with p € (0,1) and the given positive diagonal matrices ¥ and
I, define the function f, : R*™ — Ry by

ful ) = 512t
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n

= SI(AT + S)z — (2= ATy +all* + 5 D" (Olaio))* (1)

i=1

Then, the LCP(A4, q) can be reformulated as a minimization problem

min Az, y).
oin, fulz,y)

Hence, f, is a merit function for the LCP(A, ¢) and its global minimizer coincides with the
solution of the LCP (4, q).

2.3 The first-order differential equations

In this subsection, we recall some materials about the first-order differential equations
(ODE):

0(t) = H(v(t)), wv(to) =vo € R", (18)
where H : R™ — R"” is a mapping. The following materials can be found in ODE textbooks;
see [21,29].

Definition 2.1. A point v* = v(¢*) is called an equilibrium point or a steady state of
the dynamic system (18) if H(v*) = 0. If there is a neighborhood A* C R™ of v* such that
H(v*) =0 and H(v) # 0 for any v € A*\{v*}, then v* is called an isolated equilibrium point.

Lemma 2.1. Assume that H is a continuous mapping from R™ to R™. Then for arbitrary
to > 0 and vy € R™, there exists a local solution v(t) for (18) with ¢ € [tg, T) for some 7 > ty. In
addition, if H is locally Lipschitz continuous at vy, then the solution is unique; if H is Lipschitz
continuous in R™, then 7 can be extended to oco.

If a local solution defined on [tg, 7) cannot be extended to a local solution on a larger interval
[to, 1) with 7 > 7, then it is called a maximal solution, and the interval [tg, ) is the maximal
interval of existence. Clearly, any local solution has an extension to a maximal one. We denote
[to,7(vp)) by the maximal interval of existence associated with vg.

Lemma 2.2. Assume that H : R" — R” is continuous. If v(t) with ¢ € [tg,7(vo)) is a

maximal solution and 7(vp) < oo, then lim ||v(t)]| = oo.
t—7(vo)

Definition 2.2. (Stability in the sense of Lyapunov) Let v(f) be a solution of (18). An
isolated equilibrium point v* is Lyapunov stable if for any vy = v(tg) and any scalar € > 0,
there exists a real number § > 0 such that ||Jv(t) — v*|| < e for all £ >ty and ||v(tg) — v*|| < 4.

Definition 2.3. (Asymptotic stability) An isolated equilibrium point v* is said to be
asymptotically stable if in addition to being Lyapunov stable, it has the property that v(t) — v*
as t — +oo for all ||v(tg) — v*|| < 4.

Definition 2.4. (Lyapunov function) Let A C R™ be an open neighborhood of 7. A
continuously differentiable function W : R™ — R”™ is said to be a Lyapunov function at the
state U over the set A for (18) if

W@ =0, W)>0, YoveA\{z},

W = VW(u(t)TH(v(t)) <0, VveA.

Lemma 2.3. (1) An isolated equilibrium point v* is Lyapunov stable if there exists a
Lyapunov function over some neighborhood A* of v*.
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(2) An isolated equilibrium point v* is asymptotically stable if there exists a Lyapunov function

AW (v(t)) < 0 for all v € A*\{v*}.

over some neighborhood A* of v* such that i

§3 Properties of the merit function f,

In this section, we investigate some properties of the merit function f,, defined in (17).
Lemma 3.1. Let ¥, : R? — R be defined by

Y,(a,b) = /(1 — p)a® + pb?.

3
Then there is a constant ¢, :== pu?> —p+1€ (Z’ 1) such that

IV, (a,0)]* < ¢,
for all the vectors (a,b) # (0,0).
Proof. Let (a,b) € R? be any nonzeros vector, then we can get that ¥, is continuously
differentiable at (a,b). By computation, we obtain

I DI = (LD (R

_ (1—pa 2 jib 2
- ( (1= p)a? +u62) ( (1 - p)a? +u62)
(1 - p)?a® + p2v?
(1 — p)a? + ub?

a® 4 b°
(1)
1( u)(l—u)a2+gb2
Note that p € (0,1), then a® + % > (1 — p)a® + ub?, then it can get that
0< [[VOu(a,b)* <1 —pu(l - p) = cu

This completes the proof. O

Based on Lemma 3.1, we present the Clarke’s generalized Jacobian (see [6]) of ®,, (16) at
any arbitrary point (z,y) € R?".

Lemma 3.2. For the given parameter p with u € (0,1) and the given positive diagonal
matrices ¥ and I, we can get the generalized Jacobian of ®,, at any arbitrary point (z,y) € R*"

is

AT+ Y A'-X%
D, D, -1,
where
D, = diag(dy,d,....d}) and D, =diag(d,.d2,...,dy)
are diagonal matrices with the i-th diagonal element being given by
1—p)x; .
. (L—pe , ifz?+y2 >0,
dy, = (1 = ) + py? (20)
&, if22 +y?2=0
and
HYi

_ , ifz? +y? >0,
di = (1= p)i + (21)
n, if 22 +y? = 0.
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Here, the real numbers ¢ and 7 satisfy that £2 + n* < ¢, for any &, n € R while 27 + y? = 0,
where ¢, =p? —p+1¢€ (%,1).

We recall that an n x n matrix A is called a P-matrix if every principal minor of A is
positive. Equivalently, for every nonzero vector x € R", there is an index i¢ with z;, # 0 such
that z;,(Ax);, > 0. For a number of equivalent formulations, we refer the interested reader to
the excellent book [7] by Cottle, Pang and Stone.

A square matrix A € R™*" is called a Z-matrix if its off-diagonal entries are nonpositive.
A nonsingular matrix A € R™*" is called an M-matrix if it is a Z-matrix and A~! > 0; and an
H-matrix if its comparison matrix (4) = ((a);;) € R**™ is an M-matrix, where

la;j| for i=j,
(a)ij = { lagg| for i #j, i,j=1,2,...,n.
In particular, an H-matrix having positive diagonal entries is called an H-matrix.

According to the definition of P-matrix, if a matrix A is a P-matrix, then A7 is also a
P-matrix. And it follows that the matrix A is a P-matrix if and only if the LCP(4, ¢) has a
unique solution for all ¢ € R™. A sufficient condition for the matrix A to be a P-matrix is that
A is a positive-definite matrix or an H,-matrix.

Lemma 3.3. ( [15]) A matrix of the form

D, + DyM
is nonsingular for all positive (negative) semidefinite diagonal matrices D,, D, € R™ such that
D, + Dy is positive (negative) definite if and only if M € R™*™ is a P-matrix.

Lemma 3.4. For the given parameter p with u € (0,1) and the given positive diagonal
matrices ¥ and T, if the matrix A is a P-matrix, then the generalized Jacobian matrix J(x,y)
defined in (19) is nonsingular for any vector (z,y) € R*".

Proof. Let r = (ry,72) € R*" such that

Al+¥ AI'-X% rny (0
D, D,-1I, ro | L0 )
According to (20) and (21), we can obtain that —1 < d, <land —1 <d} <1fori=1,2,...,n.
Hence, the diagonal matrix Dy — I,, is nonsingular. Denote

S=—-(D,—1,)"'D, and G = (AT +%)+ (Al - %)S.
Thus, ro = Sry and rq satisfies that Gr; = 0.

Denote
(z,y) = {i:a; # 0,y; = 0},
Blx,y) ={i:x; =0,y; # 0},
(z,y) ={i:z; #0,y; # 0},
6(z,y) ={i:2;=0,y; = 0}.
Let s; be the i-th diagonal element of the diagonal matrix S. Now, we consider four cases.
Case 1: when i € a(x,y), then —1 < d’ < 1 and dj, = 0. It follows that

6= —(d —1)di = d.
Then, —1 < s; < 1.
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Case 2: when i € 8(z,y), then d’, =0 and —1 < d; < 1. It follows that
si=—(d, —1)"'d., =0.
Case 3: when i € vy(z,y), it follows that
si=—(d, —1)"d.,

_ 7( 1Y B 1)—1 (1 — p)ws
V(= p)x? + pyp (1 — p)x? + py?

(1—p)a;
(1 — )i + py; — pyi

Since
(1= wa)* = [\ (1 = wa? + py? — i)
= (1= )z} — (1= wai + py?)® — 127 + 2uyin/ (1 — p)af + py?
= —u[(l = i + (L4 p)yf = 2y (1 = paf + uyﬂ
= —p [(1 — Wz} + pyi = 2y /(1 — p)a? + py? + y?}

2
= —u[ (1= p)as + py? —yz} <0,
then —1 < s; < 1.
Case 4: when i € §(x,y), it follows that
i:_di_l—ldi:_ i_l_li: 57/

3
where &; and 7; satisfy £ +n? < ¢, with ¢, € (1, 1). Since &2 +n? < ¢,,, we can get that

(Van— 3V < (= 50 < (Ve + 3)°

and

G-1-m)?=&—-n+2n—1<c,—2n7 +2n — 1

1 1 1 1
:CM*Q(U1*5)2*§Scu*2(@*§)2*§
= (v —1)* <0.

Thus, —1 < s; < 1. Therefore, we can obtain that —1 < S < I.

According to the above analysis, the matrices (I -S ) > and (I +S )F are positive semidefinite
diagonal matrices. Note that

{(I -9+ (I+ S)F} = (1= 5:) % + (14 s:)Tis,

(1) when —1 < s; < 1, it has
(1 — Si)zii + (1 + Si)rii > 0

(2) when s; = —1, it has
(1 — Si)zii + (1 + si)Fii =2 > 0;
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(3) when s; = 1, it has
(1—5)% + (14 s)ly; = 2T > 0.
Then, (I — S)E + (I + S)F is a positive definite diagonal matrix.
Moreover, A is a P-matrix, then A7 is also a P-matrix. According to Lemma 3.3, the matrix
GT = (I - 9% + (I +8S)ra”
is nonsingular. Therefore, 1 = 0 and ro = 0. This completes the proof. O
Define 6, : R — R, by

ula,) = 3 (Bu(a,0))? = L (VT — @) 4l — b

In order to establish some important results for the merit function f,,, we will take a closer look
at the properties of gu and give the following result.

Lemma 3.5. The function [9; is continuously differentiable with vb}(o, 0) = (0,0)T.

Proof. The continuous differentiability of gu can be verified by direct calculation. Since
the origin is a global minimizer of the function ’91“ from the first-order optimality conditions in
unconstrained minimization, we can get that V%(O, 0) = (0,0)T. O

According to Lemmas 3.2 and 3.5, we obtain the continuously differentiable for the function
I

Lemma 3.6. The function f, is continuously differentiable with the gradient

Vfu(mv y) = J(Z‘, y)T(I)u(xa y)>

for any J(z,y) € 0®,(z,y).

84 Stability and convergence analysis

In this section, we consider the steepest descent-based neural network for solving the
LCP(A, q) with its dynamical equation being given by

YO — s, (22)

where v(t) = (z(t),y(t)) and Vf,(z,y) = J(z,y)T®,(z,y) for any J(z,y) € 0P, (z,y).
Now, we look at the stability and convergence analysis of the neural network (22).

It is easy to obtain the following results, which can be seen in [19].
Proposition 4.1. For the given n x n positive diagonal matrices ¥ and T, let f, : R*" —
R, be defined as in (17). Then the following results hold.
(1) For any v = (z,y) € R*", it holds f,(v) > 0.
(2) If the solution set of LCP(A,q) is nonempty, the point v = (z,y) is a global minimizer of
fu(v) if and only if z = I'(y + ) and w = X(y — x) solves of the LCP(A, ¢q).
(3) fu(v(t)) is nonincreasing function of ¢, where v(t) is a solution of the neural network (22).
Proposition 4.2. (1) If the solution set of the LCP(A, ¢) is nonempty, then every solution
of the LCP (A, q) corresponds to an equilibrium point of the neural network (22).
(2) If A is a P-matrix, then the unique equilibrium point of (22) corresponds to the unique
solution of the LCP(A4, q).
Proof. (1) If (2*,w*) is a solution of the LCP(A4,q), we have ®,(v*) = 0 at the point

1
v* = (a*, |z*]) with * = §(F_1z*—2_1w*). From Lemma 3.6, we can obtain that V f,,(v*) = 0.
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du(t)

Hence, =0.

(2) Let v* = (z*, y*) is an equilibrium point of (22), then V f,(v*) = 0. Since A is a P-matrix,
by Lemma 3.4, the generalized Jacobian matrix J(z*,y*) defined in (19) is nonsingular. With
V() = J(@*, y* )T ®,(z*,y*) = 0, it yields ®,(z*,y*) = 0. From Proposition 4.1 (2), we
can get that z* =I'(y* + 2*) and w* = X(y* — 2*) solve of the LCP(A4, ¢). This completes the
proof. O

Now, we establish the following proposition about the existence of the solution trajectory
of the neural network (22), which is similar to [19].

Proposition 4.3. (1) For any initial state vg = v(tg), there exists exactly one maximal
solution v(t) with ¢ € [to, 7(vo)) for the neural network (22).
(2) If the level sets L(vg) = {v = (x,y) € R*" : f,(v) < f.(vo)} are bounded, then 7(vy) = oc.

Theorem 4.1. 1If the level set L(vg) = {v = (z,y) € R*" : f,(v) < fu(vo)} is bounded,
then the trajectory v(t) of (22) for any vy € R?™ converges to an equilibrium point.

With Proposition 4.2 and Theorem 4.1, we can obtain the following result.

Theorem 4.2. If A is a P-matrix and the level sets L£(vy) = {v = (z,y) € R*" : f,(v) <
fu(vo)} are bounded, then the unique accumulation point of the trajectory v(t) solves the
LCP(4,q).

From Proposition 4.2 (1), every solution v* to the LCP is an equilibrium point of the neural
network (22). If, in addition, v* is an isolated equilibrium point of (22), then we can show that
v* is not only Lyapunov stable but also asymptotically stable.

Theorem 4.3. If v* is an isolated equilibrium point of the neural network (22), then v* is
Lyapunov stable for (22), and furthermore, it is asymptotically stable.

Proof. Since v* = (2*,y*) is a solution to the LCP, f,(z*,y*) = 0 and ®,(z*,y*) =0. In
addition, since v* is an isolated equilibrium point of (22), there exists a neighborhood A* C R?"
of v* such that

Viuz*,y") =0 and Vf,(z,y)#0, V(z,y)e A"\{v"}.
Next, we argue that f,(z,y) is indeed a Lyapunov function at (z,y) over the set A* for (22)
by showing that the conditions in Definition 2.4 are satisfied. Firstly, notice that f,(z,y) > 0.
Suppose that there is a point 7 = (Z,7) € A*\{v*} such that f,(Z,7) = 0. Thus, ®,(Z,7) = 0.
By Lemma 3.6, we have V f,(Z,7) = 0, i.e., 7 = (%, 7) is also an equilibrium point of (22), which
clearly contradicts the assumption that v* is an isolated equilibrium point in A*. Therefore,
we have that f,(x,y) > 0 for any (z,y) € A*\{v*}. Again that

Ul g g o)y 0 = v, ) VL 0(0) = AV L) <0, (23)

Hence, the conditions of Definition 2.4 are satisfied. It follows that f,, is a Lyapunov function

at the point v* over the set A*. From Lemma 2.3 (1), f, is Lyapunov stable.

Now, we show that v* is asymptotically stable. Since v* is isolated, from (23) we have

Ul 9 pawiI? <0, wo(t) € AN},

This, by Lemma 2.3 (2), implies that v* is asymptotically stable. O
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85 Simulation results

We consider the neural network based on different NCP-functions for solving LCP(A4, q); see
Table 1 for abbreviations of the corresponding methods.

Table 1. Abbreviations of testing methods.

Method | Description
FB the neural network (4
GFB the neural network (4
GNR | the neural network (4
(4
(4
(2

) based on ¢rp (5)

) based on ¢Zpp (6)

) based on ¢Z\g (7)
S1-GNR | the neural network (4) based on ¢%; g (8)
S2-GNR | the neural network (4)

2

MNN the neural network

based on ¢, ng (9)
) based on @, (16)

In our simulations, we use MATLAB ordinary differential equation solvers odelds, ode25t,
ode23t and ode23tb. The stopping criterion in simulating is default, i.e., the scalar relative error
tolerance less le-3. For MNN, we choose I' =X = I,,.

Exzample 1. Consider the LCP(A, q) with

4 -1 1 0 0 -7
-1 4 -1 1 0 5
A= 1 -1 4 -1 1 |, ¢g=| -18
0 1 -1 4 -1 9
0 0 1 -1 4 -23

For Example 1, since the system matrix A is symmetric positive definite, we know that the

LCP(A, q) has a unique solution that

=(1,0,3,0,5)" and w*=(0,1,0,1,0)".
We simulate the neural network (22) with different values of u, p and different initial points
vg = (xo,Yo) to see the influence on the convergence of trajectories to the LCP solution. Here,
we use the solver ode23t.

Figure 1 shows the trajectories of the neural network (22) for different values of p to solve
Example 1 when the initial point zq = (1,0.5,-1.5,—0.5, )T, yo = (-1,2,-1,2,-1)T and
w = 0.1. Figure 2 depicts the comparison of the different values of y when the initial point
2o = (1,0.5,—1.5,—-0.5)T, yo = (1, —1,2,—-1,2,—1)T and p = 100. Among these five values y =
0.1,0.3,0.5,0.7,0.9, the neural network (22) with ;= 0.1 has the best numerical performance.
In other words, a small value of p yields a faster convergence.

In Figure 3, we simulate the neural network (22) with 4 = 0.1 and p = 100 using the
following four initial points:

vs = (0,0,0,0,0,0,0,0,0,0)7,

vz = (0,0,0,0,0,1000, 1000, 1000, 1000, 1000)”,

’UO = (1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000)%,
= (=

1000, —1000, —1000, —1000, —1000, 1000, 1000, 1000, 1000, 1000)” .



322 Appl. Math. J. Chinese Univ. Vol. 40, No. 2

Figure 1. Convergence behavior of the error ||z(t) — z*|| in Example 1 using the neural network
(22) for different values of p.

Figure 2. Convergence behavior of the error ||z(t) — z*|| in Example 1 using the neural network
(22) for different values of .

Note that these initial points show the similar performances and all converge to the unique
solution very fast. Transient behavior of z(t) in Example 1 of the neural network (22) are
presented in Figure 4. It shows that the neural network (22) is efficient in solving the LCP.

Figure 3. Convergence behavior of the error ||z(t) — 2*|| in Example 1 using the neural network
(22) with g = 0.1 and p = 100 for different initial points.

Exzample 2. Let m be a prescribed positive integer and n = m?2. Consider the LCP (1),
where A = A + vI € R™*" with

A = Tridiag(—1.51,,, S, —0.51,,,) € R**"
being a block-tridiagonal matrix,
S = tridiag(—1.5,4,—0.5) € R™*™
being a tridiagonal matrix and
z*=(1,0,1,0,...,1,0)T e R
being the unique solution of the LCP(A4, q).
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Trajectories of z(t)

Figure 4. Transient behavior of z(¢) in Example 1 of the neural network (22) with zy =
(1,0.5,—1.5, 0.5, )T, yo = (=1,2,-1,2,—-1)T, p = 0.1 and p = 100.

ode23s

T
|
5
his

(a) Solver: odel5s (b) Solver: ode23s
ode23t . ode23tp

22l
izt

I R

B 3 : c ; : B
¢ ¢
(c) Solver: ode23t (d) Solver: ode23th

Figure 5. Convergence behavior of the error ||2(¢) — z*|| in Example 2 with m =6, v = 1 and
p = 106 for different solvers.

For Example 2, let 2o = ones(n, 1) be the initial point for FB, GFB, GNR, S1-GNR and
S2-GNR and vy = ones(2n,1) be the initial point for MNN. Figure 5 depicts the comparison
of different solvers and test methods with p = 105, m = 6, v = 1. It can be seen that GNR
and S2-GNR don’t converge to the solution of Example 2. When the solver ‘ode23t’ is used to
solve the ordinary differential equation, the GFB with p = 4 method is the best. However, it
can be observed in Figure 5, in which the numerical stability of MNN is the best for different
solvers used to solve the ordinary differential equation.

86 Concluding remarks

We have presented a new equivalent reformulation of the LCP(A, ¢) and constructed a fam-
ily of neural networks. The characterization of stationary points of the corresponding merit
functions has been established. Moreover, we proved the stability properties of the proposed
steepest descent-based neural networks. Finally, numerical simulations indicate that the pro-
posed neural networks have significantly faster convergence rates and better stability than those
neural networks based on NCP-functions as their merit functions. Further discussions on the
matrix A or the smoothing technology such that the level sets being bounded will be interesting
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topics in our future study.
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