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Chelyshkov matrix-collocation method for solving

nonlinear quadratic integral equations

Rahele Nuraei

Abstract. The main purpose of this paper is to use the Chelyshkov-collocation spectral method

for solving nonlinear Quadratic integral equations of Volterra type. The method is based on

the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients. The

Chelyshkov polynomials and their properties are employed to derive the operational matrices of

integral and product. The application of these operational matrices for solving the mentioned

problem is explained. The error analysis of the proposed method is investigated. Finally, some

numerical examples are provided to demonstrate the efficiency of the method.

§1 Introduction

The theory of integral equations has many useful applications in describing numerous events

and problems of the real world. For example, these equations are often applicable in engineering,

mathematical physics, economics and biology. A special type of the integral equations, namely

quadratic integral equations, provide an important tool for modeling processes engineering and

consequently this type of integral equations have been used increasingly in different areas of

applied science, such as the theory of radiative transfer, kinetic theory of gases, the traffic theory

and the theory of neutron transport [5]. Moreover, the quadratic integral equations have been

used in solving most of the boundary value problems of both ordinary and partial differential

equations [1]. Thus, due to the above-mentioned applications, the development of numerical

approaches for solving quadratic integral equations is very essential.

Recently, many analytical and numerical methods have been applied to solve quadratic

integral equations. In 2001, Banas et al. [6] studied the solvability of the quadratic inte-

gral equation of Urysohn-Stieltjes type. In 2004, Banas and Maritinon [5] investigated the

solvability of a nonlinear quadratic integral equation of Volterra type. In 2005, Darvish [11]

considered the nonlinear quadratic integral equations of fractional orders and presented an

existence theorem for them. In 2006, Banas et al. [4] investigated the existence and asymptot-

ic behaviour of solutions of the nonlinear quadratic integral equations of Hammerstein type.

In [1, 2, 12–14, 21, 33, 34], various numerical methods such as Adomian decomposition method,
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repeated trapezoidal method, Picard method, homotopy perturbation method and variational

iteration method are used to solve the nonlinear quadratic integral equations. In 2009, Youse-

fi et al. [31] applied the variational iteration method to present the approximate solution of

nonlinear mixed Volterra-Fredholm integral equations. In 2016, Mirzaee and Hadadiyan [24]

presented a numerical method to solve nonlinear quadratic integral equations based on mod-

ification of hat functions and their operational matrices. In 2017, Al-Badrani [3] used the

variational homotopy perturbation method to solve nonlinear quadratic integral equations. In

2018, Mirzaee and Alipour [23] described an approximate scheme based on piecewise hat func-

tion to solve nonlinear quadratic integral equations of fractional order. In 2019, Rabbani et

al. [26] investigated the existence of a solution for nonlinear quadratic integral equations using

the generalized form of Darbo fixed point theorem. In 2020, Zeghdane [32] solved the Volter-

ra stochastic integral equations by the Chebyshev cardinal functions. Recently, Basseem and

Alalyani [7] solved a mixed nonlinear quadratic integral equation with a singular kernel by a

quadrature method.

In this paper, we introduce a matrix-based method for numerical solution of quadratic

integral equations of Volterra type in the form:

y(x) = a(x) + f(x, y(x))

∫ x

0

g(t, y(t))dt. (1.1)

The proposed method is based on the spectral-collocation method [9]. The spectral methods

play a significant role in various fields of applied science, especially in fluid dynamics where

a large spectral hydrodynamics codes are now regularly used to study turbulence, transition,

numerical weather prediction and ocean dynamics [9]. Recently, researchers have investigated

the solutions of partial differential and integral equations that model many systems and pro-

cesses in chemistry, physics, biology, engineering, astrophysics and space science. For example,

in 2019, Hamid et al. [15] presented an efficient and precise computational algorithm based

on a new kind of polynomials together with the collocation technique to solve time-space frac-

tional partial differential equations with the Riesz derivative. Also, in 2021, Hamid et al. [16]

solved a family of nonlinear evolution differential equations by an operational matrix-based

spectral computational method coupled with the Picard technique. Spectral methods are built

on approximating the series solutions for differential equations in terms of orthogonal polyno-

mials, say
∑

akϕk. There are three well-known versions that are used as popular techniques to

determine the expansion coefficients, namely collocation, tau and Galerkin methods [9].

The major objective of this paper is to provide a new numerical method for solving Eq.

(1.1) by the orthogonal Chelyshkov polynomials introduced in [10]. These polynomials have

been used in the solution of weakly singular integral equations in [27] based on the produc-

t integration method and for solving the Sine-Gordon equation [29]. Sezer et al. derived the

matrix method based on Chelyshkov polynomials for solving a class of mixed functional integro-

differential equations [25]. Bazm et al. in [8] developed the matrix formulation for nonlinear

Vlottera-Hammersian integral. In 2018, Talaei et al. [28, 30] proposed the Chelyskov matrix

formulation based on collocation method for numerical solution of the multi-order fraction-

al differential equations and two-dimensional Fredholm-Volterra integral equations. In 2020,

Hamid et al. [17] analyzed the transport dynamics and anomalous diffusion in fractional mod-

el by a Chelyshkov polynomial-based algorithm. Also, in the same year, they [18, 19] used
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Chelyshkov polynomials to analyze some other problems. Recently, Hamid et al. [20] used a

Picard Chelyshkov polynomial method to attain nonlinear oscillatory problems of arbitrary

orders.

The outline of this paper is as follows : in Section 2, we review existence theorem of Eq.

(1.1) and some properties of Chelyshkov polynomials. The operational matrices of integration

and product are derived and apply together with collocation method to reduce the problem to

a system of algebraic linear equations in Section 3. The error analysis and algorithm of the

method is presented in Section 4. The numerical results are given in Section 5. Finally, the

conclusion of the paper is given in Section 6.

§2 Preliminaries

At first, we present the existence theorem of a unique solution for the nonolinear quadratic

integral equation (1.1).

Theorem 2.1. [12] Suppose that for Eq. (1.1), the following conditions hold:

(i) a : [0, 1] → [0,∞) is a continuous function.

(ii) The functions f and g are continuous and also there exist positive constants M1 and M2

such that |f | ≤ M1 and |g| ≤ M2.

(iii) The functions f and g satisfy Lipschitz condition with Lipschitz constants L1 and L2 with

respect to their second variables, i.e.,

|f(t, x)− f(t, y)| ≤ L1|x− y|,
|g(t, x)− g(t, y)| ≤ L2|x− y|.

If

L1M2 +M1L2 < 1, (2.2)

then the nonlinear quadratic integral equation (1.1) has a unique solution y ∈ C[0, 1].

In continuation, we recall the basic definition of Chelyshkov polynomials as well as some

important properties. The orthogonal Chelyshkov polynomials [10] are sequences of polynomials

which are orthogonal in the interval [0, 1] with the weight function 1. These polynomials are

explicitly defined by

CN,n(x) =
N−n∑
j=0

(−1)j
(
N − n

j

)(
N + n+ j + 1

N − n

)
xn+j , n = 0, 1, ..., N. (2.3)

For example, if N = 3 we obtain

C3,0(x) = 4− 30x+ 60x2 − 35x3,

C3,1(x) = 10x− 30x2 + 21x3,

C3,2(x) = 6x2 − 7x3,

C3,3(x) = x3.

Also, Fig. 1 shows the behavior of Chelyshkov polynomials in the interval [0, 1] for N = 3.

Now, let us approximate the solution of Eq. (1.1) as

y(x) ≃ yN (x) =
N∑

n=0

anCN,n(x) = AΦ(x) = A WX(x), (2.4)
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where

A = (a0, a1, ..., aN ), X(x) = (1, x, ..., xN )T ,

and

Φ(x) = (CN,0(x), CN,1(x), ..., CN,N (x))T . (2.5)

Also W is a (N + 1)× (N + 1) upper triangular matrix as follows:

If N is odd,

W =



(
N
0

)(
N+1
N

)
−
(
N
1

)(
N+2
N

)
. . .

(
N

N−1

)(
2N
N

)
−
(
N
N

)(
2N+1

N

)
0

(
N−1
0

)(
N+2
N−1

)
. . . −

(
N−1
N−2

)(
2N
N−1

) (
N−1
N−1

)(
2N+1
N−1

)
...

...
. . .

...
...

0 0 . . .
(
1
0

)(
2N
1

)
−
(
1
1

)(
2N+1

1

)
0 0 . . . 0 1


,

and if N is even,

W =



(
N
0

)(
N+1
N

)
−
(
N
1

)(
N+2
N

)
. . . −

(
N

N−1

)(
2N
N

) (
N
N

)(
2N+1

N

)
0

(
N−1
0

)(
N+2
N−1

)
. . .

(
N−1
N−2

)(
2N
N−1

)
−
(
N−1
N−1

)(
2N+1
N−1

)
...

...
. . .

...
...

0 0 . . .
(
1
0

)(
2N
1

)
−
(
1
1

)(
2N+1

1

)
0 0 . . . 0 1


.
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Figure 1. Behavior of Chelyshkov polynomials for N = 3.

These polynomials satisfy the orthogonality condition∫ 1

0

CN,p(x)CN,q(x)dx =

{
0, p ̸= q,

1
p+q+1 , p = q,

(2.6)

where p, q = 0, 1, ..., N . Also, they can be connected to hypergeometric functions, orthogonal
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exponential polynomials and Jacobi polynomials P ι,γ
k (x) by the following relation

CN,n(x) = (−1)N−nxnP 0,2n+1
N−n (2x− 1), n = 0, 1, ..., N.

Hence, they keep distinctively attributes of the classical orthogonal polynomials and may be

facilitated to different problems on approximation. Indeed, the family of orthogonal polynomials

{CN,n(x)}Nn=0 have n multiple zeros x = 0 and N − n distinct real zeros in the interval [0, 1].

Hence, for every N if the roots of the polynomial CN,n(x) are chosen as node points, then an

accurate numerical quadrature can be derived.

§3 Matrix representation and Main results

In this section, we first introduce the operational matrix of integration.

Theorem 3.1. The operational matrix of integration is defined as follows∫ x

0

Φ(s)ds ≃ PΦ(x),

where P is an (N + 1)× (N + 1) operational matrix as follows

P =


Θ(0, 0) Θ(0, 1) . . . Θ(0, N)

Θ(1, 0) Θ(1, 1) · · · Θ(1, N)
...

...
. . .

...

Θ(N, 0) Θ(N, 1) . . . Θ(N,N)

 ,

where

Θ(n, k) =
N∑

j=n

(−1)j−n

(
N − n

j − n

)(
N + j + 1

N − n

)
β(1, j + 1)ξk,j , (3.7)

and

ξk,j = (2k + 1)

N∑
l=k

(−1)l−k

j + l + 2

(
N − k

l − k

)(
N + l + 1

N − k

)
.

Proof. Integrating of CN,n(x) from 0 to x yields

∫ x

0

CN,n(s)ds =
N∑

j=n

(−1)j−n

(
N − n

j − n

)(
N + j + 1

N − n

)
β(1, j + 1)xj+1. (3.8)

Now, approximating x(j+1) by N + 1 terms of Chelyshkov polynomials, we obtain

x(j+1) ≃
N∑

k=0

ξk,jCN,k(x), (3.9)

where ξk,j is given as follows

ξk,j = (2k + 1)

∫ 1

0

x(j+1)CN,k(x)dx,

= (2k + 1)
N∑
l=k

(−1)l−k

(
N − k

l − k

)(
N + l + 1

N − k

)∫ 1

0

xj+l+1dx,

= (2k + 1)
N∑
l=k

(−1)l−k

j + l + 2

(
N − k

l − k

)(
N + l + 1

N − k

)
. (3.10)
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By Eqs. (3.8) and (3.9) we obtain

∫ x

0

CN,n(s)ds =
N∑

k=0

 N∑
j=n

(−1)j−n

(
N − n

j − n

)(
N + j + 1

N − n

)
B(1, j + 1)ξk,j

CN,k(x)

=
N∑

k=0

Θ(n, k)CN,k(x), (3.11)

where Θ(n, k) are given in Eq. (3.7). Accordingly, Eq. (2.4) can be rewritten as the following

vector form: ∫ x

0

CN,n(s)ds = (Θ(n, 0),Θ(n, 1), ...,Θ(n,N))Φ(x).

This leads to the desired result for n = 0, ..., N .

Now, we introduce the operational matrix of product that great main role in the proposed

method, since reduce the solution of Eq. (1.1) to the solution of an algebraic equation.

Theorem 3.2. If V = [v0, v1, ..., vN ]T , then

Φ(x)ΦT (x)V ≃ V̂Φ(x), (3.12)

with

V̂ = [v̂i,j ]
N
i,j=0, v̂i,j =

N∑
l=0

vlµi,l,j . (3.13)

Proof. Form left side of Eq. (3.12), we have

Φ(x)ΦT (x)V =


∑N

j=0 vjCN,0(x)CN,j(x)∑N
j=0 vjCN,1(x)CN,j(x)

...∑N
j=0 vjCN,N (x)CN,j(x)

 . (3.14)

Using relation Eq. (2.4), one can approximate CN,i(x)CN,j(x) for i, j = 0, ..., N in the form

CN,i(x)CN,j(x) ≃
N∑

k=0

µi,j,kCN,k(x),

Using the orthogonality of Chelyshkov polynomials, we have

µi,j,k = (2k + 1)

∫ 1

0

CN,i(x)CN,j(x)CN,k(x)dx

= (2k + 1)

∫ 1

0

(
2N∑
l=0

ρi,j,lx
l

)
CN,k(x)dx

= (2k + 1)
2N∑
l=0

ρi,j,l

(∫ 1

0

xlCN,k(x)dx

)

= (2k + 1)
2N∑
l=0

N∑
r=k

ρi,j,l(−1)r−k

(r + l + 1)

(
N − k

r − k

)(
N + r + 1

N − k

)
.
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Therefore, for i = 0, 1, ..., N , we have
N∑
j=0

vjCN,i(x)CN,j(x) ≃
N∑
j=0

vj

(
N∑

k=0

µi,j,kCN,k(x)

)

=

N∑
k=0

 N∑
j=0

vjµi,j,k

CN,k(x)

=

N∑
k=0

v̂i,kCN,k(x). (3.15)

Substituting Eq. (3.15) into Eq. (3.14) leads to the desired result.

For implementing the operational matrices method on Eq. (1.1), we find the collocation

approximation in the form
w1(x) = f(x, y(x)) ≃ wN,1(x) =

∑N
i=0 wi,1CN,i(x) = ΦT (x)W1,

w2(x) = g(x, y(x)) ≃ wN,2(x) =
∑N

i=0 wi,2CN,i(x) = ΦT (x)W2,

(3.16)

where

Wi = (wi,0, wi,1, ..., wi,N )T , Φ(x) = (CN,0(x), CN,1(x), ..., CN,N (x))T .

Based Sloan’s new collocation method [22], it is observed that wi(x) for i = 1, 2 satisfy in

following integral equations
w1(x) = f

(
x, a(x) + w1(x)

∫ x

0
w2(t)dt

)
,

w2(x) = g
(
x, a(x) + w1(x)

∫ x

0
w2(t)dt

)
.

(3.17)

Applying an approximation scheme to Eq. (3.17) will lead to an approximate solution of

Eq. (1.1). By substituting the approximated Eq. (3.16) in Volterra integral part of Eq. (1.1)

and using Theorems 3.1 and 3.2, we get

w1(x)

∫ x

0

w2(t)dt ≃ WT
1 Φ(x)

∫ x

0

ΦT (x)W2dt

= WT
1 Φ(x)

∫ x

0

ΦT (x)dtW2

= WT
1 Φ(x)ΦT (x)PTW2

≃ ΦT (x)ŴT
1 P

TW2. (3.18)

By substituting (3.18) and (3.16) in (3.17) we obtain
ΦT (x)W1 = f

(
x, a(x) +ΦT (x)ŴT

1 P
TW2

)
,

ΦT (x)W2 = g
(
x, a(x) +ΦT (x)ŴT

1 P
TW2

)
.

(3.19)

Now, by collocation points xi, i = 0, 1, ..., N , the zeros of the CN+1,0(x), we have
ΦT (xi)W1 = f

(
xi, a(xi) +ΦT (xi)Ŵ

T
1 P

TW2

)
,

ΦT (xi)W2 = g
(
xi, a(xi) +ΦT (xi)Ŵ

T
1 P

TW2

)
,

(3.20)
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then Eq. (3.20) is a set of 2(N + 1) nonlinear algebraic equations with 2(N + 1) unknowns

which can be solved using any standard iteration technique, after solving this nonlinear system,

we get Wi, i = 1, 2. Hence, the solution can be written in the form

yN (x) = a(x) + wN,1(x)

∫ x

0

wN,2(t)dt. (3.21)

§4 Error analysis

In this section, an error bound is computed for the unknown function y(x) via its expansion

by means of Chelyshkov orthogonal polynomials.

Definition 4.1. (Taylor’s formula). Suppose that Dkf(x) ∈ C[0, 1] for k = 0, 1, ..., N + 1.

Then, we have

f(x) =

N∑
i=0

xi

Γ(i+ 1)
Dif(0) +

x(N+1)

Γ(N + 2)
D(N+1)f(ξ), (4.22)

with 0 < ξ ≤ x, ∀x ∈ (0, 1]. Also,

|f(x)−
N∑
i=0

xi

Γ(i+ 1)
Dif(0)| ≤ M

x(N+1)

Γ(N + 2)
, (4.23)

where |D(N+1)f(ξ)| ≤ M .

Let MN = {CN,0(x), CN,1(x), ..., CN,N (x)} be the set of polynomials of complete L2[0, 1],

since MN finite dimensional then for every f be an arbitrary element in L2[0, 1] be unique best

approximation from f̂ ∈ MN that is

∥f − f̂∥ ≤ ∥f − g∥, ∀g ∈ MN .

Moreover, there exist unique coefficients a0, a1, ..., aN such that

f̂(x) = fN (x) =

N∑
n=0

anCN,n(x) = AΦ(x), (4.24)

where

A = (a0, a1, ..., aN ) , Φ(x) = (CN,0(x), CN,1(x), ..., CN,N (x))
T
, (4.25)

and

an = (2n+ 1)⟨CN,n(x), f̂⟩w.
Let us define the error function as eN (x) = f(x)− fN (x) where f(x) and fN (x) are the exact

and approximate solutions of Eq. (1.1), respectively. In the following lemma, we present an

upper bound for estimating the error.

Lemma 4.2. Suppose that Dkf(x) ∈ C[0, 1] for k = 0, 1, ..., N . if fN (x) := ATΦ(x) is the

best approximation to f(x), then the error bound is presented as follows

∥f −ATΦ(x)∥ ≤ M

Γ(N + 2)
√
(2N + 3)

.

Proof. Considering the Taylor’s formula

f(x) =
N∑
i=0

xi

Γ(i+ 1)
Dif(0) +

x(N+1)

Γ(N + 2)
D(n+1)f(ξ), (4.26)
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then we have

|f(x)−
N∑
i=0

xi

Γ(i+ 1)
Dif(0)| ≤ M

x(N+1)

Γ(N + 2)
. (4.27)

Since ATΦ(x) is the best approximation to f(x) from MN and
N∑
i=0

xi

Γ(i+ 1)
Dif(0) ∈ MN ,

hence

∥f −ATΦ(x)∥2 ≤ ∥f −
N∑
i=0

xi

Γ(i+ 1)
Dif(0)∥2 ≤ M2

Γ(N + 2)2

∫ 1

0

x2(N+1)dx

then

∥f −ATΦ(x)∥2 ≤ M2

Γ(N + 2)2(2N + 3)
.

Hence, an upper bound in L2 is obtained for the approximating solution. The convergence

of the proposed method depends on the above error bound.

In the following, we summarize the steps of the proposed method as an implementation

algorithm as follows:

Step 1. Choose N as the degree of approximate solution.

Step 2. Compute the vector basis Φ from (4.25).

Step 3. Compute the matrices P and V̂ from Theorems 2 and 3 and the matrices (3.16) and

(3.18).

Step 4. Compute the collocation points xi (the roots of CN+1,0(x)).

Step 5. Solve the nonlinear system (3.20).

Step 6. Construct the approximate solution yN from Eq. (3.21).

§5 Numerical Examples

In this section, we illustrate the presented method by giving some examples. The results are

compared with the exact solutions by calculating the following maximum absolute error and

eN (x) = max|y(x)− yN (x)|, x ∈ [0, 1],

where y(x) denote the exact solution of the given examples and yN (x) be the approximate

solution obtained by the presented method. All calculations are supported by Maple 12.

Example 5.1. Consider the equation

y(x) = x3 − x10

35
+

1

5
y(x)

∫ x

0

y2(t)dt, (5.28)

where the exact solution is y(x) = x3. We approximate the solution y(x) by N = 5 and obtain:

y5(x) = − 492033989

19503769752
x10 − 313506513

21743720771
x9 +

778572632

4104895303
x8 − 2342373949

8465223580
x7

+
903144767

5339862835
x6 − 470847353

9672047107
x5 +

139556639

21287342581
x4 +

3964583787

3966484492
x3

+
19325089

462305901501
x2 − 3487712

1412591261827
x+

480189

10290205568813
.
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Table 1. Absolute errors of Example 5.1.

x e5(x) e10(x)

0 4.67× 10−8 1.70× 10−21

0.1 5.07× 10−8 1.70× 10−15

0.2 6.10× 10−8 7.67× 10−14

0.3 2.69× 10−7 1.97× 10−13

0.4 1.70× 10−6 3.55× 10−13

0.5 8.65× 10−6 1.78× 10−12

0.6 7.23× 10−6 1.17× 10−11

0.7 3.36× 10−6 3.26× 10−11

0.8 2.13× 10−6 7.15× 10−11

0.9 3.86× 10−5 5.89× 10−11

1 1.15× 10−4 5.74× 10−10

The values of the absolute errors for N = 5, 10 at specified points are reported in Table 1.

Also, Figs. 2 and 3 show the absolute errors on a logarithmic scale for N = 5 and N = 10,

respectively.

Figure 2. Absolute errors of Example 5.1 for N = 5.

Figure 3. Absolute errors of Example 5.1 for N = 10.

Example 5.2. Consider the following equation

y(x) = x2 +
1

80
x17 − 1

70
x16 +

x5

10
y2(x)

∫ x

0

(1− t)y3(t)dt, (5.29)

with the exact solution is y(x) = x2. For N = 5, we have:

y5(x) = − 1

80
x17 − 1

70
x16 +

3814567227

1821007492
x10 − 6933631193

969169535
x9 +

11332960939

1060775641
x8

− 3636277708

400432233
x7 +

6060872787

1264362361
x6 − 48736302585

30291481081
x5 +

2730752507

8097081674
x4

− 228911458

5536285859
x3 +

1382050063

1378563708
x2 − 61077871

1274039906927
x.
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Table 2. Absolute errors of Example 5.2.

x e5(x) e10(x)

0 0 0
0.1 7.70× 10−7 7.81× 10−17

0.2 1.30× 10−11 4.09× 10−14

0.3 5.60× 10−9 1.36× 10−12

0.4 1.21× 10−8 2.11× 10−11

0.5 8.37× 10−7 1.56× 10−10

0.6 6.22× 10−7 5.81× 10−10

0.7 8.35× 10−6 4.25× 10−9

0.8 9.19× 10−7 5.48× 10−9

0.9 2.01× 10−4 5.52× 10−8

1 3.60× 10−4 1.41× 10−6

The values of the absolute errors for N = 5, 10 at specified points are reported in Table 2. This

table shows that our method has an appropriate convergence rate for this problem. Also, Figs.

4 and 5 show the absolute errors on a logarithmic scale for N = 5 and N = 10, respectively.

Figure 4. Absolute errors of Example 5.2 for N = 5.

Figure 5. Absolute errors of Example 5.2 for N = 10.

§6 Conclusions

In this paper, we presented the spectral collocation method for solving nonlinear quadratic

integral equations of Volterra type. According to the proposed method, the operational matrices

of integral and product for Chelyshkov polynomials have been derived. These matrices are used

to obtain approximation solutions for the nonlinear quadratic integral equations of Volterra

type. The presented matrix method provides the following advantages: it is very simple to
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construct the main matrix and to do computer programming, simplicity of implementation

besides good approximation results in low terms of basis by only a small number of Chelyshkov

polynomials. The proposed method can be extended to related problems, such as system of

nonlinear quadratic integral equations. This is possible for future works.
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