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Chelyshkov matrix-collocation method for solving
nonlinear quadratic integral equations

Rahele Nuraei

Abstract. The main purpose of this paper is to use the Chelyshkov-collocation spectral method
for solving nonlinear Quadratic integral equations of Volterra type. The method is based on
the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients. The
Chelyshkov polynomials and their properties are employed to derive the operational matrices of
integral and product. The application of these operational matrices for solving the mentioned
problem is explained. The error analysis of the proposed method is investigated. Finally, some

numerical examples are provided to demonstrate the efficiency of the method.

81 Introduction

The theory of integral equations has many useful applications in describing numerous events
and problems of the real world. For example, these equations are often applicable in engineering,
mathematical physics, economics and biology. A special type of the integral equations, namely
quadratic integral equations, provide an important tool for modeling processes engineering and
consequently this type of integral equations have been used increasingly in different areas of
applied science, such as the theory of radiative transfer, kinetic theory of gases, the traffic theory
and the theory of neutron transport [5]. Moreover, the quadratic integral equations have been
used in solving most of the boundary value problems of both ordinary and partial differential
equations [1]. Thus, due to the above-mentioned applications, the development of numerical
approaches for solving quadratic integral equations is very essential.

Recently, many analytical and numerical methods have been applied to solve quadratic
integral equations. In 2001, Banas et al. [6] studied the solvability of the quadratic inte-
gral equation of Urysohn-Stieltjes type. In 2004, Banas and Maritinon [5] investigated the
solvability of a nonlinear quadratic integral equation of Volterra type. In 2005, Darvish [11]
considered the nonlinear quadratic integral equations of fractional orders and presented an
existence theorem for them. In 2006, Banas et al. [4] investigated the existence and asymptot-
ic behaviour of solutions of the nonlinear quadratic integral equations of Hammerstein type.
In [1,2,12-14,21, 33, 34], various numerical methods such as Adomian decomposition method,
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repeated trapezoidal method, Picard method, homotopy perturbation method and variational
iteration method are used to solve the nonlinear quadratic integral equations. In 2009, Youse-
fi et al. [31] applied the variational iteration method to present the approximate solution of
nonlinear mixed Volterra-Fredholm integral equations. In 2016, Mirzaee and Hadadiyan [24]
presented a numerical method to solve nonlinear quadratic integral equations based on mod-
ification of hat functions and their operational matrices. In 2017, Al-Badrani [3] used the
variational homotopy perturbation method to solve nonlinear quadratic integral equations. In
2018, Mirzaee and Alipour [23] described an approximate scheme based on piecewise hat func-
tion to solve nonlinear quadratic integral equations of fractional order. In 2019, Rabbani et
al. [26] investigated the existence of a solution for nonlinear quadratic integral equations using
the generalized form of Darbo fixed point theorem. In 2020, Zeghdane [32] solved the Volter-
ra stochastic integral equations by the Chebyshev cardinal functions. Recently, Basseem and
Alalyani [7] solved a mixed nonlinear quadratic integral equation with a singular kernel by a
quadrature method.

In this paper, we introduce a matrix-based method for numerical solution of quadratic
integral equations of Volterra type in the form:

y(z) = a(z) + f(z,y(x)) /Ozg(t, y(t))dt. (1.1)

The proposed method is based on the spectral-collocation method [9]. The spectral methods
play a significant role in various fields of applied science, especially in fluid dynamics where
a large spectral hydrodynamics codes are now regularly used to study turbulence, transition,
numerical weather prediction and ocean dynamics [9]. Recently, researchers have investigated
the solutions of partial differential and integral equations that model many systems and pro-
cesses in chemistry, physics, biology, engineering, astrophysics and space science. For example,
in 2019, Hamid et al. [15] presented an efficient and precise computational algorithm based
on a new kind of polynomials together with the collocation technique to solve time-space frac-
tional partial differential equations with the Riesz derivative. Also, in 2021, Hamid et al. [16]
solved a family of nonlinear evolution differential equations by an operational matrix-based
spectral computational method coupled with the Picard technique. Spectral methods are built
on approximating the series solutions for differential equations in terms of orthogonal polyno-
mials, say > ax¢r. There are three well-known versions that are used as popular techniques to
determine the expansion coefficients, namely collocation, tau and Galerkin methods [9].

The major objective of this paper is to provide a new numerical method for solving Eq.
(1.1) by the orthogonal Chelyshkov polynomials introduced in [10]. These polynomials have
been used in the solution of weakly singular integral equations in [27] based on the produc-
t integration method and for solving the Sine-Gordon equation [29]. Sezer et al. derived the
matrix method based on Chelyshkov polynomials for solving a class of mixed functional integro-
differential equations [25]. Bazm et al. in [8] developed the matrix formulation for nonlinear
Vlottera-Hammersian integral. In 2018, Talaei et al. [28,30] proposed the Chelyskov matrix
formulation based on collocation method for numerical solution of the multi-order fraction-
al differential equations and two-dimensional Fredholm-Volterra integral equations. In 2020,
Hamid et al. [17] analyzed the transport dynamics and anomalous diffusion in fractional mod-
el by a Chelyshkov polynomial-based algorithm. Also, in the same year, they [18,19] used
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Chelyshkov polynomials to analyze some other problems. Recently, Hamid et al. [20] used a
Picard Chelyshkov polynomial method to attain nonlinear oscillatory problems of arbitrary
orders.

The outline of this paper is as follows : in Section 2, we review existence theorem of Eq.
(1.1) and some properties of Chelyshkov polynomials. The operational matrices of integration
and product are derived and apply together with collocation method to reduce the problem to
a system of algebraic linear equations in Section 3. The error analysis and algorithm of the
method is presented in Section 4. The numerical results are given in Section 5. Finally, the
conclusion of the paper is given in Section 6.

§2 Preliminaries

At first, we present the existence theorem of a unique solution for the nonolinear quadratic
integral equation (1.1).

Theorem 2.1. [12] Suppose that for Eq. (1.1), the following conditions hold:
(i) a : [0,1] — [0,00) is a continuous function.
(i) The functions [ and g are continuous and also there exist positive constants My and My
such that |f| < My and |g| < Ma.
(iii) The functions f and g satisfy Lipschitz condition with Lipschitz constants L1 and Lo with
respect to their second variables, i.e.,

|f(t,z) = f(t,y)] < Li|z -y,
lg(t,z) — g(t,y)| < La|z —yl.

If
LMy + MLy < 1, (22)
then the nonlinear quadratic integral equation (1.1) has a unique solution y € C[0,1].

In continuation, we recall the basic definition of Chelyshkov polynomials as well as some
important properties. The orthogonal Chelyshkov polynomials [10] are sequences of polynomials
which are orthogonal in the interval [0, 1] with the weight function 1. These polynomials are
explicitly defined by

N-—n .
Cyn(z) = ; (—1) (Nj ") <N +]\7fi + 1) 2"t n=0,1,..,N. (2.3)
For example, if N = 3 we obtain
Cs,0(2) = 4 — 302 + 602° — 3527,
C31(x) = 10z — 302% + 212,
Cs32(7) = 62 — T2°,
0373 (13) = :L‘3.
Also, Fig. 1 shows the behavior of Chelyshkov polynomials in the interval [0,1] for N = 3.
Now, let us approximate the solution of Eq. (1.1) as

N
y(z) ~yn(z) = Z anCn () = A®(x) = A WX(x), (2.4)
n=0
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where
A = (ag,a1,...,an), X(z) = (1,z,....a™M)7T,
and
®(z) = (Cno(2), Cn1(2), .o, Con (2)) T (2.5)
Also Wis a (N +1) x (N + 1) upper triangular matrix as follows:
If NV is odd,
) OO - GG —CYY
o (HED o —GRIEN) GG
W . . . |
0 0 HEY e
0 0 0 1
and if N is even,
(W)~ GG MEVY
o (G - GREN) -GEIRT)
W =
0 0 W) —OEY

i
|
£ 000

o 02 0.4 06 08 1

Figure 1. Behavior of Chelyshkov polynomials for N = 3.

These polynomials satisfy the orthogonality condition

1
/0 Cnp(2)Cng(x)de = { 0, P7

1 ’ (2.6)
et P=4
where p,q = 0,1,..., N. Also, they can be connected to hypergeometric functions, orthogonal
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exponential polynomials and Jacobi polynomials P, (x) by the following relation

Cnn(z) = ()N 2" Py?" (22 — 1), n=0,1,..,N.
Hence, they keep distinctively attributes of the classical orthogonal polynomials and may be
facilitated to different problems on approximation. Indeed, the family of orthogonal polynomials
{Cnn(2)}_, have n multiple zeros z = 0 and N — n distinct real zeros in the interval [0, 1].
Hence, for every N if the roots of the polynomial Cn () are chosen as node points, then an
accurate numerical quadrature can be derived.

83 Matrix representation and Main results

In this section, we first introduce the operational matrix of integration.

Theorem 3.1. The operational matriz of integration is defined as follows

/ ®(s)ds ~ PP(x),
0
where P is an (N + 1) x (N + 1) operational matriz as follows

©(0,0) ©(0,1) ... ©(,N)

o(1,0) ©e(1,1) --- ©O(,N)

O(N,0) O(N,1) ... O(N,N)
where N

o N=n\/N+j+1 )
O(n, k) :;(—1)1 (j_n)< N >ﬁ(17g+1)g,w-, (3.7)

and

N
(-1)k (N —k\ (N+1+1
S = (2k+1)§j+l+2(l—k>< N -k )

Proof. Integrating of Cn ,,(x) from 0 to x yields

z N .
. (N—-—n\/N+j+1 . i
Cnn(s)ds =Y (—1)7" 1,j+ 1)zt 3.8
[ ematarts =3 (T (Y5 a0 (3.5
Now, approximating /1) by N + 1 terms of Chelyshkov polynomials, we obtain

N

2t ~ Zﬁk,jCN,k(mL (3.9)
k=0

where &, ; is given as follows

1
€y = (2k+1)/ IOy () de,

0
N -k +I1+1 L
2 1 J+I+1
k+ ; ( k)( Nk:)/ox dz,
Y N—k\(N+i+1
= (2k+1) Z]+l+2< k)( Nk ) (3.10)
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By Egs. (3.8) and (3.9) we obtain

(&, o (N=n\(N+j+1 , '
i cN,n(s)ds_g::0 ;(—1) (j—n>( N >B(1,y+1)&w On ()
N
= O(n,k)Cn (), (3.11)

where ©(n, k) are given in Eq. (3.7). Accordingly, Eq. (2.4) can be rewritten as the following
vector form:

Cn.n(s)ds = (©(n,0),0(n,1),...,0(n,N)) ®(x).
0
This leads to the desired result for n =0, ..., N. O

Now, we introduce the operational matrix of product that great main role in the proposed
method, since reduce the solution of Eq. (1.1) to the solution of an algebraic equation.

Theorem 3.2. IfV = [vg,v1,...,on]T, then

®(2)®T (2)V ~ V() (3.12)
with
‘7 = [i)\id] 1,5=0> vZ,j Zvllh INE (313)

Proof. Form left side of Eq. (3.12), we have

S 0 0Cno(@)Cn ()

S0 0O (2)Cn ()

®(2)®T (2)V = (3.14)

. :
> =0 ViCOn N (2)Ch ()
Using relation Eq. (2.4), one can approximate C ;(x)Cy j(z) for 4,5 =0,..., N in the form

Cn,i(z)Cn j(z Zuz,j KONk (

Using the orthogonality of Chelyshkov polynomlals, we have

1
Wik = (2]{3 + 1)/ CN’i(,T)CN’j(LU)CN’k(.’E)dLU

2/€+1/ (sz,JICU)CNk()
=(2k+1) Zpi’j’l (/ xlC’N’k(x)dx>
0
2N N _k
Pil(=1)""" (N —k\ (N +r+1
= (2k+1) ZZ r+l+ <T—k‘)< N-k )
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Therefore, for i = 0, 1, ..., N, we have

N
ZU]CNl CNJ <ZM'LJ}CCNIC )

k=0

<
I
o

Vitti gk | Onk(T)

I
WE
WE

k=0 \j=0
N
= BikCn (). (3.15)
k=0
Substituting Eq. (3.15) into Eq. (3.14) leads to the desired result. O

For implementing the operational matrices method on Eq. (1.1), we find the collocation
approximation in the form

wi(z) = f(z,y(2)) = wya(x) = Tl wia O i(z) = @7 (@)W,
(3.16)
ws(w) = g(x,y(x)) = wy 2 (x) = Sy wi 2Cy i(x) = BT ()W,
where
W, = (wio, Wi, win), @)= (Cnolx),Cni(z),... Cnn(2)).
Based Sloan’s new collocation method [22], it is observed that w;(z) for i« = 1,2 satisfy in
following integral equations

wi(z) = f (2, a(x) + wi(z fo wa(t)dt)
(3.17)

wa(z) =g (CU )+ wi(x fo wa(t )
Applying an approximation scheme to Eq. (3.17) will lead to an approximate solution of
Eq. (1.1). By substituting the approximated Eq. (3.16) in Volterra integral part of Eq. (1.1)
and using Theorems 3.1 and 3.2, we get

wi (z) /0 " wa(t)dt ~ WT®(x) / " BT ()Wt

0

= W1®(x) /O"L &7 (1)dtW,

=W'®(z)®” (2)PTW,
~ &7 (z)WT PTW,. (3.18)
By substituting (3.18) and (3.16) in (3.17) we obtain
&7 ()W, = f (x a(z) + @T(x)WITPTW2> ,
(3.19)
)Wy = g ( )+ @7 )WTPTW2> .
Now, by collocation points x;, i = 0,1, ..., N, the zeros of the Cn11,(x), we have
&7 (z,)W (xz,a 2) + T (@)W PTW,)
(3.20)
&7 =g (mz,a z;) + &7 (x i)\/ﬁlTPTW2> ,
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then Eq. (3.20) is a set of 2(N + 1) nonlinear algebraic equations with 2(N + 1) unknowns
which can be solved using any standard iteration technique, after solving this nonlinear system,
we get W;, ¢ = 1,2. Hence, the solution can be written in the form

(@) = a(@) + w1 () /O " (t)dt. (3.21)

84 Error analysis

In this section, an error bound is computed for the unknown function y(x) via its expansion
by means of Chelyshkov orthogonal polynomials.

Definition 4.1. (Taylor’s formula). Suppose that D* f(z) € C[0,1] for k = 0,1,..., N + 1.
Then, we have

F@) =3 i)+ L pven e (122)
—I(i+1) I'(N+2) ’ '
with 0 < & <z, Vz € (0,1]. Also,
N i . (N+1)
@) =3 w2 O < Mgy (423)

where | DN £(€)| < M.

Let My = {Cno(z),Cn1(x),....,Cn.n(x)} be the set of polynomials of complete L]0, 1],
since My finite dimensional then for every f be an arbitrary element in L?[0, 1] be unique best
approximation from f € My that is

If=fI<f=gll, Vg€ My.
Moreover, there exist unique coefficients ag, a1, ..., an such that

N
J@) = fx(@) = a,Cxnn(z) = AD(x), (4.24)
n=0

where
A = (ag,a1,..,an), ®(z) = (COnolx),Cni(2),.... Cyn(z) ", (4.25)
and
an = (2n + D){(Cn.n(x), fw-
Let us define the error function as en(z) = f(z) — fn(z) where f(z) and fy(x) are the exact
and approximate solutions of Eq. (1.1), respectively. In the following lemma, we present an
upper bound for estimating the error.

Lemma 4.2. Suppose that D* f(x) € C[0,1] for k =0,1,...,N. if fx(x) := AT®(x) is the
best approzimation to f(x), then the error bound is presented as follows

If— AT®(2)| < M

(N +2)/(2N +3)

Proof. Considering the Taylor’s formula
N 2 2(N+1)

1@ =3 7P O+ g D), (4.26)

=0
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then we have

N o . 2(N+D)
|f($)—iz=;ml) f(0)] SMm~ (4.27)

Since AT® () is the best approximation to f(z) from My and

N i
€T .
—D'f(0 M,

;r(iﬂ) 1(0) € My,

hence
T 2 al a't j 2 M? ! 2(N+1)
_ < — — D < ———
IF ~ ATREI < 1f = 3 p PO S g |
then
M2

(N +2)2(2N +3)°

If — AT®()]* <
O

Hence, an upper bound in L? is obtained for the approximating solution. The convergence
of the proposed method depends on the above error bound.

In the following, we summarize the steps of the proposed method as an implementation
algorithm as follows:
Step 1. Choose N as the degree of approximate solution.

Step 2. Compute the vector basis ® from (4.25).

Step 3. Compute the matrices P and V from Theorems 2 and 3 and the matrices (3.16) and
(3.18).

Step 4. Compute the collocation points z; (the roots of Cny10(2)).
Step 5. Solve the nonlinear system (3.20).
Step 6. Construct the approximate solution yy from Eq. (3.21).

85 Numerical Examples

In this section, we illustrate the presented method by giving some examples. The results are
compared with the exact solutions by calculating the following maximum absolute error and

en(z) = mazly(z) —yn(z)|, = €0,1],
where y(x) denote the exact solution of the given examples and yy(x) be the approximate
solution obtained by the presented method. All calculations are supported by Maple 12.

Example 5.1. Consider the equation
10

y(a) = 23 — %5 + éy(x) /0 ’ V2 (1)dt, (5.28)

We approzimate the solution y(z) by N =5 and obtain:
492033989 |, 313506513 778572632 o 2342373949 .

719503769752 © 21743720771 © 4104895303 © 8465223580
003144767 , 470847353 . 139556639 , 3964583787

5330862835 © 0672047107 © T 21287342581 © 3066484492 ©
19325089 3487712 480189

462305001501 © 1412591261827 + 10290205568813

where the exact solution is y(x) = x3.

ys(z) =
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Table 1. Absolute errors of Example 5.1.

Appl. Math. J. Chinese Univ.

x es(x) ero(x)

0 467x107% 1.70 x 1072
0.1 5.07x10"% 1.70 x 10~1°
0.2 6.10x107% 7.67x 1014
0.3 269x1077 1.97x 10713
04 1.70x107% 3.55x 10713
0.5 865x107% 1.78 x 10712
06 723x107% 1.17x10"!1
0.7 336x107% 3.26x 101
0.8 2.13x107% 7.15x 101!
0.9 3.86x107° 5.89 x 10~
1 1.15 x 107*  5.74 x 10~10

The wvalues of the absolute errors for N = 5,10 at specified points are reported in Table 1.
Also, Figs. 2 and 8 show the absolute errors on a logarithmic scale for N = 5 and N = 10,

respectively.

i

i 1

{ ! 1
1

Vol. 40, No. 2

Figure 3. Absolute errors of Ekampie 5.1 for N = 10.

Example 5.2. Consider the following equation

1 1 x® ””
2 17 16 2 3
= — T — 1-1¢ t)dt 5.29
y(@) = a® + o' = ol 4 oy (»’8)/0 (1= t)y"(t)dt, (5.29)
with the exact solution is y(x) = x2. For N =5, we have:
@ 1, 1, 3814567227 ,, 6933631193 o 11332960939
ys(z) = - -

1060775641
2730752507

8097081674 ©

1821007492 969169535
6060872787 48736302585

1264362361~ 30291481081
1382050063 61077871

1378563708 © 1274039906927

“80° T 70
3636277708 -

100432233 ©
228011458

5536285859
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Table 2. Absolute errors of Example 5.2.

Chelyshkov matrix-collocation method for solving nonlinear quadratic...

T es(x) e10(x)
0 0 0

0.1 7.70x10~7 7.81 x10~17
0.2 1.30x 107 4.09x 10
0.3 5.60x1079 1.36 x 10712
04 121x107% 2.11x 1011
0.5 837x1077 1.56x 10710
0.6 6.22x1077 581 x10°10
0.7 835x107% 4.25x107°
0.8 9.19x1077 548 x107Y
09 201x10"* 552x10°8
1 3.60 x 1074 141 x 1076
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The values of the absolute errors for N = 5,10 at specified points are reported in Table 2. This
table shows that our method has an appropriate convergence rate for this problem. Also, Figs.

4 and 5 show the absolute errors on a logarithmic scale for N =5 and N = 10, respectively.

Figure 5. Absoluté errors of Example 5.2 for N = 10.

86 Conclusions

In this paper, we presented the spectral collocation method for solving nonlinear quadratic

integral equations of Volterra type. According to the proposed method, the operational matrices

of integral and product for Chelyshkov polynomials have been derived. These matrices are used

to obtain approximation solutions for the nonlinear quadratic integral equations of Volterra

type. The presented matrix method provides the following advantages: it is very simple to
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construct the main matrix and to do computer programming, simplicity of implementation
besides good approximation results in low terms of basis by only a small number of Chelyshkov
polynomials. The proposed method can be extended to related problems, such as system of
nonlinear quadratic integral equations. This is possible for future works.
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