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Dynamical study of discrete prey-predator system

incorporating proportional prey refuge with interval

parameters

Prasun K. Santra1 Ghanshaym S. Mahapatra2

Abstract. This paper presents the dynamical properties of a discrete-time prey-predator model

with refuge in prey under imprecise biological parameters. We consider the refuge concept of

prey, which is proportional to the density of prey species with interval parameters. The model

develops with natural interval parameters since the uncertainties of parameters of any ecological

system are a widespread phenomenon in nature. The equilibria of the model are obtained,

and the dynamic behaviours of the proposed system are examined. Simulations of the model

are performed for different parameters of the model. Numerical simulations show that the

proposed discrete model exhibits rich dynamics of a chaotic and complex nature. Our study,

through analytical derivation and numerical example, presents the effect of refuge on population

dynamics under imprecise biological parameters.

§1 Introduction

In the classical Lotka-Volterra model ([1],[2]), multiple species ecological problem was pre-

sented first time with general interaction. One of the significant interactivities among species

in bio-mathematics is the prey-predator correlation, which has been studied on a large scale

([3]-[14]) for its universal existence. Many factors are affecting the predator-prey dynamics.

The theory of population dynamics is divided into two kinds of mathematical models: con-

tinuous and discrete-time models. The discrete-time models described by difference equations

([15]-[25]), and the discrete-time models are more appropriate when populations have a small

number of population, or non-overlapping generations. In addition, exact numerical simulation

results can be presented for discrete-time models. Furthermore, the numerical simulations of

continuous-time models are derived by discretizing the models. Again, the discrete-time models

([32],[41],[48]) have richer dynamical attributes than the continuous-time models.
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The refuge is an exciting concept in the prey-predator model. It can be defined as the

change in the density of prey attached per unit time per predator as the prey density changes.

Many papers ([4],[12]) in continuous models with refuge exist in the literature, which presented

the effect in the dynamics of prey-predator interaction. Kar [3] presented the stability analysis

of a prey-predator system by incorporating a prey refuge. This paper proposes to study the

discrete-time prey-predator model by considering the fact that prey refuge is proportional to

the density of prey species. The different types of refuge concepts demonstrate the various

prey dynamics for studying the prey-predator system. The effect of different prey refuge has

more importance on the dynamics of discrete-time models than the continuous prey-predator

systems. Some examples of predator and prey are rat and cat, lion and zebra, bear and fish,

and fox and rabbit. Rats have refuges such as tall grass, allowing them to hide from predators

such as owls and cats.

Hu and Cao [47] presented a discrete-time predator-prey system of Holling and Leslie type

functional responses for bifurcation and chaos analysis. Cheng and Cao [44] presented a discrete-

time ratio dependent on the predator-prey model for bifurcation analysis incorporating the

Allee effect. Cui et al. [46] studied the dynamics of a discrete-time prey-predator system with

Holling I functional response. Gámez et al. [42] presented a discrete-time prey-predator model

for ecological monitoring. Chen and Chen [43] presented a discrete predator-prey model with

stage structure and harvesting to study complex dynamic behaviours.

The discrete-time model in general is developed by researchers ([33],[34],[35]) with the as-

sumption that the biological parameters are fixed and precisely known, however, it is different

in practical situations. All biological parameters may not be fixed in reality, and rather it may

deviate due to various causes ([26],[28],[29],[30],[31]). The biological parameters are sensible

and more appropriate to be treated as imprecise quantity ([36],[40]) instead of a definite real

number. Peixoto et al. [30] studied the predator-prey fuzzy model. First time in the study of

the prey-predator system, Pal et al. [26] proposed the interval biological parameters for optimal

harvesting of prey-predator bio-economic model. Liang and Zhao [38] presented the optimal

harvesting of a Gompertz population model with a marine protected area using interval-value

biological parameters. Pal et al. [39] studied the bifurcation of prey-predator system with time

delay and harvesting using fuzzy parameters.

This paper considers one prey and one predator for the proposed discrete model and then

develops and discusses the dynamical behaviour of the system for equilibrium points, stability,

bifurcation, and chaotic situations, where some of the biological parameters of the system

are interval numbers. The interval parameters of the system are present in the parametric

functional form to study the proposed prey-predator discrete-time model. A parametric prey-

predator mathematical model is formulated to find different system behaviour for different

values of the parameters. The proposed procedure is more effective and exciting since we get

different model behaviour using the functional form of interval parameters. The advantage of

the proposed approach is that this study can present different system characteristics for changes

of the parameters at a time in a single framework. This paper presents a discrete-time model
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of two species with the concept of prey refuge for imprecise biological parameters for dynamical

behaviour.

The rest of the paper is organized as follows: in the second section, we introduce the

prerequisite mathematics which is used in this paper. Section 3 presents the formulation of a

discrete-time prey-predator model under non-overlapping generation incorporating the refuge

under imprecise biological parameters. Section 4 offers the proposed discrete-time prey-predator

system’s equilibrium points and deals with the stability analysis of the proposed model around

the interior equilibrium. We present Neimark-Sacker bifurcation and Filp bifurcation of the

proposed model in section 5. Section 6 gives the chaos control procedure of the proposed

prey-predator system. Section 7 gives a numerical simulation to support the proposed model’s

theoretical and analytical outcomes. Finally, the conclusion is provided in Section 8.

§2 Prerequisite Mathematics

An interval number is denoted by closed interval a = [al, ar] and defined by a = [al, ar] =

{x : al ≤ x ≤ ar, x ∈ R} , R is the set of real numbers.

Definition: Interval-valued function: Let the interval is of the form [al, ar], where

al, ar > 0, the interval-valued function can be defined as h (p) = a1−p
l apr for p ∈ [0, 1].

Here, the arithmetic operations for two interval number a = [al, au] and b = [bl, bu] where

al, bl > 0, using the concept of parametric interval valued functions [27] are as follows:

Addition: The sum of the intervals a + b = [al + bl, au + bu] in parametric form of the

interval a+b as interval-valued function is h (p) = a1−p
L apU , where aL = al+bl and aU = au+bu.

Subtraction: The substraction of the intervals a−b = [al − bu, au − bl] , given that al−bu >

0, in the form of interval valued function is h (p) = b1−p
L bpU where bL = al− bu and bL = au− bl.

Scalar Multiplication: The scalar multiplication with the interval a is given by αA =

α [al, au] =

{
[αal, αau] if α ≥ 0

[αau, αal] if α < 0
such that al > 0. The interval αA is given by h (p) ={

c1−p
L cpU if α ≥ 0

−d1−p
L dpU if α < 0

where c
L
= αal, cU = αau, dL = |α|au and dU = |α|al.

§3 Modeling of Discrete Prey-Predator System with Interval

Coefficient

The reasonable perception of two species is essential in ecology, where the ambience has di-

versity for species to hide. The Sundarban Tiger Reserve is a mangrove biological system with

31 mammalian species, 14 turtle and tortoises species, seven amphibian species, more than 200

species of fishes, birds, insect, crustaceans, more than 50 species of snake, annelids, protozoa,

reptiles, and 143 molluscs species, 104 nematode species, 40 significant mangrove species, 32

minor mangrove species, 30 back mangroves and associates species, and three mangrove habi-

tat ferns species in West Bengal, India. Here, the topmost predator is the Tiger on land and
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estuarine crocodile in the water. And chital, sambar, barasingha, gaur, water buffalo, nilgai,

serow, wild boar, hog deer, monkeys, rabbits, peafowl, wild pig, flying creatures, household

domesticated animals, people, bison, gaurs, and bats are prey. Mangroves provide a refuge

region for prey, we proposed a mathematical model of discrete-time prey-predator system con-

siders that the densities of prey (x) and predator (y) populations change with time and have no

age structure for both species. We consider populations with the non-overlapping generation,

where all adults die after birth. The general form of the prey-predator system in discrete-time

incorporating logistic growth and refuge on the prey population is described by the following

format:

xn+1 = f(xn, yn) = axn(1− xn)− b(xn − xR)yn (1)

yn+1 = g(xn, yn) = c(xn − xR)yn − dyn

Where df
dyn

≤ 0 and dg
dxn

> 0, we consider here xR as a refuge quantity of the prey population.

Here, a, b, c, d and m are the non-negative parameters of the proposed discrete prey-predator

system.

Here, xR is considered based on the point of view xR = mxn, i.e. the quantity of hiding

prey is proportional to the density of the prey species. Based on the assumption that the

prey population as refuge is proportional to the density of the prey, the model (1) should

be changed with the relation xR = mxn. Most of the prey-predator models are studied in

a precise environment, but the data cannot be recorded or collected precisely due to several

reasons in reality. Since the biological background of populations is not entirely predictable, the

biological parameters of modelling the prey-predator system should be considered imprecise [36].

Hence analysis of the system with an uncertain growth rate of prey populations, interspecific

competition rates of prey species [34], predation coefficient, and reduced rates of predator

species is usually considered an effect of environmental fluctuations. The reproduction of the

species depends on various factors, such as temperature, humidity, parasites and pathogens,

and environmental pollution. Let â, b̂, ĉ and d̂ be the interval counterparts of a, b, c and d,

respectively. Then the modified prey-predator model of (1) with the situation that the prey

population as refuge is proportional to the density as follows:

xn+1 = âxn(1− xn)− b̂(1−m)xnyn (2)

yn+1 = ĉ(1−m)xnyn − d̂yn

where â ∈ [al, au], b̂ ∈ [bl, bu], ĉ ∈ [cl, cu] and d̂ ∈ [dl, du] . Also al > 0, bl > 0, cl > 0 and

dl > 0.

Here we present the parametric form of the proposed discrete prey-predator system, which

will be considered for the dynamical study. Based on section 2, the interval parameters can

be presented as interval-valued function, and the prey-predator equations (2) can be written in

the parametric prey-predator model as follows:

xn+1 = al
1−pau

pxn(1− xn)− bl
1−pbu

p(1−m)xnyn (3)

yn+1 = cl
1−pcu

p(1−m)xnyn − dl
1−pdu

pyn

for p ∈ [0,1].
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§4 Dynamics of Proposed Discrete Prey-Predator Model

This section presents the dynamical analysis of the proposed parametric prey-predator sys-

tem.

4.1 Fixed points of discrete prey-predator model

In this section, we present all possible equilibrium points of the proposed discrete prey-

predator system. To study the stability of the fixed points of the model, first we present the

following lemma:

Lemma 1. Let F (τ) = τ2 − Bτ + C, assume that F (1) > 0, τ1 and τ2 are roots of F (τ) = 0.

Then

(i) |τ1| > 1 and |τ2| > 1 if and only if F (−1) > 0 and C > 1;

(ii) |τ1| < 1 and |τ2| > 1, or, |τ1| > 1 and |τ2| < 1, if and only if F (−1) < 0;

(iii) |τ1| < 1 and |τ2| < 1 if and only if F (−1) > 0 and C < 1;

(iv) τ1 = −1 and |τ2| ̸= 1 if and only if F (−1) = 0 and B ̸= 0, 2;

(v) τ1 and τ2 are complex and |τ1| = |τ2| = 1 if and only if B2 − 4C < 0 and C = 1.

Here τ1and τ2 are the eigenvalues of the fixed point (x, y). We recall some definitions of

topological types for a fixed point (x, y).

A fixed point (x, y) is called

(i) a sink if |τ1| < 1 and |τ2| < 1, hence the sink is locally asymptotically stable.

(ii) a source if |τ1| > 1 and |τ2| > 1, so the source is locally unstable.

(iii) a saddle if |τ1| > 1 and |τ2| < 1, or, |τ1| < 1 and |τ2| > 1.

(iv) non-hyperbolic if either |τ1| = 1 or |τ2| = 1.

Fixed points of the system are determined by solving the following non-linear system of

equations:

x = a1−p
l apux(1− x)− b1−p

l bpu(1−m)xy

y = c1−p
l cpu(1−m)xy − d1−p

l dpuy

Simple calculation gives the following three non-negative fixed points:

(i) P10 = (0, 0) , (ii) P11 =
(

a1−p
l ap

u−1

a1−p
l ap

u
, 0
)
, a1−p

l apu > 1, (iii) P12 = (x∗, y∗) where x∗ =

d1−p
l dp

u+1

c1−p
l cpu(1−m)

and y∗ =
c1−p
l cpu(1−m)(a1−p

l ap
u−1)−a1−p

l ap
u(d

1−p
l dp

u+1)
b1−p
l bpuc

1−p
l cpu(1−m)2

, where m < 1 and c1−p
l cpu(1 −

m)
(
a1−p
l apu − 1

)
> a1−p

l apu

(
d1−p
l dpu + 1

)
.

Now dx∗

dm =
d1−p
l dp

u+1

c1−p
l cpu(1−m)2

> 0, then x∗ is strictly increasing function of parameter m. So

increasing the amount of prey refuge leads to the increasing density of the prey species.
dy∗

dm =
c1−p
l cpu(1−m)(a1−p

l ap
u−1)−2a1−p

l ap
u(d

1−p
l dp

u+1)
b1−p
l bpuc

1−p
l cpu(1−m)3

Here dy∗

dm > 0 when m < 1− 2a1−p
l ap

u(d
1−p
l dp

u+1)
c1−p
l cpu(a1−p

l ap
u−1)

then y∗ is a strictly increasing function of m.

And dy∗

dm < 0 when m > 1− 2a1−p
l ap

u(d
1−p
l dp

u+1)
c1−p
l cpu(a1−p

l ap
u−1)

then y∗ is a strictly decreasing function of m.
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If y∗ is a strictly increasing (decreasing) function of parameterm, then increasing the amount

of prey refuge leads to the increasing (decreasing) density of the predator species.

The above fixed points of the prey-predator system will be considered for dynamical study

in the following sections for each of the equilibrium points.

4.2 Dynamics of prey-predator model with proportion prey refuge

Now we study the local behavior of the discrete-time prey-predator system at each equilib-

rium point. The map given by equation (3) is a non-invertible map of the plane. The study of

the dynamical properties of the above map provides information about the long-run behavior

of prey-predator populations. Starting from the initial condition (x0, y0), the iteration of (3)

uniquely determines a trajectory of the states of the population output. The stability of the

imprecise system (3) is carried out by computing the Jacobian Matrix corresponding to each

equilibrium point. The Jacobian matrix J for the system (3) is

J =

[
a1−p
l apu(1− 2x)− b1−p

l bpu(1−m)y −b1−p
l bpu(1−m)x

c1−p
l cpu(1−m)y c1−p

l cpu(1−m)x− d1−p
l dpu

]
The characteristic equation of matrix J is τ2 − Tr (J) τ +Det (J) = 0 where

Tr (J) = Trace of matrix J = a1−p
l apu−d1−p

l dpu+
[
c1−p
l cpu(1−m)− 2a1−p

l apu

]
x− b1−p

l bpu(1−
m)y.

Det(J) = Determinant of matrix J = a1−p
l apu

[
c1−p
l cpu(1−m) + 2d1−p

l dpu

]
x+b1−p

l bpud
1−p
l dpu(1−

m)y − 2a1−p
l apuc

1−p
l cpu(1−m)x2 − a1−p

l apud
1−p
l dpu.

Hence, the model (3) is a dissipative dynamical system if∣∣∣a1−p
l apu

(
c1−p
l cpu(1−m) + 2d1−p

l dpu

)
x+ b1−p

l bpud
1−p
l dpu(1−m)y

− a1−p
l apu

(
2c1−p

l cpu(1−m)x2 + d1−p
l dpu

) ∣∣∣ < 1.

The model (3) is a conservative dynamical one, if and only if∣∣∣a1−p
l apu

[
c1−p
l cpu(1−m) + 2d1−p

l dpu

]
x+ b1−p

l bpud
1−p
l dpu(1−m)y

− a1−p
l apu

(
2c1−p

l cpu(1−m)x2 + d1−p
l dpu

) ∣∣∣ = 1.

The model (3) is an un-dissipated dynamical system if not dissipative neither conservative.

4.2.1 Stability and dynamic behavior of P10

The dynamical behavior is discussed here using the Jacobian matrix at fixed point P10 =

(0, 0) . The Jacobian matrix at P10 = (0, 0) is J =

[
a1−p
l apu 0

0 −d1−p
l dpu

]
. The trivial equilib-

rium point P10 = (0, 0) is

(i) sink if a1−p
l apu < 1 and d1−p

l dpu < 1,

(ii) source if a1−p
l apu > 1 and d1−p

l dpu > 1,

(iii) saddle if a1−p
l apu > 1 and d1−p

l dpu < 1, or, a1−p
l apu < 1 and d1−p

l dpu > 1,

(iv) non-hyperbolic if a1−p
l apu = 1 or d1−p

l dpu = 1.
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4.2.2 Stability and dynamic behavior of P11

The Jacobian matrix at P11 =
(

a1−p
l ap

u−1

a1−p
l ap

u
, 0
)
to discuss the dynamical behavior is

J =

 2− a1−p
l apu

b1−p
l bpu(1−a1−p

l ap
u)(1−m)

a1−p
l ap

u

0
(1−m)c1−p

l cpu(a
1−p
l ap

u−1)

a1−p
l ap

u
− d1−p

l dpu


The equilibrium point P11 is

sink if a1−p
l apu ∈ (1, 3) and m ∈

(
1− a1−p

l ap
u(d

1−p
l dp

u+1)

c1−p
l cpu(a

1−p
l ap

u−1)
, 1− a1−p

l ap
u(d

1−p
l dp

u−1)

c1−p
l cpu(a

1−p
l ap

u−1)

)
,

source if a1−p
l apu ∈ (3,∞) and m ∈

(
0, 1− a1−p

l ap
u(d

1−p
l dp

u+1)

c1−p
l cpu(a

1−p
l ap

u−1)

)
∪
(
1− a1−p

l ap
u(d

1−p
l dp

u−1)

c1−p
l cpu(a

1−p
l ap

u−1)
, 1
)
,

saddle if a1−p
l apu ∈ (3,∞) and m ∈

(
1− a1−p

l ap
u(d

1−p
l dp

u+1)

c1−p
l cpu(a

1−p
l ap

u−1)
, 1− a1−p

l ap
u(d

1−p
l dp

u−1)

c1−p
l cpu(a

1−p
l ap

u−1)

)
,

or a1−p
l apu ∈ (1, 3) and m ∈

(
0, 1− a1−p

l ap
u(d

1−p
l dp

u+1)

c1−p
l cpu(a

1−p
l ap

u−1)

)
∪
(
1− a1−p

l ap
u(d

1−p
l dp

u−1)

c1−p
l cpu(a

1−p
l ap

u−1)
, 1
)
,

non-hyperbolic if a1−p
l apu = 1 or 3,

otherwise, m = 1− a1−p
l ap

u(d
1−p
l dp

u+1)

c1−p
l cpu(a

1−p
l ap

u−1)
or 1− a1−p

l ap
u(d

1−p
l dp

u−1)

c1−p
l cpu(a

1−p
l ap

u−1)

4.2.3 Stability and dynamic behavior at the interior fixed point P12

The dynamical behavior of the system (3) at fixed point P12 is studied here. From the

Jacobian matrix J for the interior equilibrium point P12 (x
∗, y∗) , we have

1− Tr (J) +Det (J) =

1−
[(

a1−p
l apu − d1−p

l dpu

)
+
(
c1−p
l cpu(1−m)− 2a1−p

l apu

)
x− b1−p

l bpu(1−m)y
]
+

a1−p
l apu

[
c1−p
l cpu(1−m) + 2d1−p

l dpu

]
x+ b1−p

l bpud
1−p
l dpu(1−m)y− 2a1−p

l apuc
1−p
l cpu(1−m)x2 −

a1−p
l apud

1−p
l dpu,

1 + Tr (J) +Det (J) =

1 +
[(

a1−p
l apu − d1−p

l dpu

)
+
(
c1−p
l cpu(1−m)− 2a1−p

l apu

)
x− b1−p

l bpu(1−m)y
]
+

a1−p
l apu

[
c1−p
l cpu(1−m) + 2d1−p

l dpu

]
x+ b1−p

l bpud
1−p
l dpu(1−m)y− 2a1−p

l apuc
1−p
l cpu(1−m)x2 −

a1−p
l apud

1−p
l dpu,

Det (J) = a1−p
l apu

(
c1−p
l cpu(1−m) + 2d1−p

l dpu

)
x+b1−p

l bpud
1−p
l dpu(1−m)y−2a1−p

l apuc
1−p
l cpu(1−

m)x2 − a1−p
l apud

1−p
l dpu

At P12 = (x∗, y∗) if 1− Tr (J) +Det (J) > 0 then interior equilibrium point is

sink if 1 + Tr (J) +Det (J) > 0 and Det (J) < 1,

source if 1 + Tr (J) +Det (J) > 0 and Det (J) > 1,

saddle if 1 + Tr (J) +Det (J) < 0,

non hyperbolic if 1 + Tr (J) +Det (J) = 0 and Tr (J) ̸= 0, 2 or [Tr (J)]
2 − 4Det (J)

< 0 and Det (J) = 1.

The proposed parametric discrete prey-predator model (3) experiences bifurcation at the

positive interior equilibrium point (x∗, y∗) . The dynamic matrix of the prey-predator system

undergoes different bifurcations, which arises for the following conditions:
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At P12 = (x∗, y∗) if 1 − Tr (J) +Det (J) > 0, 1 + Tr (J) +Det (J) = 0, and Tr (J) ̸= 0, 2

then (x∗, y∗) can undergo flip bifurcation.

At P12 = (x∗, y∗) if 1 − Tr (J) + Det (J) > 0, (Tr (J))
2 − 4Det (J) < 0 and Det (J) = 1

then (x∗, y∗) can undergo Neimark-Sacker bifurcation.

§5 Bifurcation Analysis

In this section, we discuss the Neimark-Sacker bifurcation and Filp bifurcation of the model.

5.1 Neimark-Sacker bifurcation of proposed model

In this section, we discuss the Neimark-Sacker bifurcation of the model (3) at P (x∗, y∗)

when parameters are located in the following set A = {(al, au, bl, bu, cl, cu, dl, du, p,m) : 1 −
Tr (J) +Det (J) > 0, (Tr (J))

2 − 4Det (J) < 0, Det (J) = 1 and p ∈ [0, 1] .}
The Neimark-Sacker bifurcation is analyzed for p as the bifurcation parameter. Further p∗

is the perturbation of p, we consider a perturbation of the model as follows:

xn+1 = al

(
au
al

)p+p∗

xn(1− xn)− bl

(
bu
bl

)p+p∗

(1−m)xnyn ≡ f(xn, yn, p
∗) (4)

yn+1 = (1−m)cl

(
cu
cl

)p+p∗

xnyn − dl

(
du
dl

)p+p∗

yn ≡ g(xn, yn, p
∗)

where |p∗| ≪ 1

Let un = xn − x∗, vn = yn − y∗, then the fixed point P12 (x
∗, y∗) is transformed into the

origin, and further expanding f and g as a Taylor series about the point (un, vn) = (0, 0) to

the third order, the model (4) becomes

un+1 = α1un + α2vn + α11u
2
n + α12unvn + α22v

2
n + α111u

3
n + α112u

2
nvn

+ α122unv
2
n + α222v

3
n +O((|un|+ |vn|)4) (5)

vn+1 = β1un + β2vn + β11u
2
n + β12unvn + β22v

2
n + β111u

3
n + β112u

2
nvn

+ β122unv
2
n + β222v

3
n +O((|un|+ |vn|)4)

Where α1 = fx(x
∗, y∗, 0), α2 = fy(x

∗, y∗, 0), α11 = fxx(x
∗, y∗, 0), α12 = fxy(x

∗, y∗, 0),

α22 = fyy(x
∗, y∗, 0), α111 = fxxx(x

∗, y∗, 0), α112 = fxxy(x
∗, y∗, 0),

α122 = fxyy(x
∗, y∗, 0), α222 = fyyy(x

∗, y∗, 0); β1 = gx(x
∗, y∗, 0),

β2 = gy(x
∗, y∗, 0), β11 = gxx(x

∗, y∗, 0), β12 = gxy(x
∗, y∗, 0), β22 = gyy(x

∗, y∗, 0),

β111 = gxxx(x
∗, y∗, 0), β112 = gxxy(x

∗, y∗, 0), β122 = gxyy(x
∗, y∗, 0), β222 = gyyy(x

∗, y∗, 0).

Note that the characteristic equation associated with the linearization of the model (5) at

(un, vn) = (0, 0) is given by τ2 − Tr (J1(p
∗)) τ +Det (J1(p

∗)) = 0. Therefore, the roots of the

characteristic equation are

τ1,2(p
∗) =

Tr(J1(p
∗))±i

√
4Det(J1(p∗))−(Tr(J1(p∗)))2

2

From |τ1,2(p∗)| = 1, when p∗ = 0 we have |τ1,2(p∗)| = [Det (J1(p
∗))]

1
2

and l =
[
d|τ1,2(p∗)|

dp∗

]
p∗=0

̸= 0
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It is required that when p∗ = 0, τ i1,2 ̸= 1, i = 1, 2, 3, 4, which is equivalent to Tr (J1(0)) ̸=
−2,−1, 1, 2.

To study the normal form, let γ = Im(τ1,2) and δ = Re(τ1,2). We define T =

[
0 1

γ δ

]

and using the transformation

[
un

vn

]
= T

[
xn

yn

]
, the model (5) becomes

xn+1 = δxn − γyn + f1(xn, yn), and yn+1 = γxn + δyn + g1(xn, yn) (6)

where the functions f1 and g1 denote the terms in the model (6) in variables (xn, yn) with

the order at least two.

It is required that the following discriminatory quantity Ω be non zero in order to undergo

Hopf Bifurcation:

Ω = −Re
[
(1−2τ)τ2

1−τ ξ11ξ20

]
− 1

2 |ξ11|
2 − |ξ02|2 +Re(τξ21)

where τ is complex conjugate of τ and

ξ20 = 1
8δ (2β22 − δα22 − α12 + 4γα22) +

1
4γα12 +

1
8δi (4γα22 − 2α22 − 2δα22)

+ 1
8 i

(
4γβ22 + 2γ2α22 − 2α11

)
+ 1

8β12 +
δα11−2β11

4γ + δ3α22−δ2β22

4γ − δ2α12−δβ12

4γ ,

ξ11 = 1
2γ(β22−δα22)+

1
2 i(γ

2α22+α11+δα12+δ2α22)+
β11−δα11

2γ + δβ12−δ2α12

2γ − δ2β22−δ3α22

γ ,

ξ02 = 1
4γ(2δα22 + α12 + β22) +

1
4 i(β12 + 2δβ22 − 2δα12 − α11) − β11−δα11

4γ − δβ12−δ2α12

4γ +

1
4α22i(γ

2 − 3δ2) + δ2β22−δ3α22

4γ ,

ξ21 = 3
8β222(γ

2+δ2)+ 1
8β112+

1
4δα112+

1
4δβ122+α122(

1
8γ

2+ 3
8δ

2− 1
4δ)+

3
8α111+

3
8α222i(γ

2+

2δ2) + 3
8α122γδi − 1

8β122γi − 3
8β222γδi − 3β111−3δα111

8γ i − 3δβ112−3δ2α112

8γ i − 3δ2β122−3δ3α122

8γ i −
3δ3β222−3δ4α222

8γ i

Finally, from the above analysis , we have the following result:

Theorem 2. If Ω ̸= 0, then the model (3) undergoes Neimark-Sacker bifurcation at P12 (x
∗, y∗)

when the parameter p∗ varies in a small neighborhood of the origin. Moreover, if Ω < 0 (or,

Ω > 0), then an attracting (or, repelling) invariant closed curve bifurcates from P12 (x
∗, y∗) for

p∗ > 0 (or, p∗ < 0).

5.2 Flip bifurcation analysis of interior fixed point

This section investigates the possibility of filp bifurcation of interior fixed point P12 (x
∗, y∗)

by taking the parametric parameter p as bifurcation parameter. One can observe that one

of the eigenvalues of the positive fixed point P12 (x
∗, y∗) is λ1 = −1 and the other (λ2) is

neither 1 nor −1, provided the parameters of the model are obtained within the following set

A = {(al, au, bl, bu, cl, cu, dl, du, p,m): 1 − Tr (J) + Det (J) > 0, 1 + Tr (J) + Det (J) = 0,

T r (J) ̸= 0, 2 and p ∈ [0, 1]}.
Here we discuss flip bifurcation of the model (3) at P12 (x

∗, y∗) when the parameters vary

in a small neighborhood of A. In analyzing the flip bifurcation, p is used as the bifurcation

parameter. Further p∗(|p∗| ≪ 1) is the perturbation of p, a perturbation of the model can be
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considered as follows:

xn+1 = al

(
au
al

)p+p∗

xn(1− xn)− bl

(
bu
bl

)p+p∗

(1−m)xnyn ≡ f(xn, yn, p
∗) (7)

yn+1 = (1−m)cl

(
cu
cl

)p+p∗

xnyn − dl

(
du
dl

)p+p∗

yn ≡ g(xn, yn, p
∗)

Let un = xn − x∗, vn = yn − y∗, then equilibrium point P12 (x
∗, y∗) is transformed into the

origin, and further expanding f and g as a Taylor series at (un, vn, p
∗) = (0, 0, 0) to the third

order, the model (7) becomes

un+1 = α1un + α2vn + α11u
2
n + α12unvn + α13unp

∗ + α23vnp
∗ + (8)

α111u
3
n + α112u

2
nvn + α113u

2
np

∗ + α123unvnp
∗ +O((|un|+ |vn|+ |p∗|)4)

vn+1 = β1un + β2vn + β11u
2
n + β12unvn + β22v

2
n + β13unp

∗ + β23vnp
∗ + β111u

3
n +

β112u
2
nvn + β113u

2
np

∗ + β123unvnp
∗ + β223v

2
np

∗ +O((|un|+ |vn|+ |p∗|)4)
Where α1 = fx(x

∗, y∗, 0), α2 = fy(x
∗, y∗, 0), α11 = fxx(x

∗, y∗, 0), α12 = fxy(x
∗, y∗, 0),

α13 = fxp∗(x∗, y∗, 0), α23 = fyp∗(x∗, y∗, 0), α111 = fxxx(x
∗, y∗, 0), α112 = fxxy(x

∗, y∗, 0),

α113 = fxxp∗(x∗, y∗, 0), α123 = fxyp∗(x∗, y∗, 0), β1 = gx(x
∗, y∗, 0), β2 = gy(x

∗, y∗, 0), β11 =

gxx(x
∗, y∗, 0), β12 = gxy(x

∗, y∗, 0), β22 = gyy(x
∗, y∗, 0), β13 = gxp∗(x∗, y∗, 0), β23 = gyp∗(x∗, y∗

, 0), β111 = gxxx(x
∗, y∗, 0), β112 = gxxy(x

∗, y∗, 0), β113 = gxxp∗(x∗, y∗, 0), β123 = gxyp∗(x∗, y∗, 0),

β223 = gyyp∗(x∗, y∗, 0).

We define T =

[
α2 α2

−1− α1 λ2 − α1

]
, the invertible nature of T is evident. Using the

transformation

[
un

vn

]
= T

[
xn

yn

]
the model (8) becomes

xn+1 = −xn + f1(un, vn, p
∗) (9)

yn+1 = λ2yn + g1(un, vn, p
∗)

where the functions f1 and g1 denote the terms in the model (9) in variables (un, vn, p
∗)

with order at least two.

From the center manifold theorem, we know that there exists a center manifold W c(0, 0, 0)

of the model (9) at (0, 0) in a small neighborhood of p∗ = 0, which can be approximately

described as follows:

W c(0, 0, 0) =
{
(xn, yn, p

∗) ϵR3 : yn+1 = α1x
2
n + α2xnp

∗ +O((|xn|+ |p∗|)3)
}

where α1 = α2[(1+α1)α11+α2β11]
1−λ2

2
+ β22(1+α1)

2

1−λ2
2

− (1+α1)[α12(1+α1)+α2β12]
1−λ2

2
,

α2 = (1+α1)[α23(1+α1)+α2β23]
α2(1+λ2)2

− (1+α1)α13+α2β13]
(1+λ2)2

We obtain the model (9), which is restricted to the center manifold W c(0, 0, 0), has the

following form

xn+1 = −xn + h1x
2
n + h2xnp

∗ + h3x
2
np

∗ + h4xnp
∗2 + h5x

3
n +O((|xn|+ |p∗|)3) ≡ F (xn, p

∗)

h1 = α2[(λ2−α1)α11−α2β11]
1+λ2

− β22(1+α1)
2

1+λ2
− (1+α1)[(λ2−α1)α12−α2β12]

1+λ2
,

h2 = (λ2−α1)α13−α2β13

1+λ2
− (1+α1)[(λ2−α1)α23−α2β23]

α2(1+λ2)
,

h3 = (λ2−α1)α1α13−α2β13

1+λ2
+ [(λ2−α1)α23−α2β23](λ2−α1)α1

α2(1+λ2)
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- (1+α1)[(λ2−α1)α123−α2β123]
1+λ2

+ α2[(λ2−α1)α113−α2β113]
1+λ2

− β223(1+α1)
2

1+λ2

+2α2α2[(λ2−α1)α11−α2β11]
1+λ2

− 2β22α2(1+α1)(λ2−α1)
1+λ2

+ α2[(λ2−α1)α12−α2β12](λ2−1−2α1)
1+λ2

,

h4 = α2[(λ2−α1)α13−α2β13]
1+λ2

+ [(λ2−α1)α23−α2β23](λ2−α1)α2

α2(1+λ2)
+ 2α2α2[(λ2−α1)α11−α2β11]

1+λ2

+2β22α2(1+α1)(λ2−α1)
1+λ2

+ α2[(λ2−α1)α12−α2β12](λ2−1−2α1)
1+λ2

,

h5 = 2α2α1[(λ2−α1)α11−α2β11]
1+λ2

+ 2β22α1(λ2−α1)(1+α1)
1+λ2

+ [(λ2−α1)α11−α2β11](λ2−1−2α1)α1

1+λ2

+
α2

2[(λ2−α1)α111−α2β111]
1+λ2

-α2(1+α1)[(λ2−α1)α112−α2β112]
1+λ2

.

For flip bifurcation, we require the two discriminatory quantities ξ1 and ξ2 be non-zero,

ξ1 =
(

∂2F
∂x∂p∗ + 1

2
∂F
∂p∗

∂2F
∂x2

)
|(0,0) and ξ2 =

(
1
6
∂3F
∂x3 +

(
1
2
∂2F
∂x2

)2
)

|(0,0)
Finally, from the above analysis, we have the following result.

Theorem 3. If ξ1 ̸= 0 and ξ2 ̸= 0 then the model (3) undergoes flip bifurcation at P12 = (x∗, y∗)

when the parameter p varies. If ξ2 > 0 and ξ2 < 0, then the period-2 points that bifurcation

from P12 = (x∗, y∗) are stable and unstable, respectively.

§6 Chaos Control

The controlling chaos in discrete-time models is a topic of great interest for many researcher-

s, however, it is intended that chaos be avoided. For chaos control, many practical methods

can be used in many fields such as communications, ecological systems, physics laboratories,

turbulence, and cardiology, etc. Chaos control of discrete-time models can be obtained using

various methods. We present a hybrid control technique and feedback control method to sta-

bilize chaotic orbits at an unstable fixed point of the proposed discrete prey-predator model

(3).

6.1 Hybrid control technique

The corresponding controlled system of (3) can be written as:

xn+1 = τxn(a
1−p
l apu(1− xn)− b1−p

l bpu(1−m)yn) + (1− τ)xn (10)

yn+1 = τyn(c
1−p
l cpu(1−m)xn − d1−p

l dpu) + (1− τ)yn

where 0 < τ < 1 denotes the control parameter, and in (10), the controlled strategy is a

combination of both parameter perturbation and feedback control. Chaos for the controlled

system (10) can be delayed, advanced, or even completely eliminated by a suitable choice of

controlled parameter τ.

6.2 Feedback control method

Consider the following controlled form of model (3):

xn+1 = a1−p
l apuxn(1− xn)− b1−p

l bpu(1−m)xnyn + S (11)

yn+1 = c1−p
l cpu(1−m)xnyn − d1−p

l dpuyn

with the following feedback control law as the control force:
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S = −q1 (xn − x∗)− q2 (yn − y∗)

where q1 and q2 are the feedback gain and (x∗, y∗) is a positive fixed point of model.

The Jacobian Matrix J for the system (11) at (x∗, y∗) is

J =

[
a11 − q1 a12 − q2

a21 a22

]
where a11 = a1−p

l apu(1−2x)−b1−p
l bpu(1−m)y, a12 = −b1−p

l bpu(1−m)x, a21 = c1−p
l cpu(1−m)y,

a22 = c1−p
l cpu(1−m)x− d1−p

l dpu.

The corresponding characteristic equation of matrix J is

τ2 − (a11 + a22 − q1) τ + a22 (a11 − q1)− a21 (a12 − q2) = 0

Let τ1 and τ2 are the eigenvalues of the matrix J then we have

τ1 + τ2 = a11 + a22 − q1 and τ1τ2 = a22 (a11 − q1)− a21 (a12 − q2) (12)

The lines of marginal stability are determined by solving the equation τ1 = ±1 and τ1τ2 = 1.

These conditions guarantee that the eigenvalues τ1 and τ2 have modulus less than 1.

Suppose τ1τ2 = 1, then from (12) we have line l1 as:

a22q1 − a21q2 = a22a11 − a21a12 − 1

Suppose τ1 = ±1 then from (12) we have line l2 and l3 as:

(1− a22) q1 + a21q2 = (a11 − 1) (1− a22) + a21a12, and

(1 + a22) q1 − a21q2 = (a11 + 1) (1 + a22)− a21a12.

The stable eigenvalues lie within a triangular region by the lines l1, l2 and l3.

§7 Numerical Example and Simulations

This section presents numerical examples with different parameter values to investigate and

illustrate the analytical result of the previous section for the proposed model. Since the values

of the proposed model parameters are not taken from real world observations as no case study

performs on the species. For the simulation experiments, we mainly use the software MATLAB

R2018a. We present the time plots and phase portraits to illustrate the theoretical analysis

and show the discrete prey-predator system’s fascinating, complex dynamical behaviour.

We consider the parameters of the prey-predator model as â ∈ [al, au] = [3.8, 4.2], b̂ ∈
[bl, bu] = [2.8, 3.2], ĉ ∈ [cl, cu] = [3.8, 4.2], d̂ ∈ [dl, du] = [0.1, 0.2] , m = 0.3 to calculate

equilibrium points, eigenvalues, and stability of equilibrium points as shown in table 1.

We observe from table 1 that the equilibrium point (0, 0) is a saddle point for all values

of p. It is also noted that the predator free equilibrium points are unstable for all value of p.

Interior equilibrium points are stable spiral for p = 0.0, 0.2, 0.4, 0.6, but it changes its stability

when p = 0.8 and 1, which implies that for the upper limit of some interval parameters, the

prey-predator system changes its stability nature.
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Table 1. Equilibrium points, eigenvalues and stability of equilibrium points.

p Equilibrium points Eigenvalues Stability
(0, 0) −0.1, 3.8 Saddle point

p = 0.0 (0.74, 0) −1.82, 1.87 Unstable point
(0.41, 0.63) 0.22 + 0.87i, 0.22− 0.87i Stable point

(0, 0) −0.11, 3.88 Saddle point
p = 0.2 (0.74, 0) −1.86, 1.89 Unstable point

(0.41, 0.64) 0.20 + 0.90i, 0.20− 0.90i Stable point
(0, 0) −0.13, 3.96 Saddle point

p = 0.4 (0.75, 0) −1.98, 1.94 Unstable point
(0.41, 0.65) 0.18 + 0.92i, 0.18− 0.92i Stable point

(0, 0) −0.15, 4.04 Saddle point
p = 0.6 (0.75, 0) −2.02, 1.97 Unstable point

(0.41, 0.65) 0.18 + 0.95i, 0.18− 0.95i Stable point
(0, 0) −0.17, 4.12 Saddle point

p = 0.8 (0.76, 0) −2.14, 2.02 Unstable point
(0.41, 0.66) 0.15 + 0.99i, 0.15− 0.99i Unstable point

(0, 0) −0.20, 4.20 Saddle point
p = 1.0 (0.76, 0) −2.18, 2.03 Unstable point

(0.41, 0.66) 0.14 + 1.02i, 0.14− 1.02i Unstable point

We present the time plots for the given parameters in figure 1 for initial value (x0, y0) =

(0.6, 0.5) for different values of p in sub-figure as (a) p = 0.5, (b) p = 0.7, (c) p = 0.75, (d)

p = 0.8.
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Figure 1. Time plot of the population with different values of p.

From the sub-plots of figure 1, we observe a damped oscillation, where the oscillations be-

come smaller with time. We observe here interesting feature for different values of p, population

take long time to stabilize the system after value of p = 0.5. The population does not stabilize

and it oscillates in a systematic manner for the values of p = 0.8.

The phase portrait of the model for the given value of parameters and initial value (x0, y0) =

(0.6, 0.5) is shown in figure 2 for different values of p in sub-figure as (a) p = 0.5, (b) p = 0.7,
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(c) p = 0.75, (d) p = 0.8. Figure 2 shows that the coexistence steady state is globally stable for

lower values of p.

Figure 2. Phase portrait of the model with different values of p.

Figure 2 shows that all trajectories are spiral to the stable fixed point, and trajectories are

attracted to a limit cycle about interior equilibrium points. Hence, there exists a bifurcation

for p, and it is super critical - after the fixed point loses stability, it is surrounded by a stable

limit cycle.

This paper projected the effect of prey refuge on the proposed prey- predator system, and the

theoretical discussion of the prey refuge has been verified through the numerical demonstration.

Figure 3 shows the effect of prey refuge in the population model for different ratios on the density

of the prey species. Figure 3 is drawn with respect to the given interval valued parameters and

p = 0.4 and for different prey ratios as (a) m = 0.1, (b) m = 0.2, (c) m = 0.28, (d) m = 0.3
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Figure 3. Effect of m in population system with time.

We observe from figure 3 that the effect on the system is more acceptable with increasing

value of m. Refuge has a stabilizing effect in the proposed model, which is generally observed in

the real world. We observe the chaotic behavior of the prey-predator system for m = 0.1, 0.2.

We observe the damped oscillation of the species for m = 0.28 and m = 0.3.

Figure 4 is drawn for the different values of m in sub-plots on the basis of initial value
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(x0, y0) = (0.6, 0.5) , p = 0.4, and the given interval parameter values of â, b̂, ĉ, d̂. This is the

phase portrait of the model for some specific value of parameters.

Figure 4. Phase portrait of the proposed system for different value of m.

Figure 5, 6 and 7 are drawn for the interval parameter values â ∈ [al, au] = [3.8, 4.2],

b̂ ∈ [bl, bu] = [2.8, 3.2], ĉ ∈ [cl, cu] = [3.8, 4.2], d̂ ∈ [dl, du] = [0.1, 0.2] ,m = 0.3 and initial value

(0.6, 0.5).
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Figure 5. Bifurcation diagram with varing p.

Figure 5 depicts a smooth invariant circle bifurcates from a stable equilibrium. It is noticed

that if p exceeds 0.75, there appears a circular curve enclosing equilibrium and its radius become

larger with the increasing value of p.

Lyapunov exponents tell us the rate of divergence of nearby trajectories—a key component

of chaotic dynamics. Negative Lyapunov exponents are characteristic of dissipative or non-

conservative systems, and exhibit asymptotic stability; the more negative the exponent, the

greater the stability. For positive Lyapunov, the orbit is unstable and chaotic, and will diverge

at any arbitrary separation. In figure 6, The largest Lyapunov exponent L1 is greater than zero

when p > 0.95, which implies that the system is chaotic. The phase portraits corresponding to

figure 5 are presented in figure 7, which clearly depict the process of how a smooth invariant

closed curve bifurcates from a stable fixed point.

The bifurcation analysis for the ratio of prey refuge, the Lyapunov exponents and phase
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Figure 6. Lyapunov exponents of system with varing p.

Figure 7. The phase portraits for various p corresponding to figure 5.

portraits with varying m for the proposed system are presented in figure 8, 9 and 10, which

are drawn on the basis of parameter values â ∈ [al, au] = [4.0, 4.2], b̂ ∈ [bl, bu] = [3.0, 3.2],

ĉ ∈ [cl, cu] = [3.2, 3.4], d̂ ∈ [dl, du] = [0.1, 0.2], and p = 0.1.
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Figure 8. Bifurcation diagram of the system for m.

Figure 8 depicts the change of the system to a stable equilibrium from smooth invariant

circle bifurcation. There appears a circular curve enclosing the equilibrium, and its radius

becomes smaller with the increasing value of m and when the value of m exceeds 0.14, there

appears an equilibrium point.

In figure 9, the largest Lyapunov exponent L1 is greater than zero when m < 0.13 except

in periodic windows, which implies that the system is chaotic.

The phase portraits corresponding to figure 8 are presented in Figure 10, which clearly

depict the process of how a stable fixed point bifurcates from chaos.
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Figure 9. Lyapunov exponents of system for m.

Figure 10. The phase portraits for various m corresponding to figure 8.

Figure 11 and 12, which are drawn on the basis of parameter values â ∈ [al, au] = [3.8, 4.2],

b̂ ∈ [bl, bu] = [2.8, 3.2], ĉ ∈ [cl, cu] = [3.8, 4.2], d̂ ∈ [dl, du] = [0.1, 0.2], p = 0.4,m = 0.1 and

initial value (x0, y0) = (0.6, 0.5) .
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Figure 11. Hybrid control technique.

Hybrid control technique presented in figure 11, we observe the chaotic behaviour of the

model in figure 11(A) and chaos control for different τ in (B) τ = 0.4, (C) τ = 0.6, (D) τ = 0.8

We observe the chaotic behaviour of prey-predator shown in figure 12(A). In this case fixed

point (0.3007, 0.6371) is unstable. In the feedback control method for feedback gain q1 = −0.6

and q2 = −0.6, we observe the fixed point (0.3007, 0.6371) that is stable as shown in figure

12(B).
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Figure 12. Feedback control method.

§8 Conclusion

We have studied the dynamical analysis of the proposed discrete prey-predator system with

refuge proportion to prey density. In the Sundarban Tiger Reserve ecosystem, mangroves

provide a refuge region for prey. This study has presented the qualitative behaviour of a

discrete-time predator-prey system with imprecise biological parameters. We have found that

the fixed points of the system incorporating the refuge concept on prey are proportional to the

density of prey, and the stability has been discussed analytically. We have presented phase

diagrams and time plots of the system for different values of the parameter, which exhibit the

effects of prey refuge on the system. We have introduced a new concept in bifurcation analysis.

The codimension of a bifurcation is the number of parameters that must be varied for the

bifurcation to occur. When we have considered p as a bifurcation parameter, and ultimately we

have presented here four bifurcation parameters in a particular range. Therefore, the interesting

fact is that our technique in converting the four codimension bifurcations to one codimension.

We have found different model reactions for different values of the parameters for prey refuge.

This study will be beneficial for modelling and analysis of large-scale problems of predator-prey

interactions. The mangrove is the controller in the Sundarban reserve ecosystem. If we destroy

the mangrove, then we observe prey-predators imbalance that implies bifurcation and lastly

chaos. A standard refuge is suitable for this ecosystem, more shelter is dangerous for predator

species, and no sanctuary is difficult for prey. Our model is ideal for analysing this area’s

ecosystem. Also, the study of imprecise biological parameters for the predator-prey system will

focus on the new dimensions of further research.
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