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The compound class of exponentiated power Lindley

power series distribution: properties and applications
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Abstract. We introduce a new generalization of the exponentiated power Lindley distribution,
called the exponentiated power Lindley power series (EPLPS) distribution. The new distribution
arises on a latent complementary risks scenario, in which the lifetime associated with a particular
risk is not observable; rather, we observe only the maximum lifetime value among all risks. The
distribution exhibits decreasing, increasing, unimodal and bathtub shaped hazard rate functions,
depending on its parameters. Several properties of the EPLPS distribution are investigated.
Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of
the Fisher information matrix. Finally, applications to three real data sets show the flexibility
and potentiality of the EPLPS distribution.

81 Introduction

Modeling and analyzing lifetime data are important aspects of statistical research in many
applied sciences such as engineering, medicine, economics and so on. Various recent probability
distributions discussed modelling of such data by compounding well-known continuous distri-
butions such as the exponential, Weibull, and exponentiated exponential distributions with the
power series distribution that includes the Poisson, logarithmic, geometric and binomial distri-
butions as particular cases. The compounding approach gives new distributions that extend
well-known families of distributions. At the same time, they offer more flexibility for modelling
lifetime data. The extensions, sometimes, provide reasonable parametric fits to practical ap-
plications as in lifetime and reliability studies. The flexibility of such compound distributions
comes in terms of one or more hazard rate shapes that may be decreasing or increasing or bath-
tub shaped or unimodal shaped. Some prominent compound distributions introduced recently
are the exponential logarithmic distribution due to Tahmasbi and Rezaei [1]; exponential pow-

er series distribution due to Chahkandi ad Ganjali [2]; Weibull geometric distribution due to
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Barreto-Souza et al. [3]; Weibull power series distribution due to Morais and Barreto-Souza [4];
exponentiated exponential Poisson distribution due to Barreto-Souza and Cribari-Neto [5]; com-
plementary exponential geometric distribution due to Louzada-Neto et al. [6]; complementary
Weibull geometric distribution due to Tojeiro et al. [7]; Burr XII negative binomial distribution
due to Ramos et al. [8]; compound class of extended Weibull power series distributions due to
Silva et al. [9]; compound class of linear failure rate power series distributions due to Mahmoudi
and Jafari [12]; exponentiated Weibull logarithmic distribution due to Mahmoudi and Sepah-
dar [11]; generalized exponential power series distribution due to Mahmoudi and Jafari [10];
exponentiated Weibull power series distribution due to Mahmoudi and Shiran [13]; general-
ized modified Weibull power series distribution due to Bagheri et al. [14]; exponentiated power
Lindley geometric distribution due to Alizadeh et al. [15]; Topp-Leone power series distribution
due to Roozegar and Nadarajah [16]. See also Korkmaz et al. [17], Korkmaz and Erisoglu [18],
Alizadeh et al. [19], Korkmaz et al. [20], Sen et al. [21] and Nasir et al. [22].

Lindley [23] introduced a one parameter distribution, known as the Lindley distribution,
given by the probability density function (pdf)

/\2
@) =37

where z > 0 and A > 0. Ghitany et al. [24] discussed various properties of this distribution

(L4a) e, (1)

and showed that in many ways the pdf given by (1) provides a better model for some appli-
cations than the exponential distribution. Bakouch et al. [25] proposed an extended Lindley
distribution and discussed its various properties and applications. Ghitany et al. [26] developed
a two parameter weighted Lindley distribution and discussed its applications to survival da-
ta. Nadarajah et al. [27] proposed a generalized Lindley distribution and discussed its various
properties and applications. Merovci and Elbatal [28] used the quadratic rank transmutation
map in order to generate a flexible family of probability distributions taking Lindley geometric
distribution as the base value distribution. Asgharzadeh et al. [29] introduced a general fam-
ily of continuous lifetime distributions by compounding any continuous distribution and the
Poisson Lindley distribution. Oluyede and Yang [30] proposed a four parameter beta general-
ized Lindley distribution. This distribution contains the beta Lindley distribution and Lindley
distribution as particular cases. A two parameter power Lindley distribution was proposed by
Ghitany et al. [31]. A generalized power Lindley distribution with applications was proposed
by Pararai et al. [32].

In this paper, we are motivated to introduce a new generalization of the Lindley distribu-
tion. It is shown to provide better fits than many of the known generalizations of the Lindley
distribution, including those having more parameters. It exhibits a variety of bathtub shapes
for its hazard rate function.

The aim of this paper is to propose a new class of lifetime distributions called exponentiated
power Lindley power series distributions. The distributional properties are presented. The
method of maximum likelihood is used to estimate the model parameters. Simulation study is
presented to assess the performance and accuracy of maximum likelihood estimates (MLEs) of
the EPLPS distribution. Some real data examples are discussed to illustrate the usefulness and
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applicability of the EPLPS distribution.

The contents of this paper are organized as follows. In Section 2, we define the new class of
EPLPS distributions and derive the corresponding distributional properties. In Section 3, we
provide detailed studies of the following particular cases of the EPLPS distribution: the expo-
nentiated power Lindley Poisson and exponentiated power Lindley geometric distributions. We
show that the hazard rate can be increasing, decreasing, bathtub shaped or unimodal. Section 4
derives various properties of the EPLPS distribution. We discuss MLE and Fisher information
matrix in Section 5. Also given in Section 5 is a simulation study to assess the performance
of MLEs. Section 6 gives real data applications to show the flexibility and potentiality of the
EPLPS distribution. The paper is concluded in Section 7.

82 The class of EPLPS distributions

A three parameter exponentiated power Lindley (EPL) distribution was introduced by
Ashour and Eltehiwy [33]. Its cumulative distribution function (cdf) and pdf are

Glz) = [1 - (1 + ;ﬁﬁl) e‘“Br

afBA2zP—1 8\ —AzP Az _aaf ot
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respectively, for o, 5, A > 0. This distribution can model monotone and non-monotone hazard

and

rates, which are quite common in lifetime problems and reliability. Let N denote a power series

random variable on positive integers with probability mass function given by

n , n Y € (U,
C(9) ’ ’ ’
where a1, as, ... is a sequence of nonnegative real numbers, where at least one of them is strictly

positive, S is a positive number not greater than the radius of convergence of the power series
(o]
> an0" =C(0).
n=1

Suppose Y1,Ys,..., Yy are independent and identical EPL random variables independent
of N. Then X = max(Y7,Ys,...,Yn) is said to follow the EPLPS (o, 3, \, 0) distribution. Its
cdf, pdf, survival function and hazard rate function are
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respectively.

Proposition 2.1. The limit of the cdf of the EPLPS (a, 3,\,0) distribution as 0 — 07 is

lim F(z)= [1-(1+ Al ) ]
6—0+ B A+1 ’

which is an EPL cdf with parameters ac, 5 and A, where ¢ = min {n € N;a, > 0}.

Proof. The proof follows since
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The pdf of the EPLPS distribution can be expressed as a linear combination of pdfs:
Fio) = 09(@) =Gy = D PN = mlgsans. ). 6)

where g(z;an, 8,A) denotes the pdf of the EPL distribution with parameters an, 8, A. The
equation (5) can be used to obtain some mathematical properties of the EPLPS distribution

directly from those properties of the EPL distribution.

83 Particular cases of the EPLPS distribution

In this section, we investigate the following particular cases of the EPLPS distribution: Ex-
ponentiated Power Lindley Poisson and Exponentiated Power Lindley logarithmic distributions.
To illustrate the flexibility of these distributions, we plot the pdf, cdf and hazard rate function
for different parameter values.
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3.1 Exponentiated power Lindley Poisson distribution

The exponentiated power Lindley Poisson (EPLP) distribution is a particular case of the
EPLPS distribution for a, = 4; and C(0) = e’ — 1. Its cdf, pdf and hazard rate function are
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respectively, where a, 5, A\, 0 > 0.
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Figure 1. Pdf, cdf and hazard rate function of the EPLP distribution: pdf for (a,8,A) =
(0.2,2,0.2) (top left) and pdf for («,3,\) = (0.6,1.5,0.9) (top right); cdf for (o, 3,A) =
(1.2,0.8,1.5) (middle left) and cdf for (v, 5, A) = (0.2,2,0.1) (middle right); hazard rate function
for (e, B, \) = (0.09,1.9,1.8) (bottom left) and hazard rate function for (o, 8, \) = (0.02,2,1.2)
(bottom right).

Plots of pdf, cdf and hazard rate function of the EPLP distribution for different parameter
values are given in Figure 1. The pdf becomes more unimodal with increasing values of 6. The
bathtub shape of the hazard rate function becomes more concave with increasing values of 6.
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3.2 Exponentiated power Lindley geometric distribution

The exponentiated power Lindley geometric (EPLG) distribution is a particular case of the
EPLPS distribution for a,, = 1 and C(f) = 6(1 — )~ ". Its cdf, pdf and hazard rate function

are
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respectively, where a;, 5, A > 0 and 0 < 6 < 1.
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Figure 2. Pdf, cdf and hazard rate function of the EPLG distribution: pdf for («,8,A) =
(0.5,2,0.5) (top left) and pdf for («,,A) = (0.7,0.7,0.7) (top right); cdf for (a,B,\) =
(0.5,2,0.5) (middle left) and cdf for (o, 8, ) = (0.7,0.7,0.7) (middle right); hazard rate function
for (a, 8,A) = (0.5,2,0.5) (bottom left) and hazard rate function for («, 5, A) = (0.7,0.7,0.7)
(bottom right).

Plots of pdf, cdf and hazard rate function of the EPLG distribution for some parameter
values are given in Figure 2. The pdf becomes less unimodal with increasing values of 6. The

hazard rate function either monotonically increases or monotonically decreases.
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84 Statistical distributional properties

In this section, we derive quantiles of the EPLPS distribution. Other properties including
moments, moments of order statistics, Rényi and Shannon entropies and probability weighted

moments can be obtained from the corresponding author.

Let X denote a random variable with the pdf (3). The quantile function, say Q(p), defined
by F(Q(p)) = p, for 0 < p < 1, is the root of

NP\ s = (p 0(6) :
(1+)\+1)e =1- B — =1-ka. (6)
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By substituting Z(p) = —1 — A — A[Q(p)]”, we may rewrite (6) as
Zp)e?@ = —(1+ ) (1- kg) e 1N,
So, the solution for Z(p) is
=\ —1-x
Z0) =W (=14 ) (1-ka) 7Y, (7)
where W(-) denotes the Lambert W function, see Corless et al. [34] for detailed properties.
Inverting (7), we can readily obtain
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Also the Galton’ skewness defined by Galton [35] and the Moors’ kurtosis defined by Moors
[36] are given by
(6/8) ~204/8) + QM) Q(I/8) ~ Q(5/8) + QEB/S) ~ QUI/8)
Q(6/8) — Q(2/8) ’ Q(6/8) — Q(2/8)

Figure 3 plots the behavior of Galton’ skewness and Moors’ kurtosis as functions of 6 for

skewness = @

representative values of o, § and .

Galton's Skewmess of EPLPS distribution Galton's Skewness of EPLPS distribution

Moor's Kurtosis of EPLPS distribution Moor's Kurtosis of EPLPS distribution

— EPLP(a=0
EPLPlu=3,

1)

Figure 3. Galton’s skewness and Moors’ kurtosis for EPLP, EPLG, EPLL and EPLB (with
m = 20) distributions for different values of «, § and .
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The figure suggests that

e For the EPLP distribution, both Galton’ skewness and Moors’ kurtosis decrease and

stabilize as 6 increases and «, 3, A are not getting very large.

e For the EPLG and EPLL distributions, both Galton’ skewness and Moors’ kurtosis in-

crease and stabilize as 6 increases and «, 3, A are not getting very large.

e For the EPLB distribution, both Galton’ skewness and Moors’ kurtosis decrease and
stabilize as 6 increases and «, 8, A are not getting very large.

It can be concluded that these distributions behave differently as € increases.

85 Statistical inference and numerical results

5.1 Statistical inference

We estimate the parameters of the EPLPS distribution by the method of maximum likeli-
hood. Suppose 1,9, ...,T, is a random sample from the EPLPS distribution with all of its

parameters unknown. The log-likelihood function is
InL = nln(a)+nln(B) + nln(d)
+2nln(A) —nln(A+1) —nlnC(9)
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The first order partial derivatives of In L with respect to «, 5, A and 6 are
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respectively. To find out the MLEs of «, 8, A and 8, we have to solve %ZL 0, 8(19“6L =0,

%r;\L =0 and 61“L = 0 with respect to a, 5, A and 6. Tt is difficult to find closed form solutions
for o, B, A and 9. Therefore, a numerical technique such as the Newton-Raphson method can be
adopted to obtain numerical estimates for these parameters. Let (a, B\ , X, é\) denote the MLEs
of (a, 8, A, 6). Approximate confidence intervals for the parameters can be based on asymptotic
normality of the MLEs of «, 8, A and 8. Let I denote the observed information matrix of «,
B, X and 0. Explicit expressions for I can be obtained from the corresponding author. Let 1

denote I with (& 3, X, 5) replacing (a, 8, A, 6). Furthermore, let X = TI-!. Then approximate
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100(1 — 6)% confidence intervals for «, 8, A and 6 are

aiZ% \/211 s BiZ% \/ 222 s /):ZEZ% \/233 y 5:&2% \/244,

where zs denotes the upper dth percentile of the standard normal distribution.

5.2 Numerical results

In this section, we perform a simulation study to investigate the performance of the MLEs
of (a, B, A\, 0). The following steps were performed for this purpose:

(1) Specify the sample size n and the values of the parameters «, 3, A and 6.

(2) Generate u; ~ Uniform(0,1),i=1,2,...,n.

(3) Set

= [t tw (e (1 (Cle) ) Y

(4) Calculate the MLEs of all parameters.

(5) Repeat steps 2 and 3, N times.

(6) Calculate the bias and mean squared error (MSE) for each estimate.

The MSEs and biases of the estimates were computed by generating one thousand inde-
pendent replications of samples of size n = 20,25,...,100 from the EPLPS distribution with
(o, B, N\, 0) = (0.5,1.2,1.5,0.8). Their plots are shown in Figure 4. Based on the simulation
study, we observe that the MSE and bias for each parameter decrease when the sample size

increases.

86 Data analysis

To show the superiority of the EPLPS distribution, we use three real data sets. We compare
the fit of the EPLPS distribution with some other known distributions, namely,

e The generalized Lindley (GL) distribution, introduced by Zakerzadeh and Dolati [37],
with given pdf as
_AQa)  Hatyr)

far(z) = CESYCES)) e x,0,a,v7 > 0.

e The new generalized Lindley (NGL) distribution, introduced by Nadarajah et al. [27],
with given pdf as

a)?

D)

Inar(z)

A a—1
(1+z) e [1—<1+/\f1> e_’\””} , T, A > 0.

e The two-parameter weighted Lindley (WL) distribution, introduced by Ghitany et al. [26],
with given pdf as
fwi(z) =

/\c+1

c—1 1 -z .
7()\_’_0)“0)3: (1+x)e ™, z,a,A >0
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Figure 4. MSEs (left) and biases (right) of @, 3, A and 8 for the EPLP (top), EPLG (middle) and
EPLL (bottom) distributions with («, 8, A,0) = (0.5,1.2,1.5,0.8).

The power Lindley (PL) distribution, introduced by Ghitany et al. [31], with given pdf as

fro(z)

a52
B+1

(1+z%) e Pz oo, B> 0.

The exponentiated power Lindley (EPL) distribution, introduced by Ashour and Eltehiwy

[33], with given pdf as

fepL(z) =

afI2zP1
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) e)“”ﬁ] , Ty BN > 0.

The Lindley-Poisson (LP) distribution, introduced by Gui et al. [38], with given pdf as

frp(z)

Az +1)e

A+1

e AT (At Ax+1) g

, 2,0, > 0.

A+1)(e? —1)

The Lindley-geometric (LG) distribution, introduced by Zakerzadeh and Mahmoudi [39],

with given pdf as

2
fra(z) = N+ 1

(1—9ﬂ1+xk‘”[1—9(1+

A+

Ax

-2
Je”ﬂ ,0<6<1,z,)>0.

e The beta-generalized Lindley (BGL) distribution, introduced by Oluyede and Yang [30],
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with given pdf as

Az ay b—1
-{1—{1—(1—1—)\_’_1) e_/\“} } , T,a,b,a, 8, > 0.

The beta-exponentiated power Lindley (BEPL) distribution, introduced by Pararai et

al. [32], with given pdf as

B aBQw ) N ol . —Ba® ) ) 5:0“ Bae aw—1
feepL(x) = —B(a7b)(1—|—,6’)( +a%) x e [ < +B+1) e }
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The generalized linear failure rate-geometric (GLFRG) distribution, introduced by Nadara-
jah et al. [40], with pdf given by

ferrra(z) =
o (aa+bb m)(l—G)e*‘”‘ x—1/2 bb 22 (1_€7aa x—1/2 bb x

(1—0 (1_(1_e—aa ©—1/2 bb xz)a))z
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, x,a,0,a,b> 0.

The McLomax distribution, introduced by Lemonte and Cordeiro [41], with pdf given by

rsonate) = G - (G -0

where =, a, 5,a,¢>0and 0 < n.

The Weibull (W) distribution, introduced by Weibull [42], with given pdf as

fw(@) = ava™ e 2 0,y > 0.

The exponentiated Weibull (EW) distribution, introduced by Mudholkar and Srivastava
[43] and Mudholkar [44], with pdf given by

vy yqo-l
fEW(x) = a’}/ﬁ’yx’y*lei(ﬂx) []— - ei(ﬁw) :| ) xva7ﬂ7’y > 0.

The modified Weibull (MW) distribution, introduced by Mudholkar et al. [45], with pdf
given by

YA

fuw(z) = ax”’l('y + )\x)e)‘””e*‘” ¢ z, z, o, 3,7 > 0.

Let Lik denote the value of the likelihood function evaluated at the parameter estimates, n

the number of observations, and p the number of estimated parameters. The estimates of the
parameters of the fitted distribution, Akaike Information Criterion (AIC = 2p—21n(Lik)) value,
Bayesian Information Criterion (BIC = pln(n) — 21In(Lik)) value and —21n(Lik) are given in:
Table 1 for the life time of 50 devices data; Table 2 for the glass fibres data; and Table 3 for
guinea pigs data. For more discussion, values of Kolmogorov-Smirnov (KS) statistic, Anderson-
Darling statistic (AD) and Cramer-von Mises statistic (CM) for the fitted distributions are given
in Table 4. The smaller the values of these statistics the better the fit. For more details of these
statistics, see Chen and Balakrishnan [46].
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6.1 Data set 1 - Lifetime of 50 devices data

Consider the data set presented by Aarset [47]. The data describe lifetimes of 50 industrial
devices put on life test at time zero. The data from Aarset [47] are presented as: 0.1, 0.2, 1, 1,
1,1,1,2,3,6, 7,11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67,
67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

Table 1. Estimates of distributions fitted to the Aarset data.

Parameter estimates Model selection criteria
Distribution & B A 6 5 c AIC BIC —21n(Lik)
EPLP 0.118 1e-04 2.222  1.800 472.75  480.40 464.75
EPLG 0.074 0.001 2.225 0.846 468.62 476.27 460.62
EPLL 0.150 0.224 1.013 1 457.46 465.11 449.46
w 0.027 0.949 486.00  489.83 482.00
EW 0.148 0.011 5.210 463.59  469.33 457.59
MW 0.062 0.023 0.354 460.31  466.05 454.31
L 0.042 504.86  757.60 502.86
GL 0.528 0.026 0.053 479.92  485.65 473.92
NGL 0.454 0.027 481.98  485.81 477.98
WL 0.025 0.249 482.83  486.66 478.83
PL 0.663  0.161 488.17  492.00 484.17
EPL 0.173  1le-04  2.183 475.04  480.78 469.04
LP 0.016 4.617 514.62 518.44 510.62
LG 0.039  0.225 507.46  511.28 503.46
Statistic
Distribution Estimates AIC BIC  —2In(Lik)
BGL & =1.001 X =0.029 @ =0.455 b =0.949 486.04  493.69 478.04
BEPL & =0.335 B =1.678 @ =14.108 b =0.453 @ =0.349 516.86 526.42 506.86
GLFRG & =0.801 0 =0.406 @ =0.006 b =0.0002 480.71  488.36 472.71
McLomax a =74.356 [ =12234.085 & =0.744 G =12864.284 7 =12.191 467.04  476.60 457.04

According to the statistics in Tables 1 and 4, the EPLPS distribution fits better than the
others for the Aarset data.

6.2 Data set 2 - Glass fibres data

The data set represents the strengths of 1.5 cm glass fibers, measured at the National
Physical Laboratory, England. Unfortunately, the units of measurement are not known. It was
analyzed by Barreto-Souza et al. [48]. The data are: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58,
1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,
1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13,
1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61,
1.63, 1.67, 1.70, 1.78, 1.89.

The statistics in Tables 2 and 4 are smaller for the EPLPS distribution and so the EPLPS
distribution gives better fit than other distributions for the glass fibres data.

6.3 Data set 3 - Guinea pigs data

The third data set represents the survival times (in days) of 72 guinea pigs infected with
virulent tubercle bacilli, observed and reported by Bjerkedal et al. [49]: 10, 33, 44, 56, 59, 72,
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Table 2. Estimates of distributions fitted to glass fibres data.

Parameter estimates Model selection criteria
Distribution & B by 6 5 ¢ AIC BIC  —2In(Lik)
EPLP 0.563 0.250 4.520 2.508 33.62 42.19 25.62
EPLG 0.699 0.917  3.087 0.942 31.88 40.45 23.88
EPLL 0.784 0.349  4.265 0.909 34.54 43.11 26.54
w 0.059 5.780 34.41 38.70 30.41
EwW 0.671 0.582 7.284 35.35 41.78 29.35
MW 0.008 2.160 2.402 34.71 41.14 28.71
L 0.996 164.56 172.58 162.56
GL 17.439 11.573 0.004 53.90 60.33 47.90
NGL 26.171 2.990 65.24 69.53 61.24
WL 11.738 17.095 51.78 56.06 47.78
PL 4.458 0.222 33.38 37.67 29.38
EPL 0.567 0.079  5.843 33.71 40.14 27.71
LP 0.023 709.759 141.96 146.25 137.96
LG 0.951 3e-05 166.79 171.07 162.79
Statistic
Distribution Estimates AIC BIC —2In(Lik)
BGL a=1.173 X =0.899 @ =11.541 b =11.668 54.56 63.13 46.56
BEPL a = 0475 B =2.735 @=9.210 b =8.994 W =8.653 64.76 75.48 54.76
GLFRG a =6.001 0 =0.852 @ =0.149 b =0.888 64.14 72.71 56.14
McLomax a =133.130 B =196.294 ¢=7.453 @ =463.679 7 =18.15068 40.10 50.81 30.10

74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 120, 121,
122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195,
196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 245, 251, 253, 254, 254, 278, 293, 327, 342, 347,
361, 402, 432, 458, 555.

Table 3. Estimates of distributions fitted to guinea pigs data.

Parameter estimates Model selection criteria
Distribution @& B by 0 5 ¢ AIC BIC —2In(Lik)
EPLP 2.090 0.180 0.627 5.325 856.75  865.86 848.75
EPLG 6.738  4.343  0.231  0.999 857.25  866.35 849.25
EPLL 2.218 0.029 0.887 1e-05 859.53  868.63 851.53
W 6e-05 1.825 858.72  863.28 854.72
EW 2.653  0.008 1.160 857.31  864.14 851.31
MW 6e-05 4e-05 1.825 860.72  867.55 854.72
L 0.011 860.55  877.55 858.55
GL 2.084 0.017 44.469 857.60  864.43 851.60
NGL 1.695 0.014 855.32  859.88 851.32
WL 0.017 2.10518 855.55  860.10 851.55
PL 1.260  0.002 855.99  860.55 851.99
EPL 1.654 0.013  1.011 857.32  864.15 851.32
LP 0.001  21.030 856.98  861.54 852.98
LG 0.011  le-04 862.55 867.11 858.55
Statistic
Distribution Estimates AIC BIC —2In(Lik)
BGL a=0.814 Xx=0.001 @=1463 b=18.607 860.18 869.29 852.18
BEPL Q@ =0.744 B =0.046 a=1.328 b=2.112 @ =1.98428  861.49 872.87 851.49
GLFRG Q@ =3.149 0 =5e-04 @=0.009 b=1e-05 859.52 868.63 851.52
McLomax @ =0.084 [ =243.567 ©=2.979 @ =661.497 7 =1.985 861.08 872.46 851.08
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The statistics in Tables 3 and 4 are smaller for the EPLPS distribution and indicate that
the EPLPS distribution gives better fit than other distributions for the guinea pigs data.

Table 4. Goodness of fit tests.

Aarset data

Glass fibres data

Guinea pigs data

Distribution AD CM K-S Distribution AD CM K-S Distribution AD CM K-S
EPLP 2.397 0.365 0.170 EPLP 0.625 0.102 0.110 EPLP 0.380 0.063 0.075
EPLG 1.939 0.270 0.132 EPLG 0.484 0.074 0.096 EPLG 0.396  0.066 0.076
EPLL 2.373  0.322 0.153 EPLL 0.772 0.142 0.131 EPLL 0.514  0.079 0.092
w 3.544 0.534 0.192 w 1.256 0.216 0.152 w 1.018 0.169 0.104
EW 3.180 0.453 0.185 EW 1.100 0.199 0.146 EW 0.544  0.086 0.089
MW 1.833 0.266 0.133 MW 0.956 0.171 0.135 MW 1.018 0.169 0.104
L 7.901  0.678 0.199 L 16.447  3.358 0.386 L 1.926 0.317 0.170
GL 2.577 0.433 0.179 GL 3.125 0.570 0.216 GL 0.585 0.094 0.090
NGL 3.080 0.521 0.193 NGL 4.257 0.778 0.226 NGL 0.534 0.084 0.089
‘WL 2.796  0.455 0.184 WL 3.115 0.568 0.216 WL 0.585 0.094 0.090
PL 3.446  0.539 0.195 PL 1.132 0.191 0.144 PL 0.691 0.114 0.093
EPL 3.082 0.507 0.198 EPL 0.858 0.151 0.131 EPL 0.538 0.085 0.089
LP 8.523 0.663 0.186 LP 15.396  3.150 0.382 LP 0.866 0.135 0.115
LG 7.730  0.695 0.206 LG 15.510 3.115 0.364 LG 1.926 0.317 0.170
BGL 3.092 0.524 0.194 BGL 45.961  0.545 0.808 BGL 0.723 0.120 0.091
BEPL 5.278  1.015 0.250 BEPL 3.675 0.663 0.227 BEPL 0.497  0.076 0.089
GRFRG 3.243  0.473 0.187 GRFRG 3.410 0.532 0.182 GRFRG 0.576  0.092 0.093
McLomax 3.970 0.678 476.602 McLomax 5.129 0.241  50.816 McLomax 6.542  0.082 872.462

Figure 5. Estimated survival functions and the

Enpiical Suvinl

Empirical COF of the Aarset data set

Empirical CDF of the Aarset data set

EnpicalSuvial

T plt

Figure 6. Empirical TTT-plot (top left), estimated hazard rate functions (top right) and estimated
survival functions (bottom) of the fitted distributions to lifetime devices data.

Figures 5 and 6 show the estimated survival functions, TTT plot and the Kaplan-Meier curve
for the fitted distributions to the Aarset data. The figures show that the EPLPS distribution
fits the data better than the other distributions.
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Figure 7. Estimated survival functions and the empirical survival function for the glass fibres data.
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Figure 8. Empirical TTT plot (top left), estimated hazard rate functions (top right) and estimated
survival functions (bottom) of the fitted distributions for the glass fibres data.

Figures 7 and 8 show the estimated survival functions, TTT plot and the Kaplan-Meier
curve for the fitted distributions to the glass fibres data. The figures show that the EPLPS
distribution fits better than the other distributions.

Emplrical CDF of guinea pigs data Emplrical CDF of guinea pigs data

o -~ Empirical 1

Empirical Survival
Empirical Survival

Figure 9. Estimated survival functions and the empirical survival function for the guinea pigs data.
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TRt Estmateanaza e unction

Figure 10. Empirical TTT-plot (top left), estimated hazard rate functions (top right) and estimated
survival functions (bottom) of the fitted distributions to the guinea pigs data.

Figures 9 and 10 show the estimated survival functions, TTT plot and the Kaplan-Meier
curve for the fitted distributions to the guinea pigs data. The figures show that the EPLPS
distribution fits better than the other distributions.

87 Conclusions

We have introduced a lifetime distribution called the exponentiated power Lindley pow-
er series (EPLPS) distribution. This distribution was obtained by mixing the exponentiated
power Lindley and power series distributions. The EPLPS distribution is flexible in modelling
various types of failure data with bathtub shaped hazard rate functions. It is more flexible than
Weibull, exponentiated Weibull, modified Weibull, Lindley, generalized Lindley, new general-
ized Lindley, weighted Lindley, power Lindley, exponentiated power Lindley, Lindley Poisson,
Lindley geometric, beta generalized Lindley, beta exponentiated power Lindley, generalized
linear failure rate geometric and McLomax distributions.

We have derived various statistical properties of the EPLPS distribution. Finally, a sim-
ulation study was performed and three real data sets were analyzed to show the potential of
the newly proposed distribution. We hope that the proposed distribution may attract wider

applications in survival analysis and reliability studies.
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