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Periodic solution of parabolic equations and stochastic

process

WANG Xiao-huan

Abstract. In this short paper, we first establish the existence of periodic solutions to parabolic

equation in the whole space by using the probability method. Then, the periodicity of some

function of stochastic process is also studied.

§1 Introduction

From the point of partial differential equations, the long time behavior of the solutions

is an important issue. Maybe the solutions converge to a constant, or a function which is

the solution to corresponding elliptic equations. But there is another important case that the

solutions are time-periodic functions, which have clearly long time behavior. Therefore, the

research of periodic solutions can help us understand the long time behavior of the solutions.

In this short paper, we first consider the existence of periodic solutions of parabolic equations

in the whole space by using the probability method. There is a lot of work about the periodic

solutions of ordinary differential equations and parabolic equations. Here we only recall some

results of parabolic equations. In the book [10], Hess considered the periodic-parabolic boundary

value problems. He first obtained the existence of eigenvalue for linear case, and then established

the relationship between periodic-parabolic eigenvalue problem and the eigenvalue problem of

the corresponding elliptic operator. Lastly, by defining the Poincaré map and using the super-

lower solution method, he obtained the existence of periodic solution of the periodic-parabolic

boundary value problems. See [2] for the related work.

In [9], the author considered the following periodicity problem{
ut −∆u = f(t, x, u,∇u), t > 0, x ∈ Rd,

u(t, x) = u(t+ T, x), t ≥ 0, x ∈ Rd,
(1)

where d ≥ 2, f ∈ C(R,Rd,R,Rd), ∇u = (ux1 , ux2 , · · · , uxd
), f is T -periodic function with

respect to the time variable t, the period T > 0 is arbitrary chosen and fixed. They obtained
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the following result.

Proposition 1.1. Let d ≥ 2, n ∈ N be fixed, T > 0 be fixed, f ∈ C(R,Rd,R,Rd). f is T -

periodic with respect to the time variable t. Also let 0 ≤ ci, li,mi, pi, qi, li <∞, i = 1, 2, · · · , n,
be fixed constants, 0 ≤ ki, ni < ∞, i = 1, 2, ·, d, be fixed constants, bi(t) ∈ C(R+), gi(x) ∈
C(Rd), supR+

|bi(t)| <∞, supRd |gi(x)| <∞, i = 1, 2, · · · , n,

|f(t, x, u, ux)| ≤
n∑

i=1

(
ci|bi(t)|pi + li|u|qi +mi|gi(x)|li

)
+

d∑
i=1

ki|uxi |ni

for every (t, x, u, ux) ∈ (R,Rd,R,Rd). Then the problem (1) has a solution u ∈ C1(R+, C2(Rd))

(C1(R+, C2(Rd)) will be defined later).

The proof of Proposition 1.1 is complicated. The assumptions of Proposition 1.1 looks very

general but it is hard to generalize it. In this short paper, we will give some interesting examples

which were not covered by Proposition 1.1.

The second aim of the short paper is to consider the periodicity of some function of a

stochastic process. Zhao-Zheng [14] gave a definition of pathwise random periodic solutions for

C1-cocycles. Recently, Feng et al. did some work about the periodic solutions, see [7,8]. Chen

et al. [4] considered the periodic solutions of Fokker-Planck equation, also see [11]. Liu et al.

did a series of work about the almost periodic solution of stochastic differential equations, see

[3,13]. Lin et al. [12] studied the nontrivial periodic solution of a stochastic epidemic model.

About the periodic phenomenon, also see [1]. In this paper, we consider another phenomenon.

For example, the function u(t) = t is clearly not a periodic function, but sin(u(t)) = sin t is

a 2π-periodic function. When the function Xt becomes a stochastic process, one can use the

results of [3,7,8,13,14] to study the periodicity of function of Xt, that is to say, the periodicity of

ψ(Xt) can be studied clearly by the earlier results, where ψ is some smooth function. However,

the periodicity of Eψ(Xt) and Eψ(t,Xt) is not considered. That is to say, we want to study

that under what assumptions on Xt and ψ, it holds that

Eψ(Xt+T ) = Eψ(Xt), Eψ(t,Xt+T ) = Eψ(t,Xt).

The first question is what is T ? Generally speaking, the periodic T is related to the density

of Xt. Since we consider a stochastic process which satisfies a stochastic differential equation

(SDE), the the periodic T is related to the coefficient of SDE. Note that if the stochastic process

has a density p(t, x), then

E[ψ(Xt+T )− Eψ(Xt)] =

∫
R
ψ(x)[p(t+ T, x)− p(t, x)]dx,

which implies that p(t+T, x) = p(t, x) for any x ∈ R. And thus it need not study the periodicity

of Eψ(Xt) because if p(t+T, x) = p(t, x), then for any bounded continuous function ψ, it holds

that Eψ(Xt+T ) = Eψ(Xt). But for Eψ(t,Xt), we have

Eψ(t,Xt+T )− Eψ(t,Xt) =

∫
R
[ψ(t+ T, x)p(t+ T, x)− ψ(t, x)p(t, x)]dx.

Hence if p(t + T, x) ̸= p(t, x), we can choose special function ψ such that Eψ(t + T,Xt+T ) =

Eψ(t,Xt). We only study the periodicity of Eψ(t,Xt).
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In the next section, we will state the main results and give some examples to illustrate them.

§2 Main Results

For simplicity, we only consider the one-dimensional case. It is well known that the solutions

of the following equations{
∂u
∂t + b(t, x)∂u∂x + 1

2σ
2(t, x)∂

2u
∂x2 − v(t, x)u+ f(t, x) = 0, 0 < t < T, x ∈ R,

u(T, x) = ψ(x), x ∈ R,
(1)

can be represented as

u(t, x) = EQ

[∫ T

t

e−
∫ r
t
v(τ,Xτ )dτf(r,Xr)dr + e−

∫ T
t

v(τ,Xτ )dτψ(XT )|Xt = x

]
,

where Xt is a stochastic process and satisfies{
dXs = b(s,Xs)ds+ σ(s,Xs)dWs, t < s < T,

Xt = x.

Here we need to assume that σ(t, x) > 0 for all t > 0, x ∈ R, see [6]. We aim to get

u(0, x) = u(T, x).

That is to say, we will prove u(0, x) = ψ(x) for some ψ. Meanwhile, we note that

u(0, x) = EQ

[∫ T

0

e−
∫ r
0
v(τ,Xτ )dτf(r,Xr)dr + e−

∫ T
0

v(τ,Xτ )dτψ(XT )|X0 = x

]
.

We first consider a special case, i.e., v = 0. In this case, we have

u(0, x) = EQ

[∫ T

0

f(r,Xr)dr + ψ(XT )|X0 = x

]
.

By Itô formula, we have

ψ(XT ) = ψ(x) +

∫ T

0

ψ′(Xt)b(t,Xt)dt

+
1

2

∫ T

0

ψ′′(Xt)σ(t,Xt)σ
T (t,Xt)dt+

∫ T

0

ψ′(Xt)σ(t,Xt)dWt,

which implies that

Eψ(XT ) = ψ(x) + E
∫ T

0

(
ψ′(Xt)b(t,Xt) +

1

2
ψ′′(Xt)σ(t,Xt)σ

T (t,Xt)

)
dt.

Therefore, if we assume that

E
∫ T

0

(
f(t,Xt) + ψ′(Xt)b(t,Xt) +

1

2
ψ′′(Xt)σ(t,Xt)σ

T (t,Xt)

)
dt = 0,

then we will get the desired result

u(T, x) = ψ(x) = u(0, x).

A strong sufficient condition is

f(t, x) + ψ′(x)b(t, x) +
1

2
ψ′′(x)σ(t, x)σT (t, x) = 0, ∀x ∈ R, ∀t ∈ [0, T ]. (2)

Note that equation (2) is an ordinary differential equation with parameter t ∈ [0, T ], and
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σ2(t, x) > 0, equation (2) is equivalent to

ϕ′(x) +
2b(t, x)

σ2(t, x)
ϕ(x) +

2f(t, x)

σ2(t, x)
= 0, ϕ = ψ′, ∀x ∈ R,∀t ∈ [0, T ].

By using the results of ODEs we get

ϕ(x) = e
∫
Pt(x)dx

(∫
Qt(x)e

−
∫
Pt(x)dxdx+ C

)
, (3)

where C is a constant and

Pt(x) =
2b(t, x)

σ2(t, x)
, Qt(x) =

2f(t, x)

σ2(t, x)
.

Consequently,

ψ(x) =

∫
ϕ(x)dx =

∫ [
e
∫
Pt(x)dx

(∫
Qt(x)e

−
∫
Pt(x)dxdx+ C

)]
dx. (4)

It is easy to check that if we take ψ(x) as in (4), then it holds that

f(t, x) + ψ′(x)b(t, x) +
1

2
ψ′′(x)σ(t, x)σT (t, x) = 0, ∀x ∈ R, ∀t ∈ [0, T ].

However, on the left-hand side of (4) does not depend on the variable t, but on the right-hand

side of (4) maybe depend on the variable t. Thus in order to assure that (4) makes sense, we

need to give some assumptions on b(t, x), σ(t, x) and f(t, x).

Summing up the above discussions, we arrive at the main result.

Theorem 2.1. Assume that the functions b(t, x), σ(t, x) and f(t, x) are T -periodic functions

in time satisfying

2b(t, x)

σ2(t, x)
= a(t) + b1(x),

2f(t, x)

σ2(t, x)
= f1(x), (5)

where a(t + T ) = a(t), b1(x) and f1(x) are continuous functions. Then equation (1) has a

periodic solution with periodic T and v = 0.

Proof. The existence of periodic solution of equation (1) is equivalent to the existence of

ψ. It suffices to prove the existence of ψ. Using the assumptions (5) and (4), we have

ψ(x) =

∫ (
e
∫
Pt(x)dx

∫
Qt(x)e

−
∫
Pt(x)dxdx

)
dx

=

∫ (
e
∫
[a(t)+b1(x)]dx

∫
[f1(x)]e

−
∫
[a(t)+b1(x)]dxdx

)
dx

=

∫ (
e
∫
b1(x)dx

∫
[f1(x)]e

−
∫
b1(x)dxdx

)
dx,

where we take C = 0 in (4). Due to the continuous of b1 and f1, the existence of ψ is obtained.

The proof is complete. �
In Theorem 2.1, we consider the case that v = 0. In the following, we consider another case:

v(t+ T ) = v(t). Assume that β(t) =
∫
v(t)dt, then (2) will be written as

eβ(T )−β(t)f(t, x) + ψ′(x)b(t, x) +
1

2
ψ′′(x)σ(t, x)σT (t, x) = 0, ∀x ∈ R,∀t ∈ [0, T ].

Then one can give similar assumptions to those of Theorem 2.1 to assure the existence of

periodic solution of equation (1).

Example 1: Let v(t, x) = 0, f(t, x) = (2 + sin t) × x2, b(t, x) = (2 + sin t) × x, σ2(t, x) =
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(2 + sin t). We have

2b(t, x)

σ2(t, x)
= 2x = a(t) + b1(x),

2f(t, x)

σ2(t, x)
= 2x2 = f1(x),

and

ψ(x) =

∫ (
e
∫
b1(x)dx

∫
[f1(x)]e

−
∫
b1(x)dxdx

)
dx = −x

3

3
− x2

2
+
x

2
.

Theorem 2.1 shows that equation (1) with the above f, b, σ admits a periodic solution. It

is remarked that f does not satisfy the assumption of Proposition 1.1. More precisely, in

Proposition 1.1, the function g(x) is a bounded function but in Example 1, g(x) = x2.

Example 2: Let v(t, x) = cos t
2+sin t , then β(t) =

∫
v(t)dt = ln(2 + sin t). Assume that

2b(t, x)

σ2(t, x)
= a(t) + b1(x),

2f(t, x)(2 + sinT )

σ2(t, x)(2 + sin t)
= f1(x),

where b1 and f1 are continuous functions. Then we can take

ψ(x) =

∫ (
e
∫
b1(x)dx

∫
[f1(x)]e

−
∫
b1(x)dxdx

)
dx.

Theorem 2.1 shows that equation (1) with the above f, b, σ admits a periodic solution. It is

remarked that f does not satisfy the assumption of Proposition 1.1.

By Itô formula, we have

ψ(T,XT ) = ψ(0, x) +

∫ T

0

[∂tψ(t,Xt) + ψ′(t,Xt)b(t,Xt)]dt

+
1

2

∫ T

0

ψ′′(t,Xt)σ(t,Xt)σ
T (t,Xt)dt+

∫ T

0

ψ′(t,Xt)σ(t,Xt)dWt,

which implies that

Eψ(T,XT ) = ψ(0, x) + E
∫ T

0

(
∂tψ(t,Xt) + ψ′(t,Xt)b(t,Xt) +

1

2
ψ′′(t,Xt)σ(t,Xt)σ

T (t,Xt)

)
dt.

Thus if

E
∫ T

0

(
∂tψ(t,Xt) + ψ′(t,Xt)b(t,Xt) +

1

2
ψ′′(t,Xt)σ(t,Xt)σ

T (t,Xt)

)
dt = 0, (6)

we have Eψ(T,XT ) = ψ(0, x). It is easy to see that if

E
(
∂tψ(t,Xt) + ψ′(t,Xt)b(t,Xt) +

1

2
ψ′′(t,Xt)σ(t,Xt)σ

T (t,Xt)

)
= α(t)

with α(t) = β′(t) and β(t+ T ) = β(t), then we have

E
∫ T

0

(
∂tψ(t,Xt) + ψ′(t,Xt)b(t,Xt) +

1

2
ψ′′(t,Xt)σ(t,Xt)σ

T (t,Xt)

)
dt

=

∫ T

0

α(t)dt = β(T )− β(0) = 0.

Next, we give another sufficient condition to ensure that (6) holds. If the following second

order different equation{
∂tψ(t, x) + b(t, x)ψ′(t, x) + σ2(t,x)

2 ψ′′(t, x) = 0, t ∈ [0, T ], x ∈ R,
ψ(T, x) = ψT (x), x ∈ R

(7)

admits a continuous bounded solution on [0, T ]× R, then (6) holds.
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Theorem 2.2. Assume that (7) admits a continuous bounded solution on [0, T ]×R, then
E[ψ(t,Xt)] is a T -periodic function.

Note that the time periodic T is related to the solvability of (7). We give a special case,

where T is any positive constant. Assume that b(t, x) = β(t)b1(x), σ
2(t, x) = β(t)σ1(x). Set

ψ(t, x) = e
∫
β(s)dsϕ(x). If

σ1(x)

2
ϕ′′(x) + b1(x)ϕ

′(x) + ϕ(x) = 0 (8)

admit a continuous bounded solution, then (6) holds, where T is any positive constant. In

particular, if σ1(x) = 2, b1(x) = −2, we can solve (8). That is to say, we can take ϕ(x) = ex.
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