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Semiparametric expectile regression for high-dimensional

heavy-tailed and heterogeneous data

ZHAO Jun1,2 YAN Guan-ao3 ZHANG Yi4,∗

Abstract. High-dimensional heterogeneous data have acquired increasing attention and dis-

cussion in the past decade. In the context of heterogeneity, semiparametric regression emerges

as a popular method to model this type of data in statistics. In this paper, we leverage the

benefits of expectile regression for computational efficiency and analytical robustness in hetero-

geneity, and propose a regularized partially linear additive expectile regression model with a

nonconvex penalty, such as SCAD or MCP, for high-dimensional heterogeneous data. We focus

on a more realistic scenario where the regression error exhibits a heavy-tailed distribution with

only finite moments. This scenario challenges the classical sub-gaussian distribution assumption

and is more prevalent in practical applications. Under certain regular conditions, we demon-

strate that with probability tending to one, the oracle estimator is one of the local minima of

the induced optimization problem. Our theoretical analysis suggests that the dimensionality of

linear covariates that our estimation procedure can handle is fundamentally limited by the mo-

ment condition of the regression error. Computationally, given the nonconvex and nonsmooth

nature of the induced optimization problem, we have developed a two-step algorithm. Finally,

our method’s effectiveness is demonstrated through its high estimation accuracy and effective

model selection, as evidenced by Monte Carlo simulation studies and a real-data application.

Furthermore, by taking various expectile weights, our method effectively detects heterogeneity

and explores the complete conditional distribution of the response variable, underscoring its

utility in analyzing high-dimensional heterogeneous data.

Received: 2020-07-12. Revised: 2023-12-01.
MR Subject Classification: 62H12, 62G08.
Keywords: expectile regression, heterogeneity, heavy tail, partially linear additive model.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-025-4215-z.
Supported by the Hangzhou Joint Fund of the Zhejiang Provincial Natural Science Foundation of Chi-

na(LHZY24A010002), the MOE Project of Humanities and Social Sciences(21YJCZH235).
∗Corresponding author.
†Zhao and Yan contributed equally to this study.



54 Appl. Math. J. Chinese Univ. Vol. 40, No. 1

§1 Introduction

The past two decades have witnessed the rapid development of high-dimensional statistical

analysis, most of which usually assume homogeneity in the data structure. However, the Nation-

al Research Council (2013) highlights that multi-source data collection technologies and error

accumulation in data preprocessing contribute to an opposing characteristic in high-dimensional

data: heterogeneity. Evidence for heterogeneity in high-dimensional data is substantial. For in-

stance, Daya, Chen and Li (2012) identified heteroscedasticity in eQTLs data, commonly linked

to gene expression variations, underscoring the importance of incorporating heteroscedasticity

in modeling process. Wang, Wu and Li (2012) applied regularized quantile regression to in-

vestigate genetic variations related to human eye disease, also observing heterogeneity in this

genetic data.

Buja et al. (2014) highlighted that the nonlinear effects of certain covariates on the response

can result in misconceptions in data mining when linear approximations are used indiscrimi-

nately. From this perspective, incorporating nonparametric effects into the modeling process

becomes necessary under certain conditions. Semiparametric regression, combining the sim-

plicity of linear models with the flexibility of nonparametric approaches, is widely adopted for

modeling heterogeneous data in statistics and econometrics. Meanwhile, additivity is frequently

assumed in the nonparametric component to avoid the curse of dimensionality, as discussed by

Hastie and Tibshirani (1990). Consequently, a partially linear additive model is commonly em-

ployed as an intermediate strategy, enhancing both the reliability and flexibility of the analysis.

Within this framework, Sherwood and Wang (2016) introduced the regularized partially linear

additive quantile regression for analyzing high-dimensional heterogeneous data.

Expectile regression proposed by Newey and Powell (1987) assigns distinct weights to

squared error loss based on positive and negative errors, and is an alternative approach to

address heterogeneity. Expectile regression uses the asymmetric squares loss function ϕα(·),

ϕα(r) = |α− I(r < 0)|r2 =

αr2, r ≥ 0,

(1− α)r2, r < 0.
(1.1)

And the α-th expectile of random variable y is denoted by mα(y) = argmin
m∈R

Eϕα(y − m).

Note that the 1/2-th expectile corresponds precisely to the mean. Expectile regression exhibits

several advantageous properties over quantile regression. First, its differentiable loss function

reduces the computational burden and facilitates a more manageable theoretical process in

high-dimensional settings. Second, Waltrup et al.(2015) concluded from their simulations that

expectile regression is less susceptible to crossing problems compared to quantile regression,

offering robustness in nonparametric approximations. Owing to these favorable properties, ex-

pectile regression holds significant potential for analyzing heterogeneity within a semiparametric

framework. Sobotka et al. (2013) introduced geoadditive expectile regression with P-spline ap-

proximation and established an asymptotic distribution for constructing confidence intervals

in classical dimension settings. In the literature related to expectile, most studies typically

assume that regression errors conform to Gaussian or sub-Gaussian distributions. For example,
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Gu and Zou (2016), under this assumption, developed a linear expectile regression model to

analyze heteroscedasticity in high-dimensional data. However, this assumption faces growing

skepticism, especially in fields like genetics and finance. Specifically, regression errors in such

analyses usually do not exhibit exponentially decreasing tail rates (Fan, Li, and Wang, 2017),

and may even possess heavy tails with only finite moments (Zhao, Chen, and Zhang, 2018).

This article presents the methodology and theory for partially linear additive expectile re-

gression with a general nonconvex penalty, tailored for high-dimensional heterogeneous data. To

address heterogeneity, we embrace variance heterogeneity from Rigby and Stasinopoulos (1996),

accommodating regression errors with either nonconstant or varying covariate effects. Crucial-

ly, our framework diverges from the classical Gaussian or sub-Gaussian error distributions by

adopting a more realistic assumption: regression errors have only finite moments. Theoreti-

cally, we derive the asymptotic oracle properties of the estimator in our proposed framework

and determine how heavy-tailed moment conditions influence the dimensionality of covariates

our model can manage. Unlike Spiegel et al. (2017), our approach involves model selection

and coefficient estimation within a nonconvex regularized framework, as opposed to relying on

selection criteria. Computationally, given the nonconvex and nonsmooth nature of the opti-

mization problem, we exploit the structure of our formulated problem, divide it into penalized

linear and nonparametric segments, and introduce a two-step algorithm.

This article is structured as follows. Section 2 introduces our penalized partially linear

additive expectile regression model with nonconvex penalty functions such as SCAD or MCP,

along with an efficient algorithm for addressing the optimization problem. Section 3 presents

the oracle estimator as a benchmark and establishes its relationship with the optimization

problem we formulated, referred to as the oracle property. Section 4 involves conducting Monte

Carlo simulations to evaluate the performance of our proposed method in a heteroscedasticity

context. Section 5 applies our model to a genetic microarrays dataset, analyzing potential

factors contributing to low infant birth weights. All proofs of theoretical results and necessary

lemmas are provided in the Appendix.

§2 Methodology

2.1 Partially linear additive expectile regression

Consider a high-dimensional data sample {Yi,xi, zi}ni=1 with xi = (xi1, . . . , xip) represent-

ing independent and identically distributed p-dimensional covariates with a common mean 0

and zi = (zi1, . . . , zid) as d-dimensional covariates. The data conform to the following high-

dimensional partially linear model,

Yi = µ0 +

p∑
k=1

β∗
kxik +

d∑
j=1

g0j(zij) + ϵi = xT
i β

∗ + g0(zi) + ϵi, (2.1)

with g0(zi) = µ0 +
∑d

j=1 g0j(zij) and {ϵi}ni=1 mutually independent. Each g0j is assumed zero

mean, i.e., g0(z) belongs to G = {g(z) : g(z) = µ +
∑d

j=1 gj(zj),E[gj(zj)] = 0, j = 1, . . . , d}.
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For a specific α where mα(ϵi|xi, zi) = 0, the α-th conditional expectile of Yi as per the model

(2.1) is mα(Yi|xi, zi) = xT
i β

∗ + g0(zi). Thus β
∗ and g0(z) minimize the population risk

(β∗, g0(z)) = argmin
β∈Rp,g∈G

E[ϕα(Yi − xTβ − g(z))]. (2.2)

Considering data heterogeneity, ϵi can be represented as ϵi = σ(xi, zi)ηi, where σ(xi, zi) may

vary as nonconstant, linear (Gu and Zou, 2016), or nonparametric (Rigby and Stasinopoulos,

1996). Generally, given data heterogeneity, β∗ and g0(z)may vary across different expectile

levels. For example, analogous to Gu and Zou’s model, σ(xi, zi) can be specified as σ(xi, zi) =

xT
i γ1+zTi γ2. This special model is intuitive and for a different level τ ̸= α, i.e.,mτ (ϵi|xi, zi) ̸= 0,

the τ -th expectile mτ (Yi|xi, zi) = xT
i (β +mτ (ϵi|xi, zi) · γ1) + g0(zi) + zTi γ2 ·mτ (ϵi|xi, zi) =

xT
i β

τ + g0,τ (zi), i.e., β
τ is different from βα, and so is g0,τ (zi).

2.2 The nonconvex regularized framework

The dimensionality of the nonparametric covariates z is held constant in the model (2.1).

Define π(t) = (b1(t), . . . , bkn+l+1(t))
T as a vector of normalized B-spline basis functions of

order l + 1 with kn quasi-uniform internal knots on [0, 1]. Subsequently, g0j(·), j = 1, . . . , d

are approximated by a linear combination of these B-spline basis functions, represented as

Π(zi) = (1,π(zi1)
T , . . . ,π(zid)

T )T ∈ RDn , where Dn = d(kn + l + 1) + 1. For notational

simplicity, the same number of basis functions is used for all nonlinear components in the

model (2.1). However, this is not a necessary restriction in practical applications.

The dimensionality of x, p, is much larger than n and the true parameter β∗ = (β∗
1 , . . . , β

∗
p)

is assumed sparse. Let A = {j : β∗
j ̸= 0, 1 ≤ j ≤ p} be the active index set and q = q(n) = |A|.

Without loss of generality, we rewrite β∗ = ((β∗
A)

T ,0T )T where β∗
A ∈ Rq and 0 denotes a

(p − q) dimensional vector of zero. Let X = (x1, . . . ,xn)
T be the n × p matrix of covariates.

Denote Xj the jth column of X and define XA the submatrix of X that consists of its first

q columns and denote by XAi the i th row of XA. With sparsity, the regularized framework

has become pivotal in analyzing high-dimensional data over the past two decades. The L1

penalty or Lasso (Tibshirani, 1996) is favored in penalized estimation as it leads to a convex

optimization problem. However, the L1 penalty has drawbacks, such as over-penalizing large

coefficients, introducing bias, and necessitating strong irrepresentable conditions on the design

matrix for selection consistency. In contrast, an appropriate nonconvex penalty function, as

discussed by Fan and Li (2001), can effectively address these issues. Therefore, in this paper,

we assume the regularizer Pλ(t) to be a general folded concave penalty function, such as the

well-known SCAD (Fan and Li, 2001) or MCP (Zhang, 2010).

To the end, the proposed estimators are obtained by

(β̂, ξ̂) = argmin
β∈Rp,ξ∈RDn

L(β, ξ), (2.3)

where the penalized expectile loss function L(β, ξ) for our model is

L(β, ξ) =
1

n

n∑
i=1

ϕα(yi − xT
i β −Π(zi)

T ξ) +

p∑
j=1

Pλ(|βj |). (2.4)
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Denote by ξ̂ = (ξ̂0, ξ̂1, . . . , ξ̂d), then the estimator of g0(zi) is ĝ(zi) = µ̂+
∑d

j=1 ĝj(zij), where

µ̂ = ξ̂0 + n−1
n∑

i=1

d∑
j=1

π(zij)
T ξ̂j , ĝj(zij) = π(zij)

T ξ̂j − n−1
n∑

i=1

π(zij)
T ξ̂j .

The centering above is just the sample analog of the identifiability assumption E[g0j(zj)] = 0.

2.3 Algorithm

For the optimization problem (2.3), we derive a two-step algorithm as follows,

Algorithm 1 The iterative two-step algorithm for the nonconvex optimization problem (2.3)

1: Initialize β(0) = βinitial.
2: For k = 1, 2, . . ., repeat the following two steps (a) and (b) until convergence

(a) The nonparametric part: At k-th iteration, based on the previous solution β(k−1),

ξ(k) = argmin
ξ∈RDn

1

n

n∑
i=1

ϕα(yi − xT
i β

(k−1) −Π(zi)
T ξ).

(b) The linear part: Then at k-th iteration, β(k) is obtained by the following procedure,

(b.1) Calculate the corresponding weights based on β(k−1) = (β
(k−1)
1 , . . . , β

(k−1)
p )T

ω(k) = (ω
(k)
1 , . . . , ω(k)

p )T = (P ′
λ(|β

(k−1)
1 |), . . . , P ′

λ(|β(k−1)
p |))T .

(b.2) The local linear approximation of L(β, ξ(k)), denoted by L(β|β(k−1), ξ(k)), is

L(β|β(k−1), ξ(k)) =
1

n

n∑
i=1

ϕα(yi − xT
i β −Π(zi)

T ξ(k)) +

p∑
j=1

ω
(k)
j |βj |.

(b.3) β(k) = argmin
β∈Rp

L(β|β(k−1), ξ(k)).

In Algorithm 1, instead of taking (β, ξ) as the whole optimization parameters, we split the

optimization problem into two parts: the fixed-dimensional unpenalized nonparametric part

and the high-dimensional penalized linear part. Specifically, in the first step, we determine the

nonlinear part’s parameters by minimizing an unpenalized objective function in Dn dimension,

using the linear part’s parameters set to their values from the previous iteration. Note by Lem-

ma 6.1, the expectile loss function ϕα(·) is differentiable and strongly convex, thus facilitating

the optimization process via convex analysis. Following the resolution of the nonparametric

part, the second step involves determining the linear part’s parameters by minimizing a pe-

nalized expectile loss function. Given the nonconvex nature of the penalty, this results in a

nonconvex optimization problem in a high-dimensional space. We employ the Local Linear

Approximation (LLA) strategy (Zou and Li, 2008) to transform the penalized optimization

problem into a convex one, leveraging its computational efficiency and favorable statistical
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properties, as discussed in Fan, Xue, and Zou (2014). The initial value β(0) can be chosen as

the estimator from the following pseudo-linear penalized expectile regression,

β(0) = argmin
µ,β

1

n

n∑
i=1

ϕα(yi − µ− x′
iβ) + λ∥β∥1.

In each step, the involved optimization subproblems in the algorithm above are convex after

modification, and taking full advantage of expectile regression with its differentiability, there

are many powerful programs to solve them. For example, to solve the problem (b.3), we can

apply the proximal gradient method, and use CVX, a Matlab package for specifying and solving

convex programs; see Michael and Stephen (2013).

§3 Asymptotic theory

3.1 Oracle study

Following Fan and Li (2001), we introduce the oracle estimator, denoted by (β̂
∗
, ξ̂

∗
) with

β̂
∗
= (β̂

∗T

A ,0T
p−q)

T , as a performance benchmark for the partially linear additive model,

(β̂
∗
A, ξ̂

∗
) = argmin

β∈Rq,ξ∈RDn

1

n

n∑
i=1

ϕα(yi − xT
Ai
β −Π(zi)

T ξ). (3.5)

The cardinality qn of the index set A is allowed to change with n, which violates the classical

scenario where the cardinality is fixed, for example, Hastie and Tibshirani (1990).

The derivative of ϕα(r) is ψα(r) = 2|α − I(r < 0)|r. An analog second-order derivative is

defined as φα(r) for c1 , min{α, 1− α} and c2 , max{α, 1− α},

φα(r) =

2|α− I(r < 0)|, r ̸= 0,

∈ 2[c1, c2], r = 0.

Let wi = E[φα(ϵi)|xi, zi], then wi is uniformly bounded away from zero. Denote Hr the collec-

tion of functions h(·) on [0, 1] whose r0-th derivative h(r0)(·) satisfies the Hölder condition of

order ν, i.e. |h(r0)(z1)−h(r0)(z)| ≤ C|z1−z|ν , ∀ 0 ≤ z1, z ≤ 1. Consider the weighted projection

from x onto z, h∗j (·) = arg inf
hj(·)∈G∩Hr

∑n
i=1 E[wi · (xij − hj(zi))

2]. This projection strategy is com-

monly used in the semiparametric analysis, see Robinson (1988). Define mj(z) = E[xij |zi = z].

Then, h∗j (z) is a weighted projection from mj(z) to G ∩ Hr under L2 norm. Then we define

H = (h∗j (zi))n×qn , δij = xAij − h∗j (zi), the vector δi = (δi1, . . . , δiqn)
T ∈ Rqn and the matrix

∆n = (δ1, . . . , δn)
T ∈ Rn×qn . Thus, XA = H +∆n.

Condition 3.1. E
(
ϵ2ki |xi, zi

)
< C <∞ for all i and some k ≥ 1, constant C > 0 .

Condition 3.2. There exist constants M1 and M2 such that |xij | ≤M1, ∀1 ≤ i ≤ n, 1 ≤ j ≤ pn

and E
(
δ4ij
)
≤M2,∀1 ≤ i ≤ n, 1 ≤ j ≤ qn. There exist finite positive constants C1 and C2 such

that with probability one, C1 ≤ λmax

(
n−1XAX

T
A

)
≤ C2, C1 ≤ λmax

(
n−1∆n∆

T
n

)
≤ C2.

Condition 3.3. g0(·) ∈ G ∩Hr with r = r0 + v > 1.5, and kn satisfies kn ≈ n1/(2r+1).
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Condition 3.4. qn = O(nC3) for some C3 <
1
2 .

In Condition 3.1, the imposed moment condition on the error sequences is more relaxed

than the classical Gaussian or sub-Gaussian tail condition. This condition is also used in Kim,

Choi and Oh (2008). Condition 3.3 is required for the B-splines approximation accuracy and

convergence rate of ĝ(·). As Stone (1985) and Schumaker (2007) pointed out, if g0j(·) ∈ Hr,

and r ≥ 1.5, there exists ξ0 = (ξ00, ξ01, . . . , ξ0d) ∈ RDn such that supzi
|Π(zi)

T ξ0 − g0(zi)| =
O(k−r

n ).

Theorem 3.1. Suppose conditions 3.1-3.4 hold. Then the oracle estimator satisfies

∥ β̂
∗
A − β∗

A ∥= Op(
√
n−1qn), n−1

n∑
i=1

(ĝ(zi)− g0(zi))
2 = Op(n

−1(qn + kn)). (3.6)

3.2 Differencing convex procedure

Note that L(β, ξ) is nonconvex, and ϕα(r) is not smooth due to the non-existence of its

second order derivative at r = 0. So the KKT condition appears not applicable to the opti-

mization problem (2.3). Suppose SCAD penalty is used, then L(β, ξ) can be decomposed into

the difference of two convex functions, L(β, ξ) = k(β, ξ)− l(β, ξ), with

k(β, ξ) =
1

n

n∑
i=1

ϕα(yi − xT
i β −Π(zi)

T ξ) + λ

p∑
j=1

|βj |, l(β, ξ) =

p∑
j=1

Hλ(βj),

Hλ(θ) = [(θ2 − 2λ|θ|+ λ2)/(2(a− 1))]I(λ ≤ |θ| ≤ aλ) + [λ|θ| − (a+ 1)2/2]I(|θ| > aλ).

Tao and An (1997) provided sufficient conditions for such type of non-convex optimization

problem, see Lemma 6.10 for detail. The unpenalized empirical loss function Ln(β, ξ) is differ-

entiable with respect to β and ξ.

Ln(β, ξ) =
1

n

n∑
i=1

ϕα(yi − xT
i β −Π(zi)

T ξ). (3.7)

Denote Π(zi) = (1,Π1(zi1), . . . ,ΠLn(zid)) the basis function at zi, for j = 1, . . . , p

sj(β, ξ) =
∂

∂βj
(
1

n

n∑
i=1

ϕα(yi − xT
i β −Π(zi)

T ξ))

= − 2

n

n∑
i=1

αxij(yi − xT
i β −Π(zi)

T ξ)I(yi − xT
i β −Π(zi)

T ξ ≥ 0)

− 2

n

n∑
i=1

(1− α)xij(yi − xT
i β −Π(zi)

T ξ)I(yi − xT
i β −Π(zi)

T ξ < 0),

and for j = p+ l, l = 1, . . . , Dn,

sj(β, ξ) =
∂

∂ξl
(
1

n

n∑
i=1

ϕα(yi − xT
i β −Π(zi)

T ξ))

= − 2

n

n∑
i=1

αΠl(zi)(yi − xT
i β −Π(zi)

T ξ)I(yi − xT
i β −Π(zi)

T ξ ≥ 0)
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− 2

n

n∑
i=1

(1− α)Πl(zi)(yi − xT
i β −Π(zi)

T ξ)I(yi − xT
i β −Π(zi)

T ξ < 0).

Lemma 6.12 shows that under the Conditions 3.1-3.4 and the following so-called Beta-min

condition, for the oracle estimator (β̂
∗
, ξ̂

∗
),

sj(β̂
∗
, ξ̂

∗
) = 0, j = 1, . . . , qn or j = p+ 1, . . . , p+Dn, (3.8)

|sj(β̂
∗
, ξ̂

∗
)| ≤ λ, j = qn + 1, . . . , p. (3.9)

Condition 3.5 (Beta-min condition). There exist positive constants C4 and C5 such that for

C3 < C4 < 1, n(1−C4)/2 min
1≤j≤qn

|β∗
j | ≥ C5.

Theorem 3.2. Assume Conditions 3.1-3.5 are satisfied. Denote E(λ) be the set of local minima

of L(β, ξ) with the tuning parameter λ. If the tuning parameter λ = o
(
n−(1−C4)/2

)
, qn =

o(nλ2), kn = o(nλ2) and p = o
(
(nλ2)k

)
, then we have that with probability tending to one, the

oracle estimator (β̂
∗
, ξ̂

∗
) lies in the set E(λ) consisting of local minima of L(β, ξ), i.e.,

P((β̂
∗
, ξ̂

∗
) ∈ E(λ)) → 1, as n→ ∞. (3.10)

By the constraints on λ, we can infer that p = o(nC4k). So the moment condition and the

signal strength directly influence the dimensionality our proposed method can manage. Note

that if the regression error has only finite moments, p can be at most a certain polynomial

power of n. If ϵi has all the moments, this asymptotic result holds when p = O(nτ ) for any

τ > 0 since E(ϵ2ki |xi) < ∞ for all k > 0. What’s more, if the error ϵ follows a gaussian or

sub-gaussian distribution, it can be shown that our method can be applied to an ultra-high

dimension.

§4 Simulation

This section evaluates the finite sample performance of the proposed regularized expectile

regression. We utilize the SCAD penalty as an example for the general folded concave penalty

function Pλ(t). We refer to the penalized partially linear additive expectile regression with the

SCAD penalty as E-SCAD. This approach is also applicable with the MCP penalty or other

general folded nonconvex penalty functions, though further details are omitted for brevity.

We employ a high-dimensional partially linear additive model from Sherwood and Wang

(2016). In the data generation process, quasi-covariates x̃ = (x̃1, . . . , x̃p+2)
T are generated from

a multivariate normal distribution Np+2(0,Σ) with Σ = (σij)(p+2)×(p+2) and σij = 0.5|i−j| for

i, j = 1, . . . , p+2. Then we set x1 =
√
12Φ(x̃1) where Φ(·) represents the cumulative distribution

function of the standard normal distribution and
√
12 ensures that x1 has a standard deviation

of 1. Additionally, we set z1 = Φ(x̃25) and z2 = Φ(x̃26), xi = x̃i for i = 2, . . . , 24 and xi = x̃i+2

for i = 25, . . . , p. The response variable y is then generated from the following sparse model,

y = x6β6 + x12β12 + x15β15 + x20β20 + sin(2πz1) + z32 + ϵ, (4.11)

with βj = 1 for j = 6, 12, 15, 20 and ϵ independent of the covariates x. To figure out how the

proposed method performs when the error ϵ shares heavy-tailed distributions, we consider two
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scenarios: (1) N(0, 1) and (2) Standard t-distribution with degrees of freedom 5, t5.

We focus on the heteroscedastic scenario where ϵ = 0.70x1ς with ς independent of x1 and

following the previously mentioned distributions. The data generation procedure reveals that

the true coefficients β∗ are sparse, comprising four informative variables. Additionally, x1

should be considered significant due to its pivotal role in the conditional distribution of y and

its contribution to heteroscedasticity. For comparative purposes, this simulation also examines

the performance of Lasso-type regularized expectile regression, abbreviated as E-Lasso,

argmin
β∈Rp,ξ∈RDn

1

n

n∑
i=1

ϕα(yi − xT
i β −Π(zi)

T ξ) + λ

p∑
j=1

|βj |. (4.12)

Additionally, we introduce the oracle estimator (3.5) as the benchmark of estimation accuracy.
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(a) ϵ follows N(0, 1)
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Figure 1. Convergence Rate of Algorithm 1 with n = 300 and p = 600.

Table 1. Simulation results when n = 300, p = 400.

Criteria
N(0, 1) t5

E-SCAD E-Lasso Oracle E-SCAD E-Lasso Oracle

α = 0.10

AE 0.76 (0.27) 1.94 (0.42) 0.83 (0.17) 1.21 (0.77) 3.01 (1.22) 1.13 (0.33)
SE 0.47 (0.20) 0.59 (0.11) 0.56 (0.11) 0.62 (0.32) 0.83 (0.21) 0.72 (0.18)

ADE 0.54 (0.10) 0.67 (0.10) 0.26 (0.08) 0.62 (0.10) 0.73 (0.15) 0.36 (0.13)
Size 6.79 (1.73) 24.05 (5.51) - 8.46 (3.63) 28.25 (8.82) -
F,F1 100, 87 100, 97 - 100, 73 100, 94 -

α = 0.50

AE 0.31 (0.14) 1.26 (0.30) 0.28 (0.11) 0.47 (0.16) 1.49 (0.23) 0.41 (0.13)
SE 0.18 (0.08) 0.41 (0.09) 0.16 (0.06) 0.25 (0.10) 0.50 (0.09) 0.22 (0.07)

ADE 0.38 (0.24) 0.37 (0.24) 0.18 (0.05) 0.44 (0.18) 0.43 (0.18) 0.32 (0.12)
Size 4.64 (0.78) 21.78 (4.86) - 6.49 (1.42) 20.43 (3.01) -
F,F1 100, 0 100, 8 - 100, 0 100, 8 -

α = 0.90

AE 0.74 (0.27) 1.76 (0.36) 0.82 (0.16) 1.07 (0.52) 2.94 (1.23) 1.12 (0.31)
SE 0.47 (0.20) 0.59 (0.09) 0.56 (0.11) 0.59 (0.26) 0.84 (0.19) 0.71 (0.18)

ADE 0.49 (0.14) 0.76 (0.22) 0.25 (0.09) 0.52 (0.37) 0.68 (0.13) 0.38 (0.13)
Size 6.21 (1.39) 19.54 (4.91) - 7.74 (3.19) 26.06 (9.19) -
F,F1 100, 88 100, 96 - 100, 76 100, 87 -
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The sample size is set at n = 300 with p being either 400 or 600. To detect heteroscedasticity

more effectively, we consider three expectile weight levels: α = 0.10, 0.50, 0.90. For the tuning

parameter λ, we create an additional tuning data set of size 10n and select the optimal λ that

minimizes the prediction expectile loss error on this data set. Regarding the nonparametric

components, we utilize cubic B-splines with 3 basis functions for each nonparametric function.

Figure 1 depicts log(∥θk− θ̃∥2) (where θ represents the entire parameter set and θ̃ the solution)

against iteration count k in one single solution process under our simulation setting, which

demonstrates that the proposed Algorithm 1 converges fast.

We evaluate the performance in terms of the following criteria based on 100 repetitions:

• AE: the average absolute estimation error defined by
∑p

i |β̂j − β∗
j |.

• SE: the average square estimation error defined by
√∑p

i |β̂j − β∗
j |2.

• ADE: the average of the average absolute deviation defined by 1
n

∑n
i=1 |ĝ(zi)− g0(zi)|

• Size: given the role of x1, the true size of our data generation model is supposed to be 5.

• F: the frequency that x6, x12, x15, x20 are selected during the 100 repetitions.

• F1: the frequency that x1 is selected during the 100 repetitions.

Table 2. Simulation results when n = 300, p = 600.

Criteria N(0, 1) t5

E-SCAD E-Lasso Oracle E-SCAD E-Lasso Oracle

α = 0.10

AE 0.97 (0.27) 2.11 (0.44) 0.86 (0.17) 1.36 (0.85) 3.74 (1.16) 1.14 (0.25)
SE 0.54 (0.14) 0.64 (0.10) 0.57 (0.10) 0.66 (0.29) 0.86 (0.17) 0.72 (0.15)

ADE 0.50 (0.27) 0.62 (0.07) 0.24 (0.07) 0.81 (0.51) 0.95 (0.29) 0.38 (0.12)
Size 9.68 (2.78) 26.55 (5.60) - 10.67 (4.71) 42.53 (9.50) -
F,F1 100, 96 100, 97 - 100, 77 100, 86 -

α = 0.50

AE 0.31 (0.13) 1.50 (0.36) 0.35 (0.11) 0.63 (0.27) 1.85 (0.52) 0.43 (0.13)
SE 0.17 (0.07) 0.43 (0.09) 0.18 (0.06) 0.32 (0.12) 0.55 (0.10) 0.23 (0.07)

ADE 0.38 (0.23) 0.50 (0.19) 0.18 (0.04) 0.18 (0.02) 0.20 (0.06) 0.23 (0.06)
Size 5.61 (1.55) 29.16 (6.05) - 7.36 (3.16) 26.74 (7.11) -
F,F1 100, 1 100, 10 - 100, 3 100, 5 -

α = 0.90

AE 0.82 (0.27) 1.80 (0.39) 0.83 (0.15) 1.12 (0.53) 3.18 (1.64) 1.16 (0.28)
SE 0.49 (0.19) 0.64 (0.10) 0.56 (0.10) 0.60 (0.28) 0.88 (0.23) 0.72 (0.15)

ADE 0.40 (0.21) 0.58 (0.10) 0.24 (0.09) 0.33 (0.04) 1.09 (0.54) 0.40 (0.22)
Size 7.72 (2.14) 17.60 (4.67) - 8.32 (3.36) 28.80 (10.98) -
F,F1 100, 88 100, 94 - 99, 79 100, 83 -

Table 1 and Table 2 present the simulation results for p = 400 and p = 600 respectively.

Generally, E-SCAD demonstrates superior estimation accuracy compared to E-Lasso, tends to

select smaller models, and its performance is closer to that of the oracle estimator. Regarding E-

SCAD’s further performances, note that in our simulation settingmα=0.5(ϵ|x, z) = 0. According

to Theorem 3.2, at α = 0.5, E-SCAD outperforms other weight levels (α = 0.1 or 0.9), in

terms of estimation accuracy and model selection, justified by the AE, ADE and SE results

in Table 1 and Table 2. However, variance heterogeneity is not evident in mα=0.50(y|x, z) so
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in this situation E-SCAD can not pick x1, the active variable resulting in heteroscedasticity.

Expectile regression with different weights can address this issue effectively. It is observed that

at α = 0.1 and 0.9, x1 is frequently identified as the active variable. Additionally, as seen from

Table 1 to Table 2, an increase in p slightly worsens E-SCAD’s performance, with this effect

being more pronounced in the t5 case. It must be noted that the dimensionality our proposed

method can handle is influenced by the heavy-tailed characteristics of the error.

§5 Real Data Application

For public health interventions, significant research has been conducted on the determinants

of low birth weight. Turan (2012) identified genes associated with low birth weight by analyzing

gene promoter-specific DNA methylation levels, with cord blood and placenta samples collected

from each newborn. Votavova et al. (2011) gathered peripheral blood, placenta, and cord

blood samples from pregnant smokers and non-smokers , aiming to pinpoint tobacco smoke-

related defects, particularly the transcriptomic alterations in genes affected by smoke exposure.

We chose this dataset to investigate the potential factors for low infant birth weights since

it provides a comprehensive measurements of infants, including birth weights, maternal age,

gestational age, parity, maternal blood cotinine level, and BMI. This genetic dataset comprises

n = 65 observations. Gene expression profiles for 24, 526 gene transcripts were assayed using

the Illumina Expression Beadchip v3.

We include normalized genetic data and clinical variables such as parity, gestational age,

maternal blood cotinine level, and BMI as linear covariates in the proposed partially linear

additive model. Additionally, following the approach of Votavova et al. (2011), we incorporate

maternal age as a nonparametric component to address nonlinear effects. To dissect the cause

of low infant birth weight, the analysis is carried out under three different expectile levels

α = 0.1, 0.3 and 0.5. In each scenario, feature screening methods are utilized to select the top

200 relevant gene probes, as per Fan and Lv (2008). For comparative analysis, we apply the two

methods, E-SCAD and E-Lasso in our data analysis. Regarding the tuning parameter λ, we

use a five-fold cross-validation strategy to determine its value for both E-SCAD and E-Lasso.

Table 3. Numeric results at three expectile levels.

Criteria
α = 0.1 α = 0.3 α = 0.5.

E-SCAD E-LASSO E-SCAD E-LASSO E-SCAD E-LASSO

All Data

L1 0.66 0.67 0.60 0.53 0.38 0.34

L2 0.12 0.11 0.10 0.09 0.06 0.05

Âα 7.00 8.00 9.00 19.00 14.00 20.00

Âα
∩

Â0.5 1 1 3 3 - -

Random Partition

L1 0.90 (0.21) 0.74 (0.17) 0.81 (0.17) 0.59 (0.13) 0.89 (0.20) 0.41 (0.08)

L2 0.30 (0.07) 0.26 (0.06) 0.27 (0.06) 0.19 (0.04) 0.30 (0.06) 0.13 (0.02)

Âα 5.72 (1.91) 8.19 (2.74) 9.00 (2.72) 13.94 (3.03) 4.72 (1.83) 20.25 (2.67)

Âα
∩

Â0.5 3.86 (1.6433) 1.16 (0.39) 2.27 (1.13) 3.25 (1.18) - -

Initially, we apply the E-SCAD method to the entire data set at three distinct expectile lev-
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Table 4. Top 6 Covariates Selected at Three Expectile Weight Levels among 100 Partitions.

E-SCAD α = 0.1 E-SCAD α = 0.3 E-SCAD α = 0.5

Variables Frequency Variables Frequency Variables Frequency

PTPN3 34 GPR50 46 PTPN3 33
FXR1 40 FXR1 49 GPR50 40
GPR50 43 EPHA3 50 FXR1 41
LEO1 43 LEO1 59 LEO1 44

SLCO1A2 63 LOC388886 65 SLCO1A2 65
Gestational age 79 Gestational age 97 Gestational age 83

els. For each level, the set of variables selected in the linear component of our model is denoted

as Âα, with its cardinality represented by |Âα|. Acknowledging potential heteroscedastici-

ty, we also present the number of variables selected at multiple expectile levels, indicated by

|Â0.1 ∩ Â0.5| and |Â0.3 ∩ Â0.5|. The quantities of selected and overlapped variables are detailed

in Table 3. Subsequently, the data set is randomly partitioned into a training set of 50 ob-

servations and a test set of 15 observations. E-SCAD is then applied to the training set to

derive regression coefficients β̂, which are subsequently used to predict responses for the 15

individuals in the test set. This random splitting process is repeated 100 times. Variable selec-

tion results from the random partitioning scenario are also displayed in Table 3. Additionally,

we report the mean absolute error, L1 = 1
24

∑
i∈test set|yi − xTi β̂|, and the mean squared error,

L2 = 1
24

√∑
i∈test set(yi − xTi β̂)

2 for predictions. Table 3 demonstrates that the models selected

at expectile levels α = 0.1, 0.3, 0.5 all result in relatively small prediction errors.

Table 3 reveals that different genes are selected at various weight levels, suggesting that

diverse genetic factors influence different levels of birth weight, indicative of data heterogeneity.

Table 4 provides further insights into this observation. Gestational age, consistently selected

across all scenarios, corroborates the established understanding that premature birth often

correlates with low birth weight. Interestingly, the scenarios α = 0.1 and α = 0.5 show similar

performance, whereas α = 0.3 exhibits distinct characteristics. SLCO1A2 is more frequently

selected at α = 0.1. SLCO1A2 is associated with drug resistance, and Votavova et al. (2011)

link exposure to toxic compounds in tobacco smoke to low birth weight, a potential role for

this gene. EPHA3 is notably more frequently selected in the α = 0.3 scenario compared to the

other two. Kudo et al. (2005) found that EPHA3 expression at the mRNA and protein levels is

crucial during the development of the mammalian newborn forebrain. These findings support

our analysis across different expectile levels and draw particular attention to the α = 0.3 case,

due to its unique results and potential biomedical significance.

§6 Appendix

6.1 Notation

B-spline basis functions bj(·) can be centered as Bj(zik) = bj+1(zik) − E[bj+1(zik)]
E[b1(zik)] b1(zik),

j = 1, . . . , kn + l, satisfying E[Bj(zik)] = 0. Denote w(zik) = (B1(zik), . . . , Bkn+l(zik))
T ,
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the Jn-dimensional vector W(zi) = (k
−1/2
n ,w(zi1)

T , . . .w(zid)
T ))T , where Jn = d(kn + l) + 1

and the n × Jn matrix W = (W(z1), . . . ,W(zn))
T . Define a new pair of minimizer (ĉA, γ̂)

as (ĉ∗A, γ̂) = argmin
(cA,γ)

1
n

∑n
i=1 ϕα(yi − xT

AicA − W(zi)
Tγ). Denote γ = (γ0,γ

T
1 , . . . ,γ

T
d )

T with

γ0 ∈ R and γj ∈ Rkn+l, for j = 1, . . . , d. Thus, the estimator for g0(zi) is g̃(zi) = W(zi)
T γ̂ =

µ̃+
∑d

j=1 g̃j(zij) = k
−1/2
n γ̂0+

∑d
j=1 w(zij)

T γ̂j . Note that ĉ
∗
A = β̂

∗
A. Also, the original estimator

of nonparametric functions can be derived from the new ones as µ̂ = µ̃+ 1
n

∑n
i=1

∑d
j=1 g̃j(zij)

and ĝj(zij) = g̃j(zij)− 1
n

∑n
i=1 g̃j(zij). Thus, ĝ(zi) = g̃(zi). Throughout the proofs, we denote

C a positive constant which does not depend on n and may vary from line to line. For a vector

θ, ||θ|| refers to its L2 norm. For a matrix X, ||X|| =
√
λmax(XTX) denotes its spectral norm.

Furthermore, we have following notations throughout the appendix,

Bn = diag(w1, . . . , wn) ∈ Rn×n, Wn = n−1
∑
i

wiδiδ
T
i ∈ Rn×n,

P =W (WTBnW )−1WTBn ∈ Rn×n, W 2
B =WTBnW ∈ RJn×Jn ,

X∗ = (x∗
1, . . . ,x

∗
n)

T = (In − P )XA ∈ Rn×qn , x̃i = n−1/2x∗
i ∈ Rqn ,

W̃(zi) =W−1
B W(zi) ∈ RJn , s̃i = (x̃T

i ,W̃(zi)
T )T ∈ RJn+qn , uni = W(zi)

Tγ0 − g0(zi)

θ1 =
√
n(cA − β∗

A) ∈ Rqn , θ2 =WB(γ − γ0) +W−1
B WTBnXA(cA − β∗

A) ∈ Rqn .

Under the new notation system, the objective loss function can be displayed as

1

n

n∑
i=1

ϕα(yi − xT
AicA −W(zi)

Tγ) =
1

n

n∑
i=1

ϕα(ϵi − uni − x̃T
i θ1 − W̃(zi)

Tθ2),

and the minimizers are (θ̂1, θ̂2) = argmin
(θ1,θ2)

1
n

∑n
i=1 ϕα(ϵi − uni − x̃T

i θ1 − W̃(zi)
Tθ2).

6.2 Lemmas and theoretical proof of theorems

Lemma 6.1 (Properties of Loss Function). For the asymmetric squares loss function ϕα(·),
the derivative of ϕα(r) as ψα(r), the second-order derivative of ϕα(r) as φα(r),

(1) ϕα(·) is continuous differentiable. Moreover, for any r, r0 ∈ R, we have

c1 · (r − r0)
2 ≤ ϕα(r)− ϕα(r0)− ψα(r0) · (r − r0) ≤ c2 · (r − r0)

2. (6.1)

(2) ψα(·) is Lipschitz continuous, which means for any r, r0 ∈ R, we have

2c1|r − r0| ≤ |ψα(r)− ψα(r0)| ≤ 2c2|r − r0|. (6.2)

(3) φα(r) ≤ 2c2 for any r.

Proof. (1) and (2) can be found in Gu and Zou (2016), (3) is from the definition of φα(u).

Lemma 6.2. Properties of centered spline basis functions:

(1) maxi E||W(zi)|| ≤ m1, for some positive constant m1 for a sufficiently large n;

(2) There exists positive constants m2 and m
′

2 such that for n sufficiently large

m2k
−1
n ≤ E[λmin(W(zi)W(zi)

T )] ≤ E[λmax(W(zi)W(zi)
T )] ≤ m

′

2k
−1
n ;

(3) There exists positive constant m3 such that for n sufficiently large E||W−1
B || ≤ m3

√
knn−1;

(4) maxi ||W̃(zi)|| = Op(
√
kn/n).
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Proof. The proof for (1) and (2) can be found in Sherwood and Wang (2016). For (3),

we need to show that E[λmin(W
2
B)] > Cnk−1

n since ||W−1
B || = λmax(W

−1
B ) = λ

−1/2
min (W 2

B) .

Through the definition of WB , we have

λmin(W
2
B) = λmin(

n∑
i=1

E[φα(ϵi)]W(zi)W(zi)
T ) ≥ C

n∑
i=1

λmin(W(zi)W(zi)
T ) ≥ Ck−1

n n.

For (4), ||W̃(zi)||2 = W(zi)
TW−2

B W(zi) ≤ ||W(zi)||2 · λ2max(W
−1
B ) = Op(

kn

n ).

Lemma 6.3. Properties of the after-projection design matrix X∗:

(1) λmax(n
−1X∗T

X∗) ≤ C with probability one, where C is a positive constant;

(2) n−1/2X∗ = n−1/2∆∗
n + op(1). Also, n−1X∗T

BnX
∗ =Wn + op(1);

(3)
∑n

i=1 wix̃iW̃(zi)
T = 0.

Proof. Denote νj = argmin
ν∈RJn

∑n
i=1 E[φα(ϵi)](XAij −W(zi)

T ν)2, then

{h̃j(zi)}n×qn =W (WTBnW )−1WTBnXA.

Recall 1√
n
X∗ = 1√

n
(I − P )XA = 1√

n
∆n + 1√

n
(H − PXA), and

1

n
λmax

(
(H − PXA)

T (H − PXA)
)
≤ 1

n
trace

(
(H − PXA)

T (H − PXA)
)

=
1

n

n∑
i=1

qn∑
j=1

(h̃j(zi)− ĥj(zi))
2 = Op(qnn

−2r/(2r+1)) = op(1),

where the second last equality follows from Stone (1985). Then the following proof is similar

to Lemma 3 in Sherwood and Wang (2016).

Lemma 6.4 (Bernstein Inequality). Let ξ1, ξ2, . . . , ξn be independent mean-zero random vari-

ables, with uniform bounds |ξi| ≤M and v ≥ Var(
∑n

i=1 ξi). Then for every positive t,

P

(
|

n∑
i=1

ξi| > t

)
≤ 2 exp

(
− t2

2(v +Mt/3)

)
.

Lemma 6.5. Let dn = qn + kn and if Conditions 3.1-3.4 hold, then

1

n

n∑
i=1

(g̃(zi)− g0(zi))
2 = op(

dn
n
).

Proof. Define Φi(an) , Φi(anθ1, anθ2) = ϕα(ϵi− anx̃T
i θ1− anW̃ (zi)

T θ2−uni). Here we first

show that ∀η > 0, there exists an L > 0 such that

P
(

inf
||θ||=L

1

dn

n∑
i=1

(
Φi(
√
dn)− Φi(0)

)
> 0
)
> 1− η, (6.3)

which implies with probability at least 1 − η that there exists a local minimizer in the ball

{
√
dnθ : ||θ|| ≤ L}, that means the local minimizer θ̂ satisfies ||θ̂|| = Op(

√
dn).

Denote θ = (θT1 , θ
T
2 )

T and by Taylor expansion, we have

Φi(an) = ϕα(ϵi − ans̃
T
i θ − uni) = ϕα(ϵi − uni)− ψα(ϵi − uni)ans̃

T
i θ + ri(an)

where ri(an) =
1
2φα(ϵi − uni − ξians̃

T
i θ)(ans̃

T
i θ)

2 for some 0 < ξi < 1. By Lemma 6.1,

|ψα(ϵi − uni)− ψα(ϵi)| ≤ 2c2|uni| = Op(k
−r
n ) = op(1).
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Notify Es[·] , E[·|xi, zi]. Thus, we have that 1
dn

∑n
i=1 Φi(

√
dn)− Φi(0) equals

1

dn

n∑
i=1

Es[Φi(
√
dn)− Φi(0)] +

1

dn

n∑
i=1

(
Φi(
√
dn)− Φi(0)− Es[Φi(

√
dn)− Φi(0)]

)
= Σ1 +Σ2 +Σ3

For Σ3, defineDi(an) = ri(an)−Es[ri(an)], then sup
||θ||≤L

d−1
n

∑n
i=1 |Di(

√
dn)| = op(1). Set Fn1

as the event {maxi ||s̃i|| ≤ α1

√
dn/n}. By Lemma 6.2 and the fact maxi ||x̃i|| = O(

√
qn/n),

it implies that P(Fn1) → 1. Set Fn2 as the event {maxi |uni| ≤ α2k
−r
n }, then according to

Schumaker (2007), P(Fn2) → 1. Simplify Di(
√
dn) as Di and are independent random variables

satisfying E[Di] = 0 and maxi |Di|I(F1

∩
F2) ≤ maxi Cdn|s̃Ti θ|2I(F1

∩
F2) ≤ CL

d2
n

n . Thus,

Var(DiI(Fn1

∩
Fn2)|xi, zi) ≤ Es[r

2
i (
√
dn)I(Fn1

∩
Fn2)]

≤ Es[
1

2
φα(ϵi − uni − ξians̃

T
i θ)(ans̃

T
i θ)

2]2 ≤ Cd2n||s̃Ti ||4||θ||4 ≤ Cd4n/n
2.

Applying Bernstein Inequality in Lemma 6.4, for any positive constant ϵ,

P(|
n∑

i=1

Di| > dnϵ, Fn1

∩
Fn2|xi, zi) ≤ 2 exp(

−d2nϵ2

2(C
d4
n

n + C
d3
nLϵ
3n )

) ≤ C exp(− n

d2n
) → 0,

which implies that sup
||θ||≤L

d−1
n

∑n
i=1 |Di(

√
dn)| = op(1).

For any ϵ > 0, P(|φα(ϵi − uni)− φα(ϵi)| > ϵ) = max{P(uni < ϵi < 0),P(0 < ϵi < uni)},
max{P(uni < ϵi < 0),P(0 < ϵi < uni)} ≤ C · |uni| = Op(k

−r
n ) → 0

which implies |φα(ϵi − uni)− φα(ϵi)| = op(1). Then, for Σ1, through Taylor expansion,

1

dn

n∑
i=1

Es

[
Φi(
√
dn)− Φi(0))

]
=

1

dn

n∑
i=1

Es

[
− ψα(ϵi − uni)

√
dns̃

T
i θ +

1

2
φα(ϵi − uni)dn(s̃

T
i θ)

2(1 + o(1))
]

=

n∑
i=1

Es

[1
2
φα(ϵi)(x̃

T
i θ1)

2(1 + op(1))
]
+

n∑
i=1

Es

[1
2
φα(ϵi)(W̃

T
i θ2)

2(1 + op(1))
]

+
n∑

i=1

Es

[1
2
φα(ϵi)θ

T
1 x̃iW̃

T
i θ2(1 + op(1))

]
= C · θT1 Wnθ1(1 + op(1)) + C · ||θ2||2(1 + op(1)) = Op(||θ||2),

where C > 0 is some constant and the last second equation from Lemma 6.2 and 6.3.

As for Σ2, Es[ψα(ϵi)s̃iθ] = 0 and E[ψα(ϵi)]
2 = E

[
2ϵi|α− I(ϵi < 0)|

]2 ≤ C ·E[ϵi]2 ≤ C. Thus,

Var(ψα(ϵi)s̃iθ|xi, zi) = E[ψα(ϵi)]
2(s̃iθ)

2 ≤ C
dn
n
||θ||2,

which means Var(Σ2|xi, zi) ≤ 1
dn

∑n
i=1 Var(ψα(ϵi)s̃iθ|xi, zi) = O(||θ||2), i.e., |Σ2| = Op(||θ||).

Hence, Σ2 is dominated by Σ1 for sufficiently large L, thus (6.3) holds.

From ||θ̂|| = Op(
√
dn) and the definition of θ, ||WB(γ̂ − γ0)|| = Op(

√
dn). Notice that
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E[φα(ϵi)] is uniformly bounded away from zero,then

1

n

n∑
i=1

E[φα(ϵi)](g̃(zi)− g0(zi))
2 ≤ 1

n
C(γ̂ − γ0)

TW 2
B(γ̂ − γ0) +Op(k

−2r
n ) = Op(

dn
n
).

Lemma 6.6. Set θ̃1 = n−1/2(X∗T

BnX
∗)

−1
X∗T

ψα(ϵ) where ψα(ϵ) = (ψα(ϵ1), . . . , ψα(ϵn))
T .

Assume Conditions 3.1-3.4 hold, then ||θ̃1|| = Op(
√
qn).

Proof. From the definition of θ̃1 and Lemma 6.3,

θ̃1 =
1√
n
(Wn + op(1))

−1(∆T
n + op(1))ψα(ϵ) =

1√
n
W−1

n (∆T
nψα(ϵ)(1 + op(1))

=
1√
n

n∑
i=1

W−1
n δiψα(ϵi) ,

n∑
i=1

Dn,i.

And Dn,i are independent random variables satisfying E[θ̃1] = 0 and

E[||θ̃1||2] =
n∑

i=1

E[||Dn,i||2] =
1

n

n∑
i=1

E[ψ2
α(ϵi)(δ

T
i W

−2
n δi)] ≤

C

n

n∑
i=1

E[||δi||2] = Op(qn),

where the second last inequality follows from the fact

E[ψ2
α(ϵi)] = E[2|α− I(ϵi < 0)|ϵi]2 ≤ CE[ϵ2i ] = O(1).

Thus, we have ||θ̃1|| = Op(
√
qn).

Lemma 6.7. Assume Condition 3.1-3.4 hold, then for any positive constant C,

sup
||θ2||≤C

√
dn

1

n

n∑
i=1

|I(ϵi < uni + W̃(zi)
T θ2)− I(ϵi < 0)| = op(1).

Proof. Partition the left side of the equation into two parts. For ||θ2|| ≤ C
√
dn

sup
1

n

n∑
i=1

|I(ϵi < uni + W̃(zi)
T θ2)− I(ϵi < 0)|

≤ sup
1

n

n∑
i=1

|I(ϵi < uni + W̃(zi)
T θ2)− I(ϵi < 0)− P(ϵi < uni + W̃(zi)

T θ2) + P(ϵi < 0)|

+sup
1

n

n∑
i=1

|P(ϵi < uni + W̃(zi)
T θ2)− P(ϵi < 0)| , I1 + I2.

I2 = sup
||θ2||≤C

√
dn

1

n

n∑
i=1

|Fi(uni + W̃(zi)
T θ2)− Fi(0)|

≤ sup
||θ2||≤C

√
dn

C

n

n∑
i=1

|uni + W̃(zi)
T θ2| ≤ C sup

||θ2||≤
√
dn

max
i

|uni|+max
i

∥W̃(zi)
T ∥ · ∥θ2∥

= Op(k
−r
n +

√
kndn
n

) = op(1)

where the second last equation follows from Lemma 6.2 and maxi |uni| = O(k−r
n ).

As for I1, vi = I(ϵi < uni + W̃(zi)
T θ2) − I(ϵi < 0) − P(ϵi < uni + W̃(zi)

T θ2) + P(ϵi < 0),

which are independent mean-zero random variables satisfying |vi| ≤ 2. Note that Var(vi) =

E[I(ϵi < uni + W̃(zi)
T θ2) − I(ϵi < 0)]2 and I(ϵi < uni + W̃(zi)

T θ2) − I(ϵi < 0) is nonzero
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only when 0 < ϵi < uni + W̃(zi)
T θ2 or 0 > ϵi > uni + W̃(zi)

T θ2, depending on the sign of

uni + W̃(zi)
T θ2. Thus, under the set {θ2 : ||θ2|| ≤ C

√
dn},

n∑
i=1

Var(vi) ≤
n∑

i=1

P
(
0 < ϵi < uni + W̃(zi)

T θ2

)
+ P

(
0 > ϵi > uni + W̃(zi)

T θ2

)
≤

n∑
i=1

P
(
|ϵi| < |uni + W̃(zi)

T θ2|
)
≤

n∑
i=1

C|uni + W̃(zi)
T θ2| = Op(nk

−r
n +

√
nkndn),

Then apply Bernstein Inequality in Lemma 6.4, for any ϵ > 0,

sup
||θ2||≤C

√
dn

P(|
n∑

i=1

vi| > nϵ) ≤ 2 exp(− n2ϵ2

2(nk−r
n +

√
ndnkn + 2nϵ/3)

) ≤ 2 exp(−nϵ) → 0.

Lemma 6.8. Assume Condition 3.1-3.4 hold, then for any finite positive constants M and C,

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

∣∣∣∣∣ 1n
n∑

i=1

(
ψα(ϵi − uni − W̃(zi)

T θ2)− ψα(ϵi)
)
x̃T
i (θ1 − θ̃1)

∣∣∣∣∣ = op(1)

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

∣∣∣∣∣ 1n
n∑

i=1

(
φα(ϵi − uni − W̃(zi)

T θ2)− φα(ϵi)
)
((x̃T

i θ1)
2 − (x̃T

i θ̃1)
2)

∣∣∣∣∣ = op(1).

Proof. For the first part, notice that for ||θ1 − θ̃1|| ≤M, ||θ2|| ≤ C
√
dn,

sup

∣∣∣∣∣ 1n
n∑

i=1

(
ψα(ϵi − uni − W̃(zi)

T θ2)− ψα(ϵi)
)
x̃T
i (θ1 − θ̃1)

∣∣∣∣∣
≤ supmax

i

∣∣∣ψα(ϵi − uni − W̃(zi)
T θ2)− ψα(ϵi)

∣∣∣ ·max
i

||x̃T
i || · ||θ1 − θ̃1||

≤ supmax
i
C ·
∣∣∣uni + W̃(zi)

T θ2

∣∣∣ ·max
i

||x̃T
i || · ||θ1 − θ̃1||

≤ Op(k
−r
n +

√
dnkn/n) ·Op(

√
qn/n) = op(1),

where the last inequality follows from the fact maxi ||x̃i|| = O(
√
qn/n).

Consider the second part, for ||θ1 − θ̃1|| ≤M, ||θ2|| ≤ C
√
dn,

sup

∣∣∣∣∣ 1n
n∑

i=1

(
φα(ϵi − uni − W̃(zi)

T θ2)− φα(ϵi)
)
((x̃T

i θ1)
2 − (x̃T

i θ̃1)
2)

∣∣∣∣∣
≤ sup

2

n

n∑
i=1

∣∣∣I(ϵi < uni + W̃(zi)
T θ2)− I(ϵi < 0)

∣∣∣ ·max
i

∣∣∣(x̃T
i θ1)

2 − (x̃T
i θ̃1)

2
∣∣∣.

Notice that maxi ||x̃i|| = O(
√
qn/n) and use Lemma 6.6,

max
i

∣∣∣((x̃T
i θ1)

2 − (x̃T
i θ̃1)

2)
∣∣∣ = max

i

∣∣∣(θ1 + θ̃1)
T x̃ix̃

T
i (θ1 − θ̃1)

∣∣∣
≤ max

i
||x̃i||2 · ||θ1 − θ̃1|| ·

(
||θ1 − θ̃1||+ 2||θ̃1||

)
≤ C · q

3/2
n

n
= op(1)

Thus, apply Lemma 6.7, we have for ||θ1 − θ̃1|| ≤M, ||θ2|| ≤ C
√
dn

sup

∣∣∣∣∣ 1n
n∑

i=1

(
φα(ϵi − uni − W̃(zi)

T θ2)− φα(ϵi)
)
((x̃T

i θ1)
2 − (x̃T

i θ̃1)
2)

∣∣∣∣∣ = op(1).

Lemma 6.9. Assume Condition 3.1-3.4 hold, then ||θ̂1 − θ̃1|| = op(1).



70 Appl. Math. J. Chinese Univ. Vol. 40, No. 1

Proof. Define Q̃i(θ1, θ̃1, θ2) = ϕα(ϵi−uni−x̃T
i θ1−W̃(zi)

T θ2)−ϕα(ϵi−uni−x̃T
i θ̃1−W̃(zi)

T θ2).

We first show that for any positive constants C and M ,

P

(
inf

||θ1−θ̃1||>M,||θ2||≤C
√
dn

1

n

n∑
i=1

Q̃i(θ1, θ̃1, θ2) > 0

)
→ 1. (6.4)

Notice Q̃i(θ1, θ̃1, θ2) = (Q̃i(θ1, θ̃1, θ2)− E[Q̃i(θ1, θ̃1, θ2)]) + E[Q̃i(θ1, θ̃1, θ2)]. Now we prove that

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

| 1
n

n∑
i=1

E[Q̃i(θ1, θ̃1, θ2)]−
1

2n

(
θT1 Wnθ1 − θ̃T1 Wnθ̃1

)
| = op(1).

Through Taylor Expansion,

1

n

n∑
i=1

E[Q̃i(θ1, θ̃1, θ2)] =
1

n

n∑
i=1

E
[
− ψα(ϵi − uni − W̃(zi)

T θ2)x̃
T
i (θ1 − θ̃1)

+
1

2
φα(ϵi − uni − W̃(zi)

T θ2)((x̃
T
i θ1)

2 − (x̃T
i θ̃1)

2)(1 + o(1))
]

Then applying Lemma 6.8, we have

1

n

n∑
i=1

E[Q̃i(θ1, θ̃1, θ2)] =
1

n

n∑
i=1

E
[1
2
φα(ϵi)((x̃

T
i θ1)

2 − (x̃T
i θ̃1)

2)
]
(1 + op(1))

under the set {(θ1, θ2) : ||θ1 − θ̃1|| ≤ M, ||θ2|| ≤ C
√
dn}, for any positive constants M and C,

where the last equation follows the fact that E[ϕα(ϵi)] = 0, ∀i = 1, . . . , n. And this implies

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

| 1
n

n∑
i=1

E[Q̃i(θ1, θ̃1, θ2)]−
1

2n

(
θT1 Wnθ1 − θ̃T1 Wnθ̃1

)
| = op(1).

Next we introduce

Ri,n(θ1) = ϕα(ϵi − uni − x̃T
i θ1 − W̃(zi)

T θ2)− ϕα(ϵi − uni − W̃(zi)
T θ2)

+ψα(ϵi − uni − W̃(zi)
T θ2)x̃

T
i θ1.

Through Taylor Expansion, there exits 0 < ξi,θ1 , ξi,θ̃1 < 1 satisfying

Ri,n(θ1) =
1

2
φα(ϵi − uni − ξi,θ1 x̃

T
i θ1 − W̃(zi)

T θ2)(x̃
T
i θ1)

2

Ri,n(θ̃1) =
1

2
φα(ϵi − uni − ξi,θ̃x̃

T
i θ̃ − W̃(zi)

T θ2)(x̃
T
i θ̃1)

2.

Notice 1
2φα(ϵi − uni − ξi,θ1 x̃

T
i θ1 − W̃(zi)

T θ2) ≤ 1, thus

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

∣∣∣ 1
n

n∑
i=1

Ri,n(θ1)−Ri,n(θ̃1)− E[Ri,n(θ1)−Ri,n(θ̃1)]
∣∣∣

≤ sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

2
∣∣∣ 1
n

n∑
i=1

((x̃T
i θ1)

2 − (x̃T
i θ̃1)

2)
∣∣∣

≤ sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

Cmax
i

||x̃i||2 · ||θ1 − θ̃1|| · ||θ̃1|| ≤ C
q
3/2
n

n
= op(1)

where last inequality follows from the fact maxi ||x̃i|| = O(
√
qn/n) and Lemma 6.6.

Hence, under the set {(θ1, θ2) : ||θ1 − θ̃1|| ≤M, ||θ2|| ≤ C
√
dn}, by Lemma 6.8 and the fact
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E[ψα(ϵi)] = 0, ∀i = 1, . . . , n, we have

1

n

n∑
i=1

Q̃i(θ1, θ̃1, θ2)−
1

n

n∑
i=1

E[Q̃i(θ1, θ̃1, θ2)]

=
1

n

n∑
i=1

(
− ψα(ϵi − uni − W̃(zi)

T θ2)x̃
T
i (θ1 − θ̃1) +Ri,n(θ1)−Ri,n(θ̃1)

+E[ψα(ϵi − uni − W̃(zi)
T θ2)x̃

T
i (θ1 − θ̃1) − E[Ri,n(θ1)−Ri,n(θ̃1)]

)

=
1

n

n∑
i=1

(
− ψα(ϵi)x̃

T
i (θ1 − θ̃1)(1 + op(1)) +Ri,n(θ1)−Ri,n(θ̃1)− E[Ri,n(θ1)−Ri,n(θ̃1)]

)
.

And this shows

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

∣∣∣∣∣ 1n
n∑

i=1

(
Q̃i(θ1, θ̃1, θ2)− E[Q̃i(θ1, θ̃1, θ2)] + ψα(ϵi)x̃

T
i (θ1 − θ̃1)

)∣∣∣∣∣ = op(1).

Notice the definition of θ̃1 and Lemma 6.3, it follows that
n∑

i=1

ψα(ϵi)x̃
T
i (θ1 − θ̃1) = (θ1 − θ̃1)

Tn−1/2X∗Tψα(ϵ) = (θ1 − θ̃1)
TWnθ̃1(1 + op(1)).

Then, by using the result

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

∣∣∣ 1
n

n∑
i=1

E[Q̃i(θ1, θ̃1, θ2)]−
1

2n

(
θT1 Wnθ1 − θ̃T1 Wnθ̃1

)∣∣∣ = op(1),

we have for ||θ1 − θ̃1|| ≤M, ||θ2|| ≤ C
√
dn

sup
∣∣∣ 1
n

n∑
i=1

Q̃i(θ1, θ̃1, θ2)−
1

2n

(
θT1 Wnθ1 − θ̃T1 Wnθ̃1

)
+

1

n
(θ1 − θ̃1)

TWnθ̃1

∣∣∣ = op(1),

which means

sup
||θ1−θ̃1||≤M,||θ2||≤C

√
dn

∣∣∣ 1
n

n∑
i=1

Q̃i(θ1, θ̃1, θ2)−
1

2n
(θ1 − θ̃1)

TWn(θ1 − θ̃1)
∣∣∣ = op(1).

Thus from Condition 3.2, for any θ1 satisfying ||θ1 − θ̃1|| ≥M > 0, we have
1

2n
(θ1 − θ̃1)

TWn(θ1 − θ̃1) > 0,

which implies (6.4) holds. Thus, the result follows.

Proof of Theorem 3.1.

(1) For the first part of (3.4), from the results of Lemma 6.6 and Lemma 6.9, ||ĉ∗A − β∗
A|| =

Op(
√
qn/n). Hence through the fact that ĉ∗A = β̂

∗
A, our first result can be proved.

(2) For the second part of (3.4), ĝ(zi) = g̃(zi), thus by Lemma 6.5, the second result holds.

Lemma 6.10 (Tao and An, 1997). Suppose the objective function L(θ) can be decomposed as the

difference of two convex functions k(θ) and l(θ), i.e., L(θ) = k(θ)−l(θ), with the corresponding

subdifferential functions ∂k(θ) and ∂l(θ) respectively. Let dom(k) = {θ : k(θ) < ∞} be the

effective domain of k(θ) and θ∗ be a point that has neighbourhood U such that ∂l(θ)∩∂k(θ∗) ̸= ∅,
∀ θ ∈ U ∩ dom(k). Then θ∗ is a local minimizer of f(θ).
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Lemma 6.11 (Chung, 2008). Denote {Xi}ni=1 a sequence of independent real valued random

variables with E[Xi] = 0 and Sn =
∑n

i=1Xi. Then for r ≥ 2, the following inequality holds:

E[|Sn|r] ≤ Crn
r/2−1

n∑
i=1

E[|Xi|r],

where Cr is some constant only depending on r.

Lemma 6.12. Assume Conditions 3.1-3.5p are satisfied. The parameter λ = o
(
n−(1−C4)/2

)
,

qn = o(nλ2), kn = o(nλ2) and p = o
(
(nλ2)k

)
. For the oracle estimator (β̂

∗
, ξ̂

∗
), with probability

tending to one,

sj(β̂
∗
, ξ̂

∗
) = 0, j = 1, . . . , qn or j = p+ 1, . . . , p+Dn, (6.5)

|β̂∗
j | ≥ (a+ 1/2)λ, j = 1, . . . , qn, (6.6)

|sj(β̂
∗
, ξ̂

∗
)| ≤ λ, j = qn + 1, . . . , p. (6.7)

Proof.

(1) Proof for (6.5). For j = 1, . . . , qn or j = p + 1, . . . , p + Dn, by the first order necessary

condition of the optimal solution,

sj(β̂
∗
, ξ̂

∗
) =

∂

∂βj

( 1
n

n∑
i=1

ϕα(yi − xTi β −Π(zi)
T ξ)
)
|(β,ξ)=(β̂

∗
,ξ̂

∗
)= 0.

(2) It’s sufficient for Inequality (6.6) that P
(

min
1≤j≤qn

|β̂∗
j | ≥ (a+ 1/2)λ)

)
→ 1, as n → ∞.

Notice that min
1≤j≤qn

|β̂∗
j | ≥ min

1≤j≤qn
|β∗

j | − max
1≤j≤qn

|β∗
j − β̂∗

j |. By Theorem 3.1 and Condition

3.4, ∥β̂
∗
A − β∗

A∥ = Op(
√

qn
n ) = Op(n

−(1−C3)/2), then, max
1≤j≤qn

|β∗
j − β̂∗

j | = Op(n
−(1−C3)/2) =

op(n
−(1−C4)/2). Also, Condition 3.5 shows n(1−C4)/2 min

1≤j≤qn
|β∗

j | ≥ C5. Thus, inequality (24)

can hold by setting λ = o(n−(1−C4)/2).

(3) Proof for Inequality (6.7). For j = qn + 1, . . . , p, recall the definition of sj(β̂
∗
, ξ̂

∗
) as

sj(β̂
∗
, ξ̂

∗
) =

∂

∂βj

( 1
n

n∑
i=1

ϕα(yi − xTi β −Π(zi)
T ξ
)
|(β,ξ)=(β̂

∗
,ξ̂

∗
)

= − 2

n

n∑
i=1

xij(yi − xTi β̂
∗
−Π(zi)

T ξ̂
∗
)|I(yi − xTi β̂

∗
−Π(zi)

T ξ̂
∗
< 0)− α|

= − 2

n

n∑
i=1

xij(yi − xTAiβ̂
∗
A −Π(zi)

T ξ̂
∗
)|I(yi − xTAiβ̂

∗
A −Π(zi)

T ξ̂
∗
< 0)− α|,

where the last equality follows by the definition of oracle estimator (β̂
∗
, ξ̂

∗
).

To prove the result, first we need to show that for qn + 1 ≤ j ≤ p,

P

(
max

j

∣∣∣ 2
n

n∑
i=1

xij(yi − xTi β̂
∗
−Π(zi)

T ξ̂
∗
)|I(yi − xTi β̂

∗
−Π(zi)

T ξ̂
∗
< 0)− α|

∣∣∣ > λ

)
→ 0,
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which is equivalent to show that

P

(
max

j

∣∣∣ 2
n

n∑
i=1

xij(yi − xTi β̂
∗
−W (zi)

T γ̂)|I(yi − xTi β̂
∗
−W (zi)

T γ̂ < 0)− α|
∣∣∣ > λ

)
→ 0.

Set

ϵi(βA,γ) = yi − xTAiβA −W (zi)
Tγ, ϵ∗i = yi − xTAiβ

∗
A − g0(zi)

ϵ̂i = ϵi(β̂
∗
A, γ̂) = yi − xTAiβ̂

∗
A −W (zi)

T γ̂ = yi − xTAiβ̂
∗
A − ĝ(zi).

We also set Ij =
2
n

∑n
i=1 xij ϵ̂i|I(ϵ̂i ≤ 0)− α| = Ij1 + Ij2, with

Ij1 =
2

n

n∑
i=1

xij(ϵ̂i − ϵ∗i )|I(ϵ̂i ≤ 0)− α|, Ij2 =
2

n

n∑
i=1

xijϵ
∗
i |I(ϵ̂i ≤ 0)− α|.

Let’s first consider P
(

max
qn+1≤j≤p

|Ij1| > λ/2

)
→ 0. It follows from the proof of Lemma 6.5

that∥γ0 − γ̂∥2 = Op(
√

kndn

n ). Note that

1

n

n∑
i=1

|ϵ̂i − ϵ∗i | =
1

n

n∑
i=1

|xTAi(β̂
∗
A − β∗

A) +W (zi)
T (γ̂ − γ0) + uni|

≤ 1

n

n∑
i=1

(|xTAi(β̂
∗
A − β∗

A)|+ |W (zi)
T (γ̂ − γ0)|+ |uni|)

≤ (
1

n

n∑
i=1

|xTAi(β̂
∗
A − β∗

A)|
2
)1/2 + (

1

n

n∑
i=1

|W (zi)
T (γ̂ − γ0)|

2
)1/2 + sup

1≤i≤n
|uni|

≤ λ1/2max(
1

n
XAX

T
A)∥β

∗
A − β̂

∗
A∥2 + (

1

n
(γ̂ − γ0)

TW 2(γ̂ − γ0))
1/2 + sup

1≤i≤n
|uni|

= Op(
√
qn/n+

√
dn/n+ k−r

n ).

where the second inequality follows Jensen inequality and the last inequality applies Con-

dition 3.2. Thus, by using Condition 3.2 again and Condition 3.3 and 3.4,

max
qn+1≤j≤p

|Ij1| ≤ 2 · max
qn+1≤j≤p

|xij | ·
1

n

n∑
i=1

|ϵ̂i − ϵ∗i |

≤ C · 1
n

n∑
i=1

|ϵ̂i − ϵ∗i | = Op(
√
qn/n+

√
dn/n+ k−r

n ) = op(λ),

which means P
(

max
qn+1≤j≤p

|Ij1| > λ/2

)
→ 0. As for Ij2,

Ij2 ≤ 2

n

n∑
i=1

xijϵ
∗
i |I(ϵ̂i ≤ 0)− I(ϵ∗i ≤ 0)|+ 2

n

n∑
i=1

xijϵ
∗
i |α− I(ϵ∗i ≤ 0)| = Ij21 + Ij22.

To evaluate Ij21, note that

|I(ϵ̂i ≤ 0)− I(ϵ∗i ≤ 0)| = |I(ϵ∗i ≤ ϵ∗i − ϵ̂i)− I(ϵ∗i ≤ 0)| ≤ I(|ϵ∗i | ≤ |ϵ∗i − ϵ̂i|).
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So, we have for j = qn+1, . . . , p,

max
qn+1≤j≤p

|Ij21| ≤ max
qn+1≤j≤p

2× 1

n

n∑
i=1

|xij | × |ϵ∗i | × I(|ϵ∗i | ≤ |ϵ∗i − ϵ̂i|)

≤ max
qn+1≤j≤p

C × 1

n

n∑
i=1

|ϵ∗i − ϵ̂i| = Op(
√
qn/n+

√
dn/n+ k−r

n ) = op(λ).

Thus, we can show that P
(

max
qn+1≤j≤p

|Ij21| > λ/4

)
→ 0.

Now Consider Ij22, we define ηi = ϵ∗i |I(ϵ∗i ≤ 0) − α|, which is independent and satis-

fies E [ηi|xi] = 0. By Condition 3.1 we have E
[
η2ki |xi

]
< ∞. Also, xij is bounded

because of Condition 3.2, thus by Lemma 6.11, we have E[I2kj22] = O(n−k). Therefore,

by Markov Inequality, we have P (|Ij22| > λ) ≤ E[I2k
j22]

(λ2k)
= O((nλ2)−k), which contains

P
(

max
qn+1≤j≤p

|Ij22| > λ/4

)
≤
∑p

qn+1 P (|Ij22| > λ/4) = O(p(nλ2)−k) → 0. Overall,

P
(

max
qn+1≤j≤p

|Ij | > λ

)
≤ P

(
max

qn+1≤j≤p
|Ij1| > λ/2

)
+ P

(
max

qn+1≤j≤p
|Ij2| > λ/2

)
≤ P

(
max

qn+1≤j≤p
|Ij1| > λ/2

)
+ P

(
max

qn+1≤j≤p
|Ij22| > λ/4

)
+ P

(
max

qn+1≤j≤p
|Ij21| > λ/4

)
→ 0.

we calculate the derivative of Hλ(θ) and define the subdifferential of k(θ) introduced in

Section 3.2 is needed in the proof of Theorem 3.2. Notice thatHλ(θ) is differentiable everywhere,

H ′
λ(θ) = [(θ − λsgn(θ))/(a− 1)]I(λ ≤ |θ| ≤ aλ) + λsgn(θ)I(|θ| > aλ).

Define the subdifferential of k(θ) at θ = θ0 as follows: ∂k(θ0) = {t : k(θ) ≥ k(θ0) + t′(θ −
θ0), ∀θ}. Therefore, ∂k(β, ξ) =

{
κ = (κ1, . . . , κp+Dn)

T ∈ Rp+Dn
}
has the following expression,

κj =

sj(β, ξ) + λlj , j = 1, 2, . . . , p,

sj(β, ξ), j = p+ 1, . . . , p+Dn;

where lj = sgn(βj) if βj ̸= 0 or lj takes value in [−1, 1] if βj = 0. Similarly, ∂l(β, ξ) ={
µ = (µ1, . . . , µp+Dn

)T ∈ Rp+Dn
}
has the following expression,

µj =

H ′
λ(βj), j = 1, 2, . . . , p,

0, j = p+ 1, . . . , p+Dn.

Proof of Theorem 3.2. We make use of Lemma 6.10 to prove our theorem. Consider any

(βT , ξT )T in a ball B(λ) with the center (β̂
∗
, ξ̂

∗
) and radius λ/2. It is sufficient to show that

for any (βT , ξT )T ∈ B(λ), with probability tending to one,

∂l(β, ξ) ∩ ∂k(β̂
∗
, ξ̂

∗
) ̸= ∅.

Define the event E1 = {|β̂∗
j | ≥ (a + 1/2)λ, 1 ≤ j ≤ qn}. Then by Lemma 6.12, P(E1) → 1,

as n→ ∞. For j = 1, . . . , qn, on the event E1, for any (βT , ξT )T ∈ B(λ),
min

1≤j≤qn
|βj | ≥ min

1≤j≤qn
|β̂∗

j | − max
1≤j≤qn

|β̂∗
j − βj | ≥ (a+ 1/2)λ− λ/2 = aλ.

So H ′
λ(βj) = λsgn(βj), i.e., µj =

∂l(β,ξ)
∂βj

= λsgn(βj). κj = sj(β̂
∗
, ξ̂

∗
)+λlj , for j = 1, 2, . . . , qn.
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By convex optimization theory or Lemma 6.12, sj(β̂
∗
, ξ̂

∗
) = 0. Then on the event E1, if

sgn(β̂∗
j ) = sgn(βj), we have that κj = ∂k(β̂

∗
,ξ̂

∗
)

∂βj
= µj . In fact, if sgn(β̂∗

j ) ̸= sgn(βj), then

on the event E1, |β̂∗
j − βj | = |β̂j

∗
| + |βj | ≥ (a + 1/2)λ, which causes contradition with that

(βT , ξT )T ∈ B(λ).
Define the event E2 = {|sj(β̂

∗
, ξ̂

∗
)| ≤ λ, qn + 1 ≤ j ≤ p}. For j = qn + 1, . . . , p, by the

construction of the oracle estimator, we have β̂∗
j = 0. Then for any (βT , ξT )T ∈ B(λ),

max
qn+1≤j≤p

|βj | ≤ max
qn+1≤j≤p

|β̂∗
j |+ max

qn+1≤j≤p
|β̂∗

j − βj | ≤ λ/2.

So in this situation, µj =
∂l(β,ξ)
∂βj

= 0. On the other hand, κj = sj(β̂
∗
, ξ̂

∗
)+λlj with lj ∈ [−1, 1].

On the event E2 = {|sj(β̂
∗
, ξ̂

∗
)| ≤ λ, qn + 1 ≤ j ≤ p}, there exists l∗j , j = qn + 1, . . . , p such

that sj(β̂
∗
, ξ̂

∗
) + λl∗j = 0 = µj .

For j = p+l, l = 1, . . . , Dn, by convex optimization theory or Lemma 6.12, κj = sj(β̂
∗
, ξ̂

∗
) =

0. Note that µj =
∂l(β,ξ)

∂ξl
= 0. So for j = p+ l, l = 1, . . . , Dn, κj = µj .

Combined with all results above, on the event E1 ∩ E2, we have for any (βT , ξT )T ∈ B(λ),
∂l(β, ξ) ∩ ∂k(β̂

∗
, ξ̂

∗
) ̸= ∅.

Note that P(E1 ∩ E2) ≥ 1− P(Ē1)− P(Ē2) → 1, as n→ ∞. The proof has been completed.
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