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Abstract. In this article, several kinds of novel exact waves solutions of three well-known

different space-time fractional nonlinear coupled waves dynamical models are constructed with

the aid of simpler and effective improved auxiliary equation method. Firstly we will investigate

space-time fractional coupled Boussinesq-Burger dynamical model, which is used to model the

propagation of water waves in shallow sea and harbor, and has many applications in ocean

engineering. Secondly, we will investigate the space-time fractional coupled Drinfeld-Sokolov-

Wilson equation which is used to characterize the nonlinear surface gravity waves propagation

over horizontal seabed. Thirdly, we will investigate the space-time-space fractional coupled

Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous

medium near a dam. We obtained different solutions in terms of trigonometric, hyperbolic,

exponential and Jacobi elliptic functions. Furthermore, graphics are plotted to explain the

different novel structures of obtained solutions such as multi solitons interaction, periodic soliton,

bright and dark solitons, Kink and anti-Kink solitons, breather-type waves and so on, which

have applications in ocean engineering, fluid mechanics and other related fields. We hope that

our results obtained in this article will be useful to understand many novel physical phenomena

in applied sciences and other related fields.

§1 Introduction

Waves play a vital role in the aquatic environment and more broadly influence the climate

of earth. Shallow water waves are one significant example of major aquatic waves [1-4]. These

waves are generated where the depth of water is shorter relative to the wave propagation. These

waves are also used in modeling of coastal regions, tidal flats, hydrodynamics of lakes and also
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to study the physical phenomena such as tidal fluctuation, storm surges and waves of tsunamis

[5-8]. So due to their great importance shallow water waves dynamics has become an essential

area of research [9-13]. With the achievement in the field of nonlinear science, a large number

of mathematical models are constructed and evaluated for comprehensive analysis of dynamical

behaviour of shallow water waves [14-18].

The coupled Drinfeld-Sokolov-Wilson (DSW) dynamical model is introduced as a water wave

model [3,19]. The authors in [20] investigate waves solutions in solitary form and their structure.

It was first introduced by Drinfeld and Sokolov, afterwards developed and modified by Wilson

in 1982. The time-space fractional DSW equation is used to characterize the nonlinear surface

gravity waves propagation over the horizontal seabed. Because of its imperative and vital

applications in hydrodynamical and physical science, a better understanding of its solutions is

also useful for interpretations behaviors of shallow water waves model in ocean engineering [21].

The authors in [22-24] studied the coupled Whitham-Broer-Kaup (cWBK) dynamical model

of long dispersive waves in shallow water and obtained it via utilizing Boussinesq approximation.

The parameters in this model represent different diffusion powers. The space-time fractional

cWBK equation is an important model which elaborates the propagation of shallow water waves

in a porous medium near a dam, it is also used to absorb wave energy and predict and prevent

tsunami. Due to its great significant applications, a better insight of its solutions is very useful

and beneficial for both engineers and physicists [25].

The time-space fractional Coupled-Boussinesq-Berger equation is a well-known model which

illustrates the generation and propagation of shallow water waves in a hydrodynamic system.

Due to the great significance of this shallow water waves equation model in ocean engineering,

a good insight of its solutions is useful and beneficial for coastal and civil engineers for im-

plementation of this shallow water wave model to harbor and coastal designs [26]. It is very

helpful for engineers and coastal engineers to pay attention to nonlinear water wave models in

different fields of science and engineering. Therefore, it is a basic curiosity of hydrodynamics

to find different types of traveling wave solutions of coupled systems.

The fractional calculus has attracted many researchers in the last and present centuries. The

impact of this fractional calculus in both pure and applied branches of science and engineering

[27-30]. A remarkable improvement has done in the field of nonlinear fractional differential

equations [31-34]. A large number of effective and convenient methods have been developed and

improved for overall exact and numerical solutions of nonlinear fractional differential equations

[35-39].

These nonlinear fractional differential equations are frequently used for precise modeling

of nonlinear phenomena occurring in the execution of shallow water waves [40-43]. The com-

prehensive study of the literature revealed that these equations exhibit their progressive and

beneficial use in the mathematical modeling of shallow water waves [44-46]. There are a huge

number of models of shallow water waves equations that are represented with the help of frac-

tional calculus [47-49]. So it become a curious topic for researchers. That’s why the new

definition of fractional derivatives called conformable fractional derivatives was proposed for

a better explanation of nonlinear phenomena [50]. In this way, a new direction in fractional

calculus was opened, which has shown to be interesting from a theoretical viewpoint and useful
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in the applications.

The conformable fractional derivative has two advantages over the classical fractional deriva-

tives. First, the conformable fractional derivative definition is natural and it satisfies most of

the properties which the classical integral derivative has such as linearity, product rule, quo-

tient rule, power rule, chain rule, vanishing derivatives for constant functions, Rolles theorem,

and mean value theorem. Second, the conformable derivative brings us a lot of conveniences

when it is applied to modelling many physical problems, because the differential equations with

conformable fractional derivatives are easier to solve numerically than those associated with

the Riemann-Liouville or Caputo fractional derivative [36-40]. In fact, many researchers have

already applied conformable fractional derivative to many fields and a lot of corresponding

techniques were developed [46-50].

The aim of the article is to plan an improved auxiliary equation method to obtain of three

well-known different space-time fractional nonlinear coupled waves dynamical models are con-

structed with the aid of conformable fractional derivatives. Furthermore graphics are plotted

to explain the different novel structures of obtained solutions such as multi solitons interaction,

periodic soliton, bright and dark solitons, Kink and anti-Kink solitons, breather type waves and

so on, which have applications in ocean engineering, fluid mechanics and other related fields.

The organization of this article is as follows: in Section 2, the conformable fractional deriva-

tives are described. In Section 3, the proposed improved auxiliary equation method is described

and its application is given in Section 4. The results are discussed in Section 5, and the con-

clusion is given in Section 6.

§2 Conformable fractional derivative

Innovative progress in fractional calculus opens a new porthole for researchers to elucidate

the physical phenomena in a new way. Lately, the authors [27-29,50] introduced a new simple

and thought provoking definition of fractional derivative (FD), named conformable FD. This

derivative is performed systematically and follows the Leibniz and chain rules as well. Here,

we give preliminaries of the new derivative with some effective and advantageous properties

[47,51].

Definition: The conformable fractional derivative of a function h = h(t) : [0,∞) → R, of order
δ, where 0 < δ 6 1, is defined as

Dη
t h(t) = lim

η→0

h
(
δt1−η + t

)
− h(t)

δ
.

The above conformable fractional derivative satisfied the following properties:

• Dη
t h(t) =

t1−η(dh(t))
dt .

• Dη
t t

m = mtn−η, ∀m ∈ R.

• Dη
t c = 0, ∀ constant functions h(t) = c.

• Dη
t (p1 ∗ h(t) + p2 ∗ h1(t)) = p1 ∗Dη

t h(t) + p2 ∗Dη
t h1(t), ∀p1, p2 ∈ R.

• Dη
t (h(t)h1(t)) = h(t)Dη

t h1(t) + h1(t)D
η
t h(t).
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• Dη
t h(t)
h1(t)

=
h1(t)D

η
t h(t)−h(t)Dη

t h1(t)
h1(t)2

.

• Dη
t (h ◦ h1)(t) = t1−ηh′

1(t)h
′(h1(t)).

§3 Proposed Improved auxiliary equation method

This section describes the algorithm of the improved extended auxiliary equation technique

for nonlinear FPDEs. Consider a general nonlinear FPDE having conformable space-time

fractional derivatives in the following form

R
(
U,Ux, D

a
xU,Ut, D

b
tU,Utx, D

a
x(D

b
tU), ...

)
= 0, 0 < a, b ≤ 1. (1)

above R is a polynomial function of U(x, t) corresponding to partial derivatives, nonlinear terms

and highest order derivatives. The following stages of this technique are as

Step 1: Assume the fractional traveling wave transformation as

U(x, t) = u(η), η = κ
xa

a
− λ

tb

b
. (2)

where λ and κ are constants. By utilizing the transformation (2) on Eq.(1), The Eq.(1) reduces

into ODE as

S(u′, u′′, u′′′, ...) = 0, (3)

where S is the polynomial function of u(η) and its derivatives.

Step 2: Assume the solution of Eq.(3) as

u(η) =
2N∑
i=0

ciF
i(η), (4)

where ai(i = 0, 1, 2, . . . , 2N) are arbitrary constants and N is a positive integer which is deter-

mined by applying the balance principle on Eq.(3). Let F (η) satisfy the novel ansatz ODE

F ′(η) =
√
a0 + a2F (η)2 + a4F (η)4 + a6F (η)6, (5)

where a0, a2, a4, a6 are arbitrary constants and Eq.(5) has the following solutions as

F (η) =
1

2

√
−a4
a6

(1± z(η)). (6)

It should be pointed out that z(η), can be expressed in terms of Jacobi elliptic functions (JEFs)

sn(η,m), cn(η,m), dn(η,m), their inverse ratio and so on, m is modulus of JEFs, and its value

is 0 < m < 1. When it realizes the value of 0 or 1, the Jacobian elliptic function is transformed

into a trigonometric function and hyperbolic function.

Step 3: Deputing Eqs. (4) and (5) into (3), collect and set the coefficient of F i(η) equal to

zero, the system of equations in parameters a0, a2, a4, a6, ci, ω and λ are attained. This system

will solved by Mathematica software for the parameters values.

Step 4: By deputy the parameters values along with solutions of Eq.(6) into Eq.(4), we get

the solutions of Eq.(1).

§4 Application of the described method

In this section, we use the improved auxiliary equation method to construct the solitary

wave solutions of the space-time fractional wave equations.
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4.1 Space-Time fractional coupled Boussinesq-Burger equation

The time-space fractional coupled Boussinesq-Burger equation, with a conformable fraction-

al derivative can be written as

Db
tU − 1

2
Da

xV + 2UDa
xU = 0,

Db
tV − 1

2
D3a

x U + 2Da
x(UV ) = 0, 0 < a, b ≤ 1. (7)

Assume the traveling waves solutions of the above equations as

U(x, t) = u(η) =
2n∑
i=0

ciF
i(η),

V (x, t) = v(η) =
2n′∑
j=0

cjF
j(η), η = κ

xa

a
− λ

tb

b
. (8)

Utilizing fractional traveling wave transformation (8) on Eq.(7), it reduces into ODE as

− λu′ − 1

2
κv′ + 2κuu′ = 0, (9)

− λv′ − 1

2
κ3u(3) + 2κ(uv)′ = 0. (10)

Integrating Eq.(9) with respect to η, by taking an integration constant equal to zero and solving

for the value of v, it yields

v = 2

(
u2 − λ

κ
u

)
. (11)

Substituting the Eq.(11) into Eq.(10), solving and integrating, it yields

κ4u′′ − 8κ2u3 + 12κλu2 − 4λ2u = 0. (12)

Utilizing the balancing principal on Eq.(12), got N = 1, and assume the solution as,

U(η) = c0 + c1F (η) + c2F (η)2. (13)

Substituting Eq.(13) along Eq.(5) into Eq.(12), it yields a system of algebraic in parameters

a0, a2, a4, a6, c0, c1, c2, κ and λ. These algebraic equations are resolved for the parameters with

the help of Mathematica, we have

c0 = −

4

√
3
√
a22 − 2a0a4 − a2

√
λ+

√
λ
(
a2 +

√
a22 − 2a0a4

)√
1

3
√

a2
2−2a0a4−a2

2 4
√
2

, c1 = 0,

c2 =

(√
a22 − 2a0a4 − a2

)√(
a2 +

√
a22 − 2a0a4

)√
λ2

3
√

a2
2−2a0a4−a2

2 4
√
2a0

,

a6 =
a4

(
a2 −

√
a22 − 2a0a4

)
4a0

,

κ = −
4
√
2
√
λ

4

√
3
√
a22 − 2a0a4 − a2

. (14)
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Substituting Eq.(14) into Eq.(6), it yields

F (η) =

√
− a0(1± z(η))

a2 −
√

a22 − 2a0a4
. (15)

Substituting the values z(η) in terms of Jacobi elliptic functions and putting in Eq.(13), it yields

the solutions as

Case 1: If a0 =
a3
4(m

2−1)
32a2

6m
2 , a2 =

a2
4(5m

2−1)
16a6m2 , a6 > 0 then

U11(η) =

√
λ

(
− 4

√
3
√
a22 − 2a0a4 − a2 ±

√
a2+

√
a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

sn(τη)

)
2 4
√
2

, (16)

V11(η) = 2

(
U2
11 −

λU11

κ

)
. (17)

or

U12(η) =

√
λ

− 4

√
3
√
a22 − 2a0a4 − a2 ±

√√√√ a2+
√

a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

msn(τη)


2 4
√
2

, (18)

V12(η) = 2

(
U2
12 −

λU12

κ

)
. (19)

As m → 1, Eq.(18) and Eq.(19) generate the following solutions,

U13(η) =

√
λ

(
− 4

√
3
√
a22 − 2a0a4 − a2 ±

√
a2+

√
a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

coth(τη)

)
2 4
√
2

, (20)

V13(η) = 2

(
U2
13 −

λU13

κ

)
. (21)

Case 2: If a0 =
a3
4(1−m2)
32a2

6
, a2 =

a2
4(5−m2)
16a6

and a6 > 0, then

U21(η) =

√
λ

(
− 4

√
3
√

a22 − 2a0a4 − a2 ±
√

a2+
√

a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

msn(τη)

)
2 4
√
2

, (22)

V21(η) = 2

(
U2
21 −

λU21

κ

)
. (23)

or

U22(η) =

√
λ

− 4

√
3
√
a22 − 2a0a4 − a2 ±

√√√√ a2+
√

a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

sn(τη)


2 4
√
2

, (24)

V22(η) = 2

(
U2
22 −

λU22

κ

)
. (25)
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Figure 1. The graph of solutions (35) and (36) are depicted at different values of parameters
and we obtained: (A) Multi solitons interaction, (B) periodic ten solitons, (C) 2D plot of U
and (D) 2D plot of V .

Figure 2. The graph of solutions (38) and (39) are depicted at different values of parameters
and we obtained: (A) Kink-type wave, (B) dark soliton, (C) 2D plot of U and (D) 2D plot of
V .

As m → 1, solutions (22) and (23) generate the following solutions,

U23(η) =

√
λ

(
− 4

√
3
√
a22 − 2a0a4 − a2 ±

√
a2+

√
a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

tanh(τη)

)
2 4
√
2

, (26)

V23(η) = 2

(
U2
23 −

λU23

κ

)
. (27)

Case 3: If a0 =
a3
4

32a2
6(1−m2)

, a2 =
a2
4(4m

2−5)
16a6(m2−1) , a6 > 0,

U31(η) =

√
λ

− 4

√
3
√
a22 − 2a0a4 − a2 ±

√√√√ a2+
√

a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

cn(τη)


2 4
√
2

, (28)
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V31(η) = 2

(
U2
31 −

λU31

κ

)
. (29)

or

U32(η) =

√
λ

− 4

√
3
√
a22 − 2a0a4 − a2 ±

√
fraca2+

√
a2
2−2a0a4

√
3
√

a2
2−2a0a4−a2dn(τη)

√
1−m2sn(τη)


2 4
√
2

, (30)

V32(η) = 2

(
U2
32 −

λU32

κ

)
. (31)

As m → 0,Eq.(32) and Eq.(33) generate the following solutions,

U33(η) =

√
λ

(
− 4

√
3
√
a22 − 2a0a4 − a2 ±

√
a2+

√
a2
2−2a0a4√

3
√

a2
2−2a0a4−a2

csc(τη)

)
2 4
√
2

, (32)

V33(η) = 2

(
U2
33 −

λU33

κ

)
. (33)

Special solutions: It should be noted that the Eq.(5) has some special solutions other than

Jacobi elliptic function solutions, which are as follows:

Case IV: If a0 = 0, a6 = 0 and a2 < 0, a4 > 0 then, applying the conditions on parametric

equations system, we obtained the values of parameters as

κ =
λ

2c0
, a2 = −32c40

λ2
, a4 =

16c20c
2
1

λ2
, c2 = 0. (34)

The following solution of equation (7) from solution set (34) is obtained as

U41(η) =
λ√
2κ

(
1√
2
+ sec

(√
2λη

κ2

))
, (35)

V41(η) = 2

(
U2
41 −

λU41

κ

)
. (36)

Case V: If a0 =
a2
2

4a4
, a6 = 0 and a2 < 0, a4 > 0 then, applying the conditions on the parametric

equations system, we obtained the values of parameters as

λ = 2c0κ, a2 = −8c20
κ2

, a4 =
4c21
κ2

, c2 = 0. (37)

The following solution of equation (7) from the solution set (37) is obtained as

U51(η) =
λ

2κ

(
1± tanh

(
λη

κ2

))
, (38)

V51(η) = 2

(
U2
51 −

λU51

κ

)
. (39)

4.2 Space-Time fractional coupled Drinfeld-Sokolov-Wilson equation

The space-time fractional coupled DSW equation is another distinguished nonlinear shallow

water wave model that describes the significant characteristics of shallow water waves. The

space-time fractional Drinfeld-Sokolov-Wilson equation with conformable fractional derivative
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can be written as

Db
tU + δV Da

xV = 0,

Db
tV + αD3a

x V + βUDa
xV + γV Da

xU = 0, 0 < a, b ≤ 1. (40)

Assume the traveling waves solutions of the above equations as

U(x, t) = U(η) =

2n1∑
i=0

ciF
i(η),

V (x, t) = V (η) =

2n′
1∑

j=0

cjF
j(η), η = κ

xa

a
− λ

tb

b
. (41)

Applying fractional traveling wave transformation (41) on Eq.(40), it reduces to ODE as

− λU ′ + δκV V ′ = 0, (42)

− λV ′ + ακ3V (3) + βωUV ′ + γωV U ′ = 0. (43)

Integrating Eq.(42) with respect to η, by taking an integration constant equal to zero and

solving for the value of U , it yields

U =
δκ

2λ
V 2. (44)

Substituting the Eq.(44) into Eq.(43), solving and integrating, it yields

2αλκ3V ′′ − 2λ2V +
δκ2

3
(β + 2γ)V 3 = 0. (45)

Utilizing the balancing principal on Eq.(45), got n1 = 1, and assume the solution in the form

as,

V (η) = c0 + c1F (η) + c2F (η)2. (46)

Substituting Eq.(46) along Eq.(5) into Eq.(45), it yields a system of algebraic equations in pa-

rameters a0, a2, a4, a6, c0, c1, c2, α, β, γ, δ, κ and λ. This algebraic system of equations is resolved

with the help of Mathematica, we have

α =
λ(

a2 + 3
√

a22 − 2a0a4

)
κ3

,

β = −
2
(
3
√

a22 − 2a0a4
(
γc20δκ

2 − λ2
)
+ a2

(
γc20δκ

2 + 3λ2
))

c20κ
2
(
a2δ + 3

√
a22 − 2a0a4δ

) ,

c1 = 0, c2 =
a2c0 −

√
(a22 − 2a0a4) c20
a0

,

a6 =
a4

(
a2 +

√
a22 − 2a0a4

)
4a0

. (47)

Substituting Eq.(47) into Eq.(6),it yields

F (η) =

√
− a0(1± z(η))

a2 +
√

a22 − 2a0a4
. (48)

By deputing substituting the values z(η) in terms of Jacobi elliptic functions and putting in

Eq.(46), it yields the following results as
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Case 1: If a0 =
a3
4(m

2−1)
32a2

6m
2 , a2 =

a2
4(5m

2−1)
16a6m2 , a6 > 0 then

V11(η) =

1−

(
a2 −

√
a22 − 2a0a4

)
(1± sn(τη))

a2 +
√
a22 − 2a0a4

 c0, (49)

U11(η) =
δκ

2λ
V 2
11. (50)

or

V12(η) =

1−

(
a2 −

√
a22 − 2a0a4

)(
1± 1

msn(τη)

)
a2 +

√
a22 − 2a0a4

 c0, (51)

U12(η) =
δκ

2λ
V 2
12. (52)

As m → 1, Eq.(51) and Eq.(52) generate the following solutions,

V13(η) =

1−

(
a2 −

√
a22 − 2a0a4

)
(1± coth(τη))

a2 +
√
a22 − 2a0a4

 c0, (53)

U13(η) =
δκ

2λ
V 2
13. (54)

Case 2: If a0 =
a3
4(1−m2)
32a2

6
, a2 =

a2
4(5−m2)
16a6

and a6 > 0, then

V21(η) =

1−

(
a2 −

√
a22 − 2a0a4

)
(1±msn(τη))

a2 +
√
a22 − 2a0a4

 c0, (55)

U21(η) =
δκ

2λ
V 2
21. (56)

or

V22(η) =

1−

(
a2 −

√
a22 − 2a0a4

)(
1± 1

sn(τη)

)
a2 +

√
a22 − 2a0a4

 c0, (57)

U22(η) =
δκ

2λ
V 2
22. (58)

As m → 1, solutions (55) and (56) generate the following solutions

V23(η) =

1−

(
a2 −

√
a22 − 2a0a4

)
(1± tanh(τη))

a2 +
√
a22 − 2a0a4

 c0, (59)

U23(η) =
δκ

2λ
V 2
23. (60)

Case 3: If a0 =
a3
4

32a2
6(1−m2)

, a2 =
a2
4(4m

2−5)
16a6(m2−1) , a6 > 0,

V31(η) =

1−

(
a2 −

√
a22 − 2a0a4

)(
1± 1

cn(τη)

)
a2 +

√
a22 − 2a0a4

 c0, (61)

U31(η) =
δκ

2λ
V 2
31. (62)
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or

V32(η) =

1−

(
a2 −

√
a22 − 2a0a4

)(
1± dn(τη)√

1−m2sn(τη)

)
a2 +

√
a22 − 2a0a4

 c0, (63)

U32(η) =
δκ

2λ
V 2
32. (64)

As m → 0, solutions (63) and (64) generate the following solutions

Figure 3. The graph of solutions (66) and (65) are depicted evaluate at different values of
parameters: (A) Multi-peak solitons of higher amplitude 6000 units, (B) Multi peak solitons of
shorter amplitude of 200 units, (C) 2D plot of U and (D) 2D plot of V .

V33(η) = (1−

(
a2 −

√
a22 − 2a0a4

)
(1± csc(τη))

a2 +
√
a22 − 2a0a4

)c0, (65)

U33(η) =
δκ

2λ
V 2
33. (66)

Special solutions: It should be noted that the Eq.(5) has some special solutions other than

Jacob elliptic function solutions, which are as:

Case IV: If a0 = 0, a6 = 0 and a2 > 0, a4 < 0 then, applying the conditions on the parametric

equations system, we obtained the values of parameters as

a2 =
λ

ακ3
, a4 = −c21δ(β + 2γ)

12ακλ
, c0 = 0, c2 = 0. (67)

The following solution of equation (40) from solution set (67) is obtained as

V41(η) =
2λ

κ

√
3

δ(β + 2γ)
sech

(√
λ

ακ3
η

)
, (68)

U41(η) =
V 2
41(δκ)

2λ
. (69)

Case V: If a0 =
a2
2

4a4
, a6 = 0 and a2 < 0, a4 > 0 then, applying the conditions on parametric

equations system, we obtained the values of parameters as

α = −c21δ(β + 2γ)

12a4κλ
, a2 = − 12a4λ

2

c21δκ
2(β + 2γ)

, c0 = 0, c2 = 0. (70)
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Figure 4. The The graph of wave solutions (69) and (68) are depicted at different values of
parameters: (A) bright soliton of solution U , (B) dark soliton of solution V , (C) 2D plot of U
and (D) 2D plot of V .

The following solution of equation (40) from the solution set (70) is obtained as

V51(η) = ±λ

κ

√
6

δ(β + 2γ)
tanh

λ
√

6a4

δ(β+2γ)

κ
c1η

 , (71)

U51(η) =
V 2
51(δκ)

2λ
. (72)

4.3 Space-Time fractional coupled Whitham-Broer-Kaup equation

The space-time fractional Whitham-Broer-Kaup equation, with conformable fractional deriva-

tive can be written as,

Db
tU + UDa

xU +Da
xV + ϵD2a

x U = 0,

Db
tV +Da

x(UV )− ϵD2a
x V + ρD3a

x U = 0, 0 < a, b ≤ 1. (73)

Assume the traveling waves solutions of the above equations as

U(x, t) = U(η) =

2n2∑
i=0

ciF
i(η),

V (x, t) = V (η) =

2n′
2∑

j=0

cjF
j(η), η = κ

xa

a
− λ

tb

b
. (74)

Applying fractional traveling wave transformation (74) on Eq.(73), it reduces to ODE as

− λU ′ + κUU ′ + κV ′ + κ2ϵU ′′ = 0, (75)

− λV ′ + κ(UV )′ − κ2ϵV ′′ + ρκ3U ′′′ = 0. (76)

Integrating Eq.(75) with respect to η, by taking an integration constant equal to zero and

solving for value of U ,it yields

V =
λU

κ
− U2

2
− κϵU ′. (77)



Ambreen Sarwar, et al. Breathers and multi wave solutions of three different ... 45

Substituting the Eq.(77) into Eq.(76),solving and integrating ,it yields

(ρ+ ϵ2)κ3U ′′ − λ2U

κ
+

3

2
λU2 − κU3

2
= 0. (78)

Utilizing the balancing principal on Eq.(78), got n2 = 1, and assume the solution as

U(η) = c0 + c1F (η) + c2F (η)2. (79)

Substituting Eq.(79) along Eq.(5) into Eq.(78), it yields a system of algebraic equations in

parameters a0, a2, a4, a6, c0, c1, c2,ϵ,ρ,κ and λ . This algebraic system of equations is resolved

with the help of Mathematica, we obtained the parameters values as

ρ =
1

4


(
a2 + 3

√
a22 − 2a0a4

)
λ2

(4a22 − 9a0a4)κ4
− 4ϵ2

 ,

c0 =
λ

κ

1− a2 +
√
a22 − 2a0a4√

2
(√

a22 − 2a0a4a2 + (a22 − 3a0a4)
)
 ,

c1 = 0, c2 =

√
2a4λ√√

a22 − 2a0a4a2 + (a22 − 3a0a4)κ
,

a6 =
a4

(
a2 −

√
a22 − 2a0a4

)
4a0

. (80)

Substituting Eq.(80) into Eq.(6),it yields

F (η) =

√
− a0(1± z(η))

a2 −
√

a22 − 2a0a4
. (81)

Deputing the values z(η) in terms of JEFs, it yields the following solutions as

Case 1: If a0 =
a3
4(m

2−1)
32a2

6m
2 , a2 =

a2
4(5m

2−1)
16a6m2 , a6 > 0 then

U11(η) =

λ

(√
2a0a4(2± sn(τη)) +

(√
a2
2 − 2a0a4 − a2

)√
a2

(
a2 +

√
a2
2 − 2a0a4

)
− 3a0a4

)
(√

a2
2 − 2a0a4 − a2

)√
a2

(
a2 +

√
a2
2 − 2a0a4

)
− 3a0a4κ

, (82)

V11(η) =
λU11

κ
− κϵU ′

11 −
U2

11

2
. (83)

or

U12(η) =

λ

(
√
2a0a4

(
2± 1

msn(τη)

)
+

(√
a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4

)
(√

a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4κ

, (84)

V12(η) =
λU12

κ
− κϵU ′

12 −
U2
12

2
. (85)
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As m → 1, solutions (84) and (85) generate the following solutions

U13(η) =

λ

(
√
2a0a4(2± coth(τη)) +

(√
a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4

)
(√

a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4κ

, (86)

V13(η) =
λU13

κ
− κϵU ′

13 −
U2
13

2
. (87)

Case 2: If a0 =
a3
4(1−m2)
32a2

6
, a2 =

a2
4(5−m2)
16a6

and a6 > 0, then

U21(η) =

λ

(
√
2a0a4(2±msn(τη)) +

(√
a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4

)
(√

a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4κ

, (88)

V21(η) =
λU21

κ
− κϵU ′

21 −
U2
21

2
. (89)

or

U22(η) =

λ

(
√
2a0a4

(
2± 1

sn(τη)

)
+

(√
a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4

)
(√

a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4κ

, (90)

V22(η) =
λU22

κ
− κϵU ′

22 −
U2
22

2
. (91)

As m → 1, solutions (88) and (89) generate the following solutions,

U23(η) =

λ

(
√
2a0a4(2± tanh(τη)) +

(√
a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4

)
(√

a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4κ

, (92)

V23(η) =
λU23

κ
− κϵU ′

23 −
U2
23

2
. (93)

Case 3: If a0 =
a3
4

32a2
6(1−m2)

, a2 =
a2
4(4m

2−5)
16a6(m2−1) , a6 > 0,

U31(η) =

λ

(√
2a0a4

(
2± 1

cn(τη)

)
+

(√
a2
2 − 2a0a4 − a2

)√
a2

(
a2 +

√
a2
2 − 2a0a4

)
− 3a0a4

)
(√

a2
2 − 2a0a4 − a2

)√
a2

(
a2 +

√
a2
2 − 2a0a4

)
− 3a0a4κ

, (94)

V31(η) =
λU31

κ
− κϵU ′

31 −
U2

31

2
. (95)

or

U32(η) =

λ

(
√
2a0a4

(
2 ± dn(τη)√

1−m2sn(τη)

)
+

(√
a2
2 − 2a0a4 − a2

)√
a2

(
a2 +

√
a2
2 − 2a0a4

)
− 3a0a4

)
(√

a2
2 − 2a0a4 − a2

)√
a2

(
a2 +

√
a2
2 − 2a0a4

)
− 3a0a4κ

, (96)
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V32(η) =
λU32

κ
− κϵU

′
32 −

U2
32

2
. (97)

As m → 0, solutions (96) and (97) generate the following solutions

U33(η) =

λ

(
√
2a0a4(2± csc(τη)) +

(√
a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4

)
(√

a22 − 2a0a4 − a2

)√
a2

(
a2 +

√
a22 − 2a0a4

)
− 3a0a4κ

, (98)

V33(η) =
λU33

κ
− κϵU ′

33 −
U2
33

2
. (99)

Special solutions: It should be noted that the Eq.(5) has some special solutions other than

Jacobi elliptic function solutions, which are as:

Case IV: If a0 = 0, a6 = 0 and a2 < 0, a4 > 0, then applying the conditions on the parametric

equations system, we obtained the values of parameters as

κ =
λ

c0
, a2 = − c40

2λ2 (ρ+ ϵ2)
, a4 =

c20c
2
1

4λ2 (ρ+ ϵ2)
, c2 = 0. (100)

The following solution of equation (73) from solution set (100) is obtained as

U41(η) =
λ

κ
(1 +

√
2sech

λ
√
− 1

2(ρ+ϵ2)η

κ2

), (101)

V41(η) =
λU41

κ
− κϵU ′

41 −
U2
41

2
. (102)

Case V: If a0 =
a2
2

4a4
, a6 = 0 and a2 < 0, a4 > 0 then, applying the conditions on parametric

equations system, we obtained the values of parameters as

ϵ =

√
c21 − 4a4κ2ρ

2
√
a4κ

, λ = c0κ, a2 = −2a4c
2
0

c21
, c2 = 0. (103)

Figure 5. The graph of waves solutions (101) and (102) are depicted at different values of
parameters: (A) Breather wave of strange structure, (B) Dark type breather waves of different
amplitude, (C) 2D plot of U and (D) 2D plot of V .
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The following solution of equation (73) from solution set (103) is obtained as

U51(η) =
λ

κ
(1± tanh

(
η
(√

a4c1λ
)

κ

)
), (104)

V51(η) =
λU51

κ
− κϵU ′

51 −
U2
51

2
. (105)

§5 Discussion of results and Physical Interpretation of results

It has been observed that the exact waves solutions of space-time fractional coupled dy-

namical equations constructed via the current method are novel and in more general form.

For the first coupled wave model which is space-time fractional coupled Boussinesq-Burger dy-

namical equation, on comparing the solutions to the generalized kudryashov method [26], it

has been seen that our solutions are more simple, general and novel. Similarly, for the second

coupled wave model which is space-time fractional coupled Drinfeld-Sokolov-Wilson dynamical

equation, on comparing the solutions to Sine-Gordon expansion method [21], it has been seen

some of our solutions are similar by taking different values of parameters and the remaining

solutions are novel. For the third coupled wave model which is a space-time fractional coupled

Whitham-Broer-Kaup equation, on comparing the solutions to modified exp-function method

[25], it has been observed that our solutions are in a more general and simpler form. It indicates

that our method is more effective, simple and has easy implementations. The advantages of

this technique are as

• The attained results concerned with some unknown parameters which are used to obtain

the different kinds of structures of solutions.

• Our results are more general and comprehensive.

• The current technique gives many types of novel soliton solutions to explore many physical

phenomena in nonlinear physical sciences and other related field.

• Our techniques are very useful and easy to study, when the balance number is high.

• This technique is more suitable for exploring exact soliton solutions than these of the

other schemes.

Figures 1 and 2 elaborate the wave solutions in various shapes of space-time fraction-

al coupled Boussinesq-Burger equation. The Figures 3 and 4, elaborate the solitons wave

in various shapes of space-time fractional coupled Drinfeld-Sokolov-Wilson equation. In the

Figure 5, elaborates the analytical wave solutions in various shapes of space-time fraction-

al coupled Whitham-Broer-Kaup dynamical equation. We use different values of parameters

a0, a2, a4, a, b, α, β, γ, ϵ, ρ, κ, λ and τ , for obtaining a novel graphical representation of solutions

which is helpful for researcher to understand the physical phenomena of these fractional models.
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§6 Conclusions

In this work, the proposed improved auxiliary equation method has been successfully used

to obtain analytical wave solutions of three well-known different space-time fractional nonlinear

coupled waves dynamical models, namely, space-time fractional coupled Boussinesq-Burger dy-

namical model, space-time fractional coupled Drinfeld-Sokolov-Wilson equation and space-time

fractional coupled Whitham-Broer-Kaup equation. We obtained different solutions in terms

of trigonometric, hyperbolic, exponential and Jacobi elliptic functions. Furthermore graphics

are plotted to explain the different novel structures of obtained solutions such as multi solitons

interaction, periodic soliton, bright and dark solitons, multi peak solitons, Kink and anti-Kink

solitons, breather type waves and so on, which have applications in ocean engineering, fluid

mechanics and other related fields. We hope that our results obtained in this article will be

useful to understand many novel physical phenomena in physical sciences and other related

fields. Our future work would be intense towards investigating the new wave solutions of other

fractional models of higher order and dual-mode models by using this scheme. Furthermore,

the executed techniques can be employed for further studies to explain the realistic phenomena

arising in fluid dynamics correlated with any physical and engineering problems.
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