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Chirped solutions and dynamical properties of the

resonant Schrödinger equation with quadratic-cubic

nonlinearity

TANG Jia-xuan

Abstract. In this paper, the nonlinear Schrödinger equation combining quadratic-cubic non-

linearity is considered, which can be represented by an approximate model of relatively dense

quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved

the existence of solitary and periodic solutions. The methods we take are the trial equation

method and the complete discrimination system for polynomial method. Therefore, we obtain

the exact chirped solutions, which are more abundant in type and quantity than the existing

results, so that the equation has more profound physical significance. These two methods are

rigorously mathematical derivation and calculations, rather than based on certain condition-

al assumptions. In addition, we give some specific parameters to graphing the motion of the

solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.

§1 Introduction

Nonlinear science is involved in optical fiber, communications and more, scholars use non-

linear partial differential equations to build mathematical models and mathematical physi-

cal knowledge to describe some nonlinear phenomena[1]. The nonlinear Schrödinger equation

(NLSE) is one of the common nonlinear partial differential equations, which describes the mod-

ulation equation for nonlinear waves and covers almost all branches of physics. For example,

Bose-Einstein condensation(BEC), superconductivity and superfluidity, optical soliton commu-

nication, soliton lasers and optical waveguides in nonlinear optics[2-5]. In nonlinear optics,

conditions based on a balance between group velocity dispersion (GVD) and self-phase mod-

ulation (SPM) allow optical solitons to propagate over long distances in uniformly nonlinear

fiber without amplitude attenuation or shape change[6]. However, for the propagation of sub-

picosecond and femtosecond pulses in fibres, not only GVD and SPM but also higher order terms
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such as third and fourth-order dispersions, self-steepening and Raman self-frequency need to be

considered[7,8]. In recent years, the quadratic and cubic nonlinearities in the field of nonlinear

optics have received special attention[9]. The nonlinear Schrödinger equation, which incorpo-

rates both quadratic and cubic nonlinearities, is often employed as an approximate model for

describing the dynamics of a relatively dense quasi-one-dimensional BEC. This equation can be

derived by considering the interplay of attractive and repulsive interactions between atoms in

the BEC, allowing for a more comprehensive representation of the behavior of condensates com-

pared to a standard NLSE with only quadratic nonlinearity. The inclusion of cubic nonlinearity

allows for a more accurate description of certain physical phenomena in such systems[10,11].

The resonant NLSE with quadratic-cubic nonlinearity studied in this paper plays a very impor-

tant role in describing the phenomenon of analogue pulse propagation in optical fiber[12-15],

the governing resonant NLSE, for quadratic and cubic nonlinearities, with perturbation terms

that is studied in nonlinear optics is given in its dimensionless form as:

iht + a1hxxh+ a2
|h|xx
h

h+
(
a3 |h|+ a4|h|2

)
h = iαhx

+iλ
(
|h|2mh

)
x
+ iθ1

(
|h|2m

)
x
h+ iθ2|h|2mhx + σ

h∗
xx

|h|2
h2,

(1)

where h(x, t) shows the wave profile of complex valued with i =
√
−1. x, t denote time and

space variables respectively. a1 and a2 are the group velocity dispersion and Boham potential for

chiral solitons with quantum hall cause respectively. The terms a3 and a4 are quadratic-cubic

nonlinear together. The α indicates inter-model dispersion, also λ illustrates self-steepening

having short pulses, while θ1 and θ2 are associated with nonlinear dispersions. The parameter

m is the full nonlinearity. Biswas et al. applied the semi-inverse variational principle to retrieve

the solitary solutions of Eq.(1)[16]. Seadawy et al. achieved optical solitons and solitary waves

solutions of Eq.(1) by employing F-expansion method[17]. One of the new developments in

this paper is the adoption of chirped wave transformation, which is more common than linear

transformation.

Research has shown the importance of chirped pulses in pulse compression and amplifi-

cation, and scholars have conducted numerous experiments with chirped pulses to demon-

strate their irreplaceable role in the design of optical fiber amplifier and solitary waves-based

communications[18-21]. Moreover, based on the wide application of chirped pulse amplification

techniques in optics and dynamics, the study of chirped solutions has important theoretical

significance and application value[22-25]. Therefore, it is particularly important to explore the

applications of solutions of NLSE, especially exact chirped solutions and traveling wave solu-

tions, where we can analyze and interpret various nonlinear physical phenomena[26-29]. Mecelti

et al. investigated chirped self-similar waves for NLSE [30]. Zhou et al. applied a direct method

to conduct chirp waves of higher-order NLSE [31]. Arshed used the
(

G
′

G2

)
-expansion technique

and an equivalent form for the (exp (−ϕ (ξ)))-expansion technique to extract new exact solutions

of the resonant fractional NLSE [32]. Bulut et al. structured an extended sinh-Gordon equation

expansion method to construct various optical solitions of the nonlinear resonant Schrödinger

equation with space-time dispersion and intermodal dispersion [33]. Rezazadeh et al. studied
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the optical solition of the generalized non-autonomous NLSE by using the new Kudryashov

method (NKM) and tested the above model with a time correlation coefficient[34]. Mustafa et

al. derived dark, bright, dark-bright or combined optical solition and singular solition based on

three nonlinear dielectric fibers with the sine-Gordon equation method (SGEM)[35].

With the study of nonlinear development equations and the flexible use of methods such

as SGEM, NKM and SVP, many types of solutions have been solved. In addition, there are

many ways to solve the exact solutions of the nonlinear partial differential equations, such

as Kudryashov method[36], generalized auxiliary equation technique[37], fractional Iteration

algorithm [38,39], Variational Iteration algorithm-I [40,41], Variational iteration algorithm-

II[42,43], Riccatti transformation method [44], meshless techniques[45,46], modified
(

G
′

G2

)
-

expansion method[47]. By using these methods, exact solutions whose type are Jacobi elliptic,

singular periodic, kink wave, algebraic soliton can be obtained. The approaches used in this

paper are the trial equation method[48-52] and the complete discrimination for polynomial

method[53-54], which are widely used in the field of exact solution solving, and systematically

provide all the classifications of solutions, including solitary waves, rational functions, Jacobi

elliptic functions, and trigonometric functions. As long as the parameters are given, we can

know what the form and type of the solutions are and which are stable or unstable[48-55].

However, these methods can only achieve single traveling wave solutions, not obtain multiple

solitary solutions. Further research is needed to improve the limitations of these approaches.

The full text is organized as follows. In Section 2, the equation is converted into integral

form by using the trial equation method. In Section 3, based on the bifurcation method,

the existence of different types of solutions is proved. In Section 4, the chirped solutions are

obtained with the complete discrimination for polynomial method. In Section 5, some graphs

of the solutions are given to help understand the physical interpretation of the model. In the

last section, we give the conclusion.

§2 Trial equation method

Considering chirped transform, we substitute Eq.(2) into the Eq.(1)

h (x, t) = ρ (ξ) ei(χ(ξ)−kx), ξ = t− ux, (2)

where u = 1
v , v expresses speed, k is the wave number, then we derive the real part

u2 (a1 + a2 − σ) ρ
′′
+ (−1− 2kua1 + αu− 2σku)ρχ

′

+u2(−a1 − σ)ρ
(
χ

′
)2

+ k (−a1k + α− σk) ρ+ a3ρ
2 + a4ρ

3

+u (λ+ θ2) ρ
2m+1χ

′
++k (λ+ θ2) ρ

2m+1 = 0,

(3)

and the imaginary part

(1 + 2a1ku+ αu+ 2σku) ρ
′
+ 2u2(a1 + σ)ρ

′
χ

′
+ u2(a1 + σ)ρχ

′′

+u[λ(2m+ 1) + 2mθ1 + θ2]ρ
′
ρ2m = 0.

(4)

Integration of the imaginary part gives

χ
′
=

c

u2 (a1 + σ)
ρ−2 − λ(2m+ 1) + 2mθ1 + θ2

u (a1 + σ)
ρ2m − 1 + 2a1ku+ αu+ 2kuσ

2u2 (a1 + σ)
. (5)
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Substituting Eq.(5)into the real part, we get

u2(a1 + a2 − σ)ρ′′ − (λ+θ2)(2λm+λ+2mθ1+θ2)
a1+σ ρ4m+1

+
[
k (λ+ θ2)− 4αu2(2λm+λ+2mθ1+θ2)+(1+2a1ku+αu+2kσu)

2u2(a1+σ)

]
ρ2m+1

+
[
k(−a1k + α− σk) + (1+2a1ku+αu+2kσu)(1+2a1ku−3αu+2kσu)

4u2(a1+σ)

]
ρ

+
[
c(λ+θ2)
u(a1+σ) + 2cu(2λm+ λ+ 2mθ1 + θ2)

]
ρ2m−1

−c2ρ−3 + a3ρ
2 + a4ρ

3 = 0

(6)

For ρ, Eq.(6)is not integrable. Therefore, the trial equation method is used to convert it into

an integral form. We assume that the trial equation is

ρ′′ =
n∑

i=1

biρ
i. (7)

Substitute Eq.(7) into Eq.(6), then using the principle of equilibrium we can arrive at m = 1
2 ,

n = 3, Eq.(7) can be written as the following

ρ′′ = b3ρ
3 + b2ρ

2 + b1ρ+ b0, (8)

where
b3 = −2a4(a1+σ)+[λ(2m+1)+2mθ1+θ2](λ+θ2)

2u2(a1+a2−σ)(a1+σ) ,

b2 = −2u2(a1+σ)[a3+k(λ+θ2)]+4αu2[λ(2m+1)+2mθ1+θ2]+(1+2a1ku+αu+2σku)
2u4(a1+a2−σ)(a1+σ) ,

b1 = 4u2k(a1k−α+σk)(a1+σ)−(1+2a1ku+αu+2σku)(1+2a1ku−3αu+2σku)
4u4(a1+a2−σ)(a1+σ) ,

b0 = −2cu2(a1+σ)[λ(2m+1)+2mθ1+θ2]−c(λ+θ2)
u3(a1+a2−σ)(a1+σ) .

(9)

Integrating both sides of Eq.(8) by multiplying by ρ′, and make κ = ρ+ b2
3b3

.

(ρ′)
2
= c4ρ

4 + c3ρ
2 + c2ρ+ c1, (10)

where
c4 = b3

2 ,

c3 =
3b1b3−b22

3b3
,

c2 =
4b23+12b1b2b3+36b23b0

18b23
,

c1 =
−3b42−18b22b1b3

162b33
− 2b1b2+6b23c0

3b3
.

(11)

§3 Qualitative studies to Eq. (10)

Based on the bifurcation theory, we can analyze Eq.(10). It is transformed into a two-

dimensional dynamical system. {
dρ
dξ = q,
dq
dξ = 2c4(ρ

3 + η1ρ+ η2),
(12)

where η1 = c3
2c4

, η2 = c2
4c4

. The following Hamiltonian function can represent its total energy.

H(ρ, q) =
q2

2
− 1

2
(c4ρ

4 + c3ρ
2 + c2ρ+ c1), (13)

where ρ represents generalized momentum and q represents generalized coordinates. We con-

sider the Eq. (10) to be conservative, therefore the trajectory is located on the contour line of

H(ρ, q) = D, where D is a constant.
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The potential energy formula can be expressed as

I(ρ) = −1

2
(c4ρ

4 + c3ρ
2 + c2ρ+ c1). (14)

We discuss the root of I ′(ρ) in order to analyze the dynamical properties of Eq.(9)

I ′(ρ) = −2c4(ρ
3 + η1ρ+ η2), (15)

its complete discrimination system is as follows

∆ = −(27η32 + 4η31). (16)

Scenario 1. ∆ = 0, η1 < 0, then I
′
(ρ) = −2c4(ρ− α1)(ρ− α2)

2, and α1 + 2α2 = 0.

If c4 < 0, the center is (α1, 0). If c4 > 0, the saddle point and cusp are (α1, 0) and (α2, 0).

When c4 = −1, η1 = −3, η2 = 2, then (−2, 0) is a center, (1,0) is called cusp. We see in Fig.1, the

nonlinear periodic trajectory is a closed curve in blue, which indicates the existence of periodic

solutions, and the nonlinear homoclinic trajectory is represented by a red curve, corresponding

to a bell-shaped solitary solution. The black curve represents the the supernonlinear periodic

trajectories.

Scenario 2. ∆ < 0, thenI
′
(ρ) = −2c4(ρ− α1)[(ρ− α2)

2 + α3
2].

At this point, (α1, 0) is a center. When c4 = −1, η1 = −2, η2 = −4, then (2, 0) is a center.

We see in Fig.2, the black closed curve containing the center point is the nonlinear periodic

trajectory, which denotes the existence of periodic solutions.
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Figure 1. Corresponding phase portrait of Scenario 1.
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Figure 2. Corresponding phase portrait of Scenario 2.

Scenario 3. ∆ = 0, η1 = 0, then I
′
(v) = −2c4ρ

3.
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Which (0,0) is a center, this situation is similar to Scenario 2, so we will only discuss one of

them.

Scenario 4. ∆ > 0, η1 < 0, then I
′
(ρ) = −2c4(ρ− α1)(ρ− α2)(ρ− α3), α1 + α2 + α3 = 0,

and α1 > α2 > α3.

If η2 ̸= 0 the global phase portrait for this Scenario 4 is asymmetric, we discuss the case

where when η2 = 0, the phase portrait is symmetrical. When c4 = −1, η1 = −3, η2 = 0,
(√

3, 0
)
,(

−
√
3, 0

)
are two equilibrium points, (0, 0) is a saddle point. When c4 = 1, η1 = −3, η2 = 0,(√

3, 0
)
,
(
−
√
3, 0

)
are two saddle points, (0, 0) is an equilibrium point. We can see in Figs.3

and Figs.4, whether c4 > 0 or c4 < 0, the red closed curve represents the nonlinear periodic

trajectories and the blue track indicates that it is the nonlinear homoclinic trajectories, and

they respectively proved the existence of periodic and bell-shaped solitary solutions. However,

the black trace in Fig.3 is depicted the supernonlinear periodic trajectories.
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Figure 3. Corresponding phase portrait of Scenario 4, when c4 = −1.
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Figure 4. Corresponding phase portrait of Scenario 4, when c4 = −1.

§4 Exact chirped solutions

In this section, we discussed the exact chirped solutions. Setting s =
(
b3
2

) 1
4κ, we reduce

Eq.(10) to Eq.(17) (
ρ

′
)2

= ε
(
s4 + l1s

2 + l2s+ l3
)
= G (s) , (17)
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where
ε = ±1,

l1 =
(
b3
2

)− 1
2 3b1b3−b22

3b3
,

l2 =
(
b3
2

)− 1
4 4b23+12b1b2b3+36b23b0

18b23
,

l3 = c1.

(18)

Simplify Eq.(17) to the integral form

± (ξ − ξ0) =

∫
ds√
G (s)

. (19)

By the complete discrimination for polynomial method, we divide Eq.(12) into nine cases, and

we obtain all chirped solutions for Eq.(1). According to the quartic polynomial discriminant

system

D1 = 4,

D2 = −l1,

D3 = 8l3l1 − 2l31 − 9l2,

D4 = 4l41l3 − l31l
2
2 + 36l1l3l

2
2 − 32l21l

2
3 − 27

4 l42 + 64l33,

E2 = 9l21 − 32l1l3.

(20)

Then we analyse the roots of G(s) to classify the solutions of Eq.(1).

State 1. When D2 < 0, D3 = 0, D4 = 0, then G(s) = [(s− α)2 + β2]2, we have

h1 =


(
b3
2

)− 1
4

{β tan [β(ζ − ζ0)] + α} − b2
2b3

 ei(χ(ξ)−kx). (21)

This is a singular periodic pattern with an infinite number of discontinuities.

State 2.When D2 = 0, D3 = 0, D4 = 0, then G(s) = s4, we have

h2 =

−
(
b3
2

)− 1
4

(ζ − ζ0)
−1 − b2

2b3

 ei(χ(ξ)−kx). (22)

This is the singular rational pattern with discontinuity points.

State 3.When D2 > 0, D3 = 0, D4 = 0, E2 > 0, then G(s) = (s− α)2(s− β)2, α > β.

If s > α or s < β, we have

h3 =


(
b3
2

)− 1
4 {

β − α

2
[coth

[
α− β

2
(ζ − ζ0)

]
− 1] + β

}
− b2

2b3

 ei(χ(ξ)−kx), (23)

if β < s < α, we have

h4 =


(
b3
2

)− 1
4 {

β − α

2
[tanh

[
α− β

2
(ζ − ζ0)

]
− 1] + β

}
− b2

2b3

 ei(χ(ξ)−kx). (24)

These are two solitary wave patterns.

State 4. when D2 > 0, D3 > 0, D4 = 0, then G(s) = ε(s− α)2(s− β)(s− γ), β > γ.

If ε = 1, α > β and s > β , the solution comes out as

h5 =

{ (
b3
2

)− 1
4 β(α−γ)+γ(α−β)coth2 (ζ−ζ0)

√
(α−γ)(α−β)

2

(α−γ)−(α−β)coth2 (ζ−ζ0)
√

(α−γ)(α−β)

2

− b2
2b3

}
ei(χ(ξ)−kx), (25)

in this condition α > β > γ and α < β < γ have the same solutions.
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If γ < α < β, the solution comes out as

h6 =

{ (
b3
2

)− 1
4 γ(β−α)tan2 (ζ−ζ0)

√
(α−γ)(β−α)

2

(β−α)tan2 (ζ−ζ0)
√

(α−γ)(β−α)

2 −(α−γ)
− b2

2b3

}
ei(χ(ξ)−kx). (26)

If ε = −1, α > β > γ or β > γ > α, the solution comes out as

h7 =

{ (
b3
2

)− 1
4 β(γ−α)+γ(β−α)tan2 (ζ−ζ0)

√
(γ−α)(β−α)

2

(β−α)tan2 (ζ−ζ0)
√

(γ−α)(β−α)

2 +(γ−α)
− b2

2b3

}
ei(χ(ξ)−kx), (27)

if β > α > γ, the solutions come out as

h8 =

{ (
b3
2

)− 1
4 β(α−γ)+γ(β−α)coth2 (ζ−ζ0)

√
(α−γ)(β−α)

2

(β−α)coth2 (ζ−ζ0)
√

(α−γ)(β−α)

2 +(α−γ)
− b2

2b3

}
ei(χ(ξ)−kx), (28)

h9 =

{ (
b3
2

)− 1
4 β(α−γ)+γ(β−α)tanh2 (ζ−ζ0)

√
(α−γ)(β−α)

2

(β−α)tanh2 (ζ−ζ0)
√

(α−γ)(β−α)

2 +(α−γ)
− b2

2b3

}
ei(χ(ξ)−kx). (29)

These are two solitary wave patterns and a singular periodic pattern.

State 5. When D2 > 0, D3 = 0, D4 = 0, E2 = 0, then G(s) = ε(s− α)3(s− β).

If ε = 1, s > α, s > β or s < α, s < β, the solution turns into

h10 =


(
b3
2

)− 1
4
[
α+

4(α− β)

(ζ − ζ0)
2
(β − α)

2 − 4

]
− b2

2b3

 ei(χ(ξ)−kx). (30)

If ε = −1, s > α, s < β or s < α, s > β, the solution turns into

h11 =


(
b3
2

)− 1
4
[
α− 4(α− β)

(ζ − ζ0)
2
(β − α)

2
+ 4

]
− b2

2b3

 ei(χ(ξ)−kx). (31)

This is a rational singular pattern.

State 6. When D2D3 < 0, D4 = 0, then G(s) = (s− α)2[(s− β)2 + γ2], we have

h12 =

{ (
b3
2

)− 1
4

[
e
±((ζ−ζ0)

√
(β−α)2+γ2)−γ+(2−γ)

√
(β−α)2+γ2[

e
±((ζ−ζ0)

√
(β−α)2+γ2)−γ

]2

−1

]− b2
2b3

}
ei(χ(ξ)−kx). (32)

This is a solitary wave solution.

State 7. When D4 > 0, D3 > 0, D1 > 0, then G(s) = ε(s − α1)(s − α2)(s − α3)(s − α4),

α1 > α2 > α3 > α4.

If ε = 1, α3 < s < α2, the solution shapes up as

h13 =

{ (
b3
2

)− 1
4 α4(α2−α3) sn

2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n1]−α3(α2−α4)

(α2−α3) sn 2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n1]−(α2−α4)
− b2

2b3

}
ei(χ(ξ)−kx), (33)

if s > α1 and s < α4, the solution shapes up as

h14 =

{ (
b3
2

)− 1
4 α2(α1−α4) sn

2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n1]−α3(α2−α4)

(α1−α4) sn 2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n1]−(α2−α4)
− b2

2b3

}
ei(χ(ξ)−kx), (34)

where n2
1 = (α1−α4)(α2−α3)

(α1−α3)(α2−α4)
.

If ε = −1, α2 < s < α1, the solution shapes up as

h15 =

{ (
b3
2

)− 1
4 α3(α1−α2) sn

2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n2]−α2(α1−α3)

(α1−α2) sn 2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n2]−(α1−α3)
− b2

2b3

}
ei(χ(ξ)−kx), (35)

if α4 < s < α3, the solution shapes up as

h16 =

{ (
b3
2

)− 1
4 α1(α3−α4) sn

2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n2]−α4(α3−α1)

(α3−α4) sn 2[
(ζ−ζ0)

√
(α1−α3)(α2−α4)

2 ,n2]−(α3−α1)
− b2

2b3

}
ei(χ(ξ)−kx), (36)

where n2
2 = (α1−α2)(α3−α4)

(α1−α3)(α2−α4)
.
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These are double periodic patterns.

State 8. When D4 < 0, D2D3 ≥ 0, then G(s) = ε(s − α)(s − β)[(s− l)2 + k2], l, s > 0,

α > β.

If ε = 1, the solution reads as

h17 =

{ (
b3
2

)− 1
4 p1 cn[

(ζ−ζ0)
√

−2kn3(α−β)

2n3n4
,n4]+p2

p3 cn[
(ζ−ζ0)

√
−2kn3(α−β)

2n3n4
,n4]+p4

− b2
2b3

}
ei(χ(ξ)−kx), (37)

If ε = −1, the solution read as

h18 =

{ (
b3
2

)− 1
4 p1 cn[

(ζ−ζ0)
√

2kn3(α−β)

2n3n4
,n4]+p2

p3cn[
(ζ−ζ0)

√
2kn3(α−β)

2n3n4
,n4]+p4

− b2
2b3

}
ei(χ(ξ)−kx), (38)

where

p1 =
1

2
(α+ β) p3 −

1

2
(α− β) p4,

p2 =
1

2
(α+ β) p4 −

1

2
(α− β) p3,

p3 = α− l − k

n3
,

p4 = α− l − kn3,

E1 =
k2 (α− l) (β − l)

k (α− β)
,

n3 = E1 ±
√

E2
1 + 1.

(39)

These are double periodic patterns.

State 9.When D4 > 0, D2D3 ≤ 0, then G(s) = [(s− α1)
2 + β1

2][(s− α2)
2 + β2

2], β1 ≥
β2 > 0, the solution evolves as

h19 =

{ (
b3
2

)− 1
4 p1 sn[γ(ζ−ζ0),n5]+p2 cn[γ(ζ−ζ0),n5]
p3 sn[γ(ζ−ζ0),n5]+p4 cn[γ(ζ−ζ0),n5]

− b2
2b3

}
ei(χ(ξ)−kx), (40)

where
p1 = α1p1 + β1p4,

p2 = α1p4 − β1p3,

p3 = −β1 −
β2

n1
,

p4 = α1 − α2,

E3 =
(α1 − α2)

2
+ β2

1 + β2
2

2β1β2
,

n6 = F3 +
√
F 2
3 − 1,

n2
5 =

n2
6 − 1

n2
6

.

(41)

This is a double periodic pattern.



232 Appl. Math. J. Chinese Univ. Vol. 40, No. 1

§5 Typical Case Study

The solutions obtained above can be expressed in terms of specific parameters. Graphical

representation of the motion of some results in order to facilitate the recognition of the physical

phenomena of this nonlinear model. To save space, we only give a few typical cases.

Family 1. Singular solution

Making α = 2, β = −1, γ = −3, u = 2, k = 2
5 t = 1, b3 = 2, b2 = 1, then

h6 =


−9

(
tan

[√
15(1+2x)

2

])2

−3
(
tan

[√
15(1+2x)

2

])2

− 5
− 1

4

 ei(χ(ξ)−
2
5x). (42)

This is a singular rational solution and the 3D and 2D diagrams of the module of h6 are shown

in Figs.5 and 6.
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Figure 5. The 2D graph of |h6|.

Figure 6. The 3D graph of |h6|.

Family 2. Solitary wave solution

Making α = 1, β = −1, u = 2, t = 1, k = 2
5 , b3 = 2, b2 = 1, then

h3 =

{
− tanh

[
1 + 2x

2

]
− 1

4

}
ei(χ(ξ)−

2
5x). (43)

This is a solitary wave solution and the representation of the module of h3 are shown in Figs.7

and 8.

Family 3. Double periodic solution

Making α1 = 2, α2 = 1, α3 = −1, α4 = −2, u = 2, t = 1, k = 2
5 , b3 = 2, b2 = 1, n1 = 2

√
2

3 ,

then

h13 =

−4 sn 2
[
3
2 (1 + 2x) , 2

√
2

3

]
+ 3

2 sn 2
[
3
2 (1 + 2x) , 2

√
2

3

]
− 3

− 1

4

 ei(χ(ξ)−
2
5x). (44)
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Figure 7. The 2D graph of |h3|.

Figure 8. The 3D graph of |h3|.
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Figure 9. The 2D graph of |h13|.

Figure 10. The 3D graph of |h13|.
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This is a double periodic solution and the 3D and 2D diagrams of the module of h13 are shown

in Figs.9 and 10.

§6 Conclusion

In this paper, the resonant nonlinear Schrödinger equation with quadratic-cubic nonlineari-

ty is solved by using the trial equation method and the complete discrimination for polynomial

method. These methods can only achieve single traveling wave solutions, not obtain multiple

solitary solutions. Therefore, researchers have to continue to study. We use the bifurcation

method to prove the existence of different types of solutions, and classify these solutions into

three types : singular solutions, solitary wave solutions, and double periodic solutions. We also

give some implemented solutions in 2D and 3D, and different parameters are chosen to obtain

solutions presenting the characteristics of an optical soliton and could be used in telecommuni-

cations, industry, the design of new waveguides, as well as in the choice of incident pulses that

would optimize the transmission of information. These solutions ensure all chirped solutions

for optical solitons in magneto-optical waveguides, allowing the observation of the rich propa-

gation pattern of the light waves in the fiber. And chirped solutions help to solve the problem

of solitary dynamics in magneto-optical waveguides, which also have important applications in

physical and applied sciences.

Declarations
Conflict of interest The authors declare no conflict of interest.

References

[1] M Gitterman. Introduction to nonlinear science, Journal of Statistical Physics, 1996, 83(5):

1261-1262.

[2] V E Zakharov. Collapse of Langmuir waves, Journal of Experimental and Theoretical Physics,

1972, 35(5): 908-914.

[3] C Hamner, J J Chang, P Engels, et al. Generation of dark-bright soliton trains in superfluid-

superfluid counterflow, Physical Review Letters, 2011, 106(6): 065302.

[4] A H Khater, D K Callebaut, M A Helal, et al. Variational method for the nonlinear dynamics

of an elliptic magnetic stagnation line, The European Physical Journal D, 2006, 39: 237-245.

[5] A R Seadawy. New exact solutions for the KdV equation with higher order nonlinearity by using

the variational method, Computers and Mathematics with Applications, 2011, 62(10): 3741-3755.

[6] H Akiyama, F Tappert. Transmission of stationary nonlinear optical pulses in dispersive dielec-

tric fibers. II. Normal dispersion, Applied Physics Letters, 1973, 23(4): 171-172.

[7] Y J Kodama. Optical solitons in a monomode fiber, Journal of Statistical Physics, 1985, 39:

597-614.



TANG Jia-xuan. Chirped solutions and dynamical properties of the resonant... 235

[8] R C Yang, R Y Hao, L Li, et al. Dark soliton solution for higher-order nonlinear Schrödinger

equation with variable coefficients, Optics communications, 2004, 242(1-3): 285-293.
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