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On the monotonicity of limit wave speed to a perturbed

gKdV equation

WEN Zhen-shu∗ SHI Tian-yu

Abstract. This paper deals with the monotonicity of limit wave speed c0(h) to a perturbed

gKdV equation. We show the decrease of c0(h) by combining the analytic method and the

numerical technique. Our results solve a special case of the open question presented by Yan et

al., and the method potentially provides a way to study the monotonicity of c0(h) for general

m ∈ N+.

§1 Introduction

Many shallow water wave models have been found in the field of water wave dynamics,

which play an important role in describing natural phenomena [1–4]. In recent years, there

exist more and more works concerning the perturbed models and their solutions due to their

realistic nature [5–13], among which, the perturbed KdV equation and its variants have gained

considerate concern since they are significant in physics and waves contexts.

In 2014, Yan et al. [14] showed the persistence of solitary waves and periodic waves to the

perturbed generalized KdV (gKdV) equation

vt + vmvx + vxxx + σ(vxx + vxxxx) = 0, (1)

for general positive integer m and sufficiently small σ > 0. When m = 1, we have the perturbed

KdV equation

vt + vvx + vxxx + σ(vxx + vxxxx) = 0, (2)

which was investigated by Owaga [15]. Owaga [15] derived the existence of the above two types

of waves to (2), and showed that c0(h) is decreasing.

Naturally, one may wonder how about the monotonicity of c0(h) to Eq.(1) with general

m ∈ N+, which was presented as an open question in [14]. In fact, the monotonicity of c0(h) for

m = 1, 2, 3, 4 had been shown [15–17]. However, as suggested in [17], for m ≥ 5, it is difficult
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to show (J ′
m/J ′

0)
′ > 0 analytically (Jm is the Abelian integral defined later), which is a crucial

result for later analysis, due to the complexity of the Ricatti equations. To find a way to address

the monotonicity of c0(h) for odd m, in this paper, we first focus on a special case when m = 5.

By the transformation ζ = x − ct with the wave speed c > 0, Eq.(1) with m = 5 can be

converted into

−cv′(ζ) + v5(ζ)v′(ζ) + v′′′(ζ) + σ(v′′(ζ) + v′′′′(ζ)) = 0, (3)

and it follows that

−cv(ζ) +
1

6
v6(ζ) + v′′(ζ) + σ(v′(ζ) + v′′′(ζ)) = 0, (4)

by integrating.

Introducing η =
√
cζ, v = 5

√
cX, we obtain

−X(η) +
1

6
X6(η) +X ′′(η) + σ

(
1√
c
X ′(η) +

√
cX ′′′(η)

)
= 0. (5)

If we set σ = 0, then (5) becomes the unperturbed system

X ′′ +
1

6
X6 −X = 0, (6)

which can be rewritten as a planar system{
dX
dη = Y,
dY
dη = X − 1

6X
6,

(7)

whose first integral is

H(X,Y ) = −Y 2 +X2 − 1

21
X7 = h. (8)

Note that system (7) has one saddle (0, 0) and one center ( 5
√
6, 0), and its phase portrait is

shown in Figure 1. Besides, the traveling waves of the system (7) can be parameterized through

h. Exploiting this parametrization, we give the monotonicity of c0(h) in Theorem 1.

Theorem 1. For h ∈ [0, 5 5√36
7 ), the perturbed gKdV equation (1) with m = 5 and sufficiently

small σ > 0 has a traveling wave v = 5
√
cX(σ, h, c, η), where X(σ, h, c, η) is the solution of (5),

and c = c(σ, h) depends on σ and h smoothly, with the limit c0(h) as σ → 0. Furthermore,

c0(h) is a smooth decreasing function for h ∈ [0, 5 5√36
7 ).

αh βh-1 1 2
X

-1

1

Y

o

Figure 1. The phase portrait of system (7).



WEN Zhen-shu, SHI Tian-yu On the monotonicity of limit wave speed to a perturbed... 209

§2 The theoretic derivations of the monotonicity of c0(h)

In this section, we focus on theoretic derivations of the monotonicity of c0(h) by applying

the Abelian integral theory and numerical technique, see [14] for other results. Suppose that

X(η) is the solution of the system (7), and we define Q and R as

Q =
1

2

∫
(X ′′)2dη, R =

1

2

∫
(X ′)2dη,

where the integrals are performed along the orbits of system (7). Then from [14], it is known

that c0(h) can be expressed as

c0(h) =
1

Z(h)
,

where

Z(h) =
Q

R
.

Assume that α(h) and β(h) (0 ≤ α(h) < β(h)) are the two roots of X2 − 1
21X

7 = h, where

0 ≤ h < 5 5√36
7 . Therefore, Q and R can be rewritten as

Q =

∫ β(h)

α(h)

(
X − 1

6X
6
)2

E(X)
dX, R =

∫ β(h)

α(h)

E(X)dX, (9)

with E(X) =
√

X2 − 1
21X

7 − h.

Introducing the Abelian integrals:

Jn(h) =

∫ β(h)

α(h)

XnE(X)dX, n = 0, 1, 2, · · · , (10)

which satisfy ∫ β(h)

α(h)

Xn

E(X)
dX = −2J ′

n(h), (11)

by direct computation.

To prove that c0(h) is decreasing, we only need to show that Z(h) is increasing. Here we

need Lemmas 1 and 2 from [14].

Lemma 1. [14]. We have J = A(h)J ′, where J = (J0, J1, J2, J3, J4, J5)
T
and

A(h) =



14
9 h 0 − 10

9 0 0 0

0 14
11h 0 − 10

11 0 0

0 0 14
13h 0 −10

13 0

0 0 0 14
15h 0 − 10

15

0 − 60
17 0 0 14

17h 0
140
57 h 0 −280

57 0 0 14
19h


.

Lemma 2. [14]. We have Q = J5 − J0, R = J0 and Z(h) = J5

J0
− 1.
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From Lemma 1, we can derive the inverse of A,

A−1 =
1

△
×

9
(
(14h)5 − 56 · 105

)
66 · 103(14h)2 130(14h)4 9 · 105 · 14h 17 · 102(14h)3 114 · 105

−3 · 103(14h)3 11(14h)5 78 · 103(14h)2 150(14h)4 102 · 104 · 14h 19 · 102(14h)3

−18 · 105 · 14h 66 · 102(14h)3 13(14h)5 9 · 104(14h)2 170(14h)4 114 · 104 · 14h
−3 · 102(14h)4 396 · 10414h 78 · 102(14h)3 15(14h)5 102 · 103(14h)2 190(14h)4

−18 · 104(14h)2 660(14h)4 468 · 10414h 9 · 103(14h)3 17(14h)5 114 · 103(14h)2

−30(14h)5 396 · 103(14h)2 780(14h)4 54 · 105 · 14h 102 · 102(14h)3 19(14h)5

 ,

(12)

with △ = 14h
(
(14h)5 − 36× 105

)
.

With these preparations, now we will prove that Z(h) is increasing. Exploiting Lemma 1

and (12), we derive the following Ricatti equation

Z ′(h) =

(
J5
J0

)′

=
J ′
5

J0
− J ′

0J5
(J0)2

=
1

△J0

(
−30(14h)5J0 + 396 · 103(14h)2J1 + 780(14h)4J2 + 54 · 105 · 14hJ3 + 102 · 102(14h)3J4

+19(14h)5J5
)
− J5

△(J0)2
(
9
(
(14h)5 − 56 · 105

)
J0 + 66 · 103(14h)2J1 + 130(14h)4J2

+9 · 105 · 14hJ3 + 17 · 102(14h)3J4 + 114 · 105J5
)

=
1

△

(
−30(14h)5 + 396 · 103(14h)2 J1

J0
+ 780(14h)4

J2
J0

+ 54 · 105 · 14hJ3
J0

+ 102 · 102(14h)3 J4
J0

+
(
10(14h)5 + 504 · 105

) J5
J0

− 66 · 103(14h)2 J1
J0

J5
J0

+ 130(14h)4
J2
J0

J5
J0

− 9 · 105 · 14hJ3
J0

J5
J0

−17 · 102(14h)3 J4
J0

J5
J0

− 114 · 105
(
J5
J0

)2
)

=
1

△
F (h),

(13)

where

F (h) = −114 · 105
(
J5
J0

)2

+
(
10(14h)5 + 504 · 105

) J5
J0

− 30(14h)5

+
140h

J0

(
6− J5

J0

)(
6600 · 14hJ1 + 13(14h)3J2 + 9 · 104J3 + 170(14h)2J4

)
.

(14)

Since △ is negative, if we can prove F (h) < 0, then Z ′(h) > 0, and it follows that c0(h) is

decreasing. However, it is not easy to directly show that F (h) < 0 analytically. Therefore, here

we develop a numerical technique to show it. Specifically, let h change from 0.0001 to 1.4626

(note that 5 5√36
7 ≈ 1.4626) with step 0.0001, then we can numerically evaluate α(h), β(h) and

Ji, i = 0, 1, · · · , 5 through (10), and the values of F (h) follow. The profile of F (h) with respect

to h is shown in Figure 2 and the maximum of F (h) is −4.2866 × 103 at h = 1.4626, which

indicates that F (h) < 0, for 0 < h < 5 5√36
7 .

Remark 1. As implied in [17], when m ≥ 5, it is very difficult to prove the monotonicity of

c0(h) analytically. Therefore, we turn to the numerical technique and solve the open question
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Figure 2. The profile of F (h) with respect to h.

for the special case when m = 5.

§3 Conclusions

In this paper, we develop the numerical technique to derive the monotonicity of c0(h) for

a special perturbed gKdV equation (1) when m = 5, which partially solves the open question

presented by [14]. More importantly and interestingly, it potentially provides a way to answer

the open question for general m ∈ N+ completely, which is still under consideration. The main

difficulties lie in two aspects, the complexity of A−1 and Z ′(h), and the algorithm and program.
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