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The boundedness in a chemotaxis-haptotaxis system with

ECM-dependent sensitivity

LIU Jiao LI Zhong-ping∗

Abstract. This paper deals with a chemotaxis-haptotaxis system with ECM-dependent sensi-

tivity under the Neumann boundary conditions in a smooth bounded domain. It is shown that

the system possesses a globally bounded solution under some conditions.

§1 Introduction

In this paper, we mainly consider the boundedness of classical solutions in a parabolic-

parabolic-ODE chemotaxis-haptotaxis system with ECM-dependent sensitivity

ut = ∆u− χ∇ · (u∇v)−∇ · (ξ(w)u∇w) + µu(1− u− w), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

∂u

∂ν
− χu

∂v

∂ν
− ξ(w)u

∂w

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn(n ≥ 3) with smooth boundary ∂Ω, ν is the outward normal

vector to ∂Ω, χ, µ represent the chemotactic coefficient and the growth rate, respectively, which

are all assumed to be positive constants. Throughout this paper, we assume that with some

α ∈ (0, 1), the initial data (u0, v0, w0) satisfy the following conditions

u0 ∈ C0(Ω̄) with u0 ≥ 0 in Ω and u0 ̸≡ 0, (1.2)

v0 ∈ W 1,∞(Ω̄) with v0 ≥ 0 in Ω, (1.3)

w0 ∈ C2+α(Ω̄) with w0 > 0 in Ω and
∂w0

∂ν
= 0 on ∂Ω. (1.4)

The function u denotes the density of cancer cells, v is the concentration of matrix-degrading

enzyme(MDE) and w represents the density of extracellular matrix(ECM). ξ(w) is haptotactic
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sensitivity which depends on the density of ECM. In the biomathematical model, to the best of

our knowledge, except for the self-diffusion of cells, the invasion of cancer cells into healthy cells

is also associated with two biological mechanisms: one is the movement towards its own secretion

of diffusible chemicals, which is called chemotactic migration; the other is the movement towards

the non-diffusable ECM, which is called haptotactic migration.

In order to better understand the system (1.1), let’s mention some previous contributions

in this direction. Many scholars have studied the following classical Keller-Segel chemotaxis

system with the logistic source [1]

ut = ∆u− χ∇ · (u∇v) + µu(1− u), x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.5)

where χ, µ > 0, τ ∈ {0, 1}. For example, if τ = 1, it was known that the global existence

and boundedness of solutions were proved by Osaki for all χ, µ > 0 as n = 1, 2 (see [2]). Tello

and Winkler [3] obtained that the system (1.5) owns a unique global classical solution which is

bounded with τ = 0 and µ > (n−2)+
n χ. Other related results could be found in papers [4-9] and

the references therein.

Next we recall chemotaxis-haptotaxis system with constant sensitivities and logistic source

ut = ∆u− χ∇ · (u∇v)− ξ∇ · (u∇w) + µu(1− u− w), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) x ∈ Ω,

(1.6)

where χ, ξ, µ > 0. Tao proved that the system (1.6) has a global bounded classical solution

for n = 1 in [10]. In the case of n = 2, 3, the unique globally bounded classical solution was

studied by Tao and Wang in [11] for any small χ
µ > 0; later, Tao obtained the same result for

any µ > 0 in [12]. Moreover, Li in [13] researched that the system (1.6) possesses a unique

classical solution for µ ≥ ( 112 +ξ2∥w0∥2L∞(Ω))χ
2+ 37

2 +4ξ2∥w0∥2L∞(Ω) in three space dimensions.

When 3 ≤ n ≤ 8, Wang and Ke in [14] proved that (1.6) has a unique global classical solution

which is uniformly bounded in time for sufficiently large µ.

Based on the biological background, the chemotactic sensitivity may depend on chemical

signals. Recently, Mizukami and Otsuka in [15] considered the following chemotaxis-haptotaxis
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system with signal-dependent sensitivity

ut = ∆u−∇ · (χ(v)u∇v)− ξ∇ · (u∇w) + µu(1− u− w), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

∂u

∂ν
− χ(v)u

∂v

∂ν
− ξu

∂w

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω.

(1.7)

Mizukami and Otsuka showed that the system (1.7) possesses a globally bounded classical

solution when n ≥ 3 under the conditions that χ ∈ C1+θ([0,∞))∩L1(0,∞), (0 < ∃θ < 1), χ >

0; ∃C1 > 0, χ(s)s ≤ C1 for all s ≥ 0 and ∃ p0 ∈ (n, n+1), χ′(s)+αp0 |χ(s)|2 ≤ 0 for some

αp0 > 0.

Inspired by the literature above, we mainly consider the boundedness of the solution in the

model (1.1), since the system with ECM-dependent sensitivity is important in the mathematical

and biological points of view. The aim of this paper is to analyze the effect of ξ(w) on the

boundedness of the classical solution in the system (1.1).

The results of this paper are based on the arbitrary constant χ > 0 and the function ξ

satisfies the following conditions:

ξ ∈ C1+θ([0,∞)) ∩ L1(0,∞), (0 < ∃ θ < 1), ξ > 0, (1.8)

∃ ξ0 > 0, ξ(s)s ≤ ξ0 for all s ≥ 0. (1.9)

Theorem 1.1 Let Ω ∈ Rn(n ≥ 3) be a bounded domain with smooth boundary and χ > 0.

Assume that ξ satisfies (1.8)-(1.9) and µ is suitably large. Then for any (u0, v0, w0) fulfilling

(1.2)-(1.4), the model (1.1) possesses a unique global classical solution

u ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

v ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞
loc([0,∞);W 1,q(Ω)),

w ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞))

for some q > n. Moreover, the solution (u, v, w) is bounded uniformly-in-time:

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,q(Ω) + ∥w(·, t)∥L∞(Ω) ≤ C

for all t > 0 with some C > 0.

The method to prove Theorem 1.1 is to build the Lp-estimate for u with some p > n.

The first job of this paper is to introduce the energy estimate for
∫
Ω
upf(v, w) with some

smooth function f(v, w) to establish the desired estimate. Then the Lp-boundedness of u can

be obtained directly through the ordinary differential comparison principle, finally, our results

can be obtained through the well-known Moser-Alikakos iteration in [16,17].

The arrangement of this paper is as follows. In Section 2, we mainly give the basic lemmas

which are needed for the subsequent proof. Section 3 is devoted to proving the boundedness of

global classical solutions.
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§2 Preliminaries

In the first place, we give the local existence of the classical solution, which is derived from

the standard regularity theory of parabolic equations.

Lemma 2.1 Let n ∈ N, χ > 0, µ > 0 and ξ satisfy (1.8)-(1.9). Then for all (u0, v0, w0)

fulfilling (1.2)-(1.4), there exists Tmax ∈ (0,∞] such that the model (1.1) possesses a unique

classical solution

u ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)),

v ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)) ∩ L∞
loc([0, Tmax);W

1,q(Ω)) (q > n),

w ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax))

and

u > 0, v ≥ 0 and 0 < w ≤ ∥w0∥L∞(Ω) for all (x, t) ∈ Ω× (0, Tmax).

Moreover, if Tmax < ∞, then

lim
t→Tmax

sup(∥u(·, t)∥L∞(Ω)) = ∞. (2.1)

Proof Concerning the local-in-time existence of classical solutions to the problem (1.1) is based

on the well-known standard contraction mapping argument which can be found in [18]. �
In the second place, we will give some basic lemmas which will be of great help to the proof

of global boundedness in the third part.

Lemma 2.2 ([19,20]) Suppose g ∈ Lr((0, T ));Lr(Ω)) with r ∈ (1,+∞) and consider the

following equation: 
vt −△v + v = g, (x, t) ∈ Ω× (0, T )

∂v

∂ν
= 0, (x, t) ∈ ∂Ω× (0, T )

v(x, 0) = v0(x), x ∈ Ω.

(2.2)

For each v0 ∈ W 2,r(Ω) such that ∂v0

∂ν = 0 and g ∈ Lr((0, T );Lr(Ω)), there exists a unique

solution v ∈ W 1,r((0, T );Lr(Ω)) ∩ Lr((0, T );W 2,r(Ω)). In addition, if s0 ∈ [0, T ), v(·, s0) ∈
W 2,r(Ω)(r > N) with ∂v(·,s0)

∂ν = 0, then there exists a positive constant λ0 := λ0(Ω, r,N) such

that ∫ T

s0

ers∥v(·, t)∥rW 2,r(Ω)ds ≤ λ0(

∫ T

s0

ers∥g(·, t)∥rLr(Ω)ds+ ers0(∥v0(·, s0)∥rW 2,r(Ω))).

Lemma 2.3 ([21,22]) If S is defined as a form which has three variables

S(x, y, z) := a1x
2 + a2y

2 + a3z
2 + 2a4xy + 2a5xz + 2a6yz,

where a1, a2, a3, a4, a5, a6 ∈ R, and set A1, A2, A3 be determinants

A1 :=
∣∣∣ a1

∣∣∣ , A2 :=

∣∣∣∣∣a1 a5

a5 a3

∣∣∣∣∣ , A3 :=

∣∣∣∣∣∣∣
a1 a5 a4

a5 a3 a6

a4 a6 a2

∣∣∣∣∣∣∣ .
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Then for all (x, y, z) ∈ R3, S(x, y, z) ≤ 0 is equivalent to

A1 < 0, A2 > 0, A3 ≤ 0.

§3 Global boundedness

In this section, we will obtain the boundedness of global classical solutions under some

conditions in Theorem 1.1. We first give the following elementary estimates for u and v.

Lemma 3.1 Let χ > 0 and µ > 0. Assume (u0, v0, w0) satisfies (1.2)-(1.4) and ξ satisfies

(1.8)-(1.9). Then there exists C > 0 such that∫
Ω

u(·, t) ≤ C,

∫
Ω

v(·, t) ≤ C for all t ∈ (0, Tmax).

Proof By integrating the first equation in (1.1) over Ω and using the Hölder inequality (
∫
Ω
u)2 ≤

|Ω|
∫
Ω
u2, we obtain

d

dt

∫
Ω

u = µ

∫
Ω

u− µ

∫
Ω

u2 ≤ µ

∫
Ω

u− µ

|Ω|
(

∫
Ω

u)2.

Then we get the L1-boundedness of u. Similarly, integrating the second equation in (1.1) over

Ω, we have
d

dt

∫
Ω

vdx ≤ −
∫
Ω

v + c

with some c > 0. Therefore, we get the L1-boundedness of v. �
Since ξ(w) is a function, not a constant, we can’t get the Lp-estimate of u in the usual way,

thus we need to introduce a test function f(v, w) = exp(−δ
∫ w

0
ξ(s)ds − δχv) with parameter

δ > 0 to get the Lp-estimate for u.

The following lemma is the first step in proving the global boundedness of the Lp norm of

u.

Lemma 3.2 Let χ, µ, δ > 0 and ξ satisfy (1.8)-(1.9). Then for all p > 1, θ ∈ (0, 1), we have

d

dt

∫
Ω

up(f(v, w) + 1)

≤J1 + J2 + J3 − p(p− 1)(1− θ)

∫
Ω

up−2|∇u|2 + p(p− 1)χ

∫
Ω

up−1∇u · ∇v

+ µp

∫
Ω

up(1− u) + µp

∫
Ω

upf(v, w)(1− u) + ξ0δ

∫
Ω

upf(v, w)v

− δχ

∫
Ω

upf(v, w)(△v − v + u)

for all t ∈ (s0, Tmax), where

J1 := −p(p− 1)θ

∫
Ω

up−2|∇u|2,

J2 := p(p− 1)

∫
Ω

up−1ξ(w)∇u · ∇w,
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J3 := p

∫
Ω

up−1f(v, w)∇ · (∇u− χu∇v − uξ(w)∇w).

Proof First multiplying the first equation in (1.1) by up−1(p > 1) and then integrating it over

Ω combining with θ ∈ (0, 1), we can calculate that

d

dt

∫
Ω

up = −p(p− 1)

∫
Ω

up−2|∇u|2 + p(p− 1)χ

∫
Ω

up−1∇u · ∇v

+ p(p− 1)

∫
Ω

up−1ξ(w)∇u · ∇w + µp

∫
Ω

up(1− u− w)

= −p(p− 1)θ

∫
Ω

up−2|∇u|2 − p(p− 1)(1− θ)

∫
Ω

up−2|∇u|2

+ p(p− 1)χ

∫
Ω

up−1∇u · ∇v

+ p(p− 1)

∫
Ω

up−1ξ(w)∇u · ∇w + µp

∫
Ω

up(1− u− w)

= J1 + J2 − p(p− 1)(1− θ)

∫
Ω

up−2|∇u|2 + p(p− 1)χ

∫
Ω

up−1∇u · ∇v

+ µp

∫
Ω

up(1− u− w). (3.1)

Since there is a function ξ(w) in J2, we can’t directly estimate d
dt

∫
Ω
up, we need to introduce

an auxiliary function f to estimate d
dt

∫
Ω
upf(v, w). Then we can calculate

d

dt

∫
Ω

upf(v, w) = p

∫
Ω

up−1f(v, w) · ut − δ

∫
Ω

upf(v, w)[(ξ(w) · wt + χvt)]

= J3 + µp

∫
Ω

upf(v, w)(1− u− w) + δ

∫
Ω

upf(v, w)ξ(w)wv

− δχ

∫
Ω

upf(v, w)(△v − v + u). (3.2)

According to (1.9), (3.1) and (3.2), we get

d

dt

∫
Ω

up(f(v, w) + 1)

≤J1 + J2 + J3 − p(p− 1)(1− θ)

∫
Ω

up−2|∇u|2 + p(p− 1)χ

∫
Ω

up−1∇u · ∇v

+ µp

∫
Ω

up(1− u) + µp

∫
Ω

upf(v, w)(1− u) + ξ0δ

∫
Ω

upf(v, w)v

− δχ

∫
Ω

upf(v, w)(△v − v + u).

Therefore, we have completed the proof of this lemma. �
In order to obtain a differential inequality that derives the estimate for

∫
Ω
up(f(v, w) + 1),

we need to obtain J1 + J2 + J3 ≤ 0.

Lemma 3.3 Let θ ∈ (0, 1). Then there exists p > n such that

J1 + J2 + J3 ≤ 0,

where J1, J2, J3 are defined in Lemma 3.2.
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Proof Noting the definition of f(v, w), we get f(v, w) ≤ 1. According to Lemma 3.2, a direct

computation yields that

J1 + J2 + J3

≤ −p(p− 1)θ

∫
Ω

up−2f(v, w)|∇u|2 + p(p− 1)

∫
Ω

up−1f(v, w)ξ(w)f−1(v, w)∇u · ∇w

+ p

∫
Ω

up−1f(v, w)∇ · (∇u− χu∇v − uξ(w)∇w)

= −p(p− 1)θ

∫
Ω

up−2f(v, w)|∇u|2 + p(p− 1)

∫
Ω

up−1fξ(w)f−1(v, w)∇u · ∇w

− p

∫
Ω

∇(up−1f(v, w)) · (∇u− χu∇v − uξ(w)∇w)

= −p(p− 1)θ

∫
Ω

up−2f(v, w)|∇u|2 + p(p− 1)

∫
Ω

up−1f(v, w)ξ(w)f−1(v, w)∇u · ∇w

− p(p− 1)

∫
Ω

up−2f(v, w)∇u · (∇u− χu∇v − uξ(w)∇w)

+ pδ

∫
Ω

up−1f(v, w)(ξ(w)∇w + χ∇v) · (∇u− χu∇v − uξ(w)∇w)

= −p(p− 1)θ

∫
Ω

up−2f(v, w)|∇u|2 + p(p− 1)

∫
Ω

up−1f(v, w)ξ(w)f−1(v, w)∇u · ∇w

− p(p− 1)

∫
Ω

up−2f(v, w)|∇u|2 + χp(p− 1)

∫
Ω

up−1f(v, w)∇u · ∇v

+ p(p− 1)

∫
Ω

up−1f(v, w)∇uξ(w)∇w + pδ

∫
Ω

up−1f(v, w)ξ(w)∇w · ∇u

+ χpδ

∫
Ω

up−1f(v, w)∇u · ∇v − pδ

∫
Ω

upf(v, w)|ξ(w)|2 · |∇w|2

− 2χpδ

∫
Ω

upf(v, w)ξ(w)∇w · ∇v − χ2pδ

∫
Ω

upf(v, w)|∇v|2

= −p(p− 1)(θ + 1)

∫
Ω

up−2f(v, w)|∇u|2

+ p((p− 1)f−1(v, w) + p− 1 + δ)

∫
Ω

up−1f(v, w)ξ(w)∇u · ∇w

+ χp(p− 1 + δ)

∫
Ω

up−1f(v, w)∇u · ∇v − pδ

∫
Ω

upf(v, w)|ξ(w)|2 · |∇w|2

− 2χpδ

∫
Ω

upf(v, w)ξ(w)∇w · ∇v − χ2pδ

∫
Ω

upf(v, w)|∇v|2

=

∫
Ω

upf(v, w)(a1x
2 + a2xy + a3xz + a4y

2 + a5yz + a6z
2),

where x, y, z and a1, a2, a3, a4, a5, a6 are given as

x = u−1∇u, y = ξ(w)∇w, z = ∇v

and
a1 = −p(p− 1)(θ + 1),

a2 = p((p− 1)f−1(v, w) + p− 1 + δ),
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a3 = χp(p− 1 + δ),

a4 = −pδ,

a5 = −2χpδ,

a6 = −χ2pδ.

Next we need to find some δ > 0 such that

a1x
2 + a2xy + a3xz + a4y

2 + a5yz + a6z
2 ≤ 0. (3.3)

By applying the Sylvester criterion and Lemma 2.3 to obtain (3.3), we can see that

A1 = −p(p− 1)(θ + 1) < 0. (3.4)

Then, we calculate that

A2 = a1a6 −
a23
4

= p2χ2δ(p− 1)(θ + 1)− p2χ2

4
(p− 1 + δ)2

= p2χ2[(p− 1)(θ + 1)δ − 1

4
((p− 1)2 + δ2 + 2(p− 1)δ)]

= p2χ2[−1

4
(δ − (p− 1)(2θ + 1))2 + (p− 1)2(θ + 1)θ].

Choosing δ = (p− 1)(2θ + 1), so we can get

A2 = p2χ2(p− 1)2(θ + 1)θ > 0. (3.5)

Next, we aim to prove

A3 =

∣∣∣∣∣∣∣
a1

a3

2
a2

2
a3

2 a6
a5

2
a2

2
a5

2 a4

∣∣∣∣∣∣∣ ≤ 0.

Let d = 1 + 2θ, then δ = (p− 1)d. Straightforward calculations yield

A3 = (a1a6 −
a23
4
)a4 +

a2a3a5
4

− a22a6
4

− a1a
2
5

4

= −p3χ2δ(p− 1)2(θ + 1)θ − 1

2
p3χ2δ(p− 1 + δ)((p− 1)f−1(v, w) + p− 1 + δ)

+
p3χ2δ

4
((p− 1)f−1(v, w) + p− 1 + δ)2 + p3χ2δ2(p− 1)(θ + 1)

= −p3χ2(p− 1)3d(θ2 + θ)− p3χ2

2
(p− 1)3d(d+ 1)(f−1(v, w) + d+ 1)

+
p3χ

2

(p− 1)3d

4
(f−1(v, w) + 1 + d)2 + p3χ2(p− 1)3d2(θ + 1)

= −p3χ2(p− 1)3d[(θ + 1)θ +
1

2
(f−1(v, w) + 1 + d)(1 + d)

− 1

4
(f−1(v, w) + 1 + d)2 − d(θ + 1)]

≤ p3χ2(p− 1)3d[(θ + 1)θ +
1

2
(f−1(v, w) + 1 + d)(1 + d)

− 1

4
(f−1(v, w) + 1 + d)2 − d(θ + 1)]
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= p2χ2(p− 1)3d(−p(θ + 1)2 + ϕ(p, θ)),

where ϕ(p, θ) is defined as follow

ϕ(p, θ) := −1

4
p(f−1(v, w) + 1 + d)2 + p(θ + 1)(f−1 + d+ 1).

Because of the boundedness of f(v, w) : 1 ≤ f−1(v, w) ≤ m, where m = exp{
∫∞
0

ξ(w) +

χ∥v0∥L∞} > 1. For any m′ ∈ [1,m], the following inequality holds

ϕ(p, θ) = −1

4
p(m′ + d+ 1)2 + p(θ + 1)(m′ + d+ 1)

= p(1 + θ)2 − 1

4
pm′2

< p(1 + θ)2.

So, we have

A3 ≤ p2(p− 1)3χ2d(−p(θ + 1)2λ+ φ(p, θ)) = 0. (3.6)

Thanks to Lemma 2.3, by (3.4)-(3.6), we have completed the proof of Lemma 3.3. �
We next show the desired Lp-estimate for u with some p > n.

Lemma 3.4 Let p > n ≥ 3, χ > 0, ξ satisfy (1.8)-(1.9) and µ > µ0, where µ0 = [ 2λ0(γ1+γ2)
p−1 ]

1
p+1 .

Then there exists a constant C > 0 such that

∥u(·, t)∥Lp(Ω) ≤ C for all t ∈ (s0, Tmax).

Proof In light of Lemmas 3.2 and 3.3, we have
d

dt

∫
Ω

up(f(v, w) + 1)

≤ −p(p− 1)(1− θ)

∫
Ω

up−2|∇u|2 + p(p− 1)χ

∫
Ω

up−1∇u · ∇v

+ µp

∫
Ω

up(1− u) + µp

∫
Ω

upf(v, w)(1− u) + ξ0δ

∫
Ω

upf(v, w)v

− δχ

∫
Ω

upf(v, w)△v + δχ

∫
Ω

upf(v, w)v − δχ

∫
Ω

up+1f(v, w)

≤ p(p− 1)χ

∫
Ω

up−1∇u · ∇v + µp

∫
Ω

up(1 + f(v, w))

− µp

∫
Ω

up+1(1 + f(v, w)) + ξ0δ

∫
Ω

upf(v, w)v

− δχ

∫
Ω

upf(v, w)△v + δχ

∫
Ω

upf(v, w)v

− δχ

∫
Ω

up+1f(v, w)

= p(p− 1)χ

∫
Ω

up−1∇u · ∇v + µp

∫
Ω

up(1 + f(v, w))

− µp

∫
Ω

up+1(1 + f(v, w)) + δ(χ+ ξ0)

∫
Ω

upf(v, w)v

− δχ

∫
Ω

upf(v, w)△v − δχ

∫
Ω

up+1f(v, w).
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By using Young’s inequality, we can get

p(p− 1)χ

∫
Ω

up−1∇u · ∇v − δχ

∫
Ω

upf(v, w)△v

≤ χ(p− 1)

∫
Ω

up|△v|+ δχ

∫
Ω

upf(v, w)|△v|

≤ χ(p− 1)

∫
Ω

up|△v|+ δχ

∫
Ω

up|△v|

= χ(δ + p− 1)

∫
Ω

up△v

≤ µ

∫
Ω

up+1 + γ1µ
−p

∫
Ω

|△v|p+1, (3.7)

where µ > 0, γ1 = 1
p+1 (

p+1
p )−p(χ(δ + p− 1))p+1. In a same way, we can get that

δ(χ+ ξ0)

∫
Ω

upf(v, w)v − δχ

∫
Ω

up+1f(v, w)

≤ µ

∫
Ω

up+1f(v, w) + γ2µ
−p

∫
Ω

vp+1 − δχ

∫
Ω

up+1f(v, w)

= (µ− δχ)

∫
Ω

up+1f(v, w) + γ2µ
−p

∫
Ω

vp+1, (3.8)

where γ2 = 1
p+1 (

p+1
p )−p(δ(χ+ ξ0))

p+1. By (3.7) and (3.8), we obtain

p(p− 1)χ

∫
Ω

up−1∇u · ∇v − δχ

∫
Ω

upf(v, w)△v + δ(χ+ ξ0)

∫
Ω

upf(v, w)v − δχ

∫
Ω

up+1f(v, w)

≤ C1

∫
Ω

up+1(f(v, w) + 1) + γ1µ
−p

∫
Ω

|△v|p+1 + γ2µ
−p

∫
Ω

vp+1,

where C1 = max{µ, µ− δχ} = µ > 0. Then

d

dt

∫
Ω

up(f(v, w) + 1) ≤ µp

∫
Ω

up(f(v, w) + 1)− (µp− C1)

∫
Ω

up+1(f(v, w) + 1)

+ γ1µ
−p

∫
Ω

|△v|p+1 + γ2µ
−p

∫
Ω

vp+1

≤ C2

∫
Ω

up(f(v, w) + 1)− C3

∫
Ω

up+1(f(v, w) + 1)

+ γ1µ
−p

∫
Ω

|△v|p+1 + γ2µ
−p

∫
Ω

vp+1, (3.9)

where C2 = µp > 0 and C3 = µp− C1 = µp− µ > 0. Let

ym(t) =

∫
Ω

|u(·, t)|m(f(v(·, t), w(·, t)) + 1),

where m > 1. So we can get the following inequality∫
Ω

up+1 ≤ yp+1. (3.10)

By deforming (3.9) and using the Hölder inequality with Young’s inequality, we can find

d

dt
yp(t) ≤ C2yp(t)− C3yp+1(t) + γ1µ

−p

∫
Ω

|△v|p+1 + γ2µ
−p

∫
Ω

vp+1

= −(p+ 1)yp(t) + (C2 + p+ 1)yp(t)− C3yp+1(t) + γ1µ
−p

∫
Ω

|△v|p+1 + γ2µ
−p

∫
Ω

vp+1
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≤ −(p+ 1)yp(t) +
C3

2
yp+1(t) + C4 − C3yp+1(t) + γ1µ

−p

∫
Ω

|△v|p+1 + γ2µ
−p

∫
Ω

vp+1

= −(p+ 1)yp(t)−
C3

2
yp+1(t) + C4 + γ1µ

−p

∫
Ω

|△v|p+1 + γ2µ
−p

∫
Ω

vp+1,

where C4 > 0. And then by the variation-of-constants formula, we can get

yp(t) ≤ e−(p+1)(t−s0)yp(s0)−
C3

2

∫ t

s0

e−(p+1)(t−s)yp+1ds

+ γ1µ
−p

∫ t

s0

∫
Ω

e−(p+1)(t−s)|△v|p+1dxds

+ γ2µ
−p

∫ t

s0

∫
Ω

e−(p+1)(t−s)vp+1dxds+
C4

p+ 1
.

Next, in view of (3.10) and Lemma 2.2, we can obtain

yp(t) ≤ e−(p+1)(t−s0)yp(s0)−
C3

2

∫ t

s0

e−(p+1)(t−s)yp+1ds

+ γ1µ
−pe−(p+1)tλ0(

∫ t

s0

∫
Ω

e(p+1)sup+1dxds+ ∥v0∥p+1
W 2,p+1)

+ γ2µ
−pe−(p+1)tλ0(

∫ t

s0

∫
Ω

e(p+1)sup+1dxds+ ∥v0∥p+1
W 2,p+1) +

C4

p+ 1

≤ e−(p+1)(t−s0)yp(s0)−
C3

2

∫ t

s0

e−(p+1)(t−s)yp+1ds+ γ1µ
−pλ0

∫ t

s0

e−(p+1)(t−s)yp+1(s)ds

+ γ2µ
−pλ0

∫ t

s0

e−(p+1)(t−s)yp+1(s)ds+ C5λ0e
−(p+1)t∥v0∥p+1

W 2,p+1 +
C4

p+ 1

= e−(p+1)(t−s0)yp(s0)− (
C3

2
− λ0C5)

∫ t

s0

e−(p+1)(t−s)yp+1(s)ds

+ C5λ0e
−(p+1)t∥v0∥p+1

W 2,p+1 +
C4

p+ 1

≤ e−(p+1)(t−s0)yp(s0) + C5λ0e
−(p+1)t∥v0∥p+1

W 2,p+1 +
C4

p+ 1

≤ C6,

where λ0 ∈ (0, C3

2C5
), C5 = (γ1 + γ2)µ

−p and C6 > 0, with µ > µ0 for all t ∈ (s0, Tmax). Hence

we get that the boundedness of u in Lp(Ω). �

Corollary 3.1 Let n ≥ 3, Tmax ∈ (0,∞), initial data (u0, v0, w0) satisfy (1.2)-(1.4), χ >

0 and ξ fulfill (1.8)-(1.9). Then there exists C (independent of T ) such that

∥v(·, t)∥W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax). (3.11)

Proof On the basis of the Lp − Lq estimates for the Neumann heat semigroup on bounded

domains in [23] and Lemma 3.3, we can get (3.11) immediately. �

We are now in the position to prove our main result.

Proof of Theorem 1.1 Under the condition that ξ satisfies (1.8)-(1.9), we obtain the bound-
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edness of u in L∞(Ω) by the combination of Corollary 3.1 and the well-known Moser-Alikakos

iteration in [16,17]. �
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