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COVID-19 emergency decision-making using q-rung

linear diophantine fuzzy set, differential evolutionary and

evidential reasoning techniques

G Punnam Chander Sujit Das

Abstract. In this paper, a robust and consistent COVID-19 emergency decision-making ap-

proach is proposed based on q-rung linear diophantine fuzzy set (q-RLDFS), differential evo-

lutionary (DE) optimization principles, and evidential reasoning (ER) methodology. The pro-

posed approach uses q-RLDFS in order to represent the evaluating values of the alternatives

corresponding to the attributes. DE optimization is used to obtain the optimal weights of the

attributes, and ER methodology is used to compute the aggregated q-rung linear diophantine

fuzzy values (q-RLDFVs) of each alternative. Then the score values of alternatives are computed

based on the aggregated q-RLDFVs. An alternative with the maximum score value is selected

as a better one. The applicability of the proposed approach has been illustrated in COVID-19

emergency decision-making system and sustainable energy planning management. Moreover, we

have validated the proposed approach with a numerical example. Finally, a comparative study

is provided with the existing models, where the proposed approach is found to be robust to

perform better and consistent in uncertain environments.

§1 Introduction

For the past one and half years, the whole world has been facing the pandemic caused by

the novel coronavirus (COVID-19), and it has affected nearly 200 countries. The first human

infected with the new coronavirus was reportedly identified in Wuhan [1]. As COVID-19 has

affected the entire world and made human life arduous in these circumstances, WHO [4] issued

a health emergency and declared COVID-19 as a pandemic in March, 2020. It has done severe

damage to all the countries in different aspects like economy, education, health, and daily life

routine. It has become very difficult for people to live a normal life because of the needed

restrictions and imposition of the lockdown. In order to curtail the damage, the world health

organization (WHO), scientists, doctors, and researchers are trying their best to eradicate the

virus. For the prevention and control of the spreading of coronavirus, we need to imply suitable

decision-making approaches for the safety of people around the world. Some significant and
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relevant research works on COVID-19 are summarized below. Ashraf and Abdullah [2] presented

some novel decision-making methods for COVID-19 emergencies using spherical fuzzy sets based

on Einstein aggregation operators. Ashraf et al. [3] introduced another novel decision- making

method to diagnose COVID-19 as an emergency service based on a spherical fuzzy set, TOPSIS

and COPRAS methods. Chan et al. [5] studied the clinical and laboratory findings of five

patients in a particular family and analyzed the genomic sequences of these patients using

phylogenetic analysis. Yu et al. [6] developed a few methods for diagnosing and treating

pneumonia caused by the novel Coronavirus. Melin [19] presented a new hybrid prediction

model for response integration that can consolidate the ensemble designs of fuzzy logic-based

neural networks. To some extent, this model anticipates COVID-19 future trends and assists

authorities in making necessary decisions to effectively manage the health care system. Fuzzy-

based hybrid techniques for forecasting confirmed cases and deaths in countries based on time

series. The proposed hybrid technique [21] with fuzzy logic incorporates the fractal dimension to

enable COVID-19 time series forecasting. They used COVID-19 time series data to construct a

hybrid technique for predicting COVID-19 data classification [22] by nation using time series and

developing a plan to take appropriate action based on the countries’ current status. Chander and

Das [24] presented a similarity measure in the application of medical diagnosis using interval-

valued pythagorean fuzzy set. Sun and Wang [20] collected COVID- 19 data and fitted it

with the conventional differential condition model. They discovered that the affected visitors

play an important role in the newly introduced cases of COVID-19 and that they can be

rapidly expanded. Si et al. [23] proposed a decision-making approach using a picture fuzzy set,

Dempster- Shafer theory of evidence and Grey relational analysis for preferable medicine for

the treatment of COVID-19 patients and evaluated the preferences of the medicines based on

the symptoms and signs of the COVID-19 patients. Castillo and Melin [26] proposed a fuzzy

fractal control method for effectively controlling nonlinear dynamic systems and illustrated the

proposed approach in achieving an efficient control of COVID-19 pandemic. In the other work,

Melin and Castillo [27] proposed a neural network model with a self-organizing map for spatial

data analysis and used the above proposed fuzzy fractal approach to represent the temporal

trends of the time series of the countries such as Belgium, Italy, the United States, and Mexico

with respect to COVID-19 cases. The above-mentioned studies assisted the decision makers in

making ideal decisions in emergencies to avoid damage.

Some significant contributions and importance of various fuzzy sets to solve MADM prob-

lems are illustrated below. Zadeh [13] introduced fuzzy set (FS) theory in 1965, and it has

been consistently employed in many decision-making procedures since then. To account for the

importance of a non-membership degree, Atanassov [14] explored intuitionistic fuzzy set (IFS)

that represents uncertainty using the grade of membership, non-membership, and indetermina-

cy as an extension to FS. To widen the structural space of membership and non-membership

grades q-rung orthopair fuzzy set [15, 16] was introduced. The significance of the qth reference

parameter (q ≥ 1) in representing the q-rung orthopair fuzzy set (q-ROFS) allows experts or

decision makers to issue grades flexibly. Riaz and Hashmi [9] proposed a new notion of linear

diophantine fuzzy set (LDFS), which outperforms other fuzzy sets such as IFS, pythagorean

fuzzy sets (PFS) and q-ROFS. The inclusion of reference parameters in the LDFS represen-

tation effectively enhances the structural space of membership and non-membership grades.

For example, in some cases, the sum of membership (µ) and non-membership (ν) grades of

an attribute of the alternative provided by a decision maker may be greater than 1. Consider
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µ = 0.9 and ν = 0.6, hence, µ + ν, i.e., 0.9 + 0.6 > 1. This kind of situation cannot be

represented by IFS, since the summation of membership and non-membership grade is greater

than 1, whereas PFS can represent it. However, when the summation of the squares of mem-

bership and non-membership grades are more than 1, i.e., 0.92 +0.62 > 1, PFS fails to express

it. To manage such type of situations, q-ROFS are used. The condition 0 ≤ µq + νq ≤ 1;

q > 1 in q-ROFS overcomes the preceding membership and non-membership constraints. For

bigger values of q, it can manage membership and non-membership grades. When both mem-

bership and non-membership grades are 1 (µ = ν = 1), however, we obtain (1q + 1q > 1),

which violates the q-ROFS criterion. The drawback of the q-ROFS restriction can be avoided

in LDFS by adding reference parameters (α, β) to the membership and non-membership grades

with the conditions 0 ≤ α(µ)+ β(ν) ≤ 1 and 0 ≤ α + β ≤ 1. But in some real-life cases,

when the summation of the reference parameters (α, β) is more than one, i.e., (α + β > 1),

LDFS is not suitable to formulate those problems. Fuzzy set, IFS, PFS, q-ROFS, and LDFS

are restricted in some cases to define the degree of membership and non-membership by the

experts and decision makers, which affects choosing the right decision or right alternative. If the

problem representation is bound to be limited in uncertain circumstances, then the handling

of the problem will be approximate and cannot be concluded effectively with limited informa-

tion. Almagrabi et al. [10] proposed a new methodology called the q-rung linear diophantine

fuzzy set (q-RLDFS), which diminishes all restrictions and limitations in decision-making sys-

tems. A q-RLDFS handles more uncertainty compared to other above mentioned theories and

eradicates all the restrictions and ambiguities in defining the membership and non-membership

grades with the inclusion of reference parameters and qth reference. The advantage of reference

parameters and qth reference allows the experts and decision makers to choose the membership

and non-membership grades without any limits. These reference parameters can also be used

as the physical sense in the categorization of the problem. For instance, the information of

the problem is classified by the reference parameters with how much portion is still required to

treat the patient and the grades of membership and non-membership decide the factor present

in the medicine. This makes q-RLDFS more efficient in representing the problem information

and enhances the wider applicability of structural space compared to the structural space in FS,

IFS, PFS, q-ROFS, and LDFS. By using q-RLDFS, the integrity of the problem representation

will not be disturbed or affected, which is the major advantage of q-RLDFS. It adapts to any

kind of problem representation with the help of qth reference parameters.

Optimization principles ensure the values reach global maxima or global minima, which is

needed for choosing the optimal weight values of the attributes of the alternatives in the deci-

sion information, unlike the other methods, where optimal weight value calculation is based on

experts assigned weights or other methods could be treated as static and specific attribute cen-

tric. The differential evolutionary algorithm [11] is a population-based stochastic optimization

technique with the operations of mutation, crossover, and selection that generates an optimal

weight vector of the attributes of the alternatives based on an objective function. The obtained

optimal weight vector can ensure to be the global maxima or global minima. With uncertain

and imprecise information on the path, aggregating decision problem information is critical

in the domains such as medical sciences, planning and management, and a variety of other

professions. Chander and Das [25] presented a differential evolutionary optimization based

decision-making method using interval-valued pythagorean fuzzy set and compared DE with

particle swarm optimization technique in the decision-making. The evidential reasoning (ER)
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approach [17] is different from other conventional decision-making models, which aggregates

the decision information by employing a belief structure to represent as an assessment. It also

enhances the problem-solving mechanism by assessing the belief degree structure for each at-

tribute of all alternatives in the decision matrix. To rank the alternatives in a decision-making

problem, Chen and Chiou [8] developed a MADM method using interval-valued intuitionistic

fuzzy sets (IVIFS) based on the working principles of the evidential reasoning (ER) approach

and particle swarm optimization (PSO) techniques. But in some cases, IVIFS of the form

([a, b], [c, d]) fails to describe the problem representation proficiently in making decisions by

the grades of membership and non-membership with a condition 0 ≤ b + d ≤ 1, where a, b

are the lower and higher grades of membership, and c, d are the lower and higher grades of

non-membership, respectively. Assume that [0.8, 0.9] and [0.2, 0.3] are the membership and

non-membership interval grades respectively, hence 0.9 and 0.3 is not valid under IVIFS with

the given condition and ensures restrictions to the decision maker, but it is valid under q-RLDFS

for the same values with the qth reference parameters. Here q-RLDFS shows its wider appli-

cability and removes the restrictions for the experts or decision makers. The novel q-RLDFS

studied in [10] with reference parameters and a qth reference parameter (q>1) widens the space

of grades in membership and non-membership and outperforms other fuzzy sets. The authors

demonstrated its applicability in the decision-making using q-RLDF aggregation operators and

score functions.

Emergency decision-making has an important role in emergency services by ensuring quick

and ideal decisions. Hence, the decision-makers ought to foster the decision-making approaches

for humans to provide prominent ways to respond in emergencies. Few experiments have shown

that the characteristics of human behavior, such as cognitive biases, insensitive disruption, etc.,

make the decisions uncertain and risky in some cases in emergency decision-making.

The motivation of this work is achieved from the structural space of bound in q-RLDFS,

which is more than other fuzzy set theories, and the problem representation in uncertain en-

vironments can be well built by membership grades and non-membership grades without any

restrictions given by the experts or decision makers. In some real-life problems, the sum of

membership (µ) and non-membership (ν) grades for an attribute of an alternative provided by

the decision maker can be greater than 1, which is outside the scope of fuzzy set and IFS. Al-

though PFS, q-ROFS, and LDFS can handle such type of situations, but the structural space of

bound is limited in these sets. However, q-RLDFS overcomes the restrictions mentioned above

and successfully handles such scenarios. The advantage of q-RLDFS is the reference parameters

and a qth reference parameter which widens the structural space in grading membership and

non-membership and outperforms other fuzzy sets. Any kind of problem representation can eas-

ily be adapted by q-RLDFS, which in turn allows the decision maker to freely grade the values

without any restrictions. With the use of reference parameters and qth parameter, q-RLDFS

overcomes the information gap and can solve the limitations concerned with IFS, PFS, q-ROFS,

and LDFS. In q-RLDFS, using the qth power of reference parameter, the decision maker can

grade membership and non-membership without any restriction. When the q value increases,

the diophantine space also increases and thereby giving the space of bounds more scope to

grade a wider range of information without restriction and can be best suited for complex and

uncertain decision-making problems. Moreover, the ER methodology effectively handles the

decision-making problems with uncertainties using degrees of belief structure. A belief degree

structure is used to describe the assessment information of the attributes corresponding to the
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alternatives. The collective assessment information can be aggregated using ERM based on

belief degree information, which can contribute to improving the decision-making process. In

comparison to other optimization approaches, DE optimization is simple to implement and can

consistently reach true optimal values. DE can help aggregate the belief degrees in ERM and

contribute to the enhancement of MADM techniques by achieving optimal weight values for

the attributes of the decision information. To manage the uncertainties related to COVID-19

emergency decision-making, benefit of high structural scope of bound in q-RLDFS, computa-

tion of the aggregated degree of belief in ERM, and the capabilities of obtaining the optimal

weight values for the attributes in DE optimization may be combined to formulate a better

decision-making framework. Motivated by the above facts and feeling the need for emergency

decision-making during COVID-19, we aim to contribute an approach, which will help society

for emergency decision-making during COVID-19.

The objective of this paper is to develop a multiattribute decision-making model built on

methodologies that removes all the limitations and ambiguities for any kind of problem repre-

sentations given by the experts or decision makers using q-RLDFS, DE optimization algorithm,

and ER methodology. The proposed decision-making model can be more adaptable and appro-

priate in imprecise environments and establishes a strong relationship with MADM problems.

In this paper, we propose a multi attribute decision-making model built on methodologies of

q-RLDFS, DE optimization, and ER methodology. Initially, the decision information is provid-

ed as a decision matrix with a set of attributes for each alternative using q-RLDFS. By using

the DE optimization technique, we obtain the optimal weight values of the attributes as the

decision information. Then, the ER methodology aggregates the decision information by em-

ploying a belief degree structure for each of the attributes. Next, we calculate the score values

of the alternatives by using the score functions of the q-RLDFS to rank the alternatives. The

better alternative is chosen based on the larger score value of the alternatives. The proposed

MADM approach has been illustrated with real-life case studies like COVID- 19 emergency

decision-making and sustainable energy planning management followed by a numerical exam-

ple. Finally, a comparative study with the existing methods has been demonstrated, where the

proposed method is proved to be flexible and efficient.

The rest of the paper is organized as follows. Section 2 provides preliminaries comprising

of some relevant ideas. Section 3 discusses the proposed MADM method. Section 4 provides

the real-life case studies and numerical example followed by comparative study in Section 5.

Section 6 concludes the work with a summary.

§2 Preliminaries

This section covers some preliminary information related to the q-RLDFS, such as fuzzy

set, IFS, q-ROFS, LDFS, and q-LDFS.

Definition 2.1 [13]: If F is a fuzzy set on a non-empty discourse space Z = {K1, K2,.., Kn} then

F is defined as

F = {K, µF (K)|K ∈ Z} (1)

Here µF (K) represents the grade of membership of the entity K in the fuzzy set F , and it

belongs to [0, 1].

Definition 2.2 [14]: If F be an IFS on a non-empty discourse space Z = {K1, K2, .., Kn}, then
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F is defined as

F = {K, µF (K), νF (K)|K ∈ Z}. (2)

Here µF (K) and νF (K) ranges between [0, 1] respectively represent the grade of membership

and non-membership of entity K in F with a condition 0 ≤ µF (K) + νF (K) ≤ 1 for all K ∈ Z.

The grade of indeterminacy or hesitation π for the IFS F is πF = 1− µF (K)− νF (K). Figure

1 depicts IFS graphically.

Definition 2.3 [16]: If F is a q-ROFS on a non-empty discourse space Z = {K1, K2, .., Kn}
then F is defined as

F = {K, µF (K), νF (K)|K ∈ Z}. (3)

Here µF (K) and νF (K) ranges between [0, 1] respectively represent the grade of membership

and non-membership of entity K in F with a condition 0 ≤ (µF (K))q + (νF (K))q ≤ 1, q≥1 for

all K ∈ Z. The grade of indeterminacy π for the q-ROFS F is πF = q
√
1− (µF (K))q − (νF (K))q.

Figure 2 depicts q-ROFS graphically.

Definition 2.4 [9]: If F is an LDFS on a non-empty discourse space Z = {K1, K2, ..., Kn} then

F is distinguished as

F = {K, (µF (K), νF (K)), (α, β)|K ∈ Z}. (4)

Here µF (K) and νF (K) respectively represent the grade of membership and non-membership of

entity K in F , and α and β are the reference parameters, ranges between [0, 1], with a condition

0 ≤ α(µF (K)) + β(νF (K)) ≤ 1, and 0 ≤ α+β≤ 1 for all K ∈ Z. The grade of indeterminacy π

for the LDFS F is πF = 1− α(µF (K)) + β(νF (K)). Figure 3 depicts LDFS graphically.

q-rung linear diophantine fuzzy set(q-RLDFS):

Definition 2.5 [10]: If F is a q-RLDFS on a non-empty discourse space Z = {K1, K2, .., Kn}
then F is distinguished as

F = {K, (µF (K), νF (K)), (α, β)|K ∈ Z}, (5)

Here µF (K), νF (K), α and β ranges between [0, 1] respectively represent the grade of mem-

bership, non-membership and the reference parameters of of entity K in F , where (µF (K),

νF (K), α, β) is termed as q-rung linear diophantine fuzzy value (q-RLDFV) with a condition 0

≤ αq(µF (K)) + βq(νF (K)) ≤ 1, and 0 ≤ αq+βq≤ 1 for all K ∈ Z. The grade of indeterminacy π

for q-RLDFS F is πF = q
√

1− αq(µF (K)) + βq(νF (K)). Figure 4 depicts q-RLDFS graphically.

We note that,

(i) Ifq = 1 in Definition 2.5, the q-RLDFS reduces to LDFS.

(ii) If q = 2 in Definition 2.5, the q-RLDFS reduces to quadratic DFS.

(iii) If q = 3 in Definition 2.5, the q-RLDFS reduces to cubic DFS.

(iv) If q = 4 in Definition 2.5, the q-RLDFS reduces to bi-quadratic DFS and so on.

The advantage of the qth parameter is that as we increase the q-rung value, the problem

space increases accordingly. So, the fuzzy information can be broadly conveyed in the structure

space. This structure removes the experts or decision makers limitations in establishing mem-

bership and non-membership grades. The physical perception of the system can also be altered

by these reference parameters. One can overcome the systems limitations by increasing the

grade space used in q-RLDFS. As a result, we may use q-RLDFS to grade a broader range of

fuzzy information in problem representation. In other words, we can continue to tune the value

of q to determine the information expression range and make it more appropriate for imprecise

and ambivalent environments.
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Figure 1. Intuitionistic fuzzy set.
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Figure 2. Q-rung orthopair fuzzy set.
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Figure 3. Linear diophantine fuzzy set.
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Figure 4. Q-rung linear diophantine fuzzy set.
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Score functions and accuracy functions of q-RLDFS:

Let F = ((µF (K),νF (K)), (α, β)) be a q-RLDFV, where µF (K), νF (K), α, and β represent

the grade of membership, non-membership, and the reference parameters respectively, with a

condition 0 ≤ αq(µF (K)) + βq(νF (K)) ≤ 1 and 0 ≤ αq+βq≤ 1. Almagrabi [10] presented three

score functions such as score function, quadratic score function, and expectation score functions

followed by respective accuracy functions, shown as follows:

Score functions (SF):

Assume F = ((µF , νF ), (α, β)) be a q-RLDFV, then score function (SF), accuracy function

(AF), Quadratic Score function(QSF), qudratic accuracy function (QAF), expectation score

function (ESF) are given by

SF (F ) = [ (µF−νF )+(αq−βq)
2 ], where q ≥ 1, SF (F )∈ [-1, 1] .

AF (F ) = [ (µF+νF )
4 + (αq+βq)

4 ], where q ≥ 1, AF(F ) ∈ [0, 1].

QSF (F ) = [ ((µF )2−(νF )2)+((αq)2−(βq)2)
2 ], where q ≥ 1, QSF (F )∈ [-1, 1].

QAF (F ) = [ ((µF )2+(νF )2)
4 + ((αq)2+(βq)2)

4 ], where q ≥ 1, QAF (F )∈ [0, 1].

ESF (F ) = [ (µF−νF+1)
4 + (αq−βq+1)

4 ], q ≥ 1.

The score values of ESF score function lies between [0, 1] instead of [-1, 1] because it is gener-

alized form of SF.

Differential evolutionary algorithm:

DEA [16] is considered the most widely used and effective population-based stochastic op-

timization technique. Individuals from the current generation are considered the target vectors

in DEA, and the mutant vectors are determined using mutation operation from the target vec-

tor. Following that, the trial vectors are generated by combining the parameters of the mutant

vector and the target vector using a crossover operation. The trial vector is chosen in the next

generation based on the fitness value of the individuals and the greedy strategy (survival of the

fittest). The DEA Pseudocode is given below in Algorithm 1.

Evidential reasoning methodology:

ER methodology was developed to enhance the handling of decision analysis problems based

on the combination rule and evaluation framework, and is capable of handling imprecise informa-

tion of both qualitative and quantitative data. It has been used to aggregate the assessments of

the attributes of the alternatives with uncertainty in various decision-making problems, specif-

ically in MADM environments [18]. It uses a belief decision matrix to improve decision-making

and assesses attributes using evaluation grades. The degree of belief for each attribute of the

alternatives is next assessed. A belief structure is given by an assumption to demonstrate a

subjective assessment with uncertainty. To evaluate the performance of a bike, experts may

find that 40 percent is good and 60 percent is excellent. Here good, excellent are the evaluation

grades and the values in percentage are the degrees of belief [12]. So, the preceding statement

can be represented as S(performance) = {(good, 0.4), (excellent, 0.6)}. To assess the bike on

other attributes, other evaluation grades may also use the same grades such as good and excel-

lent. For example, the assessment for attribute mileage of the bike, S(mileage) = {(good, 0.3),
(excellent, 0.6)} is an incomplete assessment since 0.3 + 0.6 ≤ 1 whereas, the assessment of the

attribute performance is complete as 0.4 + 0.6 = 1.
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Algorithm 1 Pseudocode for DEA

Input: Fitness function, lb, ub, Np, T, F, Pc
Output: Optimal solution (weight vector W∗

j ) from the Np
1: Begin
2: Initialize population (P )
3: Compute the fitness (f) of P (f) of P
4: for i← 1, T do
5: for i← 1, Np do
6: Generate the donor vector (vi) using mutation
7: Perform crossover to generate offspring (Ui)
8: end for
9: for i← 1, Np do

10: Bound Ui

11: Evaluate the fitness (f(Ui)) of Ui

12: Perform greedy selection using f(Ui) and fi to update P
13: end for
14: end for
15: End

Assume a MADM problem with Ki alternatives and Cj attributes, where 1 ≤ i ≤ m, 1 ≤
j ≤ n, and the attributes have all the factors influencing the assessment of the general attribute

E, where E = {C1, C2, .., Cj}. The weights of the attributes Wj = {w1, w2, .., wn} are the

relative weights, which play an important role in prioritizing and normalizing the attributes.

Suppose p distinctive evaluation grades H1,H2, .., Hp are given for assessing all attributes of the

alternatives as, H = {H1,H2, .., Hp}, then the assessment of the jth attribute of an alternative

is defined as, Cj(Ki) = (Hq, βq,j(Ki)), q = 1, 2, .., p and j = 1, 2, .., n, where βq,j(Ki) ≥ 0,∑p
q=1 βq,j(Ki)) ≤ 1 denotes the degree of belief. The above assessment says each attribute Cj

is assessed with an evaluation grade (Hq) with a degree of belief.

Let mq,j be the basic probability mass for representing the degree of the jth attribute assessed

to the p evaluation grades, and mH,j be the remaining probability mass for the unassigned

individual grades for the evaluation grades. They are calculated as,

mq,j(Ki) = W∗
j βq,j(Ki),

mH,j(Ki) = 1−
∑p

q=1 mq,j(Ki)

State EI(y) be the subset of the y attributes as EI(y) = {C1, C2, .., Cj}, where j = 1, 2, .., n.

Let mq,I(y) be the combined probability mass of the attribute y assessed to the grade Hp,

and mH,I(y) be the combined remaining probability mass of the attributes unassigned to the

individual grades of the attributes y, calculated as:

mq,I(y)(Ki) = RI(y)(Ki)(mq,I(y−1)(Ki)mq,y(Ki)+

mq,I(y−1)(Ki)mH,y)(Ki) +mH,I(y−1)(Ki)mq,y(Ki)),

mH,I(y)(Ki) = RI(y)(Ki)mH,I(y−1)(Ki)mH,y(Ki),

where RI(y)(Ki) = (1−
∑2

t=1

∑2
g=1g ̸=t mt,I(y−1)(Ki) mH,y(Ki))

−1, 2 ≤ y ≤ n, 1 ≤ i ≤ m and

1 ≤ q ≤ 2 is the normalized factor, and mq,I(1) = mq,1, and mH,I(1) = mH,1.

The combined degree of belief βq is obtained by aggregating the evaluating values of the at-

tributes of the alternatives. The aggregation problem generates βq as,
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Table 1. The decision matrix (D)mxn.

C1 C2 Cn

K1
((µ11, ν11),
(α11, β11))

((µ12, ν12),
(α12, β12))

. . .
((µ1n, ν1n),
(α1n, β1n))

K2
((µ21, ν21),
(α21, β21))

((µ12, ν22),
(α22, β22))

. . .
((µ2n, ν2n),
(α2n, β2n))

...
...

... . . .
...

Km
((µm1, νm1),
(αm1, βm1))

((µm2, νm2),
(αm2, βm2))

. . .
((µmn, νmn),
(αmn, βmn))

βq(Ki) = 1− βH(Ki)
(mq,I(n)(Ki))

1−(mH,I(n)(Ki))

where βH(Ki) =
∑n

j=1 Wj(1−
∑2

q=1 βq,j(Ki)) is the degree of belief unassigned to any individual

evaluation grades.

§3 A Proposed approach based on q-RLDFS using DEA and ER

methodology

In this section, we propose a MADM approach by taking advantage of q-rung LDFS to

alleviate the problem space, differential evolutionary optimization and evidential reasoning

methodologies to provide reliable decision-making in emergency environments.

Initially, in order to provide the decision information, we form a q-RLDFS based decision

matrix q-RLDFSs Dmxn = ((µF (Ki), νF (Ki)),(α, β)) q ≥ 1 with a set of m alternatives (K1,

K2,..,Km) and n attributes (C1, C2,.., Cn). The decision matrix Dmxn is given below in Table 1.

Here ((µF (K), νF (K)), (α, β)) is called q-rung linear diophantine fuzzy value (q-RLDFV) and

0 ≤ αq(µF (K)) + βq(νF (K)) ≤ 1 and 0 ≤ αq+βq≤ 1, q ≥ 1 for all K ∈ Z. A q-RLDFV based

weight matrix Wj for the corresponding attributes is given in the form Wj = {W1,W2, ..,Wj}
where j = 1, 2, .., n.

LetW∗
j = {W∗

1 ,W∗
2 , ..,W∗

j } be the optimal weights obtained for the corresponding attributes

based on the DE working principles, where 0 ≤ Wj ≤ 1, 1 ≤ j ≤ n and
∑n

i=1 Wj = 1.

In the evidential reasoning methodology, we consider H1,H2, and H to be the assessment

grades for assessing the attributes of alternatives, where H1 and H2 respectively represent satis-

fying and not satisfying, and H represents indeterminacy. Let β1,j(Ki) and β2,j(Ki) denote the

respective belief degrees of the assessment grades H1 and H2 for the attribute Cj corresponding

to the alternatives Ki, where 0 ≤ β1,j(Ki) ≤ 1, 0 ≤ β2,j(Ki) ≤ 1, 0 ≤ β1,j(Ki) + β2,j(Ki) ≤
1, 1 ≤ i ≤ m, and 1 ≤ j ≤ n. We present the proposed approach below in a stepwise manner.

Step 1: The initial decision matrix D is converted into a granular bounded decision matrix

D = (µij , νij)mxn and levigated bounded decision matrix D = (αij , βij)mxn as mentioned in

Tables 2 and 3 respectively.

D = (µij , νij)mxn (6)

D = (αij , βij)mxn (7)

Step 2: For the granular bounded decision matrix D = (µij , νij)mxn, the degree of belief

(β1,j(Ki), β2,j(Ki)) for the jth attribute of the ith alternative is given as

(β1,j(Ki), β2,j(Ki)) = (µij(Ki) ∗ αq
ij(Ki)), (νij(Ki) ∗ βq

ij(Ki))), q ≥ 1 (8)



192 Appl. Math. J. Chinese Univ. Vol. 40, No. 1

Table 2. Granular bounded decision matrix D = (µij , νij)mxn.

C1 C2 Cn

K1 (µ11, ν11) (µ12, ν12) . . . (µ1n, ν1n
K2 ((µ21, ν21) ((µ12, ν22) . . . ((µ2n, ν2n)
...

...
... . . .

...

Km ((µm1, νm1) ((µm2, νm2) . . . ((µmn, νmn)

Table 3. Levigated bounded decision matrix D = (αij , βij)mxn.

C1 C2 Cn

K1 (αij , βij) (αij , βij) . . . (αij , βij)

K1 (α21, β21) (α22, β22) . . . (α2n, β2n)
...

...
... . . .

...

Km (αm1, βm1) (αm2, βm2) . . . (αmn, βmn)

Step 2.1: Belief structure βq,j(Ki) for the attribute Cj of alternative Ki) is transformed to

basic probability mass (mq,j(Ki)) and remaining probability mass (mH,j(Ki)) using (9) and

(10) as mentioned below.

mq,j(Ki) = w∗
j ∗ βq,j(Ki) (9)

mH,j(Ki) = 1−
p∑

q=1

mq,j(Ki) (10)

Step 2.2: Combined probability mass mq,I(y) and remaining combined probability mass mH,I(y)

are computed using (11) and (12). Initially, it is considered mq,I(1) = mq,1, and mH,I(1) = mH,1

where 1 ≤ i ≤ m and 2 ≤ y ≤ n.

mq,I(y)(Ki) = RI(y)(Ki)
(
mq,I(y−1)(Ki)mq,y(Ki) +mq,I(y−1)(Ki)mH,y(Ki)+

mH,I(y−1)(Ki)mq,y(Ki)
) (11)

mH,I(y)(Ki) = RI(y)(Ki)mH,I(y−1)(Ki)mH,y(Ki) (12)

where RI(y)(Ki) = (1 −
∑2

t=1

∑2
g=1g ̸=t mt,I(y−1)(Ki) mH,y(Ki))

−1, 2 ≤ y ≤ n, 1 ≤ i ≤ m and

1 ≤ q ≤ 2 is the normalized factor, and mq,I(1) = mq,1, and mH,I(1) = mH,1.

Step 2.3: Belief degree βq,j(Ki) is obtained by aggregating the evaluation values combined

probability mass mq,I(y)(Ki) and remaining combined probability mass mH,I(y)(Ki) for the jth

attribute of the alternative (Ki) using (13).

βq(Ki) = 1− βH(Ki)
(mq,I(n)(Ki))

1−m(H,I(n))(Ki)
(13)

Here βH(Ki) =
∑n

j=1 wj(1−
∑2

q=1 βq,j(Ki)), 1 ≤ i ≤ m, and 1 ≤ j ≤ n.

In order to represent the respective evaluation grades H1 and H2, belief degree βq(Ki) is termed

as β1(Ki) and β2(Ki).

step 3: For the levigated bounded decision matrix D = (αij , βij)mxn, the degree of belief

structure (β1,j(Ki), β2,j(Ki)) for the jth attribute of the ith alternative is given as

(β1,j(Ki), β2,j(Ki)) = (αq
ij(Ki), β

q
ij(Ki)), q ≥ 1 (14)

Step 3.1: Belief structure βq,j(Ki) for the attribute Cj of alternative Ki) is transformed to basic

probability mass (mq,j(Ki)) and remaining probability mass (mH,j(Ki)) using (15) and (16) as
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mentioned below.

mq,j(Ki) = w∗
jβq,j(Ki) (15)

mH,j(Ki) = 1−
p∑

q=1

mq,j(Ki) (16)

Step 3.2: Combined probability mass mq,I(y) and remaining combined probability mass mH,I(y)

are computed using (17) and (18). Initially, it is considered mq,I(1) = mq,1, and mH,I(1) = mH,1

where 1 ≤ i ≤ m and 2 ≤ y ≤ n.

mq,I(y)(Ki) = RI(y)(Ki)
(
mq,I(y−1)(Ki)mq,y(Ki) +mq,I(y−1)(Ki)mH,y(Ki)+

mH,I(y−1)(Ki)mq,y(Ki)
) (17)

mH,I(y)(Ki) = RI(y)(Ki)mH,I(y−1)(Ki)mH,y(Ki) (18)

where RI(y)(Ki) = (1 −
∑2

t=1

∑2
g=1g ̸=t mt,I(y−1)(Ki) mH,y(Ki))

−1, 2 ≤ y ≤ n, 1 ≤ i ≤ m and

1 ≤ q ≤ 2 is the normalized factor, and mq,I(1) = mq,1, and mH,I(1) = mH,1.

Step 3.3: Belief degree βq,j(Ki) is obtained by aggregating the evaluation values combined

probability mass mq,I(y)(Ki) and remaining combined probability mass mH,I(y)(Ki) for the jth

attribute of the alternative (Ki) using (19).

βq(Ki) = 1− βH(Ki)
(mq,I(n)(Ki))

1−m(H,I(n))(Ki)
(19)

Here βH(Ki) =
∑n

j=1 wj(1−
∑2

q=1 βq,j(Ki)), 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

In order to represent the respective evaluation grades H1 and H2, belief degree βq(Ki) is termed

as β1(Ki) and β2(Ki).

Step 4: The belief degrees, β1(Ki), β2(Ki) and β1(Ki), β2(Ki) obtained in Steps 2.3 and 3.3 men-

tioned above are combined to form aggregated q-RLDFV ((β1(Ki), β2(Ki)), (β1(Ki), β2(Ki))),

where 0 ≤ β1(Ki) ≤ 1, 0 ≤ β2(Ki) ≤ 1, 0 ≤ β1(Ki) ≤ 1, 0 ≤ β2(Ki) ≤ 1, 1 ≤ i ≤ m.

Step 5: Finally, the score values of the alternatives are computed based on the aggregated q-

RLDFS ((β1(Ki), β2(Ki)), (β1(Ki), β2(Ki))) using one of the score functions such as expectation

score function (ESF), quadratic score function (QSF), and score function (SF), referred in Eq.

(20), (21), and (22), where ESF (Ki) ∈ [0, 1] and QSF and SF (Ki) ∈ [-1, 1].

ESF (Ki) = [
(µF (Ki)− νF (Ki) + 1)

4
+

(αq(Ki)− βq(Ki) + 1)

4
], (20)

where q ≥ 1 and 1 ≤ i ≤ 2

QSF (Ki) = [
((µF (Ki))

2 − (νF (Ki))
2) + ((αq(Ki))

2 − (βq(Ki))
2)

2
] (21)

where q ≥ 1 and 1 ≤ i ≤ 2.

SF (Ki) = [
(µF (Ki)− νF (Ki)) + (αq(Ki)− βq(Ki))

2
] (22)

where q ≥ 1 and 1 ≤ i ≤ 2.

The alternative with the higher score value is selected as better one.



194 Appl. Math. J. Chinese Univ. Vol. 40, No. 1

§4 Case Study

This section illustrates the proposed approach using two real-life examples concerned with

COVID-19 emergency decision-making system and sustainable energy planning followed by a

numerical example.

4.1 COVID-19 emergency decision-making

This case study shows the implementation of the proposed approach for emergency decision-

making in the public health care system. The proposed method with q-RLDFS works as an

emergency decision support system, which suggests an optimal choice for the prevention of coro-

navirus and overcomes the spread of COVID-19 disease outbreaks. The problem information is

represented as the input to the decision matrix D1 using q-RLDFS with 4 alternatives and 5

criteria.

Let K = {K1,K2,K3,K4}={ medical-aid approach online, vaccination, governments man-

date, medical support} be the set of four alternatives and C= {C1, C2, C3, C4, C5}={Medical

adherence, Awareness and protective gear, Expertise, Travel restrictions, Universal uncertain-

ty} be the set of five attributes associated with each of the alternatives. A brief description of

the alternatives and attributes are given below in Table 4 and Table 5 respectively.

Among these alternatives, the better alternative will be selected based on five attributes C=

Table 4. Description of the alternatives.

Symbol Alternatives Description

K1
medical-aid
approach online

Sets people aware and inform them through online sources
such as the WHO, the Higher Medical Institutes, the health
ministry, and UNICEF in the context of COVID circumsta
-nces.

K2 vaccination
COVID-19 vaccination is now accessible as an emergency ap
-proval that enhances your protection against covetous treat
-ment.

K3
Governments
mandate

The directives given by the Govt. are vital, such as enforcing
lockdowns, restricting crowd gatherings, providing quarantine
centers and other social measures, etc. Following the orders
can ensure no spread of the virus from person to person.

K4 medical support
Medical support provides safety to all the individuals with
WHO recommended facial shields, gloves, PPEs, hand saniti
-zers, and additional safeguards in these circumstances.

{C1, C2, C3, C4, C5} for precise and efficient decision-making by three decision makers Dl =

{D1, D2, D3}, where 1 ≤ i ≤ 4, 1 ≤ n ≤ 5 and 1 ≤ l ≤ 3. Opinions of the decision makers

regarding the alternatives and attributes are represented using q-RLDFS which are shown using

the decision matrices Dl (l = 1, 2, 3) as shown below in Tables 6, 7, and 8 [10] respectively.

The weights assigned for the attributes are Wj = {0.32, 0.27, 0.17, 0.14, 0.1}. Based on

the input decision matrix and weights of the attributes, we obtain the optimal weights W∗
j =

{0.29, 0.23, 0.2, 0.19, 0.09} based on the working principles of differential evolution optimiza-

tion techniques.

Step 1: The initial decision matrix D1 is converted into granular bounded decision matrix

D1 = (µij , νij)mxn and levigated bounded decision matrix D1 = (αij , βij)mxn as mentioned in
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Table 5. Description of the attributes.

Symbol Attributes Description

C1
Medical
adherence

As the vaccines are being available to boost our immunity to fight
against COVID-19, it is also necessary to undergo clinical treatme
-nt in this challenging circumstances, particularly in the treatment
of symptomatic patients with fever, cough, sore throat, respiratory
issues, etc. for prevention or control measure.

C2

Awareness
and
protective
gear

To be safe, either the individual should have complete awareness
about the disease by following an online nmedical-aid course and
staying away from people who have COVID symptoms, wearing a
mask, frequent hand wash and proper sanitization, and maintaining
social distances.

C3 Expertise
Doctors and scientists specializedin respective domains contributing
towards the vaccination to prevent human from infections.

C4
Travel
restrictions

The viral transmission can occur through the transport system via
the symptomatic or asymptomatic infections of people in one place.
additional safeguards in these circumstances.

C5
Universal
uncertainty

COVID-19 already has a worldwide impact. It has affected most of
the countries, notably healthcare, transport, trading, and tourism,
and damaged their economic progress.

Table 6. Decision matrix D1 ((µF (Ki),
νF (Ki)),(α, β)), q = 4.

C1 C2 C3 C4 C5

K1 ((.8,.9),
(.85,.7))

((.9,.88),
(.8,0.7))

((1,1),
(.7,.8))

((.9,1),
(.9,.6))

((.8,.9),
(.7,.85))

K2 ((1,1),
(.7,.8))

((.98,.89),
(.8,.7))

((.87,.95),
(.8,.7))

((.82,1),
(.8,.7))

((1,.9),
(.6,.9))

K3 ((.8,.7),
(.6,.9))

((1,.8),
(.7,.8))

((.94,.84),
(.8,.7))

((.9,1),
(.8,.7))

((.88,.96),
(.8,.7))

K4 ((.9,1),
(.9,.6))

((1,.9),
(.7,.85))

((.95,.88),
(.8,.7))

((.9,.8),
(.7,.85))

((..9,1),
(.85,.7))

Table 7. Decision matrix D2 ((µF (Ki),
νF (Ki)),(α, β)), q = 4.

C1 C2 C3 C4 C5

K1 ((1,1),
(.7,.8))

((.9,.1),
(.8,0.7))

((.95,.85),
(.7,.8))

((.88,95),
(.8,.7))

((.8,.95),
(.7,.85))

K2 ((.99,.88),
(.7,.8))

((1,1),
(.8,.7))

((.8,.1),
(.8,.7))

((1,.9),
(.7,.8))

((1,.9),
(.6,.9))

K3 ((.85,.88),
(.6,.9))

((.8,.9),
(.85,.7))

((.95,.85),
(.7,.8))

((.9,1),
(.8,.7))

((.88,.96),
(.8,.7))

K4 ((1,1),
(.7,.8))

((.9,.1),
(.8,.7))

((.95,.9),
(.8,.7))

((.87,.95),
(.87,.7))

((.9,1),
(.9,.6))

Tables 9 and 10 respectively.

Table 8. Decision matrix D3 ((µF (Ki),
νF (Ki)),(α, β)), q = 4.

C1 C2 C3 C4 C5

K1 ((.9,.1),
(.8,.7))

((.88,.9),
(.6,.9))

((.8,.9),
(.7,.85))

((.85,.87),
(.7,.85))

((.95,.85),
(.7,.8))

K2 ((1,.9),
(.7,.8))

((.95,.78),
(.8,.78))

((.85,1),
(.7,.8))

((1,.8),
(.7,.8))

((1,.9),
(.6,.9))

K3 ((.8,1),
(.8,.7))

((1,1),
(.7,.8))

((.8,.9),
(.7,.85))

((.87,.95),
(.8,.7))

((.88,.96),
(.8,.7))

K4 ((.9,.87),
(.6,.9))

((1,.9),
(.6,.9))

((1,1),
(.8,.7))

((.98,.89),
(.7,.8))

((1,.9),
(.6,.9))

Table 9. Granular bounded decision matrix
D1 = (µij , νij)mxn.

C1 C2 C3 C4 C5

K1 (.8,.9) (.9,.88) (1,1) (.9,1) (.8,.9)

K2 (1,1) (.98,.89) (.87,.95) (.82,1) (1,.9)

K3 (.8,.7) (1,.8) (.94,.84) (.9,1) (.88,.96)

K4 (.9,1) (1,.9) (.95,.88) (.9,.8) (..9,1)

Step 2: For the granular bounded decision matrix D1 = (µij , νij)mxn, the degree of belief

(β1,j(Ki), β2,j(Ki)) for the jth attribute of the ith alternative is computed using (8) and shown

in Table 11.
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Table 10. Levigated bounded decision matrix D1 = (αij , βij)mxn.

C1 C2 C3 C4 C5

K1 (.85,.7) (.8,0.7) (.7,.8) (.9,.6) (.7,.85)

K2 (.7,.8) (.8,.7) (.8,.7) (.8,.7) ((.6,.9)

K3 (.6,.9) (.7,.8) (.8,.7) (.8,.7) (.8,.7)

K4 (.9,.6) (.7,.85) (.8,.7) (.7,.85) (.85,.7)

Table 11. Degree of belief (β1,j(Ki), β2,j(Ki)) of D1.

C1 C2 C3 C4 C5

K1 (.41,.21) (.36,.21) (.24,.40) (.59,.12) (.19,.46)

K2 (.24,.40) (.40,.21) (.35,.22) (.33,.24) (.12,.59)

K3 (.10,.45) (.24,.32) (.38,.20) (.36,.24) (.36,.23)

K4 (.59,.12) (.24,.46) (.38,.21) (.21,.41) (.46,.24)

Based on βq,j(Ki) and the obtained optimal weights by the programming model of DEA, we

aggregate the evaluation values of the attributes of the alternatives(Ki) using (9) to (13) from

steps 2.1 to 2.3 in order to obtain the belief degrees βq(Ki) = (β1(K1), β2(K1)) = (0.73,0.79),

(β1(K2), β2(K2)) = (0.79,0.74), (β1(K3), β2(K3)) = (0.75,0.70), (β1(K4), β2(K4)) = (0.76,0.84).

Step 3: For the levigated bounded decision matrix D1 = (αij , βij)mxn, the degree of belief

(β1,j(Ki), β2,j(Ki)) for the j
th attribute of the ith alternative is computed using (14) and shown

in Table 12.

Based on βq,j(Ki) and the obtained optimal weights by the programming model of DEA,

Table 12. Degree of belief (β1,j(Ki), β2,j(Ki)) of D1.

C1 C2 C3 C4 C5

K1 (.52,.24) (.40,.24) (.24,.40) (.65,.12) (.24,.52)

K2 (.24,.40) (.40,.24) (.40,.24) (.40,.24) (.12,.65)

K3 (.12,.65) (.24,.40) (.40,.24) (.40,.24) (.40,.24)

K4 (.65,.12) (.24,.52) (.40,.24) (.24,.52) (.52,.24)

Table 13. Score values of the COVID-19 alternatives.

Score functions K1 K2 K3 K4

ESF 0.491 0.470 0.483 0.501
SF -0.016 -0.059 -0.0038 0.003
QSF -0.029 -0.105 -0.058 0.006

we aggregate the evaluation values of the attributes of the alternatives(Ki) using (15) to

(19) from steps 3.1 to 3.3 in order to obtain the belief degrees βq(Ki) = (β1(Ki), β2(Ki)) =

(0.73,0.79), (β1(Ki), β2(Ki)) = (0.79,0.74), (β1(Ki), β2(Ki)) = (0.75,0.70), and (β1(Ki), β2(Ki))

= (0.76,0.84).

Step 4: The belief degrees, β1(Ki), β2(Ki) and β1(Ki), β2(Ki) obtained in Steps 2.3 and 3.3 are
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combined to form aggregated q-RLDFV ((β1(Ki), β2(Ki)), (β1(Ki), β2(Ki))), we get

((β1(K1), β2(K1)),(β1(K1), β2(K1))) = ((0.73, 0.79), (0.79, 0.85)),

((β1(K2), β2(K2)),(β1(K2), β2(K2))) = ((0.79, 0.74), (0.82, 0.77)),

((β1(K3), β2(K3)),(β1(K3), β2(K3))) = ((0.75, 0.70), (0.84, 0.76)),

((β1(K4), β2(K4)),(β1(K4), β2(K4))) = ((0.76, 0.84), (0.81, 0.88)).

Similarly, the combined belief degrees for the decision matrices D2 and D3 in the form of

aggregated q-RLDFVs are obtained by the same process respectively, we get

((β1(K1), β2(K1)),(β1(K1), β2(K1))) = ((0.84, 0.82), (0.81, 0.77)),

((β1(K2), β2(K2)),(β1(K2), β2(K2))) = ((0.86, 0.87), (0.82, 0.78)),

((β1(K3), β2(K3)),(β1(K3), β2(K3))) = ((0.86, 0.80), (0.81, 0.82)),

((β1(K4), β2(K4)),(β1(K4), β2(K4))) = ((0.81, 0.75), (0.86, 0.86)).

((β1(K1), β2(K1)),(β1(K1), β2(K1))) = ((0.85, 0.88), (0.69, 0.76)),

((β1(K2), β2(K2)),(β1(K2), β2(K2))) = ((0.83, 0.87), (0.71, 0.75)),

((β1(K3), β2(K3)),(β1(K3), β2(K3))) = ((0.76, 0.78), (0.74, 0.80)),

((β1(K4), β2(K4)),(β1(K4), β2(K4))) = ((0.90, 0.93), (0.68, 0.73)).

All the combined belief degrees obtained in the previous steps forD1, D2, andD3 are aggregated.

The optimal weight vector W∗
j = {0.4, 0.352, 0.248} is obtained by the working principles of

DEA for the corresponding attributes of the alternatives for the combined belief degree matrix.

The final evaluated q-RLDFV values of the alternatives are,

((β1(K1), β2(K1)),(β1(K1), β2(K1))) = ((0.86, 0.95), (0.88, 0.96)),

((β1(K2), β2(K2)),(β1(K2), β2(K2))) = ((0.84, 0.94), (0.91, 0.96)),

((β1(K3), β2(K3)),(β1(K3), β2(K3))) = ((0.84, 0.94), (0.88, 0.95)),

((β1(K4), β2(K4)),(β1(K4), β2(K4))) = ((0.92, 0.99), (0.92, 0.99)).

Step 5: Finally, we calculate the score values to prioritize the alternatives for decision-making

based on combined belief degrees obtained at step 4 and one of the score functions shown in

Eq. (20), (21), and (22).

The final order of ranking of the alternatives according to the largest value given by the score

functions is K4 > K1 > K3 > K2. So the medical support alternative K4 be the better choice to

be safe and avoid any sort of viral infections from the COVID-19 disease. Our experimentation

shows that the ranking of the COVID-19 alternatives shown in Table 13 and also graphically

shown in Fig. 5 using all the three score functions (ESF, QSF, and SF) are similar.

4.2 Sustainable energy planning management

Energy sources such as inexhaustible and unsustainable energy assets play a significant

part in the development of the world economy and ecological equilibrium. Energy resources

like electricity, thermal, tidal, wind energies, and so forth are likewise important for ecological

balance. Specifically, electricity is one of the most extensive energy resources in different sectors.

This section shows the implementation of the proposed approach for emergency decision-
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Table 14. Description of the alternatives.

Symbol Description Resources

K1
In this circumstance, the selection of
clean coal is preferable.

Indigenous coal, fuel, gas, etc.

K2
In this case, the parameters of produc
-tivity and preservation are examined.

Production strategy and capacity
recycling

K3
In this case, the current state policy and
plan are followed

In accordance with the state’s goals
and strategies.

K4
This choice favors sustainable energy and
technology.

Environmental energy, hydro
-electricity, sunlight, wind, and bio
-mass sources

Table 15. A q-RLDFS Decision matrix D=((µF (Ki), νF (Ki)),(α, β)), q = 4.

C1 C2 C3 C4

K1 ((0.73,0.41),
(0.31,0.13))

((0.63,0.53),
(0.13,0.23))

((0.73,0.41),
(0.23,0.15))

((0.63,0.53),
(0.31,0.36))

K2 ((0.71,0.34),
(0.51,0.31))

((0.63,0.51),
(0.43,0.39))

((0.71,0.41),
(0.31,0.41))

((0.69,.38),
(0.41,0.31))

K3 ((0.63,0.59),
(0.41,0.31))

((0.78,0.43),
(0.38,0.41))

((0.63,0.48),
(0.28,0.17))

((0.58,0.49),
(0.31,0.42))

K4 ((0.81,0.58),
(0.49,0.31))

((0.73,0.68),
(0.43,0.49))

((0.69,0.73),
(0.31,0.31))

((0.68,0.51),
(0.43,0.21))

making in sustainable energy planning decision management. The proposed method with q-

RLDFS works as a decision-making model, which suggests an optimal choice for the selection

of energy policies. The problem information is represented by the decision makers using the

decision matrix D based on q-RLDFS with four alternatives and four criteria which is shown

in Table 15 [15]. Let Ki = {K1,K2,K3,K4} be the set of four alternatives shown in Table 14.

Among these alternatives, the better alternative will be selected based on four factors or criteria

Cn= {C1, C2, C3, C4} for precise and efficient decision-making by decision maker, where 1 ≤
i ≤ 4, 1 ≤ n ≤ 4. The criteria information is given below. C1: Carbon dioxide emission: This

parameter characterizes the carbon dioxide outflows and the expense identified with squander

treatment.

C2: Risk: It estimates the likelihood of failure.

C3: Feasibility: This criterion determines the application of probability in the energy scenario.

C4: Investment cost: This criterion comprises the cost of equipment, personnel, building, and

infrastructure throughout the mounting of a power plant.

It is considered that for the decision matrix D, there are no weight constraints given by

the decision makers, so we directly obtain the optimal weights of the attributes by executing

the programming model based on the working principles of differential evolution optimization

techniques. The optima weight vector W∗
j = {0.4, 0.25, 0.14, 0.2}. For the decision matrix D

given by decision maker, the combined belief degrees β1(Ki) β2(Ki) and β1(Ki), β2(Ki) are eval-

uated based on steps 2.2 and 3.3 given in (13) and (14) respectively in section 3. The evaluated

combined belief degrees for the decision matrix given by decision maker D are computed as

((β1(K1), β2(K1)), (β1(K1), β2(K1))) = ((0.3507, 0.4198), (0.6559, 0.5907), ((β1(K2), β2(K2)),
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(β1(K2), β2(K2))) = ((0.2147, 0.3128), (0.8253, 0.7533)), ((β1(K3), β2(K3)), (β1(K3), β2(K3)))

= ((0.4079, 0.4925), (0.6165, 0.5498)), ((β1(K4), β2(K4)), (β1(K4), β2(K4))) = ((0.3313, 0.3732),

(0.7189, 0.6957)). Finally, we calculate the score values to prioritize the alternatives for decision-

making based on the obtained final combined belief degrees and one of the score functions shown

in (20), (21), and (22).

The final order of ranking of the alternatives according to the score functions is K3 > K1 >

K4 > K2, which has been clear shown in Table 16 and Fig. 6. So, the alternative K3 be the

better energy policy for the sustainable energy planning management.

Table 16. Score values of the energy planning policies.

Score functions K1 K2 K3 K4

ESF 0.401 0.269 0.439 0.349
SF -0.197 -0.461 -0.120 -0.301
QSF -0.160 -0.369 -0.109 -0.230

4.3 Numerical Example

Assume a student aspires to communicate and publish a research article in a renowned

publication with a high impact factor. His two research supervisors have also picked four

journals based on the needed criteria. The suggested MADM technique employing q-RLDFS

can be applied to select the best journal among the four journals for the student required for

publishing.

Let K = {K1,K2,K3,K4} be the four journals selected by the student and his two supervisors

for publishing the research article, where K1 is the journal one, K2 is the journal two and

likewise. Assume the decision makers represented the input decision matrix D in q-RLDFS as

shown in Table 17 [9] with n criteria (student and supervisors) and m alternatives (journals).

For the given input decision matrix, there are no weight constraints, so directly we obtain

the optimal weights by executing the programming model based on the working principles of

differential evolution optimization techniques.

For the decision matrix D given by decision maker, the combined belief degrees ((β1(K1), β2(K1)),

(β1(K1), β2(K1))) are evaluated based on the steps 1-4. The aggregated combined belief degrees

for the decision matrixD are ((β1(K1), β2(K1)), (β1(K1), β2(K1))) = ((0.35, 0.41), (.6559,0.5907),

((β1(K2), β2(K2)), (β1(K2), β2(K2))) = ((0.2147, 0.3128), (0.8253, 0.7533)), ((β1(K3), β2(K3)),

(β1(K3), β2(K3))) = ((0.4079, 0.4925), (0.6165, 0.5498)), ((β1(K4), β2(K4)), (β1(K4), β2(K4)))

= ((0.3313, 0.3732), (0.7189, 0.6957)).

Finally, we calculate the score values which are shown in Table 18 to choose the journal for

the publication based on obtained final combined belief degrees and one of the score functions

shown in (20), (21), and (22). It is noted that the ranking of the journals for all the three score

functions are similar, which clearly shows in Fig. 7.
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Table 17. Decision matrix D with student and two supervisors opinions.

Student Supervisor-1 Supervisor-2

K1 ((73,.68),
(.41, .37))

((.83,.43),
(.51,.15))

((,78,.57),
(.45,.21))

K2 ((.64,.21),
(.37,.28))

((..78,.13),
(.61, .15))

((.73,.18),
(.51, 0.19))

K3 ((.89,.87),
(.41, .33))

((.97,.63),
(.63, .11))

((.91,.71),
(.49,.26))

K4 ((.91,.73),
(.46, .18))

((.96,.47),
(.61, .14))

((.92,.68),
(.51, .15))

Table 18. Score values of the Journals.

Score functions K1 K2 K3 K4

ESF 0.213 0.084 0.149 0.062
SF -0.573 -0.830 -0.701 -0.875
QSF -0.498 -0.809 -0.673 -0.911
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Figure 5. Ranking analysis
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functions
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§5 Comparative analysis and discussion

This section compares the proposed approach with the other three existing approaches to

justify the significance of the proposed approach. In order to evaluate the performance of the

proposed approach, we have formulated two numerical examples in this section. Then we have

compared the results of these examples with that of the other three approaches.

Example 5.1: Let K={K1,K2,K3,K4,K5,K6,K7} be the set of alternatives, C= {C1, C2, C3,
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Table 19. A q-RLDFS Decision matrix D=((µF (Ki), νF (Ki)),(α, β)), q = 4.

C1 C2 C3 C4

K1 ((.73,.41),
(.31,.13))

((.63,.53),
(.13,.23))

((.73,.41),
(.23,.15))

((.63,.53),
(.31,.36))

K2 ((.63,.43),
(.41,.42))

((.74,.32),
(.63,.21))

((.68,.41),
(.53,.21))

((.71,.41),
(.43,.28))

K3 ((.71,.34),
(.51,.31))

((.63,.51),
(.43,.39))

((.71,.41),
(.31,.41))

(.69,.38),
(.41,.31))

K4 ((.69, .59),
( .61,.21))

((.81,.51),
(.31,.42))

((.83,.41),
(.32,.41))

(.73,.49),
(.41,.21))

K5 ((.72,.41),
(.51,.21))

((.83,.41),
(.42,.31))

((.73,.41),
(.31,.42))

(.83,.49),
(.28,.41))

K6 ((.63,.59),
(.41,.31))

((.78,.43),
(.38,.41))

((.63,.48),
(.28,.17))

(.58,.49),
(.31,.42))

K7 ((.81,.58),
(.49,.31))

((.73,.68),
(.43,.49))

((.69,.73),
(.31,.31))

((.68,.51),
(.43,.21))

C4} be the set of attributes and the corresponding decision matrix in terms of q-RLDFS given

by the experts is given in Table 19 [7]. For the given decision matrix in Table 19, we obtain

the optimal weights w∗
j = {0.4, 0.252, 0.148, 0.2} using DEA. For the decision matrix D given

by decision maker, the combined belief degrees β1(Ki) β2(Ki) and β1(Ki), β2(Ki) are evaluated

based on the steps 1-4. The aggregated combined belief degrees for the decision matrix D are

((β1(K1), β2(K1)),(β1(K1), β2(K1))) = ((0.350, 0.655), (0.419, 0.590)),

((β1(K2), β2(K2)),(β1(K2), β2(K2))) = ((0.161, 0.898), (0.245, 0.847)),

((β1(K3), β2(K3)),(β1(K3), β2(K3))) = ((0.214, 0.825), (0.312, 0.753)),

((β1(K4), β2(K4)),(β1(K4), β2(K4))) = ((0.169, 0.887), (0.235, 0.851)),

((β1(K5), β2(K5)),(β1(K5), β2(K5))) = ((0.203, 0.834), (0.302, 0.756)),

((β1(K6), β2(K6)),(β1(K6), β2(K6))) = ((0.407, 0.616), (0.492, 0.549)),

((β1(K7), β2(K7)),(β1(K7), β2(K7))) = ((0.331, 0.718), (0.373, 0.695)).

Finally, we calculate the score values shown in Table 20 to select the ranking of the alternatives

based on the obtained final combined belief degrees and the score functions given in (20), (21),

and (22).

Table 20. Core values of the alternatives.

Score
functions

K1 K2 K3 K4 K5 K6 K7

ESF 0.40 0.18 0.26 0.18 0.26 0.43 0.34
QSF -0.16 -0.52 -0.36 -0.51 -0.38 -0.10 -0.23
SF -0.19 -0.62 0.46 -0.62 -0.47 -0.12 -0.30

Tables 21, 22 and 23 show the comparative study of the proposed approach with three other
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approaches in terms of the ranking of the alternatives. Our proposed approach is found to be

significant in the sense that it yields similar ranking for the three different score functions (ESF,

QSF, and SF) while the other approaches yields slightly different ranking for the same. Hence

the proposed method ensures robust and consistent decision-making compared to the existing

methods.

Table 21. Order of preference using ESF score function.

Methods Ranking of alternatives
q-RLDFAA [10] K4 > K7 > K1 > K6 > K5 > K2 > K3

q-RLDFWA [10] K3 > K2 > K7 > K6 > K4 > K5 > K1

LDFS [9] K3 > K2 > K7 > K6 > K1 > K4 > K5

Proposed method K6 > K1 > K7 > K3 > K5 > K4 > K2

Table 22. Order of preference using QSF score function.

Methods Ranking of alternatives

q-RLDFAA [10] K4 > K7 > K6 > K1 > K5 > K2 > K3

q-RLDFWA [10] K3 > K2 > K7 > K6 > K5 > K4 > K1

LDFS [9] K3 > K2 > K7 > K6 > K1 > K5 > K4

Proposed method K6 > K1 > K7 > K3 > K5 > K4 > K2

Table 23. Order of preference using SF score function.

Methods Ranking of alternatives

q-RLDFAA [10] K4 > K7 > K1 > K6 > K5 > K2 > K3

q-RLDFWA [10] K3 > K2 > K7 > K6 > K4 > K5 > K1

LDFS [9] K3 > K2 > K7 > K6 > K1 > K4 > K5

Proposed method K6 > K1 > K7 > K3 > K5 > K4 > K2

Example 5.2:

Let K = {K1,K2,K3,K4} be the four journals selected by the student for publishing the

research article. The decision matrix in the framework of q-RLDFS is given in Table 24 [28].

For the given input decision matrix, there are no weight constraints, so directly we obtain the

optimal weights based on differential evolution optimization techniques.

For the decision matrixD provided by the student, the combined belief degrees ((β1(K1), β2(K1)),

(β1(K1), β2(K1))) are evaluated based on Steps 1-4 as given in the proposed approach in Sec-

tion 3. The aggregated combined belief degrees for the decision matrix D are ((β1(K1), β2(K1)),

(β1(K1), β2(K1))) = ((0.17,0.98), (0.95,0.97)), ((β1(K2), β2(K2)), (β1(K2), β2(K2))) = ((0.47,0.59),

(0.95,0.95)), ((β1(K3), β2(K3)), (β1(K3), β2(K3))) = ((0.39,0.70), (0.96,0.96)), ((β1(K4), β2(K4)),

(β1(K4), β2(K4))) = ((0.38,0.99),(0.98,0.95)).

Now, we calculate the score values which are shown in Table 25 to choose the journal for the

publication based on the obtained final combined belief degrees and one of the score functions
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Table 24. Decision matrix D.

Student Supervisor-1 Supervisor-2

K1 ((0.86,0.34),
(.75,0.24))

((0.56,0.49),
(0.5,0.37))

((0.78,0.35),
(0.65,0.25))

K2 ((0.75,0.34)
(0.6,0.24))

((0.46,0.74),
(0.28,0.6))

((0.45,0.41),
(0.32,0.27))

K3 ((0.56,0.44),
(0.48,0.26))

((0.34,0.66),
(0.25,0.53))

((0.78,0.59),
(0.61,0.49))

K4 ((0.95,0.11),
(0.8,0.1 ))

((0.99,0.21),
(0.88,0.08))

((0.86,0.35),
(0.75,0.24))

shown in (20), (21), and (22). It is noted that the ranking of the journals for all of the three

score functions are similar.

Table 25. Score values of the Journals.

Score functions K1 K2 K3 K4

ESF 0.283 0.479 0.422 0.373
SF -0.432 -0.041 -0.155 -0.252
QSF -0.517 -0.035 -0.170 -0.330

Table 26. Order of preference using ESF
score function.

Methods Ranking of alternatives

q-RLDFAA [10] K2 > K4 > K3 > K1

q-RLDFWA [10] K2 > K4 > K1 > K3

LDFS [9] K2 > K4 > K1 > K3

Proposed method K3 > K1 > K4 > K2

Tables 26, 27 and 28 shows the comparative study of the proposed approach with three

other approaches in terms of the ranking of the alternatives. Our proposed approach is found

to be significant in the sense that it yields similar ranking for the three different score functions

(ESF, QSF, and SF) while the q-RLDFAA and q-RLDFWA operators yields slightly different

ranking for the same. Hence the proposed method ensures robust and consistent decision-

making compared to the existing methods.

Table 27. Order of preference using QSF
score function.

Methods Ranking of alternatives

q-RLDFAA [10] K4 > K2 > K3 > K1

q-RLDFWA [10] K4 > K2 > K3 > K1

LDFS [9] K4 > K2 > K3 > K1

Proposed method K3 > K1 > K4 > K2

Table 28. Order of preference using SF s-
core function.

Methods Ranking of alternatives

q-RLDFAA [10] K2 > K4 > K3 > K1

q-RLDFWA [10] K2 > K4 > K1 > K3

LDFS [9] K2 > K4 > K1 > K3

Proposed method K3 > K1 > K4 > K2

The proposed approach determines the best alternative from the group of alternatives in

emergency decision-making in uncertain environments and it can be justified from the following

analysis:

1. Robust and consistent decision-making:
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The proposed method provides reliable results when choosing the best option. It can gener-

ate the similar order of ranking for all of the three score functions (ESF, QSF, and SF), which

has been proved in our experimental analysis. This shows the robust and consistent nature of

the proposed method.

2. Computation of optimal weights of the attributes:

Usage of the optimal weights for the attributes is significant to solve any kinds of uncertain

decision-making problems, where DE optimization ensures the process of finding the optimal

weights. The optimal weights are the priorities given to the attributes by the optimization

technique based on problem information in the decision-making process. It can also assist in

the aggregation of the belief degrees in ER technique.

3. Aggregation of the belief degrees using ER methodology:

ER methodology is found to be suitable to aggregate the problem information effectively

based on the belief degree structure. Unlike the fuzzy aggregation operators, the ER method-

ology evaluates the performance of the attributes by the evaluation grades and aggregates the

grades using probability mass and combined probability mass and then calculates the aggre-

gated values of the attributes of the alternatives. The complete evaluation is mathematically

shown in section 2. The optimal aggregated alternatives can be ensured using ER methodology

with the optimal weights obtained by DE. Thereafter, it can contribute to the efficiency of the

decision-making approach.

It is proved that the structural space of q-RLDFS with the inclusion of qth parameter,

optimal weights of DE optimization technique, and the aggregation of evaluated attributes of

the alternatives can collectively form an effective decision-making approach. The proposed

method is consistent in choosing the best alternative for all the three variety of score functions.

This also justifies the robust nature of the proposed decision-making approach.

§6 Conclusion

In this study, we have proposed a decision-making approach to solve COVID-19 emergen-

cy decision-making problem using q-RLDFS, differential evolutionary optimization techniques,

and evidential reasoning methodology. The proposed approach is enhanced by removing the

limitations and restrictions for defining membership and non-membership grades given by ex-

perts or decision makers with q-RLDFS. The ER methodology involves the belief structure for

the purpose of obtaining belief degrees. Differential evolutionary optimization techniques en-

sure optimal weights for the attributes. The proposed approach ensures robust and consistent

decision-making by providing a similar ranking of the alternatives for all the three mentioned

score functions. For better illustrations of the proposed approach, we have used one COVID-19

related case study and one numerical example. The comparative study shows the applicability

of the proposed approach. Researchers can use this concept to solve uncertain real-life problems

using the various extensions of fuzzy set. In the future, researchers may also apply the proposed

idea to COVID-19 vaccination information to make the necessary decision to optimize the vac-

cine distribution among the various states of a particular country to meet the requirements.

Moreover, the proposed work may be extended for decision-making using fuzzy linear regression

and fuzzy logistic regression techniques to manage the nature of the high volume of data.
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