
Appl. Math. J. Chinese Univ.
2025, 40(1): 149-168

Robust tests of stock return predictability under

heavy-tailed innovations
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Abstract. This paper provides a robust test of predictability under the predictive regression

model with possible heavy-tailed innovations assumption, in which the predictive variable is

persistent and its innovations are highly correlated with returns. To this end, we propose a

robust test which can capture empirical phenomena such as heavy tails, stationary, and local to

unity. Moreover, we develop related asymptotic results without the second-moment assumption

between the predictive variable and returns. To make the proposed test reasonable, we propose

a generalized correlation and provide theoretical support. To illustrate the applicability of the

test, we perform a simulation study for the impact of heavy-tailed innovations on predictability,

as well as direct and/or indirect implementation of heavy-tailed innovations to predictability

via the unit root phenomenon. Finally, we provide an empirical study for further illustration,

to which the proposed test is applied to a U.S. equity data set.

§1 Introduction

One fundamental question in finance is whether future stock returns are predictable using

publicly available information such as the dividend-price ratio, the earnings-price ratio, and

various measures of the interest rate. The predictive regression model, proposed by [11] and [17],

has been used to answer this question in part. Along this line, many studies have been applied

to test the predictability based on this model. Take, for example, the papers by [3], [4] and [17],

among others.

Under such an econometric method with conventional critical values, one could expect to ask

whether there is strong evidence for the predictability of returns. Unfortunately, conventional
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tests of the predictability of stock returns could be invalid. More specifically, they reject the

null too frequently when the lag of the financial variables is persistent and its innovations are

highly correlated with returns. This concept has attracted much attention in the literature. One

celebrated approach is the Bonferroni Q-test proposed by [3].

How the returns of many macroeconomic and financial time series are distributed is an

important issue. Since the 1960s, however, empirical evidence has led many to reject the

normal assumption in favor of various heavy-tailed alternatives. It is now commonly accepted

that financial asset returns are, in fact, heavy-tailed. In other words, it is observed that in many

cases, “Normal is not normal”, especially for financial data sets. This indicates that the normal

assumption might not be suitable for real applications; see, e.g. [1]. For modeling the predictive

regression model, there are basically two approaches to overcome this heavy-tailed problem, the

heavy-tailed innovation and the time-series innovation. For the time-series innovation, if the

innovations are generated by the GARCH model, it exhibits the heavy-tailed feature. However,

how the GARCH parameter affects the asymptotic behavior of the estimator is far from clear. A

few exceptions can be found in the seminal work of [12], and the references therein. Accordingly,

we submit that the heavy-tailed innovations assumption better fits empirical data, which means

that heavy-tailed distributions are useful to model certain economic variables and stock price

changes; see, e.g. [13].

A typical study in predictive regression is an ordinary least squares (OLS) regression of

stock returns onto the lag of the financial variable. Specifically, the model is described as

yt = β0 + β1xt−1 + ut,

where yt is the predictable variable, say the log excess stock return at time t, and xt−1 is a

financial variable such as the dividend-price ratio at time t − 1. In large samples, when ut is

independent and identically distributed (i.i.d.) with finite variance or ut is a martingale differ-

ence with E[u2
t |Ft−1] < ∞ (Ft ≡ σ(us; s ≤ t)), CLT (i.e., central limit theorem) based results

apply. In this paper, motivated by the empirical fact that the heavy-tailed innovations, one

contribution is to derive explicit expressions for the asymptotic behavior of the OLS estimators

under the case that the noise distribution exhibits a heavy tail. A similar concern was raised

from [13] (in fact, [13] derives explicit finite sample expressions for the tail probabilities of the

distribution of the OLS estimator).

On the other hand, most empirically economic/financial data are non-stationary with large

volatility. To capture this large volatility, heavy-tailed distributions are often used in the finance

and insurance literature, cf. [6] and [10]; while a time-varying volatility framework can be found

in [4]. To capture the non-stationary phenomenon under the first-order autoregressive model,

one strand of the literature suggests modeling the variables as local-to-unity processes, cf. [3].

These papers assume the form of a first-order auto-regression as

xt = ρxt−1 + et

with root ρ = 1 + c/n, where n denotes the sample size. A prominent application of this

theory for empirical study is the construction of confidence intervals (CIs) for autoregressive

roots through the inversion of unit root test statistics. Combining local-to-unity processes
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simultaneously with infinite-variance errors, many literatures raised the concern; see, e.g. [15].

In this paper, this feature attracts attention to us and it can capture the persistent issue of the

previous discussion.

Local-to-unity asymptotics provide an accurate approximation of the finite-sample distri-

bution of test statistics when the predictor variable is persistent. In fact, it turns out that

appropriately centered statistics have limits as c → −∞ that correspond to the stationary limit

theory for fixed |ρ| < 1. More specifically, the limit theory in [14] suggests that inversion of

appropriately centered test statistics should lead to CIs that correspond to those that apply

to the stationary region and are based on stationary asymptotics. Thus, three cases of ρ that

need to be considered in this regard are (i) |ρ| < 1; (ii) ρ = ρn, depending on the sample size n,

and n(ρn − 1) → c, as n → ∞, with −∞ < c < ∞; and (iii) ρ = ρn, depending on the sample

size n, and n(ρn − 1) → −∞ as n → ∞.

Motivated by the above observations, this paper considers the following model:

yt = β0 + β1xt−1 + ut and xt = ρxt−1 + et, for t = 1, ..., n. (1)

Here parameter ρ is the unknown degree of persistence in the variable xt. And we will assume

that the innovations exhibit the heavy-tailed feature in the sense that they have possibly infinite

variances; see Section 3 for details.

As mentioned previously, for testing the predictability of stock returns, Bonferroni Q-test

proposed by [3] has solved that the lag of the financial variables is persistent and its innovations

are highly correlated with returns. The key idea of the Bonferroni Q-test is to involve not

only the first-order autoregressive root but also the highly correlated correlation with returns.

However, the confidence interval of such a Bonferroni procedure is invalid in case (iii), as noted

in [16]. Moreover, the correlation coefficient of the predictor variable and returns does not

exist when the innovations are heavy-tailed random variables without the finite second-moment

assumption. Therefore, the Bonferroni Q-test proposed by [3] is not robust enough and, in the

heavy-tailed case, is not even well-defined.

In this paper, motivated by the above observations and seeking to bridge this gap, we study

the predictability under possible heavy-tailed innovations and the stationary as well as local-

to-unity cases. To be more precise, under the assumption that the innovations have possibly

infinite variances, and that the correlation coefficient of the innovations may not exist, we study

the limiting distributions of the least squares estimators of β0 and β1 under the three cases of

ρ defined in (1). On the basis of our method, we study the predictability under possible heavy-

tailed innovations assumption and attempt to describe the relationships between heavy-tail,

unit root, and predictability. Since the predictive tests using these estimators work well under

both heavy-tailed innovations and unit root/near-unit root cases, we term this method a robust

test.

There are two contributions to this study. First, we investigate the least squares estimators

under the predictive regression model. Since the consistency properties of the estimator can be

implied by the corresponding results on limiting distributions, we focus on the limiting distri-

butions of the estimators and the corresponding proposed statistics. Although there are three
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cases of ρ, we can unify the statistics. Theoretically, under the heavy tails, it is difficult to

investigate innovations which are highly correlated with returns, because correlation cannot be

defined without a finite second-moment assumption. Accordingly, we first introduce a gener-

alized correlation without the finite second-moment assumption, and then provide a consistent

estimator. To the best of our knowledge, the generalized correlation has not been studied in the

literature yet. This paper is a seminal work for considering the correlation without the finite

second-moment assumption.

Second, based on the above theoretical results as well as those in [3] and [16], we propose

a robust Q-test statistic when the correlation coefficient of innovations does not exist, which

we term a generalized Bonferroni Q-test. Note that the Bonferroni Q-test proposed by [3] is

widely used; however, [16] shows that the confidence interval by such a Bonferroni procedure is

invalid in case (iii). To include all three cases, in this paper, we combine these two methods and

propose a robust estimator under the heavy-tailed innovations. Our numerical results show that

this reformation is precise and useful. Moreover, by using the proposed “generalized Bonferroni

Q-test”, we study the impact of heavy-tailed innovations on predictability.

The remainder of this paper is organized as follows. Our model setting and theoretical

results are given in Section 2. Section 3 presents a generalized Bonferroni Q-test. In Section 4,

we conduct simulations to demonstrate the feasibility of our method for finite samples and

discuss the interesting issue of predictability. In Section 5, we apply our test procedure to a

U.S. equity data set and examine the empirical evidence for predictability and describe their

heavy-tailed properties. Section 6 concludes. Due to the reason of space, all proofs of theoretical

results are not presented in this paper, but they are available upon request.

§2 Robust inference for predictive regressions with heavy-tailed

innovations

In this section, we state the asymptotic results for the least squares estimators of the pa-

rameters (β0, β1). These results not only support our robust test in Section 3, but also offer

some independent contributions. The cases of ρ to be considered in this regard are (i) |ρ| < 1;

(ii) ρ = ρn, depending on sample size n, and n(ρn − 1) → c, as n → ∞, with −∞ < c < ∞;

(iii) ρ = ρn, depending on sample size n, and n(ρn − 1) → −∞ as n → ∞. Note that case (ii)

reduces to the unit root case when ρ = ρn ≡ 1.

2.1 Predictive regressions model with heavy-tailed innovations

Throughout this paper, the innovations {(ut, et), t ≥ 1} are assumed to be i.i.d. bivariate

random variables with zero mean and possibly infinite variance. Under the assumption that

the innovations have possibly infinite variances, studying the asymptotic distribution of the

least squares estimator of (β0, β1)
T is challenging. Therefore, we follow [7] and control the tail

behavior to investigate the asymptotic distribution of the parameter estimator.
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Assumption 1. Assume that for all t ∈ N ∪ {0} and 0 ≤ η ≤ 2 ≤ ζ,

lim
x→∞

xζ−ηE [|ut|ηI{|ut| > x}]
E|ut|ζI{|ut| ≤ x}

= k and lim
x→∞

xζ−ηE [|et|ηI{|et| > x}]
E|et|ζI{|et| ≤ x}

= k,

where 0 ≤ k = ζ−2
2−η ≤ ∞ with η = 2 if k = ∞.

Assumption 1 is a technique to ensure that the tail eventually converges and to allow infinite

variances (for example, if Y is a random variable with a Pareto distribution that the density

function is given by fY (y) = 2
y3 I(y > 1), then EY 2 = ∞ and limx→∞

x2E[|Y |I{|Y |>x}]
E|Y |3I{|Y |≤x} = 1).

We require merely the form of tail behavior and do not assume any particular global form for

the distribution function. This assumption is an important sub-class of heavy-tailed random

variables. It is a common technique to analyze the asymptotic properties of the heavy tail.

Along this line, by a more general assumption, many studies have been applied to analyze the

asymptotic stable distribution, for example, [13], among others. However, in the issue of this

paper, we do not have an expression for the location and skewness parameters of the elements

of an asymptotic stable distribution. Of course, further research is obviously required, and

discussion of these elements of the stable distribution is beyond the scope of this paper. Thus,

this paper chooses Assumption 1 to deal with the issue discussed in Section 1. Assumption 1

has a nice property that the random variables {ut} and {et} are in the domain of attraction

of the normal law (DAN, for short). Here let us introduce DAN: a sequence of i.i.d. random

variables {Xn, n ≥ 1} belongs to the DAN if there exist two constant sequences {An, n ≥ 1} and

{Bn, n ≥ 1} such that Zn := B−1
n (X1+ · · ·+Xn)−An converges to a standard normal random

variable in distribution, cf. page 172 in [7]. It is known that Bn must take the form
√
nc(n),

where c(n) is a slowly varying function at infinity. This condition holds under appropriate

primitive assumptions. For example, if {ut} is a sequence of i.i.d. random variables with zero

mean and finite second moment σ2 = E[u2
1], then the condition follows from the classical

CLT with Bn =
√
nσ. In summary, Assumption 1 allows that the innovations can be either

light-tailed (although the impact of heavy-tailed innovations on stock return predictability

is inevitable, the innovations are assumed to have finite second and/or higher moments in

most literature, and even assumed to be normally distributed in the predictive regressions

model. Related works include but are not limited to [3] and [8], among others) or heavy-tailed

distribution.

Another difficulty here is the correlation coefficient of ut and et, which does not exist without

the finite second-moment assumption. Hence we present a concept of correlation without the

second-moment assumption. Before doing so, let us define

lX(t) = EX2I{|X| ≤ t}, bX = inf{t ≥ 1 : lX(t) > 0},
d1j = inf{s : s ≥ bX + 1, lX(s)

s2 ≤ 1
j }, for j = 1, 2, 3, ...,

lY (t) = EY 2I{|Y | ≤ t}, bY = inf{t ≥ 1 : lY (t) > 0},
d2j = inf{s : s ≥ bY + 1, lY (s)

s2 ≤ 1
j }, for j = 1, 2, 3, ...,

X(n) = XI{|X| ≤ d1n}, Y (n) = Y I{|Y | ≤ d2n}, for n = 1, 2, 3, ....

(2)

Definition 1. For a given bivariate random variable (X,Y ) such that each of X and Y satisfies
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Assumption 1 with possibly infinite variance, if

E(X(n)Y (n))− EX(n)EY (n)√
lX(d1n)lY (d2n)

→ αXY , as n → ∞, (3)

then we call the constant αXY as the generalized correlation of X and Y .

The generalized correlation of ut and et is assumed to be negative. Note that this assumption

is almost the same as that in [3], but is not restrictive since the sign of β1 is unrestricted;

redefining the predictor variable as xt flips the signs of both β1 and the correlation between the

innovations. For convenience, the notation δ will denote the generalized correlation of ut and

et.

Next, we provide a proposition that the correlation is well-defined.

Proposition 2.1. (a) When both X and Y have finite variances, the generalized correlation

defined in (3) reduces to the classical correlation. (b) The generalized correlation of αXY sat-

isfies

|αXY | ≤ 1,

which still holds for the case of possibly infinite variances.

Finally, in the AR(1) model, xk is obtained from knowing the value of xk−1, and in turn

xk−1 is obtained from knowing xk−2, and so on. Observe that xk, for any k ∈ N, can be

obtained from an initial value x0 that is k time periods prior. Thus, we need an assumption on

the initial point x0 relating to sample size.

Assumption 2. x0 = op(
√
n).

2.2 Asymptotic results

In this subsection, we are going to show asymptotic results for the least squares estimators

of the parameters (β0, β1). Before stating the procedure of our asymptotic results, we define

some notations. Hereafter, we use “
d−→” to denote convergence in distribution. Note that, the

least squares estimator of (β0, β1)
T can be written, in matrix form, as(

β̂0

β̂1

)
=

(
n

∑n
t=1 xt−1∑n

t=1 xt−1

∑n
t=1 x

2
t−1

)−1( ∑n
t=1 yt∑n
t=1 xt−1yt

)
. (4)

To start with, |ρ| < 1 means that the sequence {xn, n ≥ 1} is modeled by a stationary

AR(1) model. We have the following asymptotic properties for the least squares estimators of

the unknown parameters.

Theorem 2.1. Let |ρ| < 1 in model (1). Suppose Assumptions 1–2 hold. As n → ∞, we have √
n
σ̂2
1
(β̂0 − β0)√
nσ̂2

2

(1−ρ̂2)σ̂2
1
(β̂1 − β1)

 d−→

(
Z1

Z2

)
(5)

and √∑n
t=1 x

2
t−1

σ̂2
1

(β̂1 − β1)
d−→ N(0, 1), (6)
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where Z1 and Z2 are two independent standard normal random variables, and σ̂2
1 and σ̂2

2 are

defined in (12) below.

Next, we consider the asymptotic properties of the least squares estimator of (β0, β1)
T when

the sequence {xn, n ≥ 1} is modeled by a nearly unit root model. That is, in the following

theorems, we replace the above ρ by ρn = 1 + cn/n, such that 0 > cn → c ∈ [−∞,∞) as

n → ∞.

First, we introduce some notations. Let

l1(t) = Eu2
1I{|u1| ≤ t}, b1 = inf{t ≥ 1 : l1(t) > 0},

η1j = inf{s : s ≥ b1 + 1,
l1(s)

s2
≤ 1

j
}, for j = 1, 2, 3, ...,

and

l2(t) = Ee21I{|e1| ≤ t}, b2 = inf{t ≥ 1 : l2(t) > 0},

η2j = inf{s : s ≥ b2 + 1,
l2(s)

s2
≤ 1

j
}, for j = 1, 2, 3, ....

Then we denote

u
(1)
t = utI{|ut| ≤ η1n} − EutI{|ut| ≤ η1n}, e

(1)
t = etI{|et| ≤ η2n} − EetI{|et| ≤ η2n}.

Lemma 2.1. Under Assumptions 1-2, we have the following weak invariance principle:
[nr]∑
t=1

(
u
(1)
t /
√

nl1(η1n)

e
(1)
t /
√
nl2(η2n)

)
⇒

(
W1(r)

W2(r)

)
= BM(0,Σ(r))

as n → ∞, where

Σ(r) = r · lim
n→∞

E

[(
u
(1)
t /
√
l1(η1n), e

(1)
t /
√
l2(η2n)

)T (
u
(1)
t /
√
l1(η1n), e

(1)
t /
√
l2(η2n)

)]
is the covariance matrix of the bivariate Brownian motion indexed by r ∈ [0, 1].

Theorem 2.2. Let ρ = ρn = 1 + cn/n in model (1) such that 0 > cn → c ∈ (−∞,∞) as

n → ∞. Suppose Assumptions 1–2 hold. As n → ∞, we have √
n
σ̂2
1
(β̂0 − β0)

n
√

σ̂2
2

σ̂2
1
(β̂1 − β1)

 d−→

(
1

∫ 1

0
Ic(r)dr∫ 1

0
Ic(r)dr

∫ 1

0
I2c (r)dr

)−1(
W1(1)∫ 1

0
Ic(r)dW1(r)

)
(7)

and √∑n
t=1(xt−1 − x̄n−1)2

σ̂2
1

(β̂1 − β1)
d−→
∫ 1

0
Ic(r)dW1(r)−W1(1)

∫ 1

0
Ic(r)dr√∫ 1

0
I2c (r)dr − (

∫ 1

0
Ic(r)dr)2

. (8)

Here and afterwards, W1(·) and W2(·) are defined in Lemma 2.1, and Ic(r) = W2(r)+c
∫ r

0
exp((r−

s)c)W2(s)ds is an Ornstein-Uhlenbeck process.

When cn → c = −∞, we have the following asymptotic properties for the least squares

estimators of the unknown parameters.

Theorem 2.3. Let ρ = ρn = 1 + cn/n in model (1) such that 0 > cn → c = −∞ as n → ∞.
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Suppose Assumptions 1–2 hold. As n → ∞, we have √
n
σ̂2
1
(β̂0 − β0)√
nσ̂2

2

(1−ρ̂2)σ̂2
1
(β̂1 − β1)

 d−→

(
Z3

Z4

)
(9)

and √∑n
t=1 x

2
t−1

σ̂2
1

(β̂1 − β1)
d−→ N(0, 1), (10)

where Z3 and Z4 are two independent standard normal random variables.

Note that from (6), (8), and (10), we can unify the statistics to have√∑n
t=1(xt−1 − x̄n−1)2

σ̂2
1

(β̂1 − β1)

d−→


N(0, 1), when |ρ| < 1,∫ 1

0
W2(r)dW1(r)−W1(1)

∫ 1
0
W2(r)dr√∫ 1

0
W 2

2 (r)dr−(
∫ 1
0
W2(r)dr)2

, when ρ = ρn = 1 + cn/n and 0 > cn → 0,

N(0, 1), when ρ = ρn = 1 + cn/n and 0 > cn → c = −∞.

Therefore, whichever ρ lies in the above three situations of ρ, one can always use the statistics√∑n
t=1(xt−1−x̄n−1)2

σ̂2
1

(β̂1 − β1) to construct confidence interval and/or hypothesis testing for the

parameter β1.

Theorem 2.4. Suppose Assumptions 1–2 hold. Denote the generalized correlation of u1 and e1

as δ. Then for each of the following three cases—(i) ρ is fixed and |ρ| < 1, (ii) ρ = ρn = 1+cn/n

such that 0 > cn → c ∈ (−∞,∞) as n → ∞, (iii) ρ = ρn = 1+cn/n such that 0 > cn → c = −∞
as n → ∞—one has as n → ∞,

σ̂12

σ̂1σ̂2
−→ δ in probability ,

where σ̂12 is defined in (12) below.

To study the property of generalized correlation, we propose a consistent estimator in The-

orem 2.4, which is of independent interest, and can be applied to the case of an undefined

correlation. Specifically, when the second moment of the distribution does not exist, and hence

the correlation cannot be calculated directly. For example, if X is a random vector from a

t-distribution with location vector 0 and scale matrix Σ, written as X ∼ tv(0,Σ). When the

degree of freedom v is larger than 2, then Cov(X) = Σv/(v − 2), and the correlation matrix

Cor(X) equals the scale matrix Σ. When the degree of freedom v is less than or equal to 2,

we can apply Theorem 2.4 to define the generalized correlation matrix Cor(X). That is, we

extend the scale matrix Σ to the case where the second moment does not exist. To illustrate

the applicability, we also use this example in the Monte Carlo simulation study.

Note that in our setting, we do not assume ut and et to be independent for any given t,

although this is a common regularity condition in the literature of predictive regressions. In

most literature, it is also assumed that the correlation coefficient of ut and et exists and is

even given in advance, cf. [3]. In Theorems 2.1–2.4, we do not require the existence of the

correlation coefficient of ut and et. Furthermore, the results in Theorems 2.1, 2.3 and 2.4 are

irrelevant to the dependence structure of ut and et. Hence, when |ρ| < 1 or ρ = ρn with
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n(ρn − 1) → −∞, the proposed robust statistics in Theorems 2.1 and 2.3 are indeed pivotal,

and can be applied directly to test the predictability of stock returns in predictive regression

models. If the dependent information of un and en, Σ(·) defined in Lemma 2.1, is known in

advance, then Theorem 2.2 shares the same property.

§3 Methodology: A generalized Bonferroni Q-test

Consider the predictive regression model defined in (1). The problem of interest is testing

the null hypothesis of no predictability, i.e., H0 : β1 = 0. In this section, we propose a robust

test based on Theorems 2.1–2.4 in this paper, [3], and [16] under heavy-tailed distributions. In

the case of light-tailed distributions, the reader is referred to [2] for details of the Bonferroni

Q-test. Note that the innovations in [2] are assumed to be the normal distribution. Although

there is no objection to the plausibility for this hypothesis, little empirical evidence has been

given to support it. On the other hand, assuming heavy-tailed innovations has been found to

be more appropriate for fitting the empirical data. Next, we remedy the situation in which the

Bonferroni procedure is invalid in case (iii). Since the proposed testing statistic captures the

phenomena of heavy tails, stationary, and local to unity, we call the proposed test a “generalized

Bonferroni Q-test”.

Given the observations {(xt−1, yt), t = 1, . . . , n}, denote x̄n−1 =
∑n−1

t=0 xt/n and ȳn =∑n
t=1 yt/n. Then the least squares estimators of the unknown parameters (β0, β1) are

β̂1 =

∑n
t=1(xt−1 − x̄n−1)(yt − ȳn)∑n

t=1(xt−1 − x̄n−1)2
, β̂0 = ȳn − β̂1x̄n−1. (11)

To test predictability under model (1) with heavy-tailed distributions, we need a confidence

interval of β1. A valid confidence interval can be constructed through the following steps.

1. Run the first regression in (1) to obtain the standard error for β̂1, denoted as SE(β̂1).

Run the second regression in (1) to obtain the standard error for ρ̂, denoted as SE(ρ̂).

Compute
σ̂2
1 = 1

n

∑n
t=1(yt − β̂0 − β̂1xt−1)

2,

σ̂2
2 = 1

n

∑n
t=1(xt − ρ̂xt−1)

2, where ρ̂ =
∑n

t=1 xtxt−1/
∑n

t=1 x
2
t−1,

σ̂12 = 1
n

∑n
t=1(yt − β̂0 − β̂1xt−1)(xt − ρ̂xt−1),

δ̂ = σ̂12/(σ̂1σ̂2).

(12)

2. Compute the nuisance parameter c with ρ = 1+c/n. A simple estimator of c is ĉ = n(ρ̂−1),

in which ρ̂ is the OLS estimator of ρ. Next, based on our simulation study, we modify

the original estimator ĉ of c for having a more precise estimator (the adjustment is based

on simulation):

c∗ = ⌈ĉ+ 1⌉ = ⌈n(ρ̂− 1) + 1⌉ . (13)

In the following Bonferroni procedure, denote c0 as a benchmark constant and consider

that |c| is large whenever |c∗| ≥ c0.

3. When |c∗| < c0, move to Step 4. When |c∗| ≥ c0, move to Step 5.
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To construct a Bonferroni confidence interval for β1, we first construct a 100(1 − α1)%

confidence interval for ρ, denoted as Cρ(α1). For each value of ρ in the confidence interval,

we then construct a 100(1 − α2)% confidence interval for β1 given ρ, denoted as Cβ1|ρ(α2). A

confidence interval that does not depend on ρ can be obtained by Cβ1(α) =
∪

ρ∈Cρ(α1)
Cβ1|ρ(α2).

By Bonferroni’s inequality, this confidence interval has coverage of at least 100(1−α)%, where

α = α1 + α2.

4. When |c∗| < c0, compute the Dickey-Fuller generalized least squares (DF-GLS) statistic

of [5]. Given the values of the DF-GLS statistic and δ̂, we can find an appropriate

confidence interval [cL, cU ] for c from the tables of [2]. Proceed directly to Step 6.

5. When |c∗| ≥ c0, we use the unit root t-test, tρ̂ = ρ̂−1
σρ̂

. Under heavy-tailed distributions,

we have that for any fixed c, as n → ∞,

tρ̂ =
n(ρ̂− ρ) + n(ρ− 1){

σ̂2
2/
(
n−2

∑n
t=1 x

2
t−1

)}1/2 d−→
∫ 1

0
Jc(r)dW (r)(∫ 1

0
Jc(r)2dr

)1/2 + c

(∫ 1

0

Jc(r)
2dr

)1/2

=: τc,

(14)

where Jc(r) =
∫ r

0
ec(r−s)dW (s) is a linear diffusion and W is the standard Brownian

motion. The limit representation for τc holds for all c ∈ R. In what follows, we concentrate

on the half line (−∞, 0). By using a simple modification of [14], we can prove that the

two components of (14) satisfy

λc =

∫ 1

0
Jc(r)dW (r)(∫ 1

0
Jc(r)2dr

)1/2 d−→ ξ ≡ N(0, 1) and (−2c)

∫ 1

0

Jc(r)
2dr → 1 in probability, (15)

as c → −∞. This implies that as c → −∞, the asymptotic form of τc in a suitably

expanded probability space is

τc = −|c|1/2

21/2
+

1

2
ξ +Op(|c|−1/2) ∼ N(−|c|1/2

21/2
,
1

4
) +Op(|c|−1/2). (16)

After an appropriate transform, the 100(1− α1)% confidence interval for c is

[cL, cU ] = [−2(τ̂2 − zα1/2τ̂),−2(τ̂2 + zα1/2τ̂)], (17)

where τ̂ := tρ̂ is the estimator of τc defined in (14).

6. The 100(1− α1)% confidence interval for ρ is

[ρL, ρU ] = [1 + cL/n, 1 + cU/n]. (18)

7. The Q-statistic is proposed by [3]:

β1(ρ) =

∑N
t=1 x

µ
t−1[yt − βue(xt − ρxt−1)]

σ1(1− δ2)1/2[
∑n

t=1(x
µ
t−1)

2]1/2
, (19)

where βue = σ12/σ
2
2 is negative under our assumption and xt−1 has been replaced by

its demeaned counterpart xµ
t−1. To be more precise, for given two values ρ = [ρL, ρU ],

compute an equal-tailed 100(1− α2)% confidence interval for β1 given ρ as follows. Run

the first regression, replacing yt with yt − σ̂12σ̂
−2
2 (xt − ρxt−1). Let β̂1(ρ) denote the
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coefficient on xt−1. The confidence interval for β1 given ρ is [β1L(ρ), β1U (ρ)], where

β1L(ρ) = β̂1(ρ)− zα2/2(1− δ̂2)1/2SE(β̂1), β1U (ρ) = β̂1(ρ) + zα2/2(1− δ̂2)1/2SE(β̂1),

with zα2/2 being the 1 − α2/2 quantile of the standard normal distribution. Then the

100(1− α2)% confidence interval for β1 is Cβ1|ρ(α2) = [β1L(ρ, α2), β1U (ρ, α2)].

8. Then the 100(1− α)% Bonferroni confidence interval is given by

Cβ1(α) = [β1L(ρU ), β1U (ρL)]. (20)

Note that the 100(1 − α)% Bonferroni confidence interval Cβ1(α) defined in (20) corre-

sponds to an α% two-sided test under the null hypothesis β1 = 0, but the same idea can

be applied to an α
2% one-sided test.

It is worth mentioning that the estimators in the above Bonferroni procedure are indeed

consistent under Assumptions 1 and 2. Hence the proposed generalized Bonferroni Q-test is

robust. The term robust is either in the sense of heavy-tailed distributions, or in the sense of

local to unity, or both.

§4 Finite sample study

To illustrate the performance of the proposed generalized Bonferroni Q-test, in this section,

we conduct a Monte Carlo simulation study. Subsection 4.1 checks the robustness of the general-

ized Bonferroni Q-test under a large nuisance parameter |c| and heavy-tailed innovations. Then

we discuss the relationships among heavy tails, unit root, and predictability in Subsection 4.2.

4.1 Rejection rates and powers

To illustrate the applicability of the proposed generalized Bonferroni Q-test for light-tailed

and heavy-tailed innovations, we conduct a finite sample performance of the proposed testing

statistic by means of an extensive Monte Carlo study. For the testing experiments with null

hypothesis H0 : β1 = 0 against alternative H1 : β1 > 0, all tests are evaluated at the 5%

significance level. For ease of presentation, the nuisance parameter is normalized as β0 = 0 in

this section. The simulation studies are based on 10, 000 Monte Carlo draws of the sample path

using model (1) with the initial condition x0 = 0. Here c0 = −20 as the threshold for |c| to be

large. Note that when |c| > 20, the traditional Bonferroni Q-test is not sufficiently robust for

practical use. This will be shown in the simulation results later in this subsection.

In what follows, we show the rejection rates using the methods proposed by [3] and our

generalized Bonferroni Q-test. Since the theories mentioned in Step 5 of the generalized Bon-

ferroni Q-test procedure are under n → ∞ and c → −∞ when |c∗| ≥ c0, we choose |c| to
be proportional to n, and consider different sample sizes n for different degrees of persistence

(ρ = 1 + c/n) in the large |c| experiment.

Table 1 reports finite-sample rejection rates of one-sided, right-tailed tests of predictability

at the 5% significance level under different innovation assumptions. Under the assumption of
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Table 1. Rejection rates.

Method

c n ρ CY(2006) Proposed result |c|/n

Panel A: Bivariate normal innovations
0 1 0.0500 0.0500 0
-2 250 0.992 0.0471 0.0471 0.0080

-20 0.92 0.0620 0.0525 0.0800
-40 550 0.927273 0.0368 0.0496 0.0727
-50 700 0.928571 0.0370 0.0505 0.0714
-60 850 0.929412 0.0528 0.0498 0.0705
-70 1000 0.93 0.6687 0.0499 0.0700
-80 1150 0.930435 0.9950 0.0501 0.0696
-90 1300 0.930769 1 0.0500 0.0692

-100 1450 0.931034 1 0.0498 0.0690

Panel B: Bivariate t-distributed innovations
0 1 0.0468 0.0468 0
-2 250 0.992 0.0452 0.0452 0.0080

-20 0.92 0.0523 0.0506 0.0800
-40 300 0.866667 0.0301 0.0501 0.1333
-50 400 0.875 0.0366 0.0504 0.1250
-60 500 0.88 0.0522 0.0498 0.1200
-70 650 0.892308 0.7143 0.0502 0.1077
-80 750 0.893333 0.9757 0.0498 0.1067
-90 900 0.9 0.9967 0.0500 0.1000

-100 1050 0.904762 0.9976 0.0499 0.0952

Panel C: Bivariate Pareto innovations
0 1 0.0464 0.0464 0
-2 250 0.992 0.0447 0.0447 0.0080

-20 0.92 0.0509 0.0496 0.0800
-40 280 0.857143 0.0313 0.0502 0.1429
-50 380 0.868421 0.0358 0.0497 0.1316
-60 480 0.875 0.0518 0.0495 0.1250
-70 600 0.883333 0.6987 0.0501 0.1167
-80 700 0.885714 0.9746 0.0494 0.1143
-90 850 0.894118 0.9955 0.0500 0.1059

-100 1000 0.9 0.9975 0.0500 0.1000

This table reports the finite-sample rejection rates of one-sided,
right-tailed tests of predictability at the 5% significance level. The
innovations have correlation δ = −0.95. The innovations in Panels
A, B, and C are drawn from a bivariate normal distribution with
mean zero and unit variance, a bivariate t-distribution with degrees
of freedom 2, and a Pareto distribution with shape parameter 2 and
scale parameter 1, respectively. The rejection rates are rounded off
to the fourth decimal digit. Note: CY(2006) is the results for [3].

bivariate normal innovations, Panel A shows relatively robust performance for the generalized

Bonferroni Q-test when |c| is large. In the case where innovations {(ut, et) , t ≥ 1} in (1) are

heavy-tailed distributions with possible infinite variances, we conduct an analysis in Panel B

for bivariate t-distributed innovations with degrees of freedom 2. Note that when the degree of

freedom is less than or equal to 2, the second moment does not exist. The simulation outcomes

in Panel B show that the generalized Bonferroni Q-test is robust under heavy-tailed innovations,

which provides a finite sample support of our theoretical results. As an additional robustness

check, we repeat the simulation experiment under a different distribution. Here we consider the

bivariate Pareto innovations with shape parameter 2 and scale parameter 1. These parameters

are chosen to have infinite variance. The simulation outcomes are reported in Panel C.
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Table 1 presents the simulation results for |c| to be proportional to n. However, in real

applications, it is not easy to determine a precise relationship between |c| and n. To study

the sensitivity of |c| proportional to n, we conduct an experiment for various |c| with the same

sample size. Table 2 shows that the rejection rates of our results are all near 0.05 for a suitable

range of |c| with the same sample size n = 1, 000.

Table 2. Robustness under large |c|.

c δ n ρ Rejection rates |c|/n

-20 -0.95 1000 0.98 0.0468 0.02
-40 -0.95 1000 0.96 0.0473 0.04
-50 -0.95 1000 0.95 0.0480 0.05
-60 -0.95 1000 0.94 0.0499 0.06
-70 -0.95 1000 0.93 0.0500 0.07
-80 -0.95 1000 0.92 0.0512 0.08
-90 -0.95 1000 0.91 0.0531 0.09
-100 -0.95 1000 0.90 0.0570 0.10

This table reports the finite-sample rejection rates of one-sided, right-tailed tests of predictability at
the 5% significance level. The innovations have correlation δ = −0.95 and are drawn from bivariate
normal innovations with zero mean and unit variance. The rejection rates are rounded off to the
fourth decimal digit.

In summary, we show that the proposed generalized Bonferroni Q-test is rather precise and

robust in the sense of local to unity and heavy-tailed innovations. To be more precise, the

simulation outcomes from Tables 1–2 show that if |c|/n is in [0, 0.15], i.e., ρ ∈ [0.85, 1], then the

proposed generalized Bonferroni Q-test is a robust test.

Next, we examine the power properties of the statistics. We follow [3] to consider a sequence

of alternatives of the form β1 = b/n for some fixed constant b. Here we present the results for

sample size n = 500 and correlations δ = −0.95. Figure 1 presents the power of the two

tests with three distributed innovations for c = −20 and c = −40. For these results, our

generalized Bonferroni Q-test possesses a similar power to that of the Bonferroni Q-test when

c = −20; however, it dominates that of the Bonferroni Q-test when c = −40. These conclusions

correspond to our theorems. One is that the estimators of the predictive regression are robust

under heavy-tailed innovations and can be used directly in the test; thus the power properties

are the same when we use the same test. The other is that when |c| is large, our generalized

Bonferroni Q-test has a higher power than the traditional Bonferroni Q-test. Clearly the

proposed generalized Bonferroni Q-test is taking effect.

4.2 Predictability

The issue of predictability is addressed in this subsection, in which we discuss the impact

of heavy-tailed innovations and a unit root on predictability, respectively. First, we consider

a direct impact of heavy-tailed innovations on predictability via a hypothesis testing point of

view. The test of predictability under the null hypothesis β1 = 0 means no predictability. We

use our generalized Bonferroni Q-test and calculate the p-value, which will be compared with

the significance level. If the p-value is smaller than the significance level, we reject the null

hypothesis. As shown in Panel A of Table 3, our simulation results show that under the null
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Figure 1. Power plots for sample size n = 500 and correlation of innovations δ = −0.95.
Note: dotted lines and solid lines stand for the traditional Bonferroni Q-test and the generalized Bonferroni
Q-test, respectively. For the innovations assumption, the blue, green, and red correspond to the normal
distribution, the t-distribution with degrees of freedom 2, and the bivariate Pareto with shape parameter 2
and scale parameter 1.

hypothesis H0 : β1 = 0, when the innovations in model (1) have heavier tails, the rejection rates

of the predictive test decrease. That is, as the tail distribution becomes heavier, the probability

of making wrong rejections decreases. In other words, the heavy-tailed property decreases the

predictability.

Next, we discuss an indirect impact of the heavy tail on predictability via the property

of unit root ρ. That is, we first use the hypothesis testing point of view to discuss the im-

pact of a heavy tail on the unit root. The DF-GLS statistic is computed as follows: regress

(x0, x1 − ρGLSx0, ..., xn − ρGLSxn−1)
T

onto (1, 1− ρGLS , ..., 1− ρGLS)
T
, where ρGLS = 1 −

7/n, to obtain the coefficient µGLS . Let xt = xt − µGLS . Run the regression without the

intercept: ∆xt = θx̄t−1 + et. The t-statistic for θ is the DF-GLS statistic: tθ̂ = θ̂/σ̂θ̂ with

σ̂2
θ̂
= σ̂2

2/
∑n

t=1 x̄
2
t−1. The null hypothesis is θ = 0, which means a unit root. If the p-value

of the test is smaller than the significance level, we reject the null hypothesis. Under the null

hypothesis θ = 0 (or ρ = 1), our simulation results in the Panel B of Table 3 show that if

the innovations in the model (1) have a heavier tail, the rejection rates of the unit root test

decrease. That is, the unit root tests have a smaller probability of making wrong rejections as

the tail of distribution becomes heavier. In other words, the heavy-tailed properties are strong

evidence of a unit root.

Last, we discuss the impact of unit root ρ on predictability β1 based on a testing experiment

with null hypothesis H0 : β1 = 0 against alternative H1 : β1 > 0. This relation can be seen

easily according to the formula of the generalized Bonferroni Q-test. When the persistence

factor ρ increases, the value of β1(ρ) decreases. The confidence interval of β1 moves to the left,
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and hence has a higher probability to cover the value of β1 = 0. The p-value increases and the

probability of rejecting the null hypothesis decreases, as shown in Panel C of Table 3. That

means the predictability decreases. This phenomenon is also shown in Figure 4 of [3].

In summary, from the direct and/or the indirect impact of heavy-tailed innovations via unit

root on predictability, these three factors are strongly related. All in all, they share the same

financial intuition: when the data set has a heavy-tailed distribution, the variance becomes

larger, and it is more difficult to capture its trend. This makes predictability more difficult.

Table 3. Relationship between heavy tails, unit root, and predictability.

Panel A Panel B Panel C
Heavy tail - predictability Heavy tail - unit root Unit root - predictability

Distribution ρ R.R. Distribution ρ R.R. Distribution ρ R.R.

N(0, 1) 0.0500 N(0, 1) 0.0522 0.98 0.0468
t(1000) 0.0488 t(1000) 0.0518 0.96 0.0473
t(10) 1 0.0474 t(10) 1 0.0502 N(0, 1) 0.95 0.0480
t(2) 0.0461 t(2) 0.0473 0.94 0.0499
t(1) 0.0427 t(1) 0.0308 0.93 0.0500

This table reports how the three factors impact each other. In Panel A, we set n = 250 and ρ = 1; the
null hypothesis is β1 = 0 against the alternative β1 > 0. In Panel B, we set n = 1000 and ρ = 1 with a
null hypothesis of ρ = 1 against the alternative ρ < 1. In Panel C, the null hypothesis is β1 = 0 against
the alternative β1 > 0 and we set n = 1000 with different ρ as in Table 2. R.R. stands for Rejection
rates.

§5 Empirical study

The traditional Bonferroni Q-test in [3] is widely used to test predictability, where involves

that the predictor variable is persistent and its innovations are highly correlated with returns.

However, this test is based on the normal innovations assumption, which might not be suitable

for real applications. To further illustrate the effectiveness of the generalized Bonferroni Q-

test under heavy-tailed distributions, in this section we implement the proposed method for

predictability on a U.S. equity data set. During the study of this empirical data set, we observe

that the heavy-tailed assumption is more appropriate. Moreover, we note that the generalized

Bonferroni Q-test is robust.

In this study, we treat monthly CRSP value-weighted log excess returns as dependent vari-

ables. Moreover, we use seven variables as potential predictors in the predictability test. There

are two time periods in this empirical study. The first time period, from January 1927 to

December 2016, contains the dividend-price ratio, earnings-price ratio, dividend-payout ratio,

long-term yield, and default yield spread. The second time period, from January 1934 to Decem-

ber 2016, contains the 3-month T-Bill and the term-spread. The monthly S&P 500 dividends

and earnings values are available on the Robert Shiller online data set. The dividend-payout

ratio is computed as dividends divided by earnings. The long-term yield is the long-term US

government bond yield, also from the Robert Shiller online data set. The default yield spread is

the difference between Moody’s seasoned Baa corporate bond yield and Moody’s seasoned Aaa
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corporate bond yield taken from the economic research database at the Federal Reserve at St.

Louis (FRED). The 3-month U.S. Treasury bill rate is also taken from FRED. The difference

between the long-term yield and the T-bill rate is the term spread. These variables have been

widely used in predictability tests. The reader is referred to [8] for details on the data and

examples of studies that have utilized these variables.

On the basis of the data sets, we first show that the heavy-tailed assumption is more appro-

priate than normal innovations. Numerous papers mention that the innovations of predictive

regression are heavy-tailed, typically fitting them using t-distributions with various degrees of

freedom. Moreover, by examining the kurtosis of the macroeconomic data set commonly used

for diffusion index forecast (for example, [10]), [6] finds that most of these variables have heavier

tails than the t-distribution with five degrees of freedom. Here, we use the t-distribution to fit

the innovations u and e and obtain the estimated degree of freedom.

Table 4. Estimated distribution of innovations for full sample period.

Innovations
Series Variable u e

Panel A: 1927/01-2016/12

CRSP value-weighted returns Dividend-price ratio t(4) t(3)
Earning-price ratio t(4) t(3)

Dividend-payout ratio t(4) t(2)
Long-term yield t(4) t(1)

Default yield spread t(4) t(1)

Panel B: 1934/01-2016/12

CRSP value-weighted returns 3-month T-bill t(5) t(2)
Term spread t(5) t(2)

This table reports the estimated distribution of the innovations u and e
from the model (1). The degrees of freedom for the t distribution are
rounded to the nearest integer.

As shown in Table 4, all the degrees of freedom obtained are smaller than 5, and some are

even much smaller. Note that the second moment does not exist when the degree of freedom is

less than or equal to 2. On the basis of our test and the data sets, although the second moment

of the innovations mostly exists, there exist some extreme cases that the second moment does

not exist. This observation supports the merit of our assumptions that the second moment may

or may not exist. This also indicates that this empirical data set is actually better fitted by the

heavy-tailed innovations. This finding highlights the applicability of our Theorems 2.1-2.3 that

allows the heavy-tail innovations assumption and implies that the proposed method is more

robust than the previous method based on the normal assumption of the innovations.

Now we are going to show that the empirical economic data set tends to show a near unit-

root phenomenon. In the following tables, we use the variables mentioned above to illustrate

our study. Table 5 reports the 95% confidence interval of the autoregressive root ρ (and the

corresponding c) for dividend-price ratio, earning-price ratio, dividend-payout ratio, long-term

yield, default yield spread, 3-month T-bill, and term spread. The fourth column of Table 5

shows that all series are highly persistent. We also report point estimators of δ in the second
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column of Table 5. For these variables of dividend-price ratio and earning-price ratio, the

correlations for the valuation ratios are large. This finding is similar to [3]. As expected, while

there is a small degree of freedom, we can see that all of the correlations are between 0 and -1.

This observation supports the merit of our Theorem 2.4 that would be applied to the case of

an undefined correlation.

Table 5. Estimates of model parameters.

Variables δ DF-GLS 95% CI:ρ 95% CI:c
Panel A: 1927/01-2016/12

Dividend-price ratio -0.869 -3.347 (0.971, 0.987) (-31.773, -13.66)
Earning-price ratio -0.844 -2.747 (0.979, 0.992) (-23.032, -8.111)

Dividend-payout ratio -0.131 -7.732 (0.948, 0.960) (-55.944, -42.977)
Long-term yield -0.046 -1.583 (0.994, 0.997) (-6.738, -3.329)

Default yield spread -0.407 -4.481 (0.954, 0.970) (-49.193, -32.555)

Panel B: 1934/01-2016/12

3-month T-bill -0.051 -1.976 (0.990, 0.994) (-10.393, -5.84)
Term spread -0.012 -4.647 (0.952, 0.961) (-47.787, -38.545)

This table reports estimates of the parameters for the predictive regression model. δ is the estimated
correlation between the innovations to returns and the predictor variable. The last two columns
are the 95% confidence intervals for the largest autoregressive root (ρ) and the corresponding local-
to-unity parameter (c) for each of the predictor variables. The values are rounded off to the third
decimal digit.

As discussed above, the normal assumption might not be suitable for real applications, which

implies that the generalized Bonferroni Q-test is robust to the heavy-tailed situation. Here, we

also construct valid confidence intervals for β1 through our generalized Bonferroni Q-test to test

the predictability of returns. Table 6 shows stronger evidence of the predictability of earnings-

price ratio, long-term yield, 3-month T-bill, and term spread. The evidence for predictability

with other predictor variables is weaker. And then, the empirical data set explicitly reveals the

properties of non-stationary and heavy-tailed innovations.

Table 6. Tests of predictability.

Series Variable β̂1 90% CI:β1

Panel A: 1927/01-2016/12

CRSP value-weighted returns Dividend-price ratio 0.023 [-0.033, 0.114]
Earning-price ratio 0.045 [0.006, 0.099]

Dividend-payout ratio -0.001 [-0.005, 0.004]
Long-term yield 0.000 [0.000, 0.001]

Default yield spread -0.002 [-0.003, 0.001]

Panel B: 1934/01-2016/12

CRSP value-weighted returns 3-month T-bill 0.000 [0.000, 0.001]
Term spread 0.001 [0.000, 0.002]

This table reports statistics used to infer the predictability of returns. The third and fourth

columns report the point estimate β̂1 from an OLS regression of returns onto the predictor
variable and the 90% Bonferroni confidence intervals for β1 using the generalized Q-test. The
values are rounded off to the third decimal digit.

The above-reported results are based on the full sample period, from January 1927 to

December 2016. However, to test the predictability, it is also common to test subperiods in
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the literature, examining whether the full sample period carries through the whole information

(see [3] and [8] for recent examples). Here, we follow [8], splitting the sample period into two

sub-periods: the pre-1994 period (January 1927 to December 1994) and the post-1952 period

(January 1952 to December 2016).

Table 7. Tests of predictability in subperiods.

Time period Variable β̂1 90% CI:β1

Panel A: pre-1994

1927/01–1994/12 Dividend-price ratio 0.045 [0.006, 0.226]
Earning-price ratio 0.055 [0.018, 0.139]

Dividend-payout ratio -0.012 [-0.026, 0.000]
Long-term yield 0.000 [0.000, 0.001]

Default yield spread -0.001 [-0.003, 0.002]
1934/01–1994/12 3-month T-bill 0.000 [0.000, 0.001]

Term spread 0.001 [0.000, 0.003]

Panel B: post-1952

1952/01–2016/12 Dividend-price ratio 0.089 [-0.084, 0.044]
Earning-price ratio 0.041 [-0.024, 0.054]

Dividend-payout ratio 0.002 [0.000 0.008]
Long-term yield 0.000 [-0.001, 0.001]

Default yield spread 0.001 [-0.001, 0.004]
3-month T-bill 0.000 [0.000, 0.001]
Term spread 0.001 [0.000, 0.002]

This table reports statistics used to infer the predictability of returns. The third

and fourth columns report the point estimate β̂1 from an OLS regression of returns
onto the predictor variable and the 90% Bonferroni confidence intervals for β1 using
the generalized Q-test. The values are rounded off to the third decimal digit.

From Table 7, we have the predictability with dividend-price ratio, earnings-price ratio,

dividend-payout ratio, long-term yield, 3-month T-bill, and term spread in the pre-1994 period,

while only dividend-payout ratio, 3-month T-bill, and term spread have predictability in the

post-1952 period. During the pre-1994 period, we found much more significant evidence in

favor of predictability compared with the full sample period. Examining the post-1952 period,

the predictability evidence almost disappears. Our study is similar to much of the literature:

the predictability evidence is generally much weaker post-1952, analyzed for the predictability

with the same splitting period (see examples in [3] and [8]). To explain this phenomenon, many

papers attempt to determine whether the variables change over time, for example, cf. [9].

§6 Conclusion

In this paper, we study the issue of predictability under a predictive regression model,

which allows the regressors to be a non-stationary process and the innovations to be correlated

and heavy-tailed. We prove the asymptotic properties of the least squares estimators under this

model, which allows us to provide a robust test based on the celebrated Bonferroni Q-test in [3].

Furthermore, our simulation results confirm that the proposed generalized Bonferroni Q-test is

robust. We also show that this model can be used to explain the predictability phenomenon

observed in empirical studies. That is, we consider the monthly CRSP value-weighted log excess

returns with the predictors being the dividend-price ratio, earnings-price ratio, dividend-payout
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ratio, long-term yield, default yield spread, 3-month T-Bill and the term-spread. Our empirical

analysis shows that all these variables have high persistence, and the earnings-price ratio, long-

term yield, 3-month T-bill and term spread have predictability in the selected time period.

Although predictability is important, we want to find the properties of the heavy-tail. We then

use the empirical data to ensure that in our predictive regression model, the assumption of

normal distribution innovations is not enough to describe the real economic data. Our tables

and figures show that the innovations are heavy-tailed and our theorems are truly needed.

In summary, we show that the generalized Bonferroni Q-test is robust with suitable modifi-

cations, both for light-tailed and heavy-tailed innovations. We expect this method to be useful

in other cases as well, and to find applications in the study of financial econometrics.

We investigate the relationships between heavy-tail, unit root, and predictability. To this

end, we conduct a finite sample performance of the proposed testing statistic by means of an

extensive Monte Carlo study. On the basis of our robustness test, we have three conclusions

about the aforementioned relationships: (i) The heavy-tailed properties lead to decreased pre-

dictability. (ii) The heavy-tailed properties constitute stronger evidence of a unit root. (iii) The

unit root situation leads to decreased predictability, which is also shown in Figure 4 of [3]. Re-

gardless of whether heavy tails impact predictability directly or indirectly, these factors are

bound together.

It would also be interesting to propose the generalized Bonferroni Q-test for multiple pre-

dictors. A valid confidence interval for the high-dimensional predictive regression using the

generalized Bonferroni Q-test is certainly important for this literature.
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