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Investigation on the new exact solutions of generalized

Rosenau-Kawahara-RLW equation with p-th order

nonlinearity occurring in ocean engineering models

Orkun Tasbozan1 Ercan Celik2,3 Ali Kurt4 Lanre Akinyemi5

Abstract. The main objective of this study is to find novel wave solutions for the time-fractional

generalized Rosenau-Kawahara-RLW equation, which occurs in unidirectional water wave prop-

agation. The generalized Rosenau-Kawahara-RLW equation comprises three equations Rosenau

equation, Kawahara equation, RLW equation and also p-th order nonlinear term. All these

equations describe the wave phenomena especially the wave-wave and wave-wall interactions

in shallow and narrow channel waters. The auxiliary equation method is employed to get the

analytical results.

§1 Introduction

Explaining the nonlinear events in the nature has a great importance [29-34]. To under-

stand the behavior and physical features of the considered natural event, scientists set up the

mathematical models for this event [35-39]. It is understood that the best way to model the

considered event is to establish a differential equation to express the development of the event.

The differential equation arises after a great number of experimental data. At the beginning,

scientists used integer order derivation to establish a model for regarded engineering or physical

event. But it is seen that the integer order differential equations are inadequate and do not

correspond to the experimental data completely. Hence fractional calculus arouse as an alter-

native way to state the chaotic, nonlinear and complex real world problems. The importance

of fractional calculus has been proved to be very useful in different areas such as continuum

mechanics, signal analysis, quantum mechanics and etc. Of course, it is not enough to set up

models by using fractional derivatives and it is also important to produce solutions to these

models. To deal with these sorts of models, analytical, numerical, and fractional integral trans-

formations can be employed. For instance, Esen and Tasbozan [1] used quadratic B-Spline

Galerkin method to express the approximate solutions of time fractional Burgers’ equation in

Caputo sense. Senol et al. [2] compared the RPSM and PIA for numerical solutions of frac-

tional Rosenau-Hyman equation in Caputo sense. Owolabi considered [3] the stability analysis
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and numerical treatment of chaotic time-fractional differential equations in Riemann-Liouville

sense. Celik and Duman [4] applied the Crank-Nicolson numerical scheme to get the approxi-

mate results for fractional diffusion equation in the sense of Riesz derivative. It is clearly seen

that only approximate solutions of fractional differential equations (FDES) can be obtained for

above linked references. But it has a great importance to acquire the exact solutions of nonlin-

ear fractional partial differential equations (NFPDEs) to examine the efficiency and accuracy of

the regarded numerical methods. In many scientific papers authors compared the approximate

solutions with integer order analytical results. But it is not a true method from the scientific

perspective. This is because both Riemann-Liouville, Caputo and Riesz fractional derivatives

are not suitable to employ the known analytical methods. Also these derivatives do not hold

some basic useful properties that are frequently used. For instance,

• If l is not a natural number, then the Riemann-Liouville formulation fails to satisfy Dl1 =

0.

• The function is assumed to be differentiable in Caputo definition.

• Both formulations fail to satisfy the derivative of a product of two functions.

• The derivative of the quotient of two functions is not described in either definition.

• The chain rule is not satisfied by either definition.

• The index rule is not satisfied by either definition.

Conformable fractional derivative and integral which overcome the above mentioned deficiencies

were expressed by Khalil et al. [5].

Definition 1. Let f : [0,∞) → R is a function l− th order “conformable fractional derivative”

of a defined by

Tl(f)(t) = lim
ε→0

f(t+ εt1−l)− (f)(t)

ε
(1)

for all t > 0, l ∈ (0, 1).

Definition 2. The conformable integral starting from a > 0 is expressed in [5] as

Ial (f)(s) =

s∫
a

f(t)

t1−l
dt. (2)

Conformable fractional partial derivative [18] is expressed as follows:

Definition 3. Let f be a function with n variables such as x1, · · · , xn and the conformable

partial derivatives of f of order l ∈ (0, 1] in xi is defined as follows

dl

dxl
i

f(x1, · · · , xn) = lim
ε→0

f(x1, · · · , xi−1, xi + εx1−l
i , · · · , xn)− f(x1, · · · , xn)

ε
. (3)

The following are some fundamental properties of conformable derivative definition [5].

Theorem 1. Let l ∈ (0, 1] and f, g functions are l-differentiable at point t > 0, then

1. Tl(mf + ng) = mTl(f) + nTl(g) for all m,n ∈ R.
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2. Tl(t
p) = ptp−l for all p.

3. Tl(f.g) = fTl(g) + gTl(f).

4. Tl(
f
g ) =

gTl(f)−fTl(g)
g2 .

5. Tl(c) = 0, where c is a constant.

6. Furthermore, if f is differentiable, then Tl(f)(t) = t1−l df(t)
dt

Scientists paid great attention to conformable fractional derivative and integral due to its ap-

plicability, lucidness and effectiveness. For example, Wang and Liu [24] obtained the analytical

solutions of Jimbo-Miwa equation and fractional Zakharov-Kuznetsov equation with the aid of

a complete discrimination system of polynomial method. Khater et al. [7] handled a modified

auxiliary equation method to get the exact results for some fractional biological models. Senol

et al. [8] used residual power series method for obtaining approximate solutions of Burgers’ type

equations. Tasbozan et al. [9] obtained both numerical and analytical results for conformable

fractional Drinfeld-Sokolov-Wilson equation. Huang and Yang [10] obtained the exact solutions

to local conformable time-fractional viscous Burgers system in their studies. Akinyemi et al.

in [11] conformable derivative to studied integrable generalized (2 + 1)-dimensional nonlinear

conformable Schrödinger system of equations. Alharbi et al. [12] used the conformable deriva-

tive to investigate the projectile motion in a resisting medium. The advantage of conformable

fractional derivative definitions over traditional fractional derivative definitions allows us to ob-

tain analytical solutions for NPDE. Other fractional derivative definitions, for example, cannot

be used to obtain analytical solutions to the time fractional generalized Rosenau-Kawahara-

RLW problem. Because they don’t follow the chain rule. We describe conformable fractional

derivatives and integrals in this paper and explore some of their properties. The generalized

Rosenau-Kawahara-RLW (GRK-RLW) equation’s evolution is then discussed, followed by a

brief description of the auxiliary equation technique. We provide one example that proves the

method’s dependability and efficiency. Figures depicting the different values of l as well as the

parameters in the solutions are also provided. These solutions have never been published or

reported in the literature, to the best of our knowledge.

§2 Governing equation

Let us now express the progression of the GRK-RLW equation. Many scholars describe many

mathematical models to explain the wave behavior that happens in shallow waters in restricted

channels such as canals [17]. For instance, KdV equation [19] has been used as a model of fluid

waves, ion sound waves, and longitudinal astigmatic waves [20]. But it is understood that KdV

equation can not define the wave-wave and wave-wall interactions in the context of dynamics

of compact discrete systems [21]. To annihilate this deficiency Rosenau stated the Rosenau

equation [22]

ut + ux + uux + uxxxxt = 0. (4)

uxxt viscous term is included in Rosenau equation for more explanation on nonlinear waves.

The newly obtained equation is called Rosenau-RLW equation [23]

ut + ux + uux − uxxt + uxxxxt = 0. (5)
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After then a term with p-th order nonlinearity is added to Rosenau-RLW equation so named

generalized Rosenau-RLW equation [24]

ut + ux + (up)x − uxxt + uxxxxt = 0, p ≥ 2. (6)

By the unification of KdV and Rosenau equation, the Rosenau-KdV equation is obtained [25]

ut + ux + uux + uxxx + uxxxxt = 0. (7)

Again adding the p-th order nonlinear term Equation 7 is called as generalized Rosenau-KdV

equation [26]

ut + ux + (up)x + uxxx + uxxxxt = 0, p ≥ 2. (8)

By combining the Rosenau-RLW equation and the generalized Rosenau-KdV equation, one may

obtain the generalized Rosenau-KdV-RLW equation defined as [27]

ut + ux + (up)x − uxxt + uxxx + uxxxxt = 0, p ≥ 2. (9)

The Kawahara equation [28]

ut + ux + uux + uxxx − uxxxxx = 0, (10)

arises in the theory of studying shallow water waves with surface tension. By attaching the

linear viscous term uxxxxx to Rosenau-KdV equation Rosenau-Kawahara equation comes to

light [29]

ut + ux + uux + uxxx + uxxxxt − uxxxxx = 0. (11)

Again adding the p-th order nonlinear term to Equation 11 generalized Rosenau-Kawahara

equation can be expressed [30]

ut + aux + b(up)x + cuxxx + λuxxxxt − ν uxxxxx = 0, p ≥ 2. (12)

with power law nonlinearity.

In this study, we consider the GRK-RLW equation, which is a time fractional higher order

equation for unidirectional water wave propagation as:

Dl
tu+ αDxu+ β(up)Dxu− γ DxxD

l
tu+ ϵDxxxu+ λDxxxxD

l
tu+ µDxxxxxu = 0, p ≥ 2. (13)

The fractional derivatives are defined in this context in a conformable sense. The Rosenau-RLW

equation and the generalized Rosenau-Kawahara equation are combined to form this equation.

In Equation 13 u(x, t) represents a nonlinear wave profile while α, β, γ, λ, ε, are µ are arbitrary

parameters.

§3 A short overview of the AEM

The AEM [13, 14] is an efficient and reliable method which is used for obtaining the exact

solutions for PDEs. The approach is based on an auxiliary differential equation(
dz

dζ

)2

= az2(ζ) + bz3(ζ) + cz4(ζ). (14)

where the solutions of these equations are expressed in the following table for changing values

of a, b, c and ∆. The solution procedure can be described as follows. Considering the general

form of nonlinear conformable fractional differential equation

P

(
∂lu

∂tl
,
∂u

∂x
,
∂2lu

∂t2l
,
∂2u

∂x2
, · · ·

)
= 0. (15)
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where ∂2lu
∂t2l

indicates two times conformable derivative of function u(x, t). Applying the wave

transform ζ = x + w tl

l where w indicates the velocity of the wave and the chain rule for

conformable fractional derivatives [15], Equation 15 can be rearranged as

G(U,U ′, U ′′, U ′′′, ·) = 0, (16)

where the prime shows integer order derivatives with respect to ζ. Suppose that U(ζ) can be

written as the sum of the following finite serial

U(ζ) =
n∑

i=0

aiz
i(ζ). (17)

Here, the solution of Equation 14 is defined as z(ζ). The variables ai, w, a, b, and c, are real

constants to be examined thereafter and positive integer n can be evaluated with the aid of

the balancing principle [16]. Substituting Equation 17 and Equation 14 into Equation 16 an

algebraic equations is aroused that includes the powers of z(ζ) and variables ai, w, a, b, and

, c. Collecting all the powers of z(ζ) together and equating all the coefficients of z(ζ) led to

an algebraic equations system including ai, w, , a, b, and c. So the unknown parameters can be

evaluated by solving the algebraic equation system.

Table 1. Solutions of Equation 14 with ∆ = b2 − 4ac and ε = ±1.

No z(ζ)

1
−absech2(

√
a

2 ζ)

b2−ac(1+ε tanh(
√

a
2 ζ))2

, a > 0

2
abcsch2(

√
a

2 ζ)

b2−ac(1+ε coth(
√

a
2 ζ))2

, a > 0

3 2asech(
√
aζ)

ε
√
∆−bsech(

√
aζ)

, a > 0, ∆ > 0

4 2a sec(
√
−aζ)

ε
√
∆−b sec(

√
−aζ)

, a < 0, ∆ > 0

5 2acsch(
√
aζ)

ε
√
−∆−bcsch(

√
aζ)

, a > 0, ∆ < 0

6 2acsc(
√
−aζ)

ε
√
∆−b csc(

√
−aζ)

, a < 0, ∆ > 0

7
−asech2(

√
a

2 ζ)

b+2ε
√
ac tanh(

√
a

2 ζ)
, a > 0, c > 0

8
−asec2(

√
−a
2 ζ)

b+2ε
√
−ac tan(

√
−a
2 ζ)

, a < 0, c > 0

9
acsch2(

√
a

2 ζ)

b+2ε
√
ac coth(

√
a

2 ζ)
, a > 0, c > 0

10
−acsc2(

√
−a
2 ζ)

b+2ε
√
−ac cot(

√
−a
2 ζ)

, a < 0, c > 0

11 −a
b [1 + ε tanh(

√
a
2 ζ)], a > 0, ∆ = 0

12 −a
b [1 + ε coth(

√
a
2 ζ)], a > 0, ∆ = 0

13 4aeε
√

aζ

(eε
√

aζ−b)2−4ac
, a > 0

14 ±4aeε
√

aζ

1−4ac e2ε
√

aζ , a > 0, b = 0

§4 Implementation of the proposed method

Consider the time-fractional generalized Rosenau-Kawahara-RLW equation. Using the wave

transform ζ = x + w tl

l and chain rule for conformable fractional derivatives [15] the time
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fractional generalized Rosenau-Kawahara-RLW equation turns into a nonlinear integer order

differential equation

(ϵ− γ ∗ w)U
′′
+ (λw + µ)U (iv) +

β Up+1

p+ 1
+ (w + α)U = 0. (18)

Changing the independent variable as U(ζ) = V (ζ)(1/p) in Equation 18 yields:

p4V 4
(
(1 + p)(w + α) + β

(
V

1
p

)p)
− (−1 + p)(1 + p)(−1 + 2p)(−1 + 3p)(wλ+ µ)(V ′)4

+ 6(−1 + p)p(1 + p)(−1 + 2p)(wλ+ µ)V (V
′
)2V ′′

− p3(1 + p)V 3
(
(wγ − ϵ)V ′′ − (wλ+ µ)V (iv)

)
+ p2

(
−1 + p2

)
V 2
(
(wγ − ϵ)(V ′)2 − 3(wλ+ µ)(V ′′)2 − 4(wλ+ µ)V ′V ′′′) = 0.

(19)

Now assume that Equation 19 has the solution as the sum of the following finite serial

V (ζ) =

n∑
i=0

aiz
i(ζ). (20)

Using the balancing principle [16], we obtain n = 2. So the solution of the Equation 19 can be

regarded as

V (ζ) = a0 + a1z(ζ) + a2z(ζ)
2. (21)

Subrogating Equation 21 into Equation 19, collecting the powers of z(ζ) together and equating

the coefficients to zero an algebraic equations system arises. Solving the equation system led

to following solution set

w =
a1p

2β + 2bϵ+ 3bpϵ+ bp2ϵ

b(2 + 3p+ p2)γ
, c =

a2b

2a1
, a0 = 0,

a =
a1b

2a2
, µ = − (a1p

2β + 2bϵ+ 3bpϵ+ bp2ϵ)λ

b(2 + 3p+ p2)γ
,

α =
−2a1a2p

2β + a21bβγ − 4a2bϵ− 6a2bpϵ− 2a2bp
2ϵ

2a2b(2 + 3p+ p2)γ
.

(22)

Using the obtained solution set and with the assistance of Table 1, the new wave solutions of

conformable fractional generalized Rosenau-Kawahara-RLW can be given as follows:

u1(x, t) =
a21b

4sech

(√
a1b
a2

2
√
2
ζ

)4

4a2

b2 − 1
4b

2

(
1− tanh

(√
a1b
a2

2
√
2
ζ

))2
2 −

a21b
2sech

(√
a1b
a2

2
√
2
ζ

)2

2a2

b2 − 1
4b

2

(
1− tanh

(√
a1b
a2

2
√
2
ζ

))2




1
p

,

(23)

u2(x, t) =
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
a21b

2csch

(√
a1b
a2

2
√
2
ζ

)2

2a2

b2 − 1
4b

2

(
1 + coth

(√
a1b
a2

2
√
2
ζ

))2
 +

a21b
4csch

(√
a1b
a2

2
√
2
ζ

)4

4a2

b2 − 1
4b

2

(
1 + coth

(√
a1b
a2

2
√
2
ζ

))2
2



1
p

,

(24)

u3(x, t) =


a21b

2sech

(√
a1b
a2

2
√
2
ζ

)4

4a2

(
b+

√
b2tanh

(√
a1b
a2

2
√
2
ζ

))2 −
a21bsech

(√
a1b
a2

2
√
2
ζ

)2

2a2

(
b+

√
b2tanh

(√
a1b
a2

2
√
2
ζ

))


1
p

, (25)

u4(x, t) =


a21bcsch

(√
a1b
a2

2
√
2
ζ

)2

2a2

(
b+

√
b2coth

(√
a1b
a2

2
√
2
ζ

)) +

a21b
2csch

(√
a1b
a2

2
√
2
ζ

)4

4a2

(
b+

√
b2coth

(√
a1b
a2

2
√
2
ζ

))2



1
p

, (26)

u5(x, t) =

−
a21

(
1 + tanh

(√
a1b
a2

2
√
2
ζ

))
2a2

+

a21

(
1 + tanh

(√
a1b
a2

2
√
2
ζ

))2

4a2



1
p

, (27)

u6(x, t) =

−
a21

(
1 + coth

(√
a1b
a2

2
√
2
ζ

))
2a2

+

a21

(
1 + coth

(√
a1b
a2

2
√
2
ζ

))2

4a2



1
p

, (28)

u7(x, t) =


4a21b

2e
√
2
√

a1b
a2

ζ

a2

−b2 +

−b+ e

√
a1b
a2

ζ
√

2

2


2 +
2a21be

√
a1b
a2

ζ
√

2

a2

−b2 +

−b+ e

√
a1b
a2

ζ
√

2

2




1
p

(29)

where

ζ = x+
tl(a1p

2β + 2bϵ+ 3bpϵ+ bp2ϵ)

bl(2 + 3p+ p2)γ
. (30)

Remark 1. In the solutions presented above, we use ε = 1. Other solutions for ε = −1 can

easily be found with the help of Table 1.
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Figure 1. Some plots of solution 23 (a) l = 1 and (b) different l when t=1 with parameters
p = a1 = b = a2 = β = 1, ϵ = 1, and γ = 2.
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Figure 2. Some plots of solution 27 (a) l = 1 and (b) different l when t=1 with parameters
p = a1 = b = a2 = β = 1, ϵ = 1, and γ = 2.
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Figure 3. Some plots of solution 28 (a) l = 1 and (b) different l when t=1 with parameters
p = a1 = b = a2 = β = 1, ϵ = 1, and γ = 2.
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§5 Conclusion

In this study, we utilize the auxiliary equation method to get the new wave solutions of time

fractional generalized Rosenau-Kawahara-RLW equation which involves both Rosenau equation,

Kawahara equation and RLW equation and arising in the wave phenomena especially the wave-

wave and wave-wall interactions in shallow and narrow channel waters. In Fig.1, Fig.2, and

Fig.3 we depicted some solutions in 3D and also 2D for various values of l with parameters in the

solutions. The considered solutions show that the considered method is efficient, accurate and

reliable. The considered equation includes p-th order nonlinearity which makes the equation

more general. This study can attract researchers to further studies that make investigations on

ocean engineering and modelling.
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[34] S J Chen, X Lü, M G Li, F Wang. Derivation and simulation of the M-lump solutions

to two (2+1)-dimensional nonlinear equations, Physica Scripta, 2021, 96(9): 095201.

[35] Y H Yin, S J Chen, X Lü. Localized characteristics of lump and interaction solutions to

two extended Jimbo-Miwa equations, Chin Phys B, 2020, 29(12): 120502.
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