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A convergent flow in warped product spaces

XIA Shu-can

Abstract. In this paper, we study a kind of curvature flow in warped product spaces. We

obtain convergence results under barrier conditions and restrictions on prescribed function. We

also obtain the asymptotic behavior of a kind of inverse curvature flow in Schwarzschild manifold.

§1 Introduction

Define N = [a, b]× En with warped product metric

ḡ = dρ2 + ϕ(ρ)2g0,

where (En, g0) is a compact Riemannian manifold and ϕ > 0 is a smooth convex function of

ρ. Let M be a closed hypersurface in N and ν be the unit outer normal. As in [2], we call

function u = ⟨ϕ ∂
∂ρ , ν⟩ the generalized support function of the hypersurface. If N is replaced by

Euclidean space Rn+1, then u is the usual support function.

In this paper, we considered the prescribed curvature problem in N . The approach to the

existence of solutions of the prescribed curvature problem is twofold: one is to study the very

elliptic equation directly, c.f.[9, 10, 16, 12] and the reference therein, another is to solve the

problem with the help of curvature flows in the smooth category, see [13, 3, 18, 1, 17], for

examples.

In [13], Li, Sheng and Wang studied a contracting flow of closed, convex hypersurfaces in

the Euclidean space and resolved the dual Minkowski problem by parabolic approach. In [3],

Bryan et al. employed curvature flows to seek strictly convex, spacelike solutions of a broad

class of prescribed curvature problems in simply connected Riemannian space forms and the

Lorentzian de Sitter space, respectively, where the prescribed function may depend on the

position and the normal vector. As for [17], Sheng and Yi considered a more general curvature

flow with variational structure compared to the flow in [13]. In [2], Brendle et al. introduced an

inverse curvature type hypersurface flow in space forms which is related to quermassintegrals

in space forms. While in general warped product spaces, their method may fail due to that the
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second fundamental form is not a Codazzi tensor. Still, we can find a convergent flow without

variational structure, which is inspired by [3].

Let κ = (κ1, · · · , κn) be the vector of n principal curvatures of the hypersurface M and we

denote the k-th elementary symmetric function of κ by σk(κ). Consider the following parabolic

evolution equation of a family of smooth embeddings X : En × [0, T ) → (N, ḡ) satisfying

∂tX =
( 1

F (κ)
− f(X, ν)

)
ν, (1)

whereX is the position vector, F is a curvature function defined by κ, ν is the unit outer normal,

f : TN → R+ is a smooth function defined on the tangent bundle of N . More precisely, let

(x, ξ) be a point in TN , i.e. x ∈ N and ξ ∈ TxN , then f maps (x, ξ) to R+. In the following,

we denote the second partial derivatives of f with respect to x(resp. ξ) as fxx(resp. fξξ).

Furthermore, assume F satisfies the following conditions:

• F (κ1, κ2, · · · , κn) is concave, monotonically increasing, 1-homogeneous symmetric func-

tion defined on the positive cone Γ+ := {(x1, x2, · · · , xn) ∈ Rn|xi > 0,∀i = 1, 2, · · · , n}.

•
∑

i
∂F
∂κi

κ2
i ≤ C0Fσ1 for some constant C0.

• F |∂Γ+ = 0.

Special curvature functions satisfying the above conditions include σ
1
n
n and σ

1
2n
n σ

1
2k

k for 1 ≤ k ≤
n− 1.

Gerhardt in [6] introduced the following barrier hypersurface to (1) as an analogue of subso-

lutions or supersolutions to partial differential equations. We say that a closed, strictly convex

hypersurface M ⊂ N is a lower barrier for the pair (F, f) if

(
1

F
− f(X, ν))

∣∣∣
M

≥ 0,

and an upper barrier if

(
1

F
− f(X, ν))

∣∣∣
M

≤ 0.

To explain the barrier condition more clearly, we take a planar curve for example. Suppose

x(t) is a convex closed curve on the plane and the curvature is k(t). Let F (κ) = k. If x(t) is

a lower barrier for the pair (F, f) which means the curve should satisfy 1
k(t) − f(x(t), ν(t)) ≥ 0

where ν(t) is the unit normal vector at x(t). If a circle of radius r is a lower barrier for (k, f),

then equivalently we have a restriction on f , i.e.

r ≥ f(rθ, θ), ∀θ ∈ S1.
Our first result is the following:

Theorem 1. Suppose Ma = {a} × En ⊂ N is a lower barrier and Mb = {b} × En ⊂ N is an

upper barrier for the pair (F, f), respectively. Let X(·, 0) = Ma in the flow (1). Assume the

Riemannian curvature of N , denoted as R̄m, satisfies

|R̄m| ≤ K, |∇̄R̄m| ≤ K.

If fxx < −(|fξ|+ C)ḡ , and fξξ < −(|fξ|+ C)g0, where C is a constant depending only on C0,

K, |f | and |fξ|, then there exists a time-dependent family of embeddings X : En × [0, T ) → N
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satisfying (1). As t → T , the embeddings X(·, t) converge to a strictly convex solution of the

generalized Minkowski problem

F (κ) = f−1(X, ν). (2)

Remark 1.1. This theorem can be viewed as a generalisation of the result in [3] where Bryan et

al. solved the Minkowski problem in spaceforms under the similar assumption. Li and Sheng

solved a wide range of prescribing curvature problems in [12] including prescribed Gaussian

curvature problem where the prescribed function is independent of normal direction and the

assumption is quite different.

If f ≡ 0 and drop the upper barrier in (1), then we get an expanding curvature flow.

Gerhardt [5], Urbas [18] proved that the inverse mean curvature flow starting from mean-

convex star-shaped smooth hypersurfaces of Euclidean space converges to an infinite large

sphere. Gerhardt [7] also proved a convergence result in hyperbolic space. Huisken and Ilmanen

[11] studied the inverse mean curvature flow in asymptotically flat 3-manifold and proved the

Riemannian Penrose inequality. Guan and Li [8] studied the inverse mean curvature flow and

proved the Alexandrov-Fenchel inequalities of quermassintegrals.

Given a hypersurface Σ in (N, ḡ), we say that it is strictly k-convex if its principal curvature

vector is in the k-th G̊arding cone Γk everywhere, and Γk := {κ ∈ Rn|σ1(κ) > 0, · · · , σk(κ) >

0}. We say that Σ is star-shaped if it can be represented as a radial graph over the sphere

Sn. Let F = σk+1

σk
(κ). The inverse F -curvature flow of Σ is a family of smooth embeddings

X : Σ× [0, T ) → (N, ḡ) satisfying

Xt =
1

F
ν, (3)

where ν is the unit outward normal vector of Σt = X(Σ, t).

We will obtain the following long-time existence and convergence result of the inverse F -

curvature flow (3) for strictly (k+1)-convex and star-shaped hypersurface in the Schwarzschild

manifold. The metric of Schwarzschild manifold is a special warped product metric, where ϕ(ρ)

satisfies an ODE, see Section 4 for more details.

Theorem 2. The inverse F -curvature flow (3) starting from a strictly (k + 1)-convex and

star-shaped hypersurface in the Schwarzschild manifold (N, ḡ) exists for all time. The flow

hypersurface Σt converges to infinity while preserving (k + 1)-convexity and star-shapedness.

Denote the radial function of Σt as ρ(·, t), then there exist two positive constants c0 and ϕ̄ such

that e−c0tϕ(ρ) → ϕ̄ in C∞-catagory as t → +∞. The flow Σt converges to a large coordinate

sphere as t → +∞.

Remark 1.2. If k = 0, then F = H is the mean curvature. Theorem 2 is a generalisation of

[14]. Above theorem holds for all k = 0, 1, 2, · · · , n− 1.

The rest of the paper is organized as follows. In section 2, we list some basic facts for

hypersurfaces in N . In section 3 we prove the a priori estimates and prove Theorem 1. In

section 4 we give some examples to the prescribed curvature problems in Schwarzschild manifold.

In section 5 we show the asymptotic behavior of the inverse F -curvature flow and conclude

Theorem 2.

The author thanks Sheng Weimin and Wang Feng for helpful conversations and much advice.
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§2 Preliminaries

Let the ambient space N = [a, b]× En with warped product metric

ḡ = dρ2 + ϕ(ρ)2g0.

g0 is a Riemannian metric on closed manifold E. ϕ > 0 is a smooth convex function of ρ. Let

Φ(ρ) =
∫ ρ

a
ϕ(s)ds.

Lemma 1. Let M ⊂ N be a closed hypersurface with induced metric g. Then Φ|M satisfies

∇i∇jΦ = ϕ′(ρ)gij − hiju, (4)

where ∇ is the covariant derivative with respect to g, hij is the second fundamental form of the

hypersurface.

Proof. Let V = ϕ ∂
∂ρ . It is well-known that V is a conformal Killing vector field, i.e. LV ḡ = 2ϕ′ḡ

where LV is the Lie derivative. Let X,Y be smooth vector fields on M , and f be a smooth

function on N , then we have

HessMf(X,Y ) = Y (X(f))− (∇XY )f = HessNf(X,Y ) + (∇̄XY −∇XY )f,

where ∇̄ is the Levi-Civita connection on TN . Let {ei}(1 ≤ i ≤ n) be an orthonormal frame

on M . Since ∇̄Φ = V ,

∇ei∇ejΦ|M = ⟨∇̄eiV, ej⟩ − hij⟨V, ν⟩ = ϕ′gij − hiju.

Next, we derive the gradient and Hessian of the support function u under the induced metric

g on M . The main difference between the following equations and those in [2] is that the second

fundamental form of M is not a Codazzi tensor in general warped product spaces.

Lemma 2. The support function u satisfies

∇iu = gklhik∇lΦ,

∇i∇ju = gkl∇khij∇lΦ+ ϕ′hij − (h2)iju+ R̄νjki∇kΦ,
(5)

where (h2)ij := gklhikhjl.

Proof. Choose an orthonormal frame, then gij = δij and ∇iu = ∇̄i⟨V, ν⟩ = ⟨∇̄Φ, ∇̄iν⟩ =

hik∇̄kΦ. Thus the first identity holds.

Differentiating ∇u again and applying (4), we have

∇i∇ju = ∇ihjk∇kΦ+ hjk∇i∇kΦ

= ∇khij∇kΦ+ R̄νjki∇kΦ+ hjk(ϕ
′gik − hiku)

= ∇khij∇kΦ+ R̄νjki∇kΦ+ ϕ′hij − (h2)iju,

where we use the Codazzi equation:

∇ihjk −∇khij = R̄νjki = R̄(ν, ej , ek, ei).

Let Mt be a smooth family of closed hypersurfaces in N . Let X(t, ·) denote a point on Mt.
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Lemma 3. Under flow ∂tX = Gν on the hypersurface in a Riemannian manifold, we have the

following evolution equations

∂tgij = 2Ghij ,

∂thij = −∇i∇jG+G(h2)ij −GR̄νiνj ,

∂th
j
i = −gjk∇k∇iG− gjkG(h2)ki −GgjkR̄νiνk.

(6)

These equations are well-known, so we omit the proof.

Let (M, g) be a hypersurface in (N, ḡ) with induced metric g. Suppose M is a graph of a

smooth, positive function ρ(z) on En. We have the following local expressions of the support

function, induced metric, second fundamental form, Weingarten curvatures [15].

u = ϕ2√
ϕ2+|∇ρ|2

,

gij = ϕ2eij + ρiρj , gij = 1
ϕ2 (e

ij − ρiρj

ϕ2+|∇ρ|2 ),

hij = (
√
ϕ2 + |∇ρ|2)−1(−ϕ∇i∇jρ+ 2ϕ′ρiρj + ϕ2ϕ′eij),

hi
j = (ϕ2

√
ϕ2 + |∇ρ|2)−1(eik − ρiρk

ϕ2+|∇ρ|2 )(−ϕ∇k∇jρ+ 2ϕ′ρkρj + ϕ2ϕ′ekj).

(7)

where all the covariant derivatives ∇ and ρi are taken with respect to g0. For the sake of

simplicity, we denote ∇ the covariant derivative with respect to g0 if no confusion arises.

We now consider the flow (1) of radial graphs over En in N . It is known that if a family

of closed hypersurfaces defined by radial graphs and satisfies Xt = Gν, then the evolution of

the scalar function ρ(t, z) satisfies ρt = Gω, where ω =
√
1 + ϕ−2|∇ρ|2. Thus we only need to

consider following scalar equation on En,{
∂tρ = ( 1

F − f)ω,

ρ(0, ·) = ρ0.
(8)

Recall u = ϕ⟨ ∂
∂ρ , ν⟩. Thus

ut = ϕ′ρt⟨ ∂
∂ρ , ν⟩+ ϕ⟨ ∂

∂ρ , νt⟩
= Gϕ′ −∇Φ · ∇G.

(9)

For convenience, we introduce a new variable γ satisfying
dγ

dρ
=

1

ϕ
.

Then the equation for γ is {
∂tγ = ω4

F̃
− f

u ,

γ(0, ·) = γ0.
(10)

where F̃ = ϕω3F . The induced metric and the second fundamental forms in (7) can be rewritten

in terms of γ as:

gij = ϕ2(δij + γiγj), gij = ϕ−2(δij − γiγj

1+|∇γ|2 ),

hij =
ϕ′

ϕ
√

1+|∇γ|2
gij − ϕ√

1+|∇γ|2
γij .

(11)

Let

hi
j =

1

ϕω3
bij , (12)

bij = ω2(ϕ′eij − γij + γiγljγl). (13)

By 1-homogeneity of F , we have ∂F
∂hi

j
= ∂F̃

∂bij
.
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§3 A priori estimates

Since we have barrier conditions, it is easy to see that the flow remains between the two

barriers (c.f. Theorem 2.7.10 in [6] ). In the following, we turn to prove the C1 and C2 estimates.

Lemma 4. Along flow (8), |∇ρ| ≤ C.

Proof. We consider the test function log |∇ρ|2
φ to obtain a gradient estimate. Here φ = φ(ρ) to

be determined later. Note that at the critical points of log |∇ρ|2
φ , we have ∇|∇ρ|2 = φ′

φ |∇ρ|2∇ρ.

We may assume |∇ρ| = ρ1, ρ1j = 0 for j ≥ 2, and ρ11 = 1
2
φ′

φ |∇ρ|2. Since the computations are

done at one point, we take an orthonormal frame so that eij = δij .

h1
1 = (ϕ2 + |∇ρ|2)− 3

2 ·
(
− ϕ · φ

′

2φ
· ρ21 + 2ϕ′ρ21 + ϕ2ϕ′

)
.

Set φ = ϕ8, by convexity we have |∇ρ|2 = ρ21 ≤ C.

Remark 3.1. The convexity of the flow holds as long as the flow exists, since if there is t0 > 0,

principal curvature vector κ → ∂Γ+ as t → t0, then
1
F → +∞ and the flow will blow up at

t = t0. In the following, we will prove that principal curvatures are bounded away from 0, so

that the flow is strictly convex.

For simplicity we denote G = 1
F −f(X, ν), L = ∂t− 1

F 2F
ij∇i∇j . Direct computation shows

that

LG = G
F ij(h2)ij

F 2
+G

F ijR̄νiνj

F 2
− fν(∇G) + fX(ν)G.

Lemma 5. G(t, ·) ≥ 0 for all t ≥ 0 as long as X(t, ·) exists.

Proof. Suppose the flow (1) exists on [0, T ) and 0 < t0 < T . The curvatures of M(t) on [0, t0]

are all bounded. Thus

LG = c ·G+ gradient terms. (14)

where c is bounded. By the weak maximum principle (c.f. Lemma 2.7.2 in [6] ), minG(t, ·) ≥ 0

on [0, t0]. Since t0 is arbitrary, G ≥ 0 as long as the flow exists.

Lemma 6. F ≥ C0 > 0 for all t.

Proof. The evolution of the radial function ρ is (8). We calculate at a critical point P of the

function γt. At P , ∇γt = 0 and ∂tω
2 = 0. Differentiate (10), we have

∂tγt = −ω4

F̃ 2
F̃t − (

f

u
)t.

At P ,

F̃t = F ij∂t(ω
2(−γij + ϕ′δij) + γiγjlγl)

= F ij(ω2(−(γt)ij + ϕϕ′′γtδij) + γiγtjlγl)

= −F ij(ω2δil − γiγl)(γt)lj + ϕϕ′′(
∑

F ii)ω2γt.
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Putting the above equations together, we have

∂tγt −
ω4F ij

F̃ 2
(ω2δil − γiγl)(γt)jl = −ω6ϕϕ′′F ii

F̃ 2
γt −

ft
u

+
fut

u2
, (15)

and ft = fξ(∇u)γt + fx(ν)uγt +gradient terms,ut = (uϕ′ −∇Φ · ∇u)γt +gradient terms. Thus

∂tγt −
ω4F ij

F̃ 2
(ω2δil − γiγl)(γt)jl = −ω6ϕϕ′′F ii

F̃ 2
γt + cγt + gradient terms.

where c = f
u2 · (uϕ′ − ∇Φ∇u) − fξ(∇u)

u − fx(ν) is bounded above by C0 and C1 estimates. If

γt → ∞, then 1
F̃

→ ∞, while ∂tγt < 0. Thus γt is bounded and 1
F is also bounded above.

Lemma 7. The principal curvatures are bounded, i.e.

0 <
1

C
≤ κi ≤ C, ∀i.

Proof. Without loss of generality, we may choose an orthonormal frame locally on the flow at

time t. We need some equalities about Weingarten matrix first.

(hi
j)t = −Gij −G(h2)ij −GR̄νiνj . (16)

Recall that G = 1
F − f(X, ν). Take derivatives on both sides,

Gij =
2FiFj

F 3
− F kl,pqhklihpqj

F 2
− 1

F 2
F klhklij − fij . (17)

Using Ricci identity and the Codazzi equation, we have

hklij = hijkl + R̄νikj,l + R̄νkli,j + R̄piljhpk + R̄pkljhpi + (h2)klhij

− (h2)kjhil + (h2)ilhkj − (h2)ijhkl. (18)

Combining (16),(17),(18) with L = ∂t − 1
F 2F

ij∇i∇j , we have

Lhi
j =

F kl,pqhklihpqj

F 2
− 2FiFj

F 3
+ fij − (

2

F
− f)(h2)ij − (

1

F
− f)R̄νiνj

+
F kl

F 2
(h2)klhij +

F kl

F 2
(R̄νikj,l + R̄νkli,j + R̄piljhpk + R̄pkljhpi). (19)

Consequently,

LH =
F kl,rshklihrsi

F 2
− 2F 2

i

F 3
+ fii − (

2

F
− f)|A|2 − (

1

F
− f)R̄νν +

F kl(h2)kl
F 2

H

+
F kl

F 2
(R̄νiki,l + R̄νkli,i + R̄pilihpk + R̄pklihpi). (20)

Recall the Hessian of u in (5),

uij = hijkΦk + ϕ′hij − (h2)iju+ R̄νjkiΦk.

By Weingarten equations and Codazzi equation, we have

νij = hijkek + R̄νikjek − (h2)ijν.

Direct computation shows that

fij =fξξνiνj + fξνij + 2fxξ(ei)νj + fxx(ei, ej)− fx(ν)hij

=fξξ(ek, el)hikhjl − fξ(ν)(h
2)ij + fξ(ek)hijk + 2fxξ(ei, ek)hjk

− fx(ν)hij + fxx(ei, ej) + fξ(ek)R̄νikj . (21)

Let Q = logH + βF , where β > 0 to be determined. Compute at the spatial maximum
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point of Q, then Hi/H + βFi = 0.

LF =F ijLhij −
F ij

F 2
F pq,rshpqihrsj −

F ij

F 2
F kl(R̄νikj,l + R̄νkli,j + R̄piljhpk

+ R̄pkljhpi + (h2)klhij − (h2)kjhil + (h2)ilhkj − (h2)ijhkl)

=F ijLhij −
F ij

F 2
F pq,rshpqihrsj −

F ij

F 2
F kl(R̄νikj,l + R̄νkli,j).

By the second Bianchi identity, R̄νikj,l = −R̄νijl,k − R̄νilk,j , we have

LF = F ijLhij −
F ij

F 2
F pq,rshpqihrsj . (22)

Using (19) again, we compute

F ijLhij =
F ij

F 2
F kl,pqhklihpqj −

2F ijFiFj

F 3
+ F ijfij − (

2

F
− f)F ij(h2)ij

− (
1

F
− f)F ijR̄νiνj +

F kl(h2)kl
F

. (23)

Plugging (23) into (22), we have

LF = −2F ijFiFj

F 3
+ F ijfij − (

1

F
− f)F ij(h2)ij − (

1

F
− f)F ijR̄νiνj . (24)

Note that F kl(h2)kl ≤ C0FH. By (20), (24), (21), we have

LQ =
LH
H

+ βLF +
F ij

F 2
· HiHj

H2

=
F kl,rshklihrsi

HF 2
− 2F 2

i

HF 3
+

1

H
fii − (

2

F
− f)

|A|2

H
− R̄νν

H
(
1

F
− f)

+
F kl(h2)kl

F 2
+

F ijHiHj

H2F 2
+

F kl

HF 2
(R̄νiki,l + R̄νkli,i + R̄pilihpk + R̄pklihpi)

+ β(−2F ijFiFj

F 3
+ F ijfij − (

1

F
− f)F ij(h2)ij − (

1

F
− f)F ijR̄νiνj)

≤ fii
H

+ C
|A|2

H
+

C

H
+ C(

∑
F ii) + (β2 − 2

β

F
)F ijFiFj

+ βF ijfij − β(
1

F
− f)

FH

n
+ βC · (

∑
F ii).

Since F is bounded, we first choose β, s. t. 0 < β < min 2
F . By (21),

fij ≤ (max
i

fξξ(ei, ei) + |fξ|)(h2)ij + Chij +max
i

fxx(ei, ei) + |fξ|+ fξ(ek)hijk.

If fξξ < −(|fξ| + C)g0 and fxx < −(|fξ| + C)ḡ, where C is depends on K,n, f , then

LQ ≤ −ϵ |A|2
H + CH−1 + C. Therefore H as well as Q is bounded above. Since F |∂Γ+ = 0, all

principal curvatures are bounded away from 0.

Proof of Theorem 1. Since we have shown that the principal curvatures are bounded above, by

Evans-Krylov’s theorem,

||ρ||C2,α < C.

Note that the flow (1) is monotone and {ρ(t)} is bounded above. Therefore {ρ(t)} converges in

C0 with a unique limit, say ρ∞. Since we have ||∇kρ|| ≤ C, there exists a subsequence {ρ(tk)}
converges in Ck-category. Since the limit ρ∞ is unique, {ρ(t)} also converges in Ck, for every

k ≥ 1.
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§4 Applications

In this section, we show a concrete example. Consider the prescribed Gaussian curvature

problem in Schwarzschild manifold for a kind of function f . The Schwarzschild manifold is an

(n+1)-dimensional (n ≥ 2) Riemannian manifold N = [s0,+∞)×Sn equipped with the metric

ḡ =
1

1− 2ms1−n
ds2 + s2gSn , (25)

where m > 0 is a constant which is the mass of the black hole centered at s = 0, and gSn

the standard metric on the unit sphere Sn. Denote s0 = (2m)1/(n−1), which is called as

Schwarzschild radius. We only consider the case s > s0. By a change of variables, ḡ can be

rewritten as

ḡ = dρ2 + ϕ(ρ)2gSn ,

where ϕ(ρ) is the solution of the following ODE:{
ds
dρ =

√
1− 2ms1−n,

s(0) = s0 + ϵ for small ϵ.

Clearly, ϕ(ρ) is a monotonic increasing convex function on [0,+∞) satisfying ϕ′′(ρ) = m(n −
1)ϕ(ρ)−n. The principal curvatures of the geodesic sphere with radius ρ are all ϕ′

ϕ , which is

monotonically increasing while ϕ(0) ≤ ϕ(ρ) ≤ (m(n+ 1))1/(n−1) and is monotonically decreas-

ing while ϕ(ρ) > (m(n + 1))1/(n−1). Let maxρ
ϕ′

ϕ = c0 and ρ0 = ϕ−1((m(n + 1))1/(n−1)).

Let f(x, ξ) = −Cijxixj − Dijξiξj + A1||C|| + A2||D||, where (Cij), (Dij) are two symmtric

positive definite matrices with constant entries. Denote xn+1 = ρ and x1, · · · , xn be the (lo-

cal) coordinates on Sn which are the polar coordinates in Rn+1. There is a diffeomorphism

φ : Rn+1 \ Bs0(0) → N , therefore on the Schwarzschild manifold N there are also global well-

defined coordinates induced by φ. Naturally ∂
∂xi

(1 ≤ i ≤ n) and ∂
∂ρ are basis vector fields.

In general ( ∂2f
∂xi∂xj

) is not the covariant Hessian of f(x) with respect to a Riemannian metric.

Here for simplicity, let Ci,n+1 = Cn+1,i = 0 and Cn+1,n+1 is greater than any absolute values

of eigenvalues of the n × n matrix that results from deleting row n + 1 and column n + 1 of

(Cij). Directly the second order covariant derivatives are calculated as below,

∇̄i∇̄jf =
∂2f

∂xi∂xj
−

n∑
k=1

Γ̄k
ij

∂f

∂xk
− Γ̄n+1

ij

∂f

∂xn+1

= −Cij −
n∑

k=1

Γk
ij(Sn)

∂f

∂xk
− 2ϕϕ′Cn+1,n+1ρδij ,

∇̄n+1∇̄n+1f =
∂2f

∂ρ2
= −2Cn+1,n+1,

∇̄i∇̄n+1f = −Ci,n+1 − (log ϕ)′
∂f

∂xi
.

Therefore we may choose an appropriate Cij so that fxx satisfies the requirement in the main

theorem. Things are similar to choose an appropriate (Dij) so that fξξ satisfies the requirement

in Theorem 1. Next we choose A1 >> 1 so that

||C||(A1 − r20) > c−1
0 .
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Let f̃(ρ) = −||C||ρ2 + A1||C|| + (A2 − 1)||D||. Obviously the graph of f̃(ρ) and the graph

of ϕ
ϕ′ (ρ) have two intersections. Let ρ1 < ρ2 be the two solutions of f̃(ρ) = ϕ

ϕ′ (ρ). Choose

a < ρ1 small and ρ1 < b < ρ2 so that the geodesic sphere of ρ = a is a lower barrier to the pair

(σ
1/n
n , f(x, ξ)), and the geodesic sphere of ρ = b is an upper barrier to the pair (σ

1/n
n , f(x, ξ)).

Thus by Theorem 1 we have at least one convex solution of

σn(κi)
1
n = f(x, ξ)−1.

in the annulus region {a ≤ ρ ≤ b} in the Schwarzschild manifold.

§5 An expanding curvature flow in Schwarzschild manifold

In this section, we prove Theorem 2.

5.1 A priori estimates

Lemma 8. Suppose the radial function of Σt is ρ(·, t). Letρ1, ρ2 be the constants such that

0 < ρ1 ≤ ρ(·, 0) ≤ ρ2, then on Xt we have

ϕ(ρ1)e
c0t ≤ ϕ(ρ(·, t)) ≤ ϕ(ρ2)e

c0t,

as long as X(·, t) exists.

Proof. We follow the idea in [14]. The flow (3) is equivalent to (8) if we let f ≡ 0,{
∂tρ = ω

F

ρ(·, 0) = ρ0.
(26)

If the initial hypersurface is a coordinate sphere, i.e. ρ0 is a constant, then (26) becomes an

ODE:
dρ

dt
=

c0ϕ

ϕ′ ,

where c0 = Ck
n/C

k+1
n .

Thus ϕ(ρ(t)) = ϕ(ρ(0))ec0t. Now by the parabolic maximum principle, the Lemma is proved.

Next, we consider the gradient estimate. We use the same change of variables introduced

in the proof of Lemma 6. Recall that γ(ρ) satisfies

dγ

dρ
=

1

ϕ
.

Then γt = ϕ−1ρt. We have the following gradient estimate.

Lemma 9. Let ρ be a positive admissible solution of (26) on Sn× [0, T ). Then for all t ∈ [0, T )

we have

max
Sn

|∇γ|(·, t) ≤ max
Sn

|∇γ|(·, 0).

We remark that this gradient estimate can be improved if we prove the uniform parabolicity

of (26).
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Proof. Assume w = 1
2 |∇γ|2 attains its spatial maximum at θ ∈ Sn. For simplicity, we choose

an orthonormal frame on Sn. At θ, γliγl = 0 for all i and γlijγl + γliγlj ≤ 0. Directly,

wt = γlγlt = γl
(√1 + |∇γ|2

ϕF

)
,l

= −γl ·
√

1 + |∇γ|2
ϕ2F 2

· (ϕ′ρlF + ϕF pq(hq
p),l).

Recall that ω =
√
1 + |∇γ|2 also attains its maximum at θ. In the following, we calculate hq

p,l.

By (11), (hpig
qi),l = hpi,lg

iq − hpig
irgrs,lg

sq.

hpi,l =
1

ω
(
ϕ′

ϕ
),lgpi +

ϕ′

ωϕ
gpi,l −

ϕl

ω
γpi −

ϕ

ω
γpil,

grs,l =
(ϕ2),l
ϕ2

grs + ϕ2(γrlγs + γrγsl).

Thus

hpi,lg
iq =

1

ω

(ϕ′′

ϕ
+ (

ϕ′

ϕ
)2
)
ρlδ

q
p +

ϕϕ′

ω
(γpγi)lg

iq − ϕl

ω
γpig

iq − ϕ

ω
γpilg

iq.

And

hpig
irgrs,lg

sq =
(ϕ2),l
ϕ2

hq
p + ϕ2hpig

irgsq(γrγs)l.

Note that (γrγs)lγl = 0 for any r, s, thus

hq
p,lγl =

1

ω

(ϕ′′

ϕ
+ (

ϕ′

ϕ
)2
)
δqpρlγl −

ϕlγl
ω

γpig
iq − ϕ

ω
γpilg

iqγl +
(ϕ2),lγl

ϕ2
hq
p.

Since ρl = ϕγl and γip = ϕ′

ϕ2 gip − ω
ϕhip, we have

wt = −ϕ′′(
∑

F ii)

ϕF
|∇γ|2 + 1

F 2
F pqγpilγlg

iq. (27)

By the Ricci identity on Sn, we deduce that

γpilγl = γlpiγl + γiγp − δip|∇γ|2 = wpi − γliγlp + (γiγp − δip|∇γ|2). (28)

Therefore we have (γpilγl) ≤ 0. Since ϕ is a positive convex function, wt ≤ 0 and the lemma is

proved.

Next, we turn to estimate the curvature function F .

Lemma 10. There exist two positive constants C1 < C2, such that C1e
−c0t ≤ F ≤ C2e

−c0t.

Proof. We can proceed as in the proof of Lemma 6. Note that γt = ω4

F̃
with initial data γ0,

where F̃ = ϕω3F . By letting f ≡ 0 in (10), from (15) we have

∂tγt −
ω4F ij

F̃ 2
(ω2δil − γiγl)(γt)jl = −ω6ϕϕ′′(

∑
F ii)

F̃ 2
γt + gradient terms.

Since F is a 1-homogeneous concave function,
∑

F ii ≥ C > 0. Therefore γt ≤ C. ω ≥ 1, so we

have F̃ ≥ C > 0. Using the C0-estimate, we conclude that F ≥ C1e
−c0t. In the following, we

prove that F̃ is bounded above. At a minimal point of γt, by (15) again, we have

∂t(γt)min ≥ −Ce−nc0t(γt)
3
min.

Solving this ordinary differential inequality, we get

(γt)
2
min(t) ≥

2
1

(γt)2min(0)
− C

nc0
e−nc0t + C

nc0

≥ 1

C
> 0.
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As long as the flow exists, γt > 0. Therefore F̃ is bounded above and F̃ = ϕ3ωF , which shows

that F ≤ C2e
−c0t.

For (k+1)-convex admissible solution ρ for (26), by Newton-Maclaurin inequalities, we have

F =
σk+1

σk
≤ CH.

We show that

Lemma 11. The mean curvature H ≤ Ce−c0t.

Proof. Let f ≡ 0 in (20), then we have

LH =
F kl,rshklihrsi

F 2
− 2F 2

i

F 3
− 2|A|2

F
− R̄νν

F
+

F kl(h2)kl
F 2

H

+
F kl

F 2
(R̄νiki,l + R̄νkli,i + R̄pilihpk + R̄pklihpi). (29)

By Lemma 4.1 in [2], we have

c0F
2 ≤ F kl(h2)kl ≤ (k + 1)F 2.

Direct computation shows that in Schwarzschild manifold, the Riemannian curvature tensor

R̄m decays as O(ϕ(ρ)−n−1), see Section 2.1 in [14]. While ∇̄R̄m decays as O(ϕ(ρ)−n−2). Thus

LH ≤ −2|A|2

F
+ CH +O(e−nc0t). (30)

Since the solution is (k + 1)-convex, H2 ≥ |A|2 ≥ H2

n for k ≥ 1, and for k = 0, F = H and we

have proved that F = O(e−c0t). Therefore for all k, H is bounded above. Indeed, we can show

that H also decays to 0 as t → +∞. Consider v := ec0tH.

Lv ≤ Cv − 2

C2
v2 + o(1).

Therefore v is bounded above, which means that H also decays as O(e−c0t).

Since the principal curvature vector κ(κ1, · · · , κn) ∈ Γk+1, if k ≥ 1, then for all i,

|κi| ≤ CH ≤ Ce−c0t.

In case k = 0, i.e. the flow (3) is the inverse mean curvature flow, we can bound the maximum

principal curvature directly from (19).

L(hi
i)max ≤ −|A|2

H
+ o(e−c0t).

Therefore all principal curvatures are bounded. Thus the eigenvalues of F ij are uniformly

bounded. The flow is uniformly parabolic at any finite time t. We then have the longtime

existence of the inverse F -curvature flow for all 0 ≤ k ≤ n− 1.

Now we can get a more accurate estimate for the gradient of γ. By (27) and (28), assuming

1/Cδij ≤ F ij ≤ Cδij , we have

wt ≤
1

F 2
F pq(γiγp − δip|∇γ|2)giq

≤ − (n− 2)|∇γ|2

Cϕ2F 2
.

There exists a positive constant β, such that

|∇γ| ≤ Ce−βt.
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5.2 Proof of Theorem 2

Proof. It remains to show that {ϕ(ρ)e−c0t} converges to a constant in C∞-topology. Now things

go in the same way as [14]. Let ϕ̃ = ϕ(ρ)e−c0t and F̃ = Fec0t, then

∂tϕ̃ =
ϕ′ω

F̃
− c0ϕ̃. (31)

Obviously, |∂tϕ̃| ≤ C independent on t. (31) is a uniformly parabolic equation. From

previous discussion, |∇ϕ̃| decays exponentially fast:

|∇ϕ̃| = e−c0tϕ′|∇ρ| = e−c0tϕϕ′|∇γ| = O(e−βt).

Thus {ϕ̃} uniformly converges to a constant, say ϕ̄. By interpolation inequality,∫
Sn

|∇mϕ̃|2 ≤ Ce−β′t.

where β′ depends only on β, n,m. Next we use the Sobolev embedding theorem on Sn, for any
m > l + n

2 ,

||ϕ̃− ϕ̄||Cl ≤ C(m, l)
(∫

Sn
|∇mϕ̃|2 +

∫
Sn

|ϕ̃− ϕ̄|2
) 1

2 ≤ Ce−β′′t,

where β′′ depends on β, β′. Also we have the metric of Σt satisfies

e−2c0tgij → ϕ̄2gSn .

exponentially fast. From (12) we know that

| ϕ
ϕ′h

j
i − δji | = O(e−β0t).

for some positive constant β0
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