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Uniform isochronous center of a class of higher degree

polynomial differential systems

ZHOU Zheng-xin LU Fei-fei

Abstract. In this paper, we give the necessary and sufficient conditions for a class of higher

degree polynomial systems to have a uniform isochronous center. At the same time, we prove

that for this system the composition conjecture is correct.

§1 Introduction

Consider differential system {
x′ = −y +Φ(x, y),

y′ = x+Ψ(x, y),
(1)

where Φ and Ψ are real polynomial functions with a degree of n without constant nor linear

terms. The singular point O(0, 0) is a center if there exists an open neighborhood U of O

where all the orbits contained in U\{O} are periodic. For every p ∈ U\{O} if the period of the

periodic orbit through p is a constant, then the point O(0, 0) is called an isochronous center.

In literature [24], the authors have proved that if the system (1) has a center at O(0, 0), then

this center is a uniform isochronous center if and only if doing a linear change of variables and

a scaling of the time it can be written as the rigid system:{
x′ = −y + xP (x, y),

y′ = x+ yP (x, y),
(2)

where P (x, y) =
∑n−1

k=1 Pk(x, y), Pk(x, y) is a homogeneous polynomial in x and y of degree k.

The interest in the isochronous centers started in the XVII century with the works of [2]-[4],

[11, 13, 16, 19] and references therein. The isochronous phenomena appear in many physical

problems [14].

In polar coordinates the system (2) becomes

dr

dθ
= r

n−1∑
k=1

Pk(θ)r
k, (3)
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where Pk(θ) (k = 1, 2, ..., n−1) are 2π-periodic functions. Therefore, the system (2) has a center

at O(0, 0) if and only if all solutions r(θ) of equation (3) near r = 0 are periodic. In such case,

it is said that equation (3) has a center at r = 0 [2, 5, 25].

The center-focus problem asks about the conditions on the coefficients of Φ and Ψ under

which the origin point of system (1) is a center. This is an interesting and difficult problem and

is closely related to the Hilbert’s sixteenth problem. In spite of all efforts, there is no general

method to solve this problem. Up to now, only for quadratic systems and some special systems

the center-focus problem has been solved [2, 15, 17, 21, 25] and others. However, for the higher

degree polynomial differential systems, corresponding results are few.

Alwash and Lloyd [6, 7, 9] give the following simple sufficient condition for the Abel equation

dr

dθ
= r(R1(θ)r +R2(θ)r

2) (4)

to have a center, where R1(θ) and R2(θ) are continuous 2π-periodic functions.

Theorem 1.1. [7,9] If there exists a differentiable function u(θ) of period 2π such that

R1(θ) = u′(θ)Ř1(u(θ)), R2(θ) = u′(θ)Ř2(u(θ))

for some continuous functions Ř1 and Ř2, then the Abel equation (4) has a center at r = 0.

The following statement presents a generalization of Theorem 1.1.

Theorem 1.2. [6,30] If there exists a differentiable function u(θ) of period 2π such that

Pi(θ) = u′P̌i(u), (i = 1, 2, ..., n− 1)

for some continuous functions P̌i (i = 1, 2, ..., n−1), then the equation (3) has a center at r = 0.

The condition in Theorem 1.1 (or Theorem 1.2) is called the Composition Condition. When

an Abel equation (or the polynomial equation (3) ) has a center because its coefficients satisfy

the composition condition we will say that this equation has a CC-center. Obviously, the

composition condition is the sufficient condition for r = 0 to be a center. A counterexample was

presented in [9, 10] to demonstrate that the composition condition is not a necessary condition

of a center. Whether the composition condition is the necessary and sufficient condition for

the singular point to be a center? This problem is called Composition Conjecture, which

first appeared in [7]. What kind of differential system is this conjecture right? Studying

this problem has attracted the interest of many scholars. In [15, 20, 23] the authors have

proved that for some Abel differential equations, the composition conjecture is valid. In the

literatures [26, 27] for the system (2) with P = P2 + P4 or P = P2 + P6, the composition

conjecture has been proved to be correct. Later, in [2, 18, 28, 29] the authors have used different

methods to demonstrate that the composition conjecture is correct for the rigid system (2) with

P = P1 + Pm or P = P2 + P2m, m is an arbitrary natural number. In literatures [2, 8, 12,

30] the authors applied different computational techniques to prove that for system (2) with

P = P1 + P2 + P3, the composition is correct. In [31, 32] , we have proved that for system

(2) with P = P1 + P2 + P5 (P1 ̸= 0) or P = P1 + Pm + P2m+1 (P1 ̸= 0), the composition

conjecture is valid under several restrictions conditions. It’s natural to ask, when P1 ≡ 0, for

system (2) with P = P2 + P5 or P = P2 + P2m+1 (m > 1), is the composition conjecture true?
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In this case, although the system (2) is very simple in form, it is much more difficult to deduce

the necessary conditions of the center than when P1 ̸= 0. Meanwhile, to prove the obtained

conditions to be sufficient is more complicated, even with the help of the computer, it can’t

lighten our burden. To find some useful methods is the key to open this problem. In this paper,

we use some effective calculation techniques to get the necessary and sufficient conditions for

the origin point of the following higher degree polynomial differential system{
x′ = −y + x(P2(x, y) + P5(x, y)),

y′ = x+ y(P2(x, y) + P5(x, y)),
(5)

to be a center, where Pk(x, y) =
∑

i+j=k pijx
iyj , k = 2, 5, (pij ∈ R). At the same time,

we prove that the composition conjecture is correct for its corresponding periodic differential

equation
dr

dθ
= r(P2(cos θ, sin θ)r

2 + P5(cos θ, sin θ)r
5).

By this, we can derive all the focal values of the system (5) and they contain exactly six relations.

In the following we denote

Pk = Pk(cos θ, sin θ); P̄k =

∫ θ

0

Pk(cos τ, sin τ)dτ ; ᾱk =

∫ θ

0

αk(τ)dτ,

P̄2
k
P5 =

∫ θ

0

(

∫ τ

0

P2(cos t, sin t)dt)
kP5(cos τ, sin τ)dτ ; ᾱiαj =

∫ θ

0

∫ τ

0

αi(s)dsαj(τ)dτ, etc.

§2 Several Lemmas

Lemma 2.1. The relations:

(I)
∫ 2π

0
P2dθ = 0;

(II)
∫ 2π

0
P̄2P5P̄5dθ = 0;

(III)
∫ 2π

0
P̄ 2
2P5P̄5dθ = 0;

(IV) 7
∫ 2π

0
P̄ 3
2P5P̄5dθ + 3

∫ 2π

0
P̄ 2
2P5P̄2P5dθ = 0;

(V) 3
∫ 2π

0
P̄ 4
2P5P̄5dθ + 2

∫ 2π

0
P̄ 3
2P5P̄2P5dθ = 0;

(VI) 33
∫ 2π

0
P̄ 5
2P5P̄5dθ + 27

∫ 2π

0
P̄ 4
2P5P̄2P5dθ + 10

∫ 2π

0
P̄ 3
2P5P̄ 2

2P5dθ = 0.

are respectively equivalent to the following relations:

(i)
∫ 2π

0
P2dθ = 0;

(ii)
∫ 2π

0
P̂2P5P̄5dθ = 0;

(iii)
∫ 2π

0
P̂ 2
2P5P̄5dθ = 0;

(iv) 7
∫ 2π

0
P̂ 3
2P5P̄5dθ + 3

∫ 2π

0
P̂ 2
2P5P̂2P5dθ = 0;

(v) 3
∫ 2π

0
P̂ 4
2P5P̄5dθ + 2

∫ 2π

0
P̂ 3
2P5P̂2P5dθ = 0;

(vi) 33
∫ 2π

0
P̂ 5
2P5P̄5dθ + 27

∫ 2π

0
P̄ 4
2P5P̂2P5dθ + 10

∫ 2π

0
P̂ 3
2P5P̂ 2

2P5dθ = 0.

Where P̂2 = A2 sin 2θ −B2 cos 2θ, A2 = p20, B2 = 1
2p11.

Proof. As
∫ 2π

0
P2dθ = 0 , then P2 = A2 cos 2θ + B2 sin 2θ and 2P̄2 = P̂2 + B2. In view of

P5 is an odd polynomial in cos θ, sin θ and the definite integral from 0 to 2π of an odd degree

polynomial in cos θ, sin θ, is equal to zero. Thus
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2

∫ 2π

0

P̄2P5P̄5dθ =

∫ 2π

0

(P̂2 +B2)P5P̄5dθ =

∫ 2π

0

P̂2P5P̄5dθ,

which implies that the relation (II) is equivalent to (ii). By this we get

4

∫ 2π

0

P̄ 2
2P5P̄5dθ =

∫ 2π

0

(P̂2 +B2)
2P5P̄5dθ =

∫ 2π

0

P̂ 2
2P5P̄5dθ,

so, the relations (III) and (iii) are equivalent.

Similarly, we can prove that the other relations are equivalent. �

Lemma 2.2. Suppose that A2
2 +B2

2 ̸= 0 and
∫ 2π

0
P2(cos θ, sin θ)dθ = 0,

P5P̄5 =

5∑
k=1

â2k cos 2kθ + b̂2k sin 2kθ + ς1P5,

A2k b̂2k −B2kâ2k = 0, (k = 1, 2, ..., 5). (6)

Then
5∑

k=1

â2k cos 2kθ + b̂2k sin 2kθ = P2

4∑
k=0

µkP̄
k
2 , P5 = u′(θ)P̌5(u(θ)),

where u(θ) is a 2π-periodic function, P̌5 is a continuous function, µk (k = 0, 1, ..., 4) and ς1 are

real constants,

A2 = p20, B2 =
1

2
p11, A4 = −A2B2, B4 =

1

2
(A2

2 −B2
2),

A6 =
1

4
A2(3B

2
2 −A2

2), B6 =
1

4
B2(B

2
2 − 3A2

2), A8 = −A4B4, B8 =
1

2
(A2

4 −B2
4),

A10 = − 1

16
A2(10A

2
2B

2
2 −A4

2 − 5B4
2), B10 =

1

16
B2(5A

4
2 − 10A2

2B
2
2 +B4

2).

Proof. As
∫ 2π

0
P2(cos θ, sin θ)dθ = 0, P2 = A2 cos 2θ +B2 sin 2θ,

P̄2 =
1

2
(P̂2 +B2), P̂2 = A2 sin 2θ −B2 cos 2θ,

then

P2P̂2 = A4 cos 4θ +B4 sin 4θ, (7)

P̂ 2
2P2 =

1

4
ρP2 +A6 cos 6θ +B6 sin 6θ, ρ = A2

2 +B2
2 , (8)

P̂ 3
2P2 =

1

2
ρ(A4 cos 4θ +B4 sin 4θ) +A8 cos 8θ +B8 sin 8θ, (9)

P̂ 4
2P2 =

1

8
ρ2(A2 cos 2θ+B2 sin 2θ)+

3

4
ρ(A6 cos 6θ+B6 sin 6θ)+A10 cos 10θ+B10 sin 10θ. (10)

By (6) we get A2b̂2 −B2â2 = 0.

If A2 ̸= 0, then b̂2 = B2

A2
â2 and â2 cos 2θ + b̂2 sin 2θ = â2

A2
P2;

If B2 ̸= 0, then â2 = A2

B2
b̂2 and â2 cos 2θ + b̂2 sin 2θ = b̂2

B2
P2.

By the Lemma 3.6 of [29], we know that if A2
2 +B2

2 ̸= 0, then A2
2k +B2

2k ̸= 0, (k = 1, 2, ...).

Using A4b̂4 −B4â4 = 0 and (7) we get

If A4 ̸= 0, then b̂4 = B4

A4
â4 and â4 cos 4θ + b̂4 sin 4θ = â4

A4
P2P̂2 = â4

A4
P2(2P̄2 −B2);

If B4 ̸= 0, then â4 = A4

B4
b̂4 and â4 cos 4θ + b̂4 sin 4θ = b̂4

B4
P2P̂2 = b̂4

B4
P2(2P̄2 −B2).

Similar to above and using (6) and (8)-(10) we can get
5∑

k=1

â2k cos 2kθ + b̂2k sin 2kθ = P2

4∑
k=0

µkP̄
k
2 ,
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thus, P̄ 2
5 =

∑4
k=0

2
k+1µkP̄

k+1
2 + ς1P̄5.

On the other hand, by
∫ 2π

0
P2(cos θ, sin θ)dθ = 0.

If p20 ̸= 0, P2 = p20

ϵ u′(θ)u(θ), u(θ) = cos θ + ϵ sin θ, ϵ =
p11+

√
p2
11+4p2

20

2p20
;

If p20 = 0, then P2 = p11u(θ)u
′(θ), u(θ) = sin θ.

Therefore, P̄2 = µ(u2(θ) − u2(0)) and P5 = P̄ ′
5 = u′(θ)P̌ (u(θ)), u(θ + 2π) = u(θ), µ is a

constant. �

§3 Main Theorem

Consider 2π-periodic equation
dr

dθ
= r(P2(cos θ, sin θ)r

2 + P5(cos θ, sin θ)r
5), (11)

where Pk =
∑

i+j=k pij cos
i θ sinj θ, pij are real numbers.

In the following, we always assume that P2 and P5 are not equal to zero. In the case of

P2 = 0, by (11) we see that all its solutions are 2π-periodic, i.e., r = 0 is a center. In the case

of P5 = 0, it is easy to get that r = 0 is a center if and only if
∫ 2π

0
P2(θ)dθ = 0.

Theorem 3.1. r = 0 is a center of (11), if and only if the conditions (I)−(VI) of Lemma 2.1

are satisfied. Furthermore, this center is a CC-center and uniform isochronous center.

Proof. Necessity:

Taking ρ = r

(1+2P̄2r2)
1
2
and applying the Langrange-Bürman formula [1], the equation (11)

becomes
dρ

dθ
= P5ρ

6
∞∑
k=0

αkρ
2k, (12)

where αk = (2k+1)!!
k! P̄ k

2 P5 (k = 1, 2, 3, ....), α0 = P5.

Obviously, if
∫ 2π

0
P2dθ = 0, then r = 0 is a center of (11) if and only if ρ = 0 is a center of

(12). Let ρ(θ, c) be the solution of (12) such that ρ(0, c) = c (0 < c ≪ 1). We write

ρ(θ, c) = c
∞∑

n=0

rn(θ)c
n,

where r0(0) = 1 and rn(0) = 0 for n ≥ 1. The solution ρ = 0 of (12) is a center if and only if

ρ(θ + 2π, c) = ρ(θ, c), i.e., r0(2π) = 1, rn(2π) = 0 (n = 1, 2, 3, ...) [7].

Substituting ρ(θ, c) into (12) and equating the corresponding coefficients of ci (i = 0, 1, 2, 3, 4)

we obtain r0(θ) = 1, ri(θ) = 0(i = 1, 2, 3, 4). Thus, rewriting

ρ = c(1 + c5h), h =
∞∑
i=0

hi(θ)c
i, hi(0) = 0, (i = 0, 1, 2...).

Substituting it into (12) we get
∞∑
i=0

h′
i(θ)c

i =

∞∑
i=0

αic
2i

i+6∑
j=0

Cj
i+6h

jc5j . (13)

Equating the corresponding coefficients of ci (i = 0, 1, 2, ..., 15) of (13) yields

h0 = ᾱ0, h1 = 0, h2 = ᾱ1, h3 = 0, h4 = ᾱ2, h5 = 3ᾱ2
0, h6 = ᾱ3,
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h7 = 6ᾱ0ᾱ1 + 2ᾱ0α1, h8 = ᾱ4, h9 = 6ᾱ0ᾱ2 + 4ᾱ0α2 + 4ᾱ2
1,

h10 = ᾱ5 + 11ᾱ3
0, h11 = 6ᾱ0ᾱ3 + 6ᾱ0α3 + 8ᾱ1ᾱ2 + 2ᾱ1α2,

h12 = ᾱ6 + 33ᾱ2
0ᾱ1 + 12ᾱ0ᾱ0α1 + 7ᾱ2

0α1,

h13 = 6ᾱ0ᾱ4 + 8ᾱ1ᾱ3 + 4ᾱ1α3 + 8ᾱ0α4 + 5ᾱ2
2,

h14 = ᾱ7 + 33ᾱ2
0ᾱ2 + 24ᾱ0ᾱ0α2 + 18ᾱ2

0α2 + 10ᾱ0ᾱ1α1 + 16ᾱ1ᾱ0α1 + 39ᾱ2
1ᾱ0,

h15 = 6ᾱ0ᾱ5 + 10ᾱ0α5 + 44ᾱ4
0 + 8ᾱ1ᾱ4 + 6ᾱ1α4 + 10ᾱ2ᾱ3 + 2ᾱ2α3.

As, the solution ρ = 0 of (12) is a center if and only if ρ(θ + 2π, c) = ρ(θ, c), i.e.,

hi(2π) = 0 (i = 0, 1, 2, 3, ...). In view of the definite integral from 0 to 2π of an odd degree

polynomial in cos θ sin θ is equal to zero, from the expressions of hi (i = 0, 1, 2, ..., 15) above,

we can deduce that if hi(2π) = 0 (i = 0, 1, 2, ..., 15) then∫ 2π

0

ᾱ0α1dθ = 0;∫ 2π

0

ᾱ0α2dθ = 0;

3

∫ 2π

0

ᾱ0α3dθ +

∫ 2π

0

ᾱ1α2dθ = 0;∫ 2π

0

ᾱ1α3dθ + 2

∫ 2π

0

ᾱ0α4dθ = 0;

5

∫ 2π

0

ᾱ0α5dθ + 3

∫ 2π

0

ᾱ1α4dθ +

∫ 2π

0

ᾱ2α3dθ = 0.

Simplifying these relations we get that if the solution r = 0 of (11) is a center then the

conditions (I)−(VI) are satisfied. Therefore, the conditions (I)-(VI) are necessary for r = 0 to

be the center of equation (11).

Sufficiency:

In the following we denote:

Xk = A2k b̂2k −B2kâ2k (k = 1, 2, .., 5), X = A2I1 +B2I2, I1 = a3a5 + b3b5, I2 = a3b5 − a5b3.

By Theorem 1.2 and Lemma 2.2, if Xk = 0 (k = 1, 2, 3, 4, 5), then r = 0 is a center of (11).

In the following, we will check that Xk = 0 (k = 1, 2, 3, 4, 5) under conditions (I)-(VI).

As
∫ 2π

0
P2dθ = 0, p20 + p02 = 0 and P2 = A2 cos 2θ +B2 sin 2θ and

P̂2 = A2 sin 2θ −B2 cos 2θ, (14)

P̂ 2
2 = A4 sin 4θ −B4 cos 4θ +

1

2
ρ, (15)

P̂ 3
2 =

3

4
ρP̂2 +A6 sin 6θ −B6 cos 6θ, (16)

P̂ 4
2 = ρ(A4 sin 4θ −B4 cos 4θ) +A8 sin 8θ −B8 cos 8θ +

3

8
ρ2, (17)

P̂ 5
2 =

5

8
ρ2(A2 sin 2θ −B2 cos 2θ) +

5

4
ρ(A6 sin 6θ −B6 cos 6θ) +A10 sin 10θ −B10 cos 10θ, (18)

where A2k, B2k(k = 1, 2, ..., 5) and ρ are the same as they in Lemma 2.2.

Expanding P5 to the Fourier series

P5 =
2∑

k=0

(a2k+1 cos(2k + 1)θ + b2k+1 sin(2k + 1)θ),
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where a2k+1 = 1
π

∫ 2π

0
P5 cos(2k + 1)θdθ, b2k+1 = 1

π

∫ 2π

0
P5 sin(2k + 1)θdθ, then

P̄5 =

2∑
k=0

1

2k + 1
(a2k+1 sin(2k + 1)θ − b2k+1 cos(2k + 1)θ) + ς1,

P5P̄5 =

5∑
k=0

(â2k cos 2kθ + b̂2k sin 2kθ) + ς1P5, (19)

where ς1 is a constant,

â2 = −a1b1 +
1
3 (a1b3 − a3b1) +

1
15I2, b̂2 = 1

2 (a
2
1 − b21)− 1

3 (a1a3 + b1b3)− 1
15I1,

â4 = − 2
3 (a1b3 + a3b1) +

2
5 (a1b5 − a5b1), b̂4 = 2

3 (a1a3 − b1b3)− 2
5 (a1a5 + b1b5),

â6 = − 1
3a3b3 −

3
5 (a1b5 + a5b1), b̂6 = 1

6 (a
2
3 − b23)− 3

5 (b1b5 − a1a5),

â8 = − 4
15 (a3b5 + a5b3), b̂8 = 4

15 (a3a5 − b3b5), â10 = −1
5a5b5, b̂10 = 1

10 (a
2
5 − b25).

By Lemma 2.1, the conditions (I)-(VI) are equivalent to conditions (i)−(vi). Using (14) and

(19) and condition (ii) we get

A2b̂2 −B2â2 = 0. (20)

Applying (15) and (19) and condition (iii) we obtain

A4b̂4 −B4â4 = 0. (21)

Using (14) we have

P̂2P5 =
3∑

k=0

(d2k+1 cos(2k + 1)θ + e2k+1 sin(2k + 1)θ),

P̂2P5 =
3∑

k=0

1

2k + 1
(d2k+1 sin(2k + 1)θ − e2k+1 cos(2k + 1)θ) + ς2,

where ς2 is a constant and

d1 = 1
2 (A2(b1 + b3)−B2(a1 + a3)), e1 = 1

2 (A2(a1 − a3)−B2(b3 − b1)),

d3 = 1
2 (A2(−b1 + b5)−B2(a1 + a5)), e3 = 1

2 (A2(a1 − a5)−B2(b1 + b5),

d5 = 1
2 (−A2b3 −B2a3), e5 = 1

2 (A2a3 −B2b3), d7 = 1
2 (−A2b5 −B2a5), e7 = 1

2 (a5A2 − b5B2).

So,

P̂2P5P̂2P5 =
7∑

k=2

(d̂2k cos 2kθ + ê2k sin 2kθ) + ς2P̂2P5, (22)

where

d̂2 = ρ( 16a1b1 −
7
30 (a1b3 − a3b1) +

19
210I2) +A4(

1
4 (b

2
1 − a21 + a23 − b23) +

1
6 (a1a3 + b1b3 + b1b5 −

a1a5) +
1
30I1) +B4(

1
2 (a3b3 − a1b1) +

1
6 (a1b3 − a3b1 − a1b5 − a5b1) +

1
30I2),

ê2 = ρ( 1
12 (b

2
1 − a21) +

7
30 (a1a3 + b1b3)− 19

210I1) +A4(
1
2 (a1b1 + a3b3)− 1

6 (a5b1 + a1b5 + a1b3 −
a3b1)− 1

30I2) +B4(
1
4 (b

2
1 + b23 − a21 − a23)− 1

6 (b1b5 − a1a5 − a1a3 − b1b3) +
1
30I1),

d̂4 = −ρ( 1
15 (a1b3 + a3b1) +

1
7 (a1b5 − a5b1)) +

1
3A4(a3a5 − b3b5 − a21 − b21 +

3
5 (a

2
3 + b23) +

1
7 (a

2
5

+b25)) +
1
3B4(a3b5 + a5b3),

ê4 = ρ( 17 (a1a5 + b1b5) +
1
15 (a1a3 − b1b3)) +

1
3A4(a5b3 + a3b5) +

1
3B4(b3b5 − a3a5 − a21 − b21 +

3
5 (a

2
3 + b23) +

1
7 (a

2
5 + b25)),
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d̂6 = 1
2ρ(

1
21 (a5b1 + a1b5)− 3

5a3b3) +A4(
1
12 (b

2
1 − a21 + a25 − b25)− 3

10 (a1a3 + b1b3) +
3
14I1) +

B4(
1
6 (a1b1 + a5b5) +

3
10 (a1b3 − a3b1)− 3

14I2),

ê6 = 1
2ρ(

1
21 (b1b5 − a1a5) +

3
10 (a

2
3 − b23)) +

1
2A4(

1
3 (a5b5 − a1b1) +

3
7I2 +

3
5 (a3b1 − a1b3) +

+ 1
4B4(

1
3 (b

2
1 − a21 + b25 − a25) +

6
7I1)−

6
5 (a1a3 + b1b3)).

Using (14) and (22), (16) and (19) and condition (iv) we get

7(A6b̂6 −B6â6) + 3(A2ê2 −B2d̂2) = 0. (23)

By (17) and (19), (15) and (22) and condition (v) we obtain

3(A8b̂8 −B8â8) + 2(A4ê4 −B4d̂4) = 0. (24)

Applying (15) we have

P̂ 2
2P5 = (A4 sin 4θ −B4 cos 4θ +

1
2ρ)

∑2
k=0(a2k+1 cos(2k + 1)θ + b2k+1 sin(2k + 1)θ)

=
∑4

k=0 s2k+1 cos(2k + 1)θ + t2k+1 sin(2k + 1)θ,

P̂ 2
2P5 =

∑4
k=0

1
2k+1 (s2k+1 cos(2k + 1)θ + t2k+1 sin(2k + 1)θ) + ς3,

where ς3 is a constant and

s1 = 1
2 (A4(b3 + b5)−B4(a3 + a5) + ρa1), t1 = 1

2 (A4(a3 − a5)−B4(b5 − b3) + ρb1),

s3 = 1
2 (A4b1 −B4a1 + ρa3), t3 = 1

2 (A4a1 +B4b1 + ρb3),

s5 = 1
2 (−A4b1 − a1B4 + ρa5), t5 = 1

2 (A4a1 −B4b1 + ρb5),

s7 = 1
2 (−A4b3 −B4a3), t7 = 1

2 (A4a3 −B4b3), s9 = 1
2 (−A4b5 −B4a5), t5 = 1

2 (A4a5 −B4b5).

Thus,

P̂ 2
2P5P̂ 2

2P5 =
9∑

k=1

(ŝ2k cos 2kθ + t̂2k sin 2kθ) + ς3P̂
2
2P5, (25)

where

ŝ2 = −s1t1 +
1
3 (s1t3 − s3t1) +

1
15 (s3t5 − s5t3) +

1
35 (s5t7 − s7t5) +

1
63 (s7t9 − t7s9),

t̂2 = 1
2 (s

2
1 − t21)− 1

3 (s1s3 + t1t3)− 1
15 (s3s5 + t3t5)− 1

35 (s5s7 + t5t7)− 1
63 (s7s9 + t7t9).

After calculating and simplifying we get

ŝ2 = A8(− 1
4 (a

2
3 + b25 − b23 − a25) +

1
6 (a1a5 − b1b5)) +B8(

1
2 (a5b5 − a3b3) +

1
6 (a1b5 + a5b1)) +

ρA4(− 7
30 (b1b3 + a1a3 + b1b5 − a1a5) +

1
12 (b

2
3 − a23 + a21 − b21) +

19
210I1) + ρB4(− 7

30 (a1b3 − a3b1

−a5b1 − a1b5) +
1
6 (a1b1 − a3b3) +

19
210I2) + ρ2(− 113

2520I2 −
29
120a1b1 +

89
840 (a1b3 − a3b1)),

t̂2 = A8(
1
2 (a3b3 + a5b5)− 1

6 (a1b5 + a5b1)) +B8(
1
4 (b

2
3 − a23 + b25 − a25)− 1

6 (b1b5 − a1a5)) +

ρA4(
7
30 (a1b3 − a3b1 + a1b5 + a5b1)− 1

6 (a3b3 + a1b1)− 19
210I2) + ρB4(

7
30 (b5b1 − a1a5 − a1a3 −

b1b3)− 1
12 (b

2
1 − a21 + b23 − a23) +

19
210I1) + ρ2( 113

2520I1 +
29
240 (a

2
1 − b21)− 89

840 (a3a1 + b3b1)).

Using (18) and (19), (16) and (22) , (14) and (25) and condition (vi) and (23) we obtain

−6ρ(A6b̂6 −B6â6) + 33(A10b̂10 −B10â10) + 27(A6ê6 −B6d̂6) + 10(A2t̂2 −B2ŝ2) = 0. (26)
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According to Lemma 3.6 of [29] we see that if A2
2 + B2

2 ̸= 0, then A2
2k + B2

2k ̸= 0. By (21)

we obtain
â4
A4

=
b̂4
B4

=
2

15
k1, (27)

where k1 is a constant.

Case I. If δ = 25(a23 + b23)− 9(a25 + b25) ̸= 0.

From (27) follows that

a1 = λ1(−A4(5b3 + 3b5) +B4(3a5 + 5a3)), b1 = λ1(−A4(5a3 − 3a5) +B4(3b5 − 5b3)), (28)

whereλ1 = k1

δ . Using (28) rewriting â2 and b̂2 as follow

â2 = (
1

15
− 45

4
ρ2λ2

1)I2 − 450λ2
1(B8â10 −A8b̂10)− 150λ2

1(A8b̂6 −B8â6) + 10λ1(A4b̂6 −B4â6)−

(
225

4
λ3
1ρ

2 + λ1)(A4I1 +B4I2) + 2700λ3
1(B12â10 −A12b̂10), (29)

b̂2 = −(
1

15
− 45

4
ρ2λ2

1)I1 − 450λ2
1(B8b̂10 +A8â10)− 150λ2

1(B8b̂6 +A8â6)− 10λ1(A4â6 +B4b̂6)+

(
225

4
λ3
1ρ

2 + λ1)(A4I2 −B4I1)− 2700λ3
1(A12â10 +B12b̂10). (30)

Substituting (29) and (30) into (20), we obtain

5λ1(4− 15λ1ρ)X3 + 900λ2
1(1− 3λ1ρ)X5 + (

45

4
λ2
1ρ

2 − 225

8
λ3
1ρ

3 − 1

2
ρλ1 −

1

15
)X = 0. (31)

Substituting (28) into the previous expressions of d̂2 and ê2 we get

d̂2 = − 1
6ρâ2 +

32
315ρI2 +

1
2 (B4â2 −A4b̂2) +

3
2 (A4b̂6 −B4â6) +

8
15ρλ1(A4I1 +B4I2)−

16
3 ρλ1(A4b̂6 −B4â6) + 4ρ3λ2

1I2 + 192ρλ2
1(B8â10 −A8b̂10)− 4

3λ1ρ
2I2 − 64λ1(B8â10 −A8b̂10),

ê2 = −1
6ρb̂2 −

32
315ρI1 −

1
2 (A4â2 +B4b̂2)− 3

2 (A4â6 +B4b̂6) +
8
15ρλ1(B4I1 −A4I2) +

16
3 ρλ1(A4â6 +B4b̂6)− 4ρ3λ2

1I1 + 192ρλ2
1(B8b̂10 +A8â10) +

4
3λ1ρ

2I1 − 64λ1(A8â10 +B8b̂10).

Applying these relations we get

A2ê2 −B2d̂2 = (3− 32

3
ρλ1)X3 + 128λ1(1− 3ρλ1)X5 + 4ρ(− 8

315
+

2

5
λ1ρ− λ2

1ρ
2)X. (32)

Substituting (32) into (23) we get

4(1− 2ρλ1)X3 + 96λ1(1− 3ρλ1)X5 + 3ρ(− 8

315
+

2

5
λ1 − λ2

1ρ
2)X = 0. (33)

Applying (28) and rewriting d̂4 and ê4 as follows

d̂4 = (A4b̂8 −B4â8)(
5
4 − 24

7 ρλ1) + ρλ1A4(
1
3 (a

2
3 + b23) +

3
7 (a

2
5 + b25)) +A4(− 1

3 (a
2
1 + b21) +

1
5 (a

2
3 +

b23) +
1
21 (a

2
5 + b25)),

ê4 = (A4â8 +B4b̂8)(− 5
4 +

24
7 ρλ1) + ρλ1B4(

1
3 (a

2
3 + b23) +

3
7 (a

2
5 + b25)) +B4(−1

3 (a
2
1 + b21) +

1
5 (a

2
3 +

b23) +
1
21 (a

2
5 + b25)).

By this we get

A4ê4 −B4d̂4 = (
48

7
ρλ1 −

5

2
)X4.

Substituting it into (24) we get

(7− 12ρλ1)X4 = 0. (34)

Substituting (28) into the previous expressions of d̂6 and ê6 we get
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d̂6 = â6(
9
10ρ−

8
3ρ

2λ1) + (A4b̂10 −B4â10)(
5
6 + 592

35 ρλ1 − 48ρ2λ2
1)− 1

6 (A4b̂2 +B4â2) + +(A4I1 −
B4I2)(

64
315 − 296

105ρλ1 + 8ρ2λ2
1) +

32
15λ1(A8I1 +B8I2),

ê6 = b̂6(
9
10ρ−

8
3ρ

2λ1) + (A4â10 +B4b̂10)(−5
6 −

592
35 ρλ1 +48ρ2λ2

1) +
1
6 (A4â2 −B4b̂2) ++(A4I2 +

B4I1)(
64
315 − 296

105ρλ1 + 8ρ2λ2
1) +

32
15λ1(−A8I2 +B8I1).

By this we get

A6ê6−B6d̂6 = (
9

10
ρ− 8

3
ρ2λ1)X3+(

5

3
+
1184

35
ρλ1−96ρ2λ2

1)X5+ρ2(
44

105
ρλ1−ρ2λ2

1−
8

315
)X. (35)

Using (28) we get

ŝ2 = (A8b̂10 −B8â10)(
5
2 + 192

7 ρ2λ2
1 − 32ρλ1) + (A8b̂6 −B8â6)(− 3

2 + 32
3 ρλ1) +

1
6ρ(A4b̂2 −

B4â2) + (A4b̂6 −B4â6)(− 1
2ρ+

16
21ρ

2λ1) + (A4I1 +B4I2)(
32
315ρ−

26
35ρ

2λ1 + 4ρ3λ2
1) + (A12b̂10 −

B12â10)(−32λ1 + 192ρλ2
1) +

29
120ρ

2â2 + ρ2I2(− 32
525 + 4

5ρλ1 − 4
7ρ

2λ2
1),

t̂2 = −(A8â10 +B8b̂10)(
5
2 + 192

7 ρ2λ2
1 − 32ρλ1) + (A8â6 +B8b̂6)(−3

2 + 32
3 ρλ1) +

1
6ρ(A4â2 +

B4b̂2)− (A4â6 +B4b̂6)(− 1
2ρ+

16
21ρ

2λ1)− (A4I2 −B4I1)(
32
315ρ−

26
35ρ

2λ1 + 4ρ3λ2
1) + (B12b̂10 +

A12â10)(−32λ1 + 192ρλ2
1) +

29
120ρ

2b̂2 − ρ2I1(− 32
525 + 4

5ρλ1 − 4
7ρ

2λ2
1),

where A12 = 1
2A4(3B

2
4 −A2

4), B12 = 1
2B4(B

2
4 − 3A2

4). Applying these relations we obtain

A2t̂2−B2ŝ2 = (
48

7
ρ2λ1−

7

4
ρ)X3+(5−96ρλ1+

1728

7
ρ2λ2

1)X5+(
176

1575
ρ2− 41

35
ρ3λ1+

18

7
ρ4λ2

1)X.

(36)

Substituting (35) and (36) into (26) we get

4ρ(
1

5
− 6

7
ρλ1)X3 + 32(4− 51

35
ρλ1 −

27

7
ρ2λ2

1)X5 +
1

7
ρ2(

136

45
− 14

5
ρλ1 − 9ρ2λ2

1)X = 0. (37)

By (20) and (21) we see that X1 = X2 = 0. According to Lemma 2.2, to prove that

conditions (I)-(VI) are sufficient for the origin to be a center of (11), only need to check that

Xk = 0, (k = 3, 4, 5).

Case i. If 7 − 12ρλ1 = 0. As the determinant of the coefficients matrix of the equations

(31) and (33) and (37) is

∆(λ1ρ) = 64(−17581

245
λ3
1ρ

3 +
3950

147
λ2
1ρ

2 +
68

175
λ1ρ−

8

15
),

and ∆( 7
12 ) ̸= 0, which implies that these linear equations only have zero solution: X3 = X5 =

X = 0.

If a25 + b25 ̸= 0, by X = 0 we get

a3 = λ2(a5B2 − b5A2), b3 = λ2(a5A2 +B2b5),

where λ2 = a5b3−a3b5
A2(a2

5+b25)
or λ2 = a5a3+a3a5

B2(a2
5+b25)

. By this we get

X4 = −16

3
λ2X5 = 0.

If a25 + b25 = 0, then â8 = b̂8 = 0 and X4 = 0.

Therefore, in the case of 7 − 12ρλ1 = 0, we get A2k b̂2k − B2kâ2k = 0, (k = 1, 2, ..., 5). By

Lemma 2.2 and Theorem 1.2, r = 0 is a center and CC-center of (11).

Case ii. If 7− 12ρλ1 ̸= 0, then from (34) follows that

X4 = A8b̂8 −B4â8 = 0. (38)
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Case (1). If ∆(λ1ρ) ̸= 0, then there exists only zero solution for the homogeneous linear

equations (31) and (33) and (37), i.e., X3 = X5 = X = 0.

Case (2). If ∆(λ1ρ) = 0, i.e.,

−17581

245
λ3
1ρ

3 +
3950

147
λ2
1ρ

2 +
68

175
λ1ρ−

8

15
= 0, (39)

then ρλ1 ≈ 0.3180, 0.1837, −0.1272.

Case (1̇). If a25 + b25 ̸= 0. Using (38) we get

a3 = λ3(A8b5 −B8a5), b3 = λ3(b5B8 +A8a5), (40)

where λ3 = a3b5+a5b3
A8(a2

5+b25)
or λ3 = a3b5−a5a3

B8(a2
5+b25)

. By this and (21) we get

X2 = (
2

5
+

1

12
ρ2λ3)(A4(a1a5 + b1b5) +B4(a1b5 − a5b1)) = 0 (41)

and (24) can be written as

A4ê4 −B4d̂4 = (
1

7
ρ− 1

120
ρ3λ3)(A4(a1a5 + b1b5) +B4(a1b5 − a5b1)) = 0. (42)

From (41) and (42) follow that

A4(a1a5 + b1b5) +B4(a1b5 − a5b1) = 0,

which implies that

a1 = λ4(a5B4 − b5A4), b1 = λ4(a5A4 + b5B4), (43)

where λ4 = a5b1−a1b5
A4(a2

5+b25)
or λ4 = a5a1+b1b5

B4(a2
5+b25)

. Applying (43), the relations (20) and (23) and (26)

can be rewritten as follows

20λ2
4X5 − (

1

15
+

1

6
ρλ4)X = 0, (44)

4X3 + 32λ4X5 + (
1

15
ρ2λ4 −

8

105
ρ)X = 0, (45)

4

5
ρX3 + (128− 544

35
ρλ4)X5 + (

1

35
λ4ρ

3 +
136

315
ρ2)X = 0. (46)

The determinant of the coefficients matrix of the equations (44) -(46) is

W (λ4ρ) = − 128

1575
(15ρ3λ3

4 + 260λ2
4ρ

2 + 978λ4ρ+ 420). (47)

1∗. IfW ̸= 0, then there exists only zero solution for the above homogeneous linear equations,

so, X3 = X5 = X = 0.

2∗. If W = 0, i.e.,

15ρ3λ3
4 + 260λ2

4ρ
2 + 978λ4ρ+ 420 = 0, (48)

then ρλ4 ≈ −12.161444094087901,−4.679924423645147,−0.491964815600285.

Using (40) and calculating we get

X3 = −(
5

48
ρ3λ2

3 + 12λ4)X5, X = 20λ3X5.

Substituting them into (44) we obtain

(30λ2
4 − λ3(2 + 5λ4ρ))X5 = 0. (49)

Now, we show that 30λ2
4 −λ3(2+5λ4ρ) ̸= 0. Otherwise, if it is equal to zero, by (48) we see

that ρλ4 ̸= −0.4, so

λ3 =
30λ2

4

2 + 5ρλ4
. (50)
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On the other hand, by substituting (40) into (28) we get

a1 = (3λ1 +
5

8
ρ2λ1λ3)(a5B4 − b5A4), b1 = (3λ1 +

5

8
ρ2λ1λ3)(a5A4 + b5B4),

as a25 + b25 ̸= 0, A2
4 +B2

4 ̸= 0, by the above relations and (43) we get

λ4 = 3λ1 +
5

8
ρ2λ1λ3. (51)

Substituting (50) into (51) we obtain

ρλ1 =
8ρλ4 + 20ρ2λ2

4

75ρ2λ2
4 + 60ρλ4 + 24

,

putting it into (39) and using (48) we get
28575808611488

19845
(ρλ4)

2 +
48881032663424

6615
ρλ4 +

651385833609232357

198180864
= 0, (52)

solving (52), we get ρλ4 ≈ −4.639757046976126, −0.491964682547174, this means that the

equations (48) and (52) can’t hold at the same time. Therefore, 30λ2
4 − λ3(2 + 5λ4ρ) ̸= 0, by

(49) we get X5 = 0 and X3 = 0. By Lemma 2.2 and Theorem 1.2, r = 0 is a CC-center of (11).

Case (2̇). If a25 + b25 = 0, then X5 = X = 0. Substituting them into (33) we get (1 −
2ρλ1)X3 = 0. In view of ∆(ρλ1) = 0, so ρλ1 ̸= 1

2 and X3 = 0.

In summary, in the case of 7−12ρλ1 ̸= 0, we have verified that X2k = 0, (k = 1, 2, .., 5). By

Lemma 2.2 and Theorem 1.2, r = 0 is a center and CC-center of (11).

Case II. If δ = 25(a23 + b23)− 9(a25 + b25) = 0. By A4b̂4 −B4â4 = 0, we get

3b5 − 5b3
5a3 − 3a5

=
3a5 + 5a3
5b3 + 3b5

=
A4

B4
,

which implies that the relation (38) is valid, i.e. X4 = 0.

If a25 + b25 ̸= 0, similar to the previous Case (1̇) we can get (40)-(47). If W (ρλ4) ̸= 0, then

X2k = 0 (k = 1, 2, ..., 5). If W (ρλ4) = 0, it implies that (48) and (49) are valid. Now, we show

that 30λ2
4 − λ3(2 + 5λ4ρ) ̸= 0. Otherwise, suppose that

30λ2
4 − λ3(2 + 5λ4ρ) = 0. (53)

Applying (40) and 25(a23+b23)−9(a25+b25) = 0, we obtain 25λ2
3ρ

4 = 576. Substituting λ3ρ
2 = ±24

5

into (53) we get

25(ρλ4)
2 = ±4(2 + 5ρλ4). (54)

It’s not difficult to verify that the equations (48) and (54) can’t be held at the same time.

Therefore, 30λ2
4 − λ3(2 + 5λ4ρ) ̸= 0. By (49) we get X5 = 0 and X3 = 0. By Lemma 2.2 and

Theorem 1.2, r = 0 is a CC-center of (11).

If a25 + b25 = 0, from δ = 0 implies that a23 + b23 = 0, so, â2k = b̂2k = 0 (k = 3, 4, 5) and

X3 = X4 = X5 = 0. By Lemma 2.2 and Theorem 1.2, r = 0 is a CC-center of (11).

Therefore, the conditions (I)−(VI) are sufficient for the r = 0 to be a center of (11). �
Remark. The relations (I)-(VI) are derived from the six values focus of the system (5), are

equal to zero.

Example 3.1. For differential system (5) with

P2 = 2x2 + 3xy − 2y2, P5 = (2x− y)((m0 +m1 +m2)x
4 + 4(m1 + 2m2)x

3y + (2m0 + 5m1 +

24m2)x
2y2 + 4(m1 + 8m2)xy

3 + (m0 + 4m1 + 16m2)y
4),
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its origin point is a center and CC-center and uniform isochronous center, where m0,m1,m2

are arbitrary real numbers.
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[22] J Giné, X Santallusia. On the Poincar-Lyapunov constants and the Poincar series, Appl Math

(Warsaw), 2001, 28(1): 17-30.
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