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On the global L1-boundedness of Fourier integral

operators with rough amplitude and

phase functions

Joachim Sindayigaya1 WU Xiao-mei2 HUANG Qiang1,∗

Abstract. Let Tϕ,a be a Fourier integral operator with amplitude a and phase functions ϕ. In

this paper, we study the boundedness of Fourier integral operator of rough amplitude a ∈ L∞Sm
ρ

and rough phase functions ϕ ∈ L∞Φ2 with some measure condition. We prove the global L1

boundedness for Tϕ,a when 1
2
< ρ 6 1 and m < ρ − n+1

2
. Our theorem improves some known

results.

§1 Introduction and main result

The Fourier integral operator (FIO) is defined by

Tϕ,af(x) =
1

2π

∫
Rn

eiϕ(x,ξ)a(x, ξ)f̂(x, ξ)dξ.

Here a(x, ξ) is the amplitude and ϕ(x, ξ) is the phase function, and f̂ denotes the Fourier

transform of f . When ϕ(x, ξ) = x.ξ, the FIO is said to be a pseudo-differential operator. This

operator is very important in harmonic analysis and is related with many problems arising in

partial differential equations(see [6][7]). We say that the amplitude a(x, ξ) is in the Hörmander

class Sm
ρ,δ if a ∈ C∞(Rn ×Rn) with

sup
ξ∈Rn

(1 + |ξ|)−m+ρ|α|−δ|β|∣∣∂αξ ∂βxa(x, ξ)∣∣ < +∞.

for m ∈ R, 0 ≤ ρ, δ ≤ 1 and all multi-indices α, β. For the phase function ϕ(x, ξ), one usually

assumes that it is real-valued, in C∞(Rn × Rn/{0}) with homogeneous of degree 1 in the

frequency variable ξ, and satisfies nondegeneracy condition, that is

det

(
∂2ϕ

∂xi∂ξj

)
̸= 0
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for all ξ ̸= 0. The theory of Fourier integral operators (FIOs) on Rn has been initiated,

developed and studied extensively by Hörmander in [10]. After then, there were many studies

on the Lp boundedness of FIOs. For p = 2, Eskin [8] firstly proved the local L2 boundedness

when a ∈ S0
1,0, then Hörmander [10] show the same conclusion with a ∈ S0

ρ,1−ρ,
1
2 < ρ ≤ 1, and

the case ρ = 1
2 was proved by Beals [2]. For the global L2 boundedness of FIOs, one can see

[1][3][15][17] and their references. For the Lp boundedness, Seeger, Sogge and Stein[20] showed

the local Lp boundedness for a ∈ Sm
1,0 with m ≤ (1− n)| 1p − 1

2 |. In [20], they also proved that

the Fourier integral operator was locally bounded from H1 to L1 when m = −n−1
2 . The results

of global Lp boundedness can be found in [4][5][16][18] and so on.

Later, Kenig and Staubach [13] studied the Lp boundedness of pseudodifferential operators

with rough amplitude and rough phase functions which behave in the variable x like L∞ func-

tions and variable ξ like that in the Hörmander class Sm
ρ,0. Precisely, the definitions of rough

amplitude and rough phase functions are as follows.

Definition 1.1: Let m ∈ R,0 ≤ ρ ≤ 1, a function a(x, ξ) belongs to the class L∞Sm
ρ , if it

satisfies

sup
ξ∈Rn

(1 + |ξ|)−m+ρ|α|∥∂αξ a(·, ξ)∥L∞(Rn) <∞

for all multi-indices α.

Definition 1.2: A rough class L∞Φ2 is the set of all function ϕ which is homogeneous

of degree 1 and smooth on Rn \ {0} in frequency variable ξ and for all multi-indices |α| > 2

satisfies

sup
ξ∈Rn\{0}

|ξ|−1+|α|∥∇α
ξ ϕ(·, ξ)∥L∞(Rn) < +∞. (1)

In [13], Kenig and Staubach established the L1,L∞ boundedness of pseudo-differential op-

erators with a ∈ L∞Sm
ρ . Motivate by this work, Dos Santos Ferreira and Staubach [9] studied

the global and local Lp-boundedness of FIOs when the a ∈ L∞Sm
ρ and ϕ ∈ L∞Φ2 satisfying

the rough non-degeneration condition. More results about the Lp boundedness of FIOs with

rough amplitude and rough phase functions can be found in [11][12][14][21] and so on.

Recently, Dos Santos Ferreira and W. Staubach [9] studied the Lp boundedness of FIOs

with rough amplitude and rough phase functions. When p = 1, they obtained the following

result by using a semiclassical version of Seeger-Sogge-Stein decomposition.

Theorem A: ([9]) Suppose that amplitude a ∈ L∞Sm
ρ and phase function ϕ ∈ L∞Φ2

satisfying the rough non-degeneracy condition. Then the Fourier integral operator Tϕ,a is

bounded in L1(Rn) provided m < −n−1
2 + n(ρ− 1) and 0 ≤ ρ ≤ 1.

In this paper, we also study the L1 boundedness of FIOs with rough amplitude and rough

phase functions. By replacing the rough non-degeneracy condition with other conditions, we

improve the result of Theorem A. Specifically, we assume that there exists a constant A > 0

such that for any x, ξ ∈ Rn and E ⊂ Rn such that∣∣ {x : ∇ξϕ(x, ξ) ∈ E}
∣∣ 6 A|E|. (2)

The following theorem is our main result in this paper.

Theorem 1.1: Suppose that a ∈ L∞Sm
ρ and ϕ ∈ L∞Φ2 satisfies (2).When 1

2 < ρ 6 1 and
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m < ρ− n+1
2 , the operator Tϕ,a is bounded from L1 to itself.

Remark 1.1: When 1
2 < ρ 6 1 and n > 1, it is easy to see that −n−1

2 + n(ρ− 1) 6 ρ−
n+1
2 . So, theorem 1.1 improves the conclusion of Theorem A.

Remark 1.2: When n = 1, it is easy to remark that our theorem is similar to Theorem A.

This paper is organized as follows: In Section 2, we will introduce some preliminary knowl-

edge which includes some useful lemmas. The proof of Theorem 1.1 will be presented in Section

3.

Throughout this paper, we use the inequality A ≼ B to mean that there is a positive number

C independent of all main variables such that A ≤ CB, and use the notation A ≃ B to mean

A ≼ B and B ≼ A. We denote by Br the ball in Rn with center 0 and radius r.

§2 Preliminaries and Lemmas

In this section, we will state some useful tools and prove some lemmas that will be used in

the proof of our results.

Definition 2.1: (Littlewood-Paley decomposition)[19]

Let ψ ∈ C∞(Rn) be supported in {ξ : 1
2 ≤ |ξ| ≤ 2}, 0 ≤ ψ(ξ) ≤ 1 and ψ(ξ) > c > 0 if

3
5 ≤ |ξ| ≤ 5

3 . Let ψj(ξ) = ψ(2−jξ) and require that ψ satisfies
j=+∞∑
j=−∞

ψj(ξ) ≡ 1 for all ξ ∈ Rn \ {0}

Let η(ξ) = 1−
∑∞

j=1 ψj(ξ) and it is easy to check that

ψj ∈ C∞
c (B2j+1 \B2j−1), |∇kψj(ξ)| ≤ Ck2

−jk, k ∈ N.

Definition 2.2: (Seeger-Sogge-Stein decomposition)[20]

For j ∈ N, there exist no more than C2
j(n−1)

2 points ξvj ∈ Sn−1 and functions φv
j ∈

C∞(Sn−1) such that

|ξv1
j − ξv2j | ≥ 2−

j
2 , v1 ̸= v2;

inf
v
|ξvj − ξ| ≤ 2−

j
2 , ∀ξ ∈ Sn−1;∑

v

φv
j ≡ 1, supp(φv

j ) ⊂ {θ ∈ Sn−1 : |θ − ξvj | ≤ 21−
j
2 };

|∇kφv
j | ≤ Ck2

jk
2 , k ≥ 0.

Lemma 2.1: Suppose that u is supported in B1 and satisfies that

|∇ku(x)| ≤ A|x|1−k, k = 0, 1, ... (3)

Then for any 0 < µ < 1, we have

|
∫
B1

e−iyxu(x)dx| ≤ C(1 + |y|)−n−µ

where C depends only on n, µ,A.

Proof. When |y| ≤ 1, it is easy to check the desired estimation, so we only need to consider

|y| ≥ 1. Let χ(x) be a C∞
0 (Rn) which satisfies suppχ(x) ⊂ B1 and χ(x) = 1 for x ∈ B 1

2
.
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Choosing 0 < ε ≤ 1 and integrations by parts yield that∣∣∣∣∫
B1

e−iy·xu(x)dx

∣∣∣∣ ≼ |y|−n

∣∣∣∣∫
B1

e−iy·x∂nxu(x)dx

∣∣∣∣
≼ |y|−n

(∣∣∣∣∫
B1

e−iy·x∂nxu(x)χ(
x

ε
)dx

∣∣∣∣+ ∣∣∣∣∫
B1

e−iy·x∂nxu(x)(1− χ(
x

ε
))dx

∣∣∣∣)
= |y|−n(I + II)

By the condition (3), the term I is bounded by εµ for any 0 < µ < 1. For the term II, by the

integration by parts, we obtain

II ≼ |y|−1(ε−1|
∫
B1

e−iy·x∂xχ(
x

ε
)∂nxu(x)dx|+ |

∫
B1

e−iy·x(1− χ(
x

ε
))∂n+1

x u(x)dx|)

≼ |y|−1(ε−1+µ + 1)

Choosing ε = |y|−1, we have

|
∫
B1

e−iyxu(x)dx| ≤ C(1 + |y|)−n−µ (4)

for all 0 < µ < 1.

§3 Proof of main result

We first show the L1 boundedness of FIOs in low frequency.

Lemma 3.1: If a ∈ L∞Sm
ρ and ϕ ∈ L∞Φ2 satisfies (2). Then for any η ∈ C∞

c (B1), the

following operator

T0,ϕ,af(x) =

∫
Rn

eiϕ(x,ξ)a(x, ξ)η(ξ)f̂(ξ)dξ

is bounded from L1 to itself.

Proof. We first localize the amplitude in ξ by introducing a finite open convex covering

{Ul}Ml=1, with A maximum of diameters d < 1
10 , of the unit sphere Sn−1. Let κl be a smooth

partition of unity subordinate to the covering Ul and set

al(x, ξ) = a(x, ξ)κl(
ξ

|ξ|
) (5)

Some simple computations imply that

T0,ϕ,af(x)

=

∫
Rn

eiϕ(x,ξ)a(x, ξ)η(ξ)f̂(ξ)dξ

=

∫
Rn

∫
Rn

ei(ϕ(x,ξ)−y·ξ)a(x, ξ)η(ξ)f(y)dydξ

=

M∑
l=1

∫
Rn

∫
Rn

ei(ϕ(x,ξ)−y·ξ)al(x, ξ)η(ξ)f(y)dydξ

=

M∑
l=1

Tlf(x)

where Tlf(x) =
∫
Rn

∫
Rn e

i(ϕ(x,ξ)−y·ξ)al(x, ξ)η(ξ)f(y)dydξ.

Thus, we only need to show the L1 boundedness for every Tlf(x). For 1 ≤ l ≤ M , by
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choosing some ξl ∈ suppκl and setting wl(x, ξ) = ϕ(x, ξ)−∇ξϕ(x, ξl) · ξ, we have

Tlf(x) =

∫
Rn

∫
Rn

ei(∇ξϕ(x,ξi)−y)·ξeiwi(x,ξ)al(x, ξ)η(ξ)f(y)dydξ

=

∫
Rn

kl(x, y)f(y)dy

where kl(x, y) =
∫
Rn e

i(∇ξϕ(x,ξl)−y)·ξeiwl(x,ξ)al(x, ξ)η(ξ)dξ.

As ϕ(x, ξ) is homogeneous of degree 1 in ξ variable and satisfy (1), by the mean value

theorem, we have

|∇ξwl(x, ξ)| = |∇ξϕ(x, ξ)−∇ξϕ(x, ξl)|

= |∇ξϕ(x,
ξ

|ξ|
)−∇ξϕ(x, ξl)|

≤ ∥∇2
ξϕ(·, ζl)∥L∞(Rn)|

ξ

|ξ|
− ξl|

≼ 2|ζl|−1

where ξ
|ξ| ∈ Ul and ζl = θξl + (1− θ) ξ

|ξ| for some θ ∈ (0, 1). For the diameter of Ul is less then
1
10 , we have |ζl| ≥ 1

2 which implies

|∇ξwl(x, ξ)| ≤ C.

On the other hand, when k ≥ 2, one have

|∇k
ξwl(x, ξ)| = |∇k

ξϕ(x, ξ)| ≤ A|ξ|1−k.

So, for any ξ ∈ B1, k ∈ N, there holds

|∇k
ξwl(x, ξ)| ≤ C|ξ|1−k.

Now for k ≥ 0, some direct computations yield that

|∇k
ξ [e

iwl(x,ξ)al(x, ξ)η(ξ)]|

≤ C
k∑

k0=0

n+1−k0∑
t=1

|∇k0

ξ [al(x, ξ)η(ξ)]|
∑

k1+···+kt=k−k0,ks>0

t∏
s=1

|∇ks

ξ wl(x, ξ)|

≤ C

k∑
k0=0

k−k0∑
t=1

∑
k1+···+kt=k−k0,ks>0

t∏
s=1

|ξ|1−ks

≤ C
k∑

k0=0

k−k0∑
t=1

|ξ|t+k0−k

≤ C|ξ|1−k.

For any 0 < µ < 1, by Lemma 2.1, we obtain that

|kl(x, y)| = |
∫
Rn

ei(∇ξϕ(x,ξl)−y)·ξeiwl(x,ξ)al(x, ξ)η(ξ)dξ| ≤ C(1 + |∇ξϕ(x, ξl)− y|)−n−µ. (6)

On the other hand, the assumption (2) yields that for y ∈ Rn,

|{x : |∇ξϕ(x, ξl)− y| < r}| ≤ Crn. (7)
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Now, for y ∈ Rn, (6) and (7) imply that∫
Rn

|kl(x, y)|dx

≤ C

∫
Rn

(1 + |∇ξϕ(x, ξl)− y|)−n−µdx

≤ C(

∫
|∇ξϕ(x,ξl)−y|<1

(1 + |∇ξϕ(x, ξl)− y|)−n−µdx

+
∞∑
j=1

∫
2j−1<|∇ξϕ(x,ξl)−y|<2j

(1 + 2j−1)−n−µdx)

≤ C(|{x : |∇ξϕ(x, ξl)− y| < 1}|

+

∞∑
j=1

2−j(µ+n)|{x : |∇ξϕ(x, ξl)− y| < 2j}|)

≤ C(1 +
∞∑
j=1

2−jµ) <∞.

So Tl is bounded on L1 for every 1 ≤ l ≤M which means T0,ϕ,a is also bounded on L1 and we

prove this lemma. �

Next, we will prove the L1 boundedness in high frequency. By the standard Littlewood-

Paley decomposition and Seeger-Sogge-Stein decomposition. The operator Tϕ,a can be divided

as

Tϕ,af(x) =

∫
Rn

eiϕ(x,ξ)a(x, ξ)f̂(ξ)dξ

=

∫
Rn

eiϕ(x,ξ)a(x, ξ)(η0 +

∞∑
j=1

∑
v=1

ψjφ
v
j (
ξ

|ξ|
)f̂(ξ)dξ

= T0,ϕ,af(x) +
∞∑
j=1

∑
v=1

T v
j f(x).

The L1 boundedness of T0,ϕ,a has been proved in lemma 3.1, we only need to focus on the high

frequency. Set wv
j (x, ξ) = ϕ(x, ξ)−∇ξϕ(x, ξ

v
j ) · ξ. Then some simple computations yield

T v
j f(x) =

∫
Rn

eiϕ(x,ξ)a(x, ξ)ψj(ξ)φ
v
j (
ξ

|ξ|
)f̂(ξ)dξ

=

∫
Rn

∫
Rn

ei(∇ξϕ(x,ξ
v
j )−y)·ξeiw

v
j (x,ξ)a(x, ξ)ψjφ

v
j (
ξ

|ξ|
)dξf(y)dy

=

∫
Rn

kvj (x, y)f(y)dy

where kvj (x, y) =
∫
Rn e

i(∇ξϕ(x,ξ
v
j )−y)·ξeiw

v
j (x,ξ)a(x, ξ)ψjφ

v
j (

ξ
|ξ| )dξ.

Without loss of generality, we estimate kvj (x, y) for ξ
v
j = (1, 0, · · · , 0). Set ξ′ = (0, ξ2, ...,

ξn) which is perpendicular to ξvj . In this case, we define the operator Ljf = 1− 22jρ∂2ξ1f

− 2j∇2
ξ′f . Then it is self-adjoint and

Lj(e
i(∇ξϕ(x,ξ

v
j )−y)·ξ) = (1 + 22jρ|∂ξ1ϕ(x, ξvj )− y1|2 + 2j |∇ξ′ϕ(x, ξ

v
j )− y′|2)ei(∇ξϕ(x,ξ

v
j )−y)·ξ.
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Now we use the same arguments in [19] p407. In the domain Ω = {ξ : 2j−1 < |ξ| < 2j+1, | ξ
|ξ| −

ξvj | ≼ 2−
j
2 }, there holds

∂ξ1 = ∂r +O(2−
j
2 ) · ∇ξ. (8)

As φv
j (

ξ
|ξ| ) is homogeneous of order 0, for ξ ∈ Ω, k ∈ N and a multi-index α we have

|∂kξ1∂
α
ξ′φ

v
j (ξ)| = |(∂r +O(2−

j
2 ) · ∇ξ)

k∂αξ′φ
v
j (ξ)| ≼

∑
k1+k2=k

2−
jk2
2 |∂k1

r ∇k2

ξ ∂
α
ξ′φ

v
j (ξ)|

Since ∂Nr φ
v
j (ξ) = 0 for all N ≥ 1, we have

|∂kξ1∂
α
ξ′φ

0
j (
ξ

|ξ|
)| ≤ C2−

jk
2 |∇k2

ξ ∂
α
ξ′φ

v
j (ξ)|

≤ C2−
jk
2 |ξ|−k−|α||∇k+|α|

θ φv
j (θ)|

≤ C2−
jk
2 2−j(k+|α|)2

j(k+|α|)
2

≤ C2−j(k+
|α|
2 ). (9)

Since a ∈ L∞Sm
ρ , some simple computations and (9) imply that

|∂kξ1∂
α
ξ′ [a(x, ξ)ψj(ξ)φ

v
j (
ξ

|ξ|
)]|

≤ C
∑

k1+k2=k

∑
α1+α2=α

|∂k1

ξ1
∂α1

ξ′ [a(x, ξ)ψj(ξ)]||∂k2

ξ1
∂α2

ξ′ φ
v
j (
ξ

|ξ|
)]|

≤ C
∑

k1+k2=k

∑
α1+α2=α

2j(m−ρk1−ρ|α1|)2−j(k2+
|α2|
2 )

≤ C2j(m−ρk− |α|
2 ). (10)

As ϕ(x, ξ) is homogeneous of order 1 in ξ, when N ≥ 2 and k ≥ 1, there holds

∂kr∇N−k
ξ ϕ(x, ξ) = ∇N−k

ξ ∂k−1
r ∂rϕ(x, ξ)(k ≥ 2) or ∇N−k−1

ξ ∂r∇ξϕ(x, ξ)(k = 1) = 0. (11)

When k + |α| ≥ 2 and ξ ∈ Ω, by virtue of (8), (11) and the fact ϕ ∈ L∞Φ2, we can obtain

that

|∂kξ1∂
α
ξ′w

v
j (x, ξ)| = |∂kξ1∂

α
ξ′ϕ(x, ξ)|

= |(∂r +O(2−
j
2 ) · ∇ξ)

k∂αξ′ϕ(x, ξ)|

≤ C
k∑

k1=0

2−
j(k−k1)

2 |∂k1
r ∇k−k1+|α|

ξ ϕ(x, ξ)|

= C2−
jk
2 |∇k+|α|

ξ ϕ(x, ξ)|

≤ C2j(−
k
2−k−|α|+1) ≤ C2−j(k+

|α|
2 ). (12)

When ξ ∈ Ω, from (12) we have |∂ξ1∂ξ′ϕ(x, ξ)| ≤ C2−
3j
2 . By the mean value theorem and the

homogeneity of ϕ, one can get that

|∂ξ1wv
j (x, ξ)| = |∂ξ1 [ϕ(x, ξ)− ϕ(x, ξvj )]|

= |∂ξ1ϕ(x, ξ)− ∂ξ1ϕ(x, |ξ|ξvj )|
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≤ C|ξ − |ξ|ξvj | sup
ζ∈Ω

|∂ξ1∂ξ′ϕ(x, ζ)|

≤ C2
j
2 2−

3j
2 = C2−j . (13)

On the other hand, it is easy to see that

|∂ξ′wv
j (x, ξ)| = |∂ξ′ϕ(x, ξ)− ∂ξ′ϕ(x, ξ

v
j )| ≤ C2−

j
2 . (14)

It can be derived from (12), (13) and (14) that

|∂kξ1∂
α
ξ′e

iwv
j (x,ξ)| ≤ C2−j(k+

|α|
2 ). (15)

Now by virtue of (10) and (15), for any M ∈ N, we have

|(Lj)
M [eiw

v
j (x,ξ)a(x, ξ)ψj(ξ)φ

v
j (
ξ

|ξ|
)]|

≤ C
∑

k+|α|≤2M

2jkρ2
j|α|
2 |∂kξ1∂

α
ξ′ [e

iwv
j (x,ξ)a(x, ξ)ψjφ

v
j (
ξ

|ξ|
)]|

≤ C
∑

k+|α|≤2M

∑
k1+k2=k

∑
α1+α2=α

2jkρ2
j|α|
2 |∂k1

ξ1
∂α1

ξ′ e
iwv

j (x,ξ)||∂k2

ξ1
∂α2

ξ′ [a(x, ξ)ψj(ξ)φ
v
j (
ξ

|ξ|
)]|

≤ C
∑

k+|α|≤2M

∑
k1+k2=k

∑
α1+α2=α

2jkρ2
j|α|
2 2−j(k1+

|α1|
2 )2j(m−k2ρ− |α2|

2 )

≤ C2jm. (16)

From (15), for any x, y ∈ Rn on can get that

|kvj (x, y)|

= |
∫
Rn

ei(∇ξϕ(x,ξ
v
j )−y)·ξeiw

v
j (x,ξ)a(x, ξ)ψjφ

v
j (
ξ

|ξ|
)dξ|

= |
∫
Rn

(1 + 22jρ|∂ξ1ϕ(x, ξvj )− y1|2 + 2j |∇ξ′ϕ(x, ξ
v
j )− y′|2)−M

×LM
j (eiw

v
j (x,ξ))a(x, ξ)ψj(ξ)φ

v
j (
ξ

|ξ|
)dξ|

= (1 + 22jρ|∂ξ1ϕ(x, ξvj )− y1|2 + 2j |∇ξ′ϕ(x, ξ
v
j )− y′|2)−M |

×
∫
Ω

eiw
v
j (x,ξ)LM

j [a(x, ξ)ψj(ξ)φ
v
j (
ξ

|ξ|
)]dξ|

≤ C2jm|Ω|(1 + 22jρ|∂ξ1ϕ(x, ξvj )− y1|2 + 2j |∇ξ′ϕ(x, ξ
v
j )− y′|2)−M

≤ C2j(m+n+1
2 )(1 + 22jρ|∂ξ1ϕ(x, ξvj )− y1|2 + 2j |∇ξ′ϕ(x, ξ

v
j )− y′|2)−M .

By virtue of the assumption (2) and the similar computations in section 2, for any y ∈ Rn and

M > n
2 we have∫

Rn

|kvj (x, y)|dx ≤ C2j(m+n+1
2 )

∫
Rn

(1 + 22jρ|∂ξ1ϕ(x, ξvj )− y1|2 + 2j |∇ξ′ϕ(x, ξ
v
j )− y′|2)−Mdx

≤ C2j(m+n+1
2 )(

∫
2jρ|∂ξ1

ϕ(x,ξvj )−y1|+2
j
2 |∇ξ′ϕ(x,ξ

v
j )−y′|<1

+

∞∑
s=1

∫
2s−1<2jρ|∂ξ1

ϕ(x,ξvj )−y1|+2
j
2 |∇ξ′ϕ(x,ξ

v
j )−y′|<2s

)
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(1 + 22jρ|∂ξ1ϕ(x, ξvj )− y1|2 + 2j |∇ξ′ϕ(x, ξ
v
j )− y′|2)−Mdx

≤ C2j(m+n+1
2 )(|{x : 2jρ|∂ξ1ϕ(x, ξvj )− y1|+ 2

j
2 |∇ξ′ϕ(x, ξ

v
j )− y′| < 1}|

+
∞∑
s=1

|{x : 2jρ|∂ξ1ϕ(x, ξvj )− y1|+ 2
j
2 |∇ξ′ϕ(x, ξ

v
j )− y′| < 2s}|2−2sM )

≤ C2j(m+n+1
2 )(|{x : |∂ξ1ϕ(x, ξvj )− y1| < 2−jρ, |∇ξ′ϕ(x, ξ

v
j )− y′| < 2−

j
2 }|

+
∞∑
s=1

|{x : |∂ξ1ϕ(x, ξvj )− y1| < 2s−jρ, |∇ξ′ϕ(x, ξ
v
j )− y′| < 2s−

j
2 }|2−2sM )

≤ C2j(m+n+1
2 )(2−j(ρ+n−1

2 ) +

∞∑
s=1

2−j(ρ+n−1
2 )2s(n−2M))

≤ C2j(m−ρ+1).

Obviously, it is also true for any v. So we have∫
Rn

|k1(x, y)|dx ≤
∞∑
j=1

∑
v

∫
Rn

|kvj (x, y)|dx

≤ C

∞∑
j=1

∑
v

2j(m−ρ+1)

≤ C
∞∑
j=1

2j(m−ρ+n+1
2 ) ≤ C

if m < ρ− n+1
2 . Thus we have proved the main theorem when 1

2 < ρ ≤ 1. �
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